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Abstract

Fitting high-dimensional statistical models often requires the use of non-linear
parameter estimation procedures. As a consequence, it is generally impossible to
obtain an exact characterization of the probability distribution of the parameter
estimates. This in turn implies that it is extremely challenging to quantify the un-
certainty associated with a certain parameter estimate. Concretely, no commonly
accepted procedure exists for computing classical measures of uncertainty and
statistical significance as confidence intervals or p-values.
We consider here a broad class of regression problems, and propose an efficient
algorithm for constructing confidence intervals and p-values. The resulting confi-
dence intervals have nearly optimal size. When testing for the null hypothesis that
a certain parameter is vanishing, our method has nearly optimal power.
Our approach is based on constructing a ‘de-biased’ version of regularized M-
estimators. The new construction improves over recent work in the field in that it
does not assume a special structure on the design matrix. Furthermore, proofs are
remarkably simple. We test our method on a diabetes prediction problem.

1 Introduction

It is widely recognized that modern statistical problems are increasingly high-dimensional, i.e. re-
quire estimation of more parameters than the number of observations/examples. Examples abound
from signal processing [16], to genomics [21], collaborative filtering [12] and so on. A number
of successful estimation techniques have been developed over the last ten years to tackle these
problems. A widely applicable approach consists in optimizing a suitably regularized likelihood
function. Such estimators are, by necessity, non-linear and non-explicit (they are solution of certain
optimization problems).

The use of non-linear parameter estimators comes at a price. In general, it is impossible to char-
acterize the distribution of the estimator. This situation is very different from the one of classical
statistics in which either exact characterizations are available, or asymptotically exact ones can be
derived from large sample theory [26]. This has an important and very concrete consequence. In
classical statistics, generic and well accepted procedures are available for characterizing the uncer-
tainty associated to a certain parameter estimate in terms of confidence intervals or p-values [28, 14].
However, no analogous procedures exist in high-dimensional statistics.

In this paper we develop a computationally efficient procedure for constructing confidence intervals
and p-values for a broad class of high-dimensional regression problems. The salient features of
our procedure are: (i) Our approach guarantees nearly optimal confidence interval sizes and testing
power. (ii) It is the first one that achieves this goal under essentially no assumptions on the pop-
ulation covariance matrix of the parameters, beyond the standard conditions for high-dimensional
consistency. (iii) It allows for a streamlined analysis with respect to earlier work in the same area.
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Table 1: Unbiased estimator for θ0 in high dimensional linear regression models

Input: Measurement vector y, design matrix X, parameter γ.
Output: Unbiased estimator θ̂u.

1: Set λ = σγ, and let θ̂n be the Lasso estimator as per Eq. (3).
2: Set Σ̂ ≡ (XTX)/n.
3: for i = 1, 2, . . . , p do
4: Let mi be a solution of the convex program:

minimize mTΣ̂m

subject to ‖Σ̂m− ei‖∞ ≤ γ
(4)

5: Set M = (m1, . . . ,mp)
T. If any of the above problems is not feasible, then set M = Ip×p.

6: Define the estimator θ̂u as follows:

θ̂u = θ̂n(λ) +
1

n
MXT(Y −Xθ̂n(λ)) (5)

(iv) Our method has a natural generalization non-linear regression models (e.g. logistic regres-
sion, see Section 4). We provide heuristic and numerical evidence supporting this generalization,
deferring a rigorous study to future work.

For the sake of clarity, we will focus our presentation on the case of linear regression, defer-
ring the generalization to Section 4. In the random design model, we are given n i.i.d. pairs
(Y1, X1), (Y2, X2), . . . , (Yn, Xn), with vectors Xi ∈ Rp and response variables Yi given by

Yi = 〈θ0, Xi〉+Wi , Wi ∼ N(0, σ2) . (1)

Here 〈 · , · 〉 is the standard scalar product in Rp. In matrix form, letting Y = (Y1, . . . , Yn)T and
denoting by X the design matrix with rows XT

1 , . . . , X
T
n , we have

Y = X θ0 +W , W ∼ N(0, σ2In×n) . (2)

The goal is estimate the unknown (but fixed) vector of parameters θ0 ∈ Rp.

In the classic setting, n � p and the estimation method of choice is ordinary least squares yielding
θ̂OLS = (XTX)−1XTY . In particular θ̂ is Gaussian with mean θ0 and covariance σ2(XTX)−1.
This directly allows to construct confidence intervals1.

In the high-dimensional setting where p > n, the matrix (XTX) is rank deficient and one has to
resort to biased estimators. A particularly successful approach is the Lasso [24, 7] which promotes
sparse reconstructions through an `1 penalty.

θ̂n(Y,X;λ) ≡ arg min
θ∈Rp

{ 1

2n
‖Y −Xθ‖22 + λ‖θ‖1

}
. (3)

In case the right hand side has more than one minimizer, one of them can be selected arbitrarily for
our purposes. We will often omit the arguments Y , X, as they are clear from the context. We denote
by S ≡ supp(θ0) ⊆ [p] the support of θ0, and let s0 ≡ |S|. A copious theoretical literature [6, 2, 4]
shows that, under suitable assumptions on X, the Lasso is nearly as accurate as if the support S was
known a priori. Namely, for n = Ω(s0 log p), we have ‖θ̂n − θ0‖22 = O(s0σ

2(log p)/n). These
remarkable properties come at a price. Deriving an exact characterization for the distribution of θ̂n
is not tractable in general, and hence there is no simple procedure to construct confidence intervals
and p-values. In order to overcome this challenge, we construct a de-biased estimator from the Lasso
solution. The de-biased estimator is given by the simple formula θ̂u = θ̂n+(1/n)MXT(Y −Xθ̂n),
as in Eq. (5). The basic intuition is that XT(Y −Xθ̂n)/(nλ) is a subgradient of the `1 norm at the
Lasso solution θ̂n. By adding a term proportional to this subgradient, our procedure compensates
the bias introduced by the `1 penalty in the Lasso.

1For instance, letting Q ≡ (XTX/n)−1, θ̂OLS
i − 1.96σ

√
Qii/n, θ̂

OLS
i + 1.96σ

√
Qii/n] is a 95% confi-

dence interval [28].
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We will prove in Section 2 that θ̂u is approximately Gaussian, with mean θ0 and covariance
σ2(M Σ̂M)/n, where Σ̂ = (XTX/n) is the empirical covariance of the feature vectors. This result
allows to construct confidence intervals and p-values in complete analogy with classical statistics
procedures. For instance, letting Q ≡ M Σ̂M , [θ̂ui − 1.96σ

√
Qii/n, θ̂

u
i + 1.96σ

√
Qii/n] is a 95%

confidence interval. The size of this interval is of order σ/
√
n, which is the optimal (minimum) one,

i.e. the same that would have been obtained by knowing a priori the support of θ0. In practice the
noise standard deviation is not known, but σ can be replaced by any consistent estimator σ̂.

A key role is played by the matrix M ∈ Rp×p whose function is to ‘decorrelate’ the columns of X.
We propose here to constructM by solving a convex program that aims at optimizing two objectives.
One one hand, we try to control |M Σ̂− I|∞ (here and below | · |∞ denotes the entrywise `∞ norm)
which –as shown in Theorem 2.1– controls the non-Gaussianity and bias of θ̂u. On the other, we
minimize [M Σ̂M ]i,i, for each i ∈ [p], which controls the variance of θ̂ui .

The idea of constructing a de-biased estimator of the form θ̂u = θ̂n + (1/n)MXT(Y − Xθ̂n)
was used by Javanmard and Montanari in [10], that suggested the choice M = cΣ−1, with Σ =
E{X1X

T
1 } the population covariance matrix and c a positive constant. A simple estimator for Σ

was proposed for sparse covariances, but asymptotic validity and optimality were proven only for
uncorrelated Gaussian designs (i.e. Gaussian X with Σ = I). Van de Geer, Bülhmann and Ritov
[25] used the same construction with M an estimate of Σ−1 which is appropriate for sparse inverse
covariances. These authors prove semi-parametric optimality in a non-asymptotic setting, provided
the sample size is at least n = Ω(s2

0 log p). In this paper, we do not assume any sparsity constraint on
Σ−1, but still require the sample size scaling n = Ω(s2

0 log p). We refer to a forthcoming publication
wherein the condition on the sample size scaling is relaxed [11].

From a technical point of view, our proof starts from a simple decomposition of the de-biased esti-
mator θ̂u into a Gaussian part and an error term, already used in [25]. However –departing radically
from earlier work– we realize thatM need not be a good estimator of Σ−1 in order for the de-biasing
procedure to work. We instead set M as to minimize the error term and the variance of the Gaussian
term. As a consequence of this choice, our approach applies to general covariance structures Σ. By
contrast, earlier approaches applied only to sparse Σ, as in [10], or sparse Σ−1 as in [25]. The only
assumptions we make on Σ are the standard compatibility conditions required for high-dimensional
consistency [4]. We refer the reader to the long version of the paper [9] for the proofs of our main
results and the technical steps.

1.1 Further related work

The theoretical literature on high-dimensional statistical models is vast and rapidly growing. Re-
stricting ourselves to linear regression, earlier work investigated prediction error [8], model selec-
tion properties [17, 31, 27, 5], `2 consistency [6, 2]. Of necessity, we do not provide a complete set
of references, and instead refer the reader to [4] for an in-depth introduction to this area.

The problem of quantifying statistical significance in high-dimensional parameter estimation is, by
comparison, far less understood. Zhang and Zhang [30], and Bühlmann [3] proposed hypothesis
testing procedures under restricted eigenvalue or compatibility conditions [4]. These methods are
however effective only for detecting very large coefficients. Namely, they both require |θ0,i| ≥
c max{σs0 log p/ n, σ/

√
n}, which is

√
s0 larger than the ideal detection level [10]. In other words,

in order for the coefficient θ0,i to be detectable with appreciable probability, it needs to be larger than
the overall `2 error, rather than the `2 error per coordinate.

Lockart et al. [15] develop a test for the hypothesis that a newly added coefficient along the Lasso
regularization path is irrelevant. This however does not allow to test arbitrary coefficients at a given
value of λ, which is instead the problem addressed in this paper. It further assumes that the current
Lasso support contains the actual support supp(θ0) and that the latter has bounded size. Finally,
resampling methods for hypothesis testing were studied in [29, 18, 19].

1.2 Preliminaries and notations

We let Σ̂ ≡ XTX/n be the sample covariance matrix. For p > n, Σ̂ is always singular. However,
we may require Σ̂ to be nonsingular for a restricted set of directions.
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Definition 1.1. For a matrix Σ̂ and a set S of size s0, the compatibility condition is met, if for some
φ0 > 0, and all θ satisfying ‖θSc‖1 ≤ 3‖θS‖1, it holds that

‖θS‖21 ≤
s0

φ2
0

θTΣ̂θ .

Definition 1.2. The sub-gaussian norm of a random variable X , denoted by ‖X‖ψ2 , is defined as

‖X‖ψ2
= sup

p≥1
p−1/2(E|X|p)1/p .

The sub-gaussian norm of a random vectorX ∈ Rn is defined as ‖X‖ψ2
= supx∈Sn−1 ‖〈X,x〉‖ψ2

.
Further, for a random variable X , its sub-exponential norm, denoted by ‖X‖ψ1

, is defined as

‖X‖ψ1 = sup
p≥1

p−1(E|X|p)1/p .

For a matrix A and set of indices I, J , we let AI,J denote the submatrix formed by the rows in
I and columns in J . Also, AI,· (resp. A·,I ) denotes the submatrix containing just the rows (reps.
columns) in I . Likewise, for a vector v, vI is the restriction of v to indices in I . We use the shorthand
A−1
I,J = (A−1)I,J . In particular, A−1

i,i = (A−1)i,i. The maximum and the minimum singular values
of A are respectively denoted by σmax(A) and σmin(A). We write ‖v‖p for the standard `p norm of
a vector v and ‖v‖0 for the number of nonzero entries of v. For a matrix A, ‖A‖p is the `p operator
norm, and |A|p is the elementwise `p norm, i.e., |A|p = (

∑
i,j |Aij |p)1/p. For an integer p ≥ 1,

we let [p] ≡ {1, . . . , p}. For a vector v, supp(v) represents the positions of nonzero entries of v.
Throughout, with high probability (w.h.p) means with probability converging to one as n→∞, and
Φ(x) ≡

∫ x
−∞ e−t

2/2dt/
√

2π denotes the CDF of the standard normal distribution.

2 An de-biased estimator for θ0

Theorem 2.1. Consider the linear model (1) and let θ̂u be defined as per Eq. (5). Then,
√
n(θ̂u − θ0) = Z + ∆ , Z|X ∼ N(0, σ2M Σ̂MT) , ∆ =

√
n(M Σ̂− I)(θ0 − θ̂) .

Further, suppose that σmin(Σ) = Ω(1), and σmax(Σ) = O(1). In addition assume the rows of the
whitened matrix XΣ−1/2 are sub-gaussian, i.e., ‖Σ−1/2X1‖ψ2 = O(1). Let E be the event that the
compatibility condition holds for Σ̂, and maxi∈[p] Σ̂i,i = O(1). Then, using γ = O(

√
(log p)/n)

(see inputs in Table 1), the following holds true. On the event E , w.h.p, ‖∆‖∞ = O(s0 log p/
√
n).

Note that compatibility condition (and hence the event E) holds w.h.p. for random design matrices
of a general nature. In fact [22] shows that under some general assumptions, the compatibility
condition on Σ implies a similar condition on Σ̂, w.h.p., when n is sufficiently large. Bounds on
the variances [M Σ̂MT]ii will be given in Section 3.2. Finally, the claim of Theorem 2.1 does not
rely on the specific choice of the objective function in optimization problem (4) and only uses the
optimization constraints.

Remark 2.2. Theorem 2.1 does not make any assumption about the parameter vector θ0. If we
further assume that the support size s0 satisfies s0 = o(

√
n/ log p), then we have ‖∆‖∞ = o(1),

w.h.p. Hence, θ̂u is an asymptotically unbiased estimator for θ0.

3 Statistical inference

A direct application of Theorem 2.1 is to derive confidence intervals and statistical hypothesis tests
for high dimensional models. Throughout, we make the sparsity assumption s0 = o(

√
n/ log p).

3.1 Confidence intervals

We first show that the variances of variables Zj |X are Ω(1).
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Lemma 3.1. Let M = (m1, . . . ,mp)
T be the matrix with rows mT

i obtained by solving convex
program (4). Then for all i ∈ [p], [M Σ̂MT]i,i ≥ (1− γ)2/Σ̂i,i .

By Remark 2.2 and Lemma 3.1, we have

P
{√n(θ̂ui − θ0,i)

σ[M Σ̂MT]
1/2
i,i

≤ x
∣∣∣X} = Φ(x) + o(1) , ∀x ∈ R . (6)

Since the limiting probability is independent of X, Eq. (6) also holds unconditionally for random
design X.

For constructing confidence intervals, a consistent estimate of σ is needed. To this end, we use the
scaled Lasso [23] given by

{θ̂n(λ), σ̂} ≡ arg min
θ∈Rp,σ>0

{ 1

2σn
‖Y −Xθ‖22 +

σ

2
+ λ‖θ‖1

}
.

This is a joint convex minimization which provides an estimate of the noise level in addition to an
estimate of θ0. We use λ = c1

√
(log p)/n that yields a consistent estimate σ̂, under the assumptions

of Theorem 2.1 (cf. [23]). We hence obtain the following.
Corollary 3.2. Let

δ(α, n) = Φ−1(1− α/2)σ̂ n−1/2

√
[M Σ̂MT]i,i . (7)

Then Ii = [θ̂ui − δ(α, n), θ̂ui + δ(α, n)] is an asymptotic two-sided confidence interval for θ0,i with
significance α.

Notice that the same corollary applies to any other consistent estimator σ̂ of the noise standard
deviation.

3.2 Hypothesis testing

An important advantage of sparse linear regression models is that they provide parsimonious expla-
nations of the data in terms of a small number of covariates. The easiest way to select the ‘active’
covariates is to choose the indexes i for which θ̂ni 6= 0. This approach however does not provide a
measure of statistical significance for the finding that the coefficient is non-zero.

More precisely, we are interested in testing an individual null hypothesis H0,i : θ0,i = 0 versus the
alternative HA,i : θ0,i 6= 0, and assigning p-values for these tests. We construct a p-value Pi for the
test H0,i as follows:

Pi = 2

(
1− Φ

( √
n |θ̂ui |

σ̂[M Σ̂MT]
1/2
i,i

))
. (8)

The decision rule is then based on the p-value Pi:

Ti,X(y) =

{
1 if Pi ≤ α (reject H0,i) ,
0 otherwise (accept H0,i) .

(9)

We measure the quality of the test Ti,X(y) in terms of its significance level αi and statistical power
1− βi. Here αi is the probability of type I error (i.e. of a false positive at i) and βi is the probability
of type II error (i.e. of a false negative at i).

Note that it is important to consider the tradeoff between statistical significance and power. Indeed
any significance level α can be achieved by randomly rejecting H0,i with probability α. This test
achieves power 1 − β = α. Further note that, without further assumption, no nontrivial power can
be achieved. In fact, choosing θ0,i 6= 0 arbitrarily close to zero, H0,i becomes indistinguishable
from its alternative. We will therefore assume that, whenever θ0,i 6= 0, we have |θ0,i| > µ as well.
We take a minimax perspective and require the test to behave uniformly well over s0-sparse vectors.
Formally, for µ > 0 and i ∈ [p], define

αi(n) ≡ sup
{
Pθ0(Ti,X(y) = 1) : θ0 ∈ Rp, ‖θ0‖0 ≤ s0(n), θ0,i = 0

}
.

βi(n;µ) ≡ sup
{
Pθ0(Ti,X(y) = 0) : θ0 ∈ Rp, ‖θ0‖0 ≤ s0(n), |θ0,i| ≥ µ

}
.
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Here, we made dependence on n explicit. Also, Pθ(·) is the induced probability for random design
X and noise realization w, given the fixed parameter vector θ. Our next theorem establishes bounds
on αi(n) and βi(n;µ).
Theorem 3.3. Consider a random design model that satisfies the conditions of Theorem 2.1. Under
the sparsity assumption s0 = o(

√
n/ log p), the following holds true for any fixed sequence of

integers i = i(n):

lim
n→∞

αi(n) ≤ α . (10)

lim
n→∞

1− βi(µ;n)

1− β∗i (µ;n)
≥ 1 , 1− β∗i (µ;n) ≡ G

(
α,

√
nµ

σ[Σ−1
i,i ]1/2

)
, (11)

where, for α ∈ [0, 1] and u ∈ R+, the function G(α, u) is defined as follows:

G(α, u) = 2− Φ(Φ−1(1− α

2
) + u)− Φ(Φ−1(1− α

2
)− u) .

It is easy to see that, for any α > 0, u 7→ G(α, u) is continuous and monotone increasing. Moreover,
G(α, 0) = α which is the trivial power obtained by randomly rejecting H0,i with probability α. As
µ deviates from zero, we obtain nontrivial power. Notice that in order to achieve a specific power
β > α, our scheme requires µ = O(σ/

√
n), since Σ−1

i,i ≤ σmax(Σ−1) ≤ (σmin(Σ))−1 = O(1).

3.2.1 Minimax optimality

The authors of [10] prove an upper bound for the minimax power of tests with a given significance
level α, under the Gaussian random design models (see Theorem 2.6 therein). This bound is obtained
by considering an oracle test that knows all the active parameters except i, i.e., S\{i}. To state the
bound formally, for a set S ⊆ [p] and i ∈ Sc, define Σi|S ≡ Σi,i − Σi,S(ΣS,S)−1ΣS,i, and let

ηΣ,s0 ≡ min
i∈[p],S

{
Σi|S : S ⊆ [p]\{i}, |S| < s0

}
.

In asymptotic regime and under our sparsity assumption s0 = o(
√
n/ log p), the bound of [10]

simplifies to

lim
n→∞

1− βopt
i (α;µ)

G(α, µ/σeff)
≤ 1 , σeff =

σ
√
n ηΣ,s0

, (12)

Using the bound of (12) and specializing the result of Theorem 3.3 to Gaussian design X, we obtain
that our scheme achieves a near optimal minimax power for a broad class of covariance matrices.
We can compare our test to the optimal test by computing how much µ must be increased in order to
achieve the minimax optimal power. It follows from the above that µ must be increased to µ̃, with
the two differing by a factor:

µ̃/µ =

√
Σ−1
ii ηΣ,s0 ≤

√
Σ−1
i,i Σi,i ≤

√
σmax(Σ)/σmin(Σ) ,

since Σ−1
ii ≤ (σmin(Σ))−1, and Σi|S ≤ Σi,i ≤ σmax(Σ) due to ΣS,S � 0.

4 General regularized maximum likelihood

In this section, we generalize our results beyond the linear regression model to general regularized
maximum likelihood. Here, we only describe the de-biasing method. Formal guarantees can be
obtained under suitable restricted strong convexity assumptions [20] and will be the object of a
forthcoming publication.

For univariate Y , and vector X ∈ Rp, we let {fθ(Y |X)}θ∈Rp be a family of conditional probability
densities parameterized by θ, that are absolutely continuous with respect to a common measure
ω(dy), and suppose that the gradient∇θfθ(Y |X) exists and is square integrable.

As in for linear regression, we assume that the data is given by n i.i.d. pairs (X1, Y1), . . . (Xn, Yn),
where conditional on Xi, the response variable Yi is distributed as

Yi ∼ fθ0( · |Xi) .
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for some parameter vector θ0 ∈ Rp. Let Li(θ) = − log fθ(Yi|Xi) be the normalized negative
log-likelihood corresponding to the observed pair (Yi, Xi), and define L(θ) = 1

n

∑n
i=1 Li(θ) . We

consider the following regularized estimator:

θ̂ ≡ arg min
θ∈Rp

{
L(θ) + λR(θ)

}
, (13)

where λ is a regularization parameter andR : Rp → R+ is a norm.

We next generalize the definition of Σ̂. Let Ii(θ) be the Fisher information of fθ(Y |Xi), defined as

Ii(θ) ≡ E
[(
∇θ log fθ(Y |Xi)

)(
∇θ log fθ(Y |Xi)

)T∣∣∣Xi

]
= −E

[(
∇2
θ log f(Y |Xi, θ)

)∣∣∣Xi

]
,

where the second identity holds under suitable regularity conditions [13], and ∇2
θ denotes the Hes-

sian operator. We assume E[Ii(θ)] � 0 define Σ̂ ∈ Rp×p as follows:

Σ̂ ≡ 1

n

n∑
i=1

Ii(θ̂) . (14)

Note that (in general) Σ̂ depends on θ̂. Finally, the de-biased estimator θ̂u is defined by θ̂u ≡
θ̂−M∇θL(θ̂) , with M given again by the solution of the convex program (4), and the definition of
Σ̂ provided here. Notice that this construction is analogous to the one in [25] (although the present
setting is somewhat more general) with the crucial difference of the construction of M .

A a simple heuristic derivation of this method is the following. By Taylor expansion of L(θ̂)

around θ0 we get θ̂u ≈ θ̂ − M∇θL(θ0) − M∇2
θL(θ0)(θ̂ − θ0) . Approximating ∇2

θL(θ0) ≈ Σ̂

(which amounts to taking expectation with respect to the response variables yi), we get θ̂u − θ0 ≈
−M∇θL(θ0)− [M Σ̂− I](θ̂− θ̂0). Conditionally on {Xi}1≤i≤n, the first term has zero expectation
and covariance [M Σ̂M ]. Further, by central limit theorem, its low-dimensional marginals are ap-
proximately Gaussian. The bias term −[M Σ̂− I](θ̂− θ̂0) can be bounded as in the linear regression
case, building on the fact that M is chosen such that |M Σ̂− I|∞ ≤ γ.

Similar to the linear case, an asymptotic two-sided confidence interval for θ0,i (with significance α)
is given by Ii = [θ̂ui − δ(α, n), θ̂ui + δ(α, n)], where

δ(α, n) = Φ−1(1− α/2)n−1/2[M Σ̂MT]
1/2
i,i .

Moreover, an asymptotically valid p-value Pi for testing null hypothesis H0,i is constructed as:

Pi = 2

(
1− Φ

( √
n|θ̂ui |

[M Σ̂MT]
1/2
i,i

))
.

In the next section, we shall apply the general approach presented here to L1-regularized logistic
regression. In this case, the binary response Yi ∈ {0, 1} is distributed as Yi ∼ fθ0( · |Xi) where
fθ0(1|x) = (1 + e−〈x,θ0〉)−1 and fθ0(0|x) = (1 + e〈x,θ0〉)−1. It is easy to see that in this case
Ii(θ̂) = q̂i(1− q̂i)XiX

T
i , with q̂i = (1 + e−〈θ̂,Xi〉)−1, and thus

Σ̂ =
1

n

n∑
i=1

q̂i(1− q̂i)XiX
T
i .

5 Diabetes data example

We consider the problem of estimating relevant attributes in predicting type-2 diabetes. We evaluate
the performance of our hypothesis testing procedure on the Practice Fusion Diabetes dataset [1].
This dataset contains de-identified medical records of 10000 patients, including information on di-
agnoses, medications, lab results, allergies, immunizations, and vital signs. From this dataset, we ex-
tract p numerical attributes resulting in a sparse design matrix Xtot ∈ Rntot×p, with ntot = 10000,
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Figure 1: Q-Q plot of Z and normalized histograms of Z̃S (in red) and Z̃Sc (in blue) for one real-
ization. No fitting of the Gaussian mean and variance was done in panel (b).

and p = 805 (only 5.9% entries of Xtot are non-zero). Next, we standardize the columns of X to
have mean 0 and variance 1. The attributes consist of: (i)Transcript records: year of birth, gender
and BMI; (ii)Diagnoses informations: 80 binary attributes corresponding to different ICD-9 codes.
(iii)Medications: 80 binary attributes indicating the use of different medications. (iv) Lab results:
For 70 lab test observations, we include attributes indicating patients tested, abnormality flags, and
the observed values. We also bin the observed values into 10 quantiles and make 10 binary attributes
indicating the bin of the corresponding observed value.

We consider logistic model as described in the previous section with a binary response identifying
the patients diagnosed with type-2 diabetes. For the sake of performance evaluation, we need to
know the true significant attributes. Letting L(θ) be the logistic loss corresponding to the design
Xtot and response vector Y ∈ Rntot , we take θ0 as the minimizer of L(θ). Notice that here, we are
in the low dimensional regime (ntot > p) and no regularization is needed.

Next, we take random subsamples of size n = 500 from the patients, and examine the performance
of our testing procedure. The experiment is done using glmnet-package in R that fits the entire path
of the regularized logistic estimator. We then choose the value of λ that yields maximum AUC (area
under ROC curve), approximated by a 5-fold cross validation.

Results: Type I errors and powers of our decision rule (9) are computed by comparing to θ0. The
average error and power (over 20 random subsamples) and significance level α = 0.05 are respec-
tively, 0.0319 and 0.818. Let Z = (zi)

p
i=1 denote the vector with zi ≡

√
n(θ̂ui − θ0,i)/[M Σ̂M ]

1/2
i,i .

In Fig. 1(a), sample quantiles of Z are depicted versus the quantiles of a standard normal distribu-
tion. The plot clearly corroborates our theoretical result regarding the limiting distribution of Z.
In order to build further intuition about the proposed p-values, let Z̃ = (z̃i)

p
i=1 be the vector with

z̃i ≡
√
nθ̂ui /[M Σ̂M ]

1/2
i,i . In Fig. 1(b), we plot the normalized histograms of Z̃S (in red) and Z̃Sc (in

blue). As the plot showcases, Z̃Sc has roughly standard normal distribution, and the entries of Z̃S
appear as distinguishable spikes. The entries of Z̃S with larger magnitudes are easier to be marked
off from the normal distribution tail.
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