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Abstract—We consider the problem of positioning a cloud of
points in the Euclidean space Rd, using noisy measurements
of a subset of pairwise distances. This task has applications
in various areas, such as sensor network localizations, NMR
spectroscopy of proteins, and molecular conformation. Also,
it is closely related to dimensionality reduction problems and
manifold learning, where the goal is to learn the underlying
global geometry of a data set using measured local (or partial)
metric information. Here we propose a reconstruction algorithm
based on a semidefinite programming approach. For a random
geometric graph model and uniformly bounded noise, we provide
a precise characterization of the algorithm’s performance: In the
noiseless case, we find a radius r0 beyond which the algorithm
reconstructs the exact positions (up to rigid transformations). In
the presence of noise, we obtain upper and lower bounds on the
reconstruction error that match up to a factor that depends only
on the dimension d, and the average degree of the nodes in the
graph.

I. INTRODUCTION

A. Problem Statement

Consider the random geometric graph model G(n, r) =
(V,E) where V is a set of n nodes distributed uniformly
at random in the d-dimensional hypercube [−0.5, 0.5]d, and
E ∈ V ×V is a set of edges that connect the nodes which are
close to each other; i.e., (i, j) ∈ E ⇔ dij = ‖xi − xj‖ ≤ r.
For each edge (i, j) ∈ E, d̃ij denotes the measured distance
between nodes i and j. Denoting by zij ≡ d̃2

ij − d2
ij the

measurement error, we consider a “worst case model”, in
which the errors {zij}(i,j)∈E are arbitrary but uniformly
bounded |zij | ≤ ∆.

Given the graph G(n, r) and its associated distance mea-
surements, d̃ij , the localization problem is to reconstruct the
positions of the nodes. In this paper, we propose an algorithm
for this problem based on semidefinite programming and
provide a rigorous analysis of its performance.

Notice that the positions of the nodes can only be deter-
mined up to rigid transformations (a combination of rotation,
reflection and translation) of the nodes, because the inter point
distances are invariant to rigid transformations. Therefore, we
use the following metric, similar to the one defined in [9], to
evaluate the distance between the original position matrix X ∈
Rn×d and the estimation X̂ ∈ Rn×d. Let L = I − (1/n)uuT ,
where u ∈ Rn is the all-ones vector. It is easy to see that
LXXT L is invariant under rigid transformations of X . The
metric is defined as d(X, X̂) = 1/n2‖LXXT L−LX̂X̂T L‖1.
This is a measure of the average reconstruction error per point,
when X and X̂ are aligned optimally.
Remark. Clearly, connectivity of G is a necessary assumption
for the localization problem to be solvable. It is a well known

result that the graph G(n, r) is connected w.h.p if Kdrd >
(log n+cn)/n, where Kd is the volume of the d−dimensional
unit ball and cn → ∞ [10]. Viceversa, the graph is with
positive probability disconnected if Kdrd ≤ (log n + C)/n
for some constant C. Hence, we focus on the regime where
r = α(log n/n) 1

d for some constant α. We further notice that,
under the random geometric graph model, the configuration
of the points is almost surely generic, in the sense that the
coordinates do not satisfy any nonzero polynomial equation
with integer coefficients.
B. Algorithm and main results

The following algorithm uses semidefinite programming
(SDP) to solve the localization problem.

Algorithm SDP-based Algorithm for Localization
Input: dimension d, distance measurements d̃ij

for (i, j) ∈ E, bound on the measurement noise ∆
Output: estimated coordinates in Rd

1: Solve the following SDP problem:
minimize Tr(Q)
s.t.

∣∣∣〈Mij , Q〉 − d̃ij
2
∣∣∣ ≤ ∆, (i, j) ∈ E

Q , 0.
2: Compute the best rank-d approximation UdΣdUT

d of Q

3: Return X̂ = UdΣ
1/2
d .

Here Mij = eijeT
ij ∈ Rn×n, where eij ∈ Rn is the vector

with +1 at the ith position, −1 at the jth position and zero
everywhere else. Also, 〈A, B〉 ≡ Tr(AT B). Note that with a
slight abuse of notation, the solution of the SDP problem in
the first step is denoted by Q.

Let Q0 := XXT be Gram matrix of the node positions,
namely Q0,ij = xi · xj . A key observation is that Q0 is a
low rank matrix: rank(Q0) ≤ d, and obeys the constraints
of the SDP problem. By minimizing Tr(Q) in the first step,
we promote low-rank solutions Q (since Tr(Q) is the sum of
the eigenvalues of Q). Alternatively, this minimization can be
interpreted as setting the center of gravity of {x1, . . . , xn} to
coincide with the origin, thus removing the degeneracy due to
translational invariance.

In step 2, the algorithm computes the eigendecomposition
of Q and retains the d largest eigenvalues. This is equivalent
to computing the best rank-d approximation of Q in Frobenius
norm. The center of gravity of the reconstructed points remains
at the origin after this operation.

Our main result provides a complete characterization of the
robustness properties of the SDP-based algorithm. Here and



below ‘w.h.p’ means with probability converging to 1 as n →
∞ for d fixed.
Theorem I.1 Let {x1, . . . , xn} be n nodes distributed uni-
formly at random in the hypercube [−0.5, 0.5]d. Further,
assume connectivity radius r ≥ α(log n/n) 1

d , with α ≥ 10
√

d,
and Kd the volume of d−dimensional unit ball. Then w.h.p,
the error distance between the estimate X̂ returned by the
SDP-based algorithm and the correct coordinate matrix X is
upper bounded as

d(X, X̂) ≤ C1(nrd)5
∆
r4

. (1)

Conversely, w.h.p, there exist adversarial measurement errors
{zij}(i,j)∈E such that

d(X, X̂) ≥ C2 min{∆
r4

, 1}. (2)

Here, C1 and C2 denote constants that depend only on d.

A special case of this theorem concerns the case of exact
measurements.

Corollary I.1. Let {x1, . . . , xn} be n nodes distributed uni-
formly at random in the hypercube [−0.5, 0.5]d. If r ≥
10
√

d(log n/n) 1
d , and the distance measurements are exact,

then w.h.p, the SDP-based algorithm recovers the exact posi-
tions (up to rigid transformations).

C. Related work
The localization problem and its variants have attracted

significant interest over the past years due to their applications
in numerous areas, such as sensor network localization [3],
NMR spectroscopy [6], and manifold learning [11], [13].

Of particular interest to our work are the algorithms pro-
posed for the localization problem [9], [12], [3]. In general,
few analytical results are known about the performance of
these algorithms, particularly in the presence of noise.

The existing algorithms can be categorized in to two groups.
The first group consists of algorithms who try first to estimate
the missing distances and then use MDS to find the positions
from the reconstructed distance matrix [9], [4]. The algorithms
in the second group formulates the localization problem as
a non-convex optimization problem and then use different
relaxation schemes to solve it. An example of this type is
relaxation to an SDP [3], [1]. A crucial assumption in these
works is the existence of some anchors among the nodes
whose exact positions are known. The SDP is then used to
efficiently check whether the graph is uniquely d-localizable
and to find its unique realization.

II. PRELIMINARIES

A. Rigidity Theory
This section is a very brief overview of definitions and

results in rigidity theory which will be useful in this paper. We
refer the interested reader to [7], [2], for a thorough discussion.

A framework GX is an undirected graph G = (V,E) along
with a configuration X ∈ Rn×d whose ith row xT

i ∈ Rd is the
position of node i in the graph. The edges of G correspond
to the distance constraints.

Rigidity matrix. Consider a motion of the framework with
xi(t) being the position vector of point i at time t. Any smooth
motion that instantaneously preserves the distance dij must
satisfy d

dt‖xi − xj‖2 = 0 for all edges (i, j). Equivalently,

(xi − xj)T (ẋi − ẋj) = 0 ∀(i, j) ∈ E, (3)

where ẋi is the velocity of the ith point. Given a framework
GX ∈ Rd, a solution Ẋ = [ẋT

1 ẋT
2 · · · ẋT

n ]T , with ẋi ∈ Rd,
for the linear system of equations (3) is called an infinitesimal
motion of the framework GX . This linear system of equations
consists of |E| equations in dn unknowns and can be written
in the matrix form RG(X)Ẋ = 0, where RG(X) is called the
|E|× dn rigidity matrix.

It can be seen that for every skew symmetric matrix
A ∈ Rd×d and for every vector b ∈ Rd, ẋi = Axi + b
is an infinitesimal motion. Notice that these motions span a
d(d+1)/2 dimensional space, accounting d(d− 1)/2 degrees
of freedom for orthogonal transformations, A, and d degrees
of freedom for translations, b. Hence, dim Ker(RG(X)) ≥
d(d + 1)/2. A framework is said to be infinitesimally rigid if
dim Ker(RG(X)) = d(d + 1)/2.
Stress matrix. A stress for a framework GX is an assignment
of scalars ωij to the edges such that for each i ∈ V ,

∑

j:(i,j)∈E

ωij(xi−xj) = (
∑

j:(i,j)∈E

ωij)xi−
∑

j:(i,j)∈E

ωijxj = 0.

A stress vector can be rearranged into an n × n symmetric
matrix Ω , known as the stress matrix, such that for i 0= j, the
(i, j) entry of Ω is Ωij = −ωij , and the diagonal entries for
(i, i) are Ωii =

∑
j:j #=i ωij . Since all the coordinate vectors

of the configuration as well as the all-ones vector are in the
null space of Ω, the rank of the stress matrix for generic
configurations is at most n− d− 1.
B. Notations

For a vector v ∈ Rn, and a subset T ⊆ {1, · · · , n}, vT

is the restriction of v to indices in T . We use the notation
〈v1, · · · , vn〉 to represent the subspace spanned by vectors vi,
1 ≤ i ≤ n. The orthogonal projections onto subspaces V
and V ⊥ are respectively denoted by PV and P⊥

V . Throughout
this paper, u ∈ Rn is the all-ones vector and C is a constant
depending only on the dimension d, whose value may change
from case to case.

Given a matrix A, we denote its operator norm by ‖A‖2,
its Frobenius norm by ‖A‖F , its #1-norm by ‖A‖1 and its
nuclear norm by ‖A‖∗. (the latter is simply the sum of the
singular values of A). We also use σmax(A) and σmin(A) to
respectively denote the maximum and the minimum nonzero
singular values of A.

Finally, we denote by x(i) ∈ Rn, i ∈ {1, . . . , d} the ith

column of the positions matrix X . In other words x(i) is the
vector containing the ith coordinate of points x1, . . . , xn.

Throughout the proof we shall adopt the convention of
using the notations X , {xj}j∈[n], and {x(i)}i∈[d] to denote
the centered positions. In other words X = LX ′ where the
rows of X ′ are i.i.d. uniform in [−0.5, 0.5]d.



III. PROOF OF THEOREM I.1
Let V = 〈u, x(1), · · · , x(d)〉 and for any S ∈ Rn×n, define

S̃ = PV SPV + PV SP⊥
V + P⊥

V SPV , S⊥ = P⊥
V SP⊥

V .

Thus S = S̃ + S⊥. Also, denote by R the difference between
the optimum solution Q and the actual Gram matrix Q0, i.e.,
R = Q − Q0. The proof of Theorem I.1 is based on the
following key lemmas that bound R⊥ and R̃ separately.

Lemma III.1. There exists a numerical constant C = C(d),
such that, w.h.p,

‖R⊥‖∗ ≤ C
n

r4
(nrd)5∆ . (4)

Lemma III.2. There exists a numerical constant C = C(d),
such that, w.h.p,

‖R̃‖1 ≤ C
n2

r4
(nrd)5∆. (5)

We defer the proof of lemmas III.1 and III.2 to the next section.
Proof (Theorem I.1): Let Q =

∑n
i=1 σiuiuT

i , where
‖ui‖ = 1, uT

i uj = 0 for i 0= j and σ1 ≥ σ2 ≥ · · · ≥ 0.
In the second step of algorithm, Q is projected onto subspace
〈u1, · · · , ud〉. Denote the result by Pd(Q). As pointed out
before, Pd(Q)u = 0 and Q0u = 0. This implies that
Pd(Q) = LPd(Q)L and Q0 = LQ0L. By triangle inequality,

‖LPd(Q)L− LQ0L‖1 = ‖Pd(Q)−Q0‖1
≤ ‖Pd(Q)− Q̃‖1 + ‖Q̃−Q0‖1. (6)

Observe that, Q̃ = Q0 + R̃ and Q⊥ = R⊥. Since Pd(Q)− Q̃
has rank at most 3d, it follows that ‖Pd(Q) − Q̃‖1 ≤
n‖Pd(Q) − Q̃‖F ≤

√
3dn‖Pd(Q) − Q̃‖2 (for any matrix A,

‖A‖F ≤ rank(A)‖A‖2). By triangle inequality, we have

‖Pd(Q)− Q̃‖2 ≤ ‖Pd(Q)−Q‖2 + ‖Q− Q̃︸ ︷︷ ︸
R⊥

‖2. (7)

Note that ‖Pd(Q) − Q‖2 = σd+1. Recall the variational
principle for the eigenvalues.

σq = min
H,dim(H)=n−q+1

max
y∈H,‖y‖=1

yT Qy.

Taking H = 〈x(1), · · · , x(d)〉⊥, for any y ∈ H , yT Qy =
yT P⊥

V QP⊥
V y = yT Q⊥y = yT R⊥y, where we used the fact

Qu = 0 in the first equality (recall that Qu = 0 because Q
minimizes Tr(Q)). Therefore, σd+1 ≤ max‖y‖=1 yT R⊥y =
‖R⊥‖2 It follows from Eqs. (6) and (7) that

‖LPd(Q)L− LQ0L‖1 ≤ 2
√

3dn‖R⊥‖2 + ‖R̃‖1.

Using Lemma III.1 and III.2, we obtain

d(X,X ′) =
1
n2
‖LPd(Q)L− LQ0L‖1 ≤ C(nrd)5

∆
r4

,

which proves the thesis. For proof of the converse part, we
refer to a journal version of this paper [8].

IV. PROOFS OF THE LEMMAS

In this section we provide the proofs of lemmas III.1
and III.2. Due to space limitations, we will omit the proofs of
several technical steps, and defer them to [8].

A. Proof of Lemma III.1
The proof is based on the following three steps: (i) Con-

struct a stress matrix Ω of rank n− d− 1 for the framework;
(ii) Upper bound ‖R⊥‖∗ in terms of σmin(Ω) and σmax(Ω);
(iii) Bound the quantities σmin(Ω) and σmax(Ω).

For each node i ∈ V (G), define Ci = {j ∈ V (G) : dij ≤
r/2}. (Note that the nodes in each Ci form a clique in G).
In addition, let Si = {Ci} ∪ {Ci\k}k∈Ci . Therefore, Si is a
set of |Ci|+ 1 number of cliques. For the graph G, we define
cliq(G) := S1∪ · · ·∪Sn. Our first lemma establishes a simple
property of cliq(G). Its proof is immediate and deferred to [8].

Proposition IV.1. If r = 4c
√

d(log n/n)1/d with c > 1, the
following is true w.h.p. For any two nodes i and j, such that
‖xi − xj‖ ≤ r/2, |Ci ∩ Cj | ≥ d + 1.

A crucial role in the proof is played by the stress matrix
of GX . A special construction of such a matrix is obtained as
follows

Ω =
∑

Qk∈cliq(G)

P⊥
〈uQk

,x(1)
Qk

,··· ,x(d)
Qk

〉
.

The proof of the next statement is again immediate and omitted
from this version of the paper.

Proposition IV.2. The matrix Ω defined above is a positive
semidefinite (PSD) stress matrix of rank n − d − 1 for the
framework GX .

Proposition IV.3. Let Ω be an arbitrary PSD stress matrix for
the framework such that rank(Ω) = n− d− 1. Then,

‖R⊥‖∗ ≤ 2
σmax(Ω)
σmin(Ω)

|E|∆. (8)

Proof: Note that R⊥ = Q⊥ = P⊥
V QP⊥

V , 0. Write
R⊥ =

∑n−d−1
i=1 λiuiuT

i , where ‖ui‖ = 1, uT
i uj = 0 for i 0= j

and λ1 ≥ λ2 ≥ · · ·λn−d−1 ≥ 0. Therefore,

〈Ω, R⊥〉 =
n−d−1∑

i=1

λiu
T
i Ωui ≥ σmin(Ω)‖R⊥‖∗. (9)

Here, we used the fact that ui ∈ V ⊥ = Ker⊥(Ω). Note that
σmin(Ω) > 0, since Ω , 0.

Now, we need to upper bound the quantity 〈Ω, R⊥〉.
Any stress matrix Ω = [ωij ] can be written as Ω =∑

(i,j)∈E ωijMij . Define ωmax = max
i #=j

|ωij |. Then,

〈Ω, R⊥〉 (a)
= 〈Ω, R〉 =

∑

(i,j)∈E

ωij〈Mij , R〉

≤
∑

(i,j)∈E

ωmax|〈Mij , Q−Q0〉|

≤
∑

(i,j)∈E

ωmax(|〈Mij , Q〉 − d̃ij
2| + | d̃ij

2 − d2
ij︸ ︷︷ ︸

zij

|)

≤ 2ωmax|E|∆, (10)

where (a) follows from the fact that ΩX = 0. Since Ω , 0,
ω2

ij ≤ ωiiωjj = (eT
i Ωei)(eT

j Ωej) ≤ σ2
max(Ω), for 1 ≤ i, j ≤



n. Hence, ωmax ≤ σmax(Ω). Combining Eqs. (9) and (10), we
get the desired result.

Claim IV.1. There exists a constant C = C(d), such that,
w.h.p,

σmax(Ω) ≤ C(nrd)2.

Proof: For any vector v ∈ Rn,

vT Ωv = ‖
∑

Qk∈cliq(G)

P⊥
〈uQk

,x(1)
Qk

,··· ,x(d)
Qk

〉
v‖2 ≤

∑

k

‖vQk‖2

=
n∑

j=1

v2
j

∑

k:j∈Qk

1 =
n∑

j=1

(
∑

i∈Cj

|Ci|)v2
j ≤ (Cnrd‖v‖)2.

The last inequality follows from the fact that, w.h.p, |Cj | ≤
Cnrd for all j and some constant C.

We now pass to lower bounding the smallest non-zero
singular value of Ω, σmin(Ω). To prove such an estimate, recall
that the Laplacian L of the graph G is the symmetric matrix
indexed by the vertices V , such that Lij = −1 if (i, j) ∈ E,
Lii =degree(i) and Lij = 0 otherwise. It is useful to recall a
basic estimate on the Laplacian of random geometric graphs.

Remark IV.1. Let Lsym denote the normalized Laplacian of
the random geometric graph G(n, r), defined as Lsym =
D−1/2LD−1/2, where D is the diagonal matrix with degrees
of the nodes on diagonal. Then, w.h.p, λ2(Lsym), the sec-
ond smallest eigenvalue of Lsym, is at least Cr2. Therefore,
λ2(L) ≥ C(nrd)r2.

Construct the graph G∗ as follows. For every element in
cliq(G), there is a corresponding vertex in G∗. Also, for any
two nodes i and j, such that ‖xi − xj‖ ≤ r/2, every vertex
corresponding to an element in Si is connected to every vertex
corresponding to an element in Sj . The next claim establishes
some properties of the graph G∗. Its proof is given in [8].

Claim IV.2. The graph G∗ has the following properties.
(i) The degree of the nodes are bounded by C(nrd)2, w.h.p,
for some constant C = C(d).
(ii) Let L∗ denote the laplacian of G∗. Then σmin(L∗) ≥
C(nrd)2r2, for some constant C.

Proposition IV.4. There exists a constant C = C(d), such
that w.h.p, Ω , C(nrd)−3r2L on the space V ⊥.

Proof: Due to space limitations, we present the proof for
the case d = 1. The general argument proceeds along the same
lines, and we defer it to [8].

Let v ∈ V ⊥ be an arbitrary vector. Decompose v locally
as vQi = βix̃Qi + γiuQi + w(i), where x̃Qi = P⊥

uQi
· x and

w(i) ∈ 〈xQi , uQi〉⊥. Hence, vT Ωv =
∑

Qi∈cliq(G) ‖w(i)‖2.
Note that vQi∩Qj has two representations, whence we obtain

w(i)
Qi∩Qj

− w(j)
Qi∩Qj

= (βj − βi)x̃Qi∩Qj + γ̃i,juQi∩Qj . (11)

Here, x̃Qi∩Qj = P⊥
uQi∩Qj

· xCi∩Cj . The value of γi,j does not
matter to our argument; however it can be given explicitly.

Claim IV.3. There exists a constant C = C(d), such that,
w.h.p,

L 4 C
n∑

i=1

P⊥
uCi

.

We omit the proof of this claim due to space constraint. The
argument is closely related to the Markov chain comparison
technique [5].

Using Claim IV.3, vTLv ≤
∑

Qi∈cliq(G) C(β2
i ‖x̃Qi‖2 +

‖w(i)‖2). Hence, we only need to show
∑

Qi∈cliq(G)

‖w(i)‖2 ≥ C(nrd)−3r2
∑

Qi∈cliq(G)

β2
i ‖x̃Qi‖2. (12)

Since the degree of each node in G∗ is bound by C(nrd)2,
we have

∑

Qi∈cliq(G)

‖w(i)‖2 ≥ (Cnrd)−2
∑

(i,j)∈E∗

(‖w(i)‖2 + ‖w(j)‖2)

≥ (Cnrd)−2
∑

(i,j)∈E∗

(‖w(i)
Qi∩Qj

− w(j)
Qi∩Qj

‖2)

(11)
≥ (Cnrd)−2

∑

(i,j)∈E∗

(βj − βi)2‖x̃Qi∩Qj‖2.

Applying Chernoff bounds, there exists constants C1 and C2,
such that, w.h.p, ‖x̃Qi∩Qj‖2 ≥ C1(nrd)r2 and ‖x̃Qi‖2 ≤
C2(nrd)r2 for all i and j. Thus, in order to prove (12), we
need to show

∑
(i,j)∈E(βj − βi)2 ≥ C(nrd)−1r2

∑n
i=1 β2

i .
Define β = (βi)i∈V (G∗). Observe that

∑
(i,j)∈E(βj−βi)2 =

βTL∗β ≥ σmin(L∗)‖P⊥
u β‖2. Since v ⊥ x, it can be shown

that ‖P⊥
u β‖2 ≥ C(nrd)−3‖β‖2 (we omit the details). The

proof is completed by using Claim IV.2 (part(ii)).
We are finally in position to prove Lemma III.1. As a direct

consequence of Proposition IV.4 and Remark IV.1, σmin(Ω) ≥
C(nrd)−2r4. Using the bounds on σmin(Ω) and σmax(Ω) in
Proposition IV.3 implies the thesis.

B. Proof of Lemma III.2
Recall that R̃ = PV RPV + PV RPV ⊥ + PV ⊥RPV . There-

fore, there exist a matrix Y ∈ Rn×d and a vector a ∈ Rn such
that R̃ = XY T + Y XT + uaT + auT . Denote by yT

i ∈ Rd,
i ∈ [n], the ith row of the matrix Y .

The following proposition is a key ingredient in the proof.
Its proof is deferred to the next subsection.

Proposition IV.5. There exists a constant C = C(d), such
that, w.h.p,
∑

i,j

|〈xi − xj , yi − yj〉| ≤ Cr−d−2
∑

(l,k)∈E

|〈xl − xk, yl − yk〉|.

The next statement provides an upper bound on ‖R̃‖1. We
defer its proof to [8].

Proposition IV.6. There exists a constant C = C(d), such
that, w.h.p,

‖R̃‖1 ≤ C
∑

i,j

|〈xi − xj , yi − yj〉|.

Now we have in place all we need to prove lemma III.2.



Proof (Lemma III.2): Define the operator AG : Rn×n →
R|E| as AG(S) = [〈Mij , S〉](i,j)∈E . By our assumptions,

|〈Mij , R̃〉+ 〈Mij , R
⊥〉| = |〈Mij , Q〉 − 〈Mij , Q0〉|

≤ |〈Mij , Q〉 − d̃2
ij | + |d̃2

ij − 〈Mij , Q0〉|︸ ︷︷ ︸
|zij |

≤ 2∆.

Therefore, ‖AG(R̃)‖1 ≤ 2|E|∆ + ‖AG(R⊥)‖1. Write the
Laplacian matrix L as L =

∑
(i,j)∈E Mij . Then, 〈L, R⊥〉 =∑

(i,j)∈E〈Mij , R⊥〉 = ‖AG(R⊥)‖1. Here, we used the fact
that 〈Mij , R⊥〉 ≥ 0, since Mij , 0 and R⊥ , 0. Hence,
‖AG(R̃)‖1 ≤ 2|E|∆ + 〈L, R⊥〉.

Applying propositions IV.4 and IV.3, 〈L, R⊥〉 ≤
C(nrd)3r−2〈Ω, R⊥〉 ≤ C(nrd)6n/r2∆, whence we obtain
‖AG(R̃)‖1 ≤ C(nrd)6n/r2∆.

The last step is to write ‖AG(R̃)‖1 more explicitly. Notice
that, ‖AG(R̃)‖1 =

∑
(l,k)∈E |〈Mlk, XY T + Y XT + uaT +

auT 〉| = 2
∑

(l,k)∈E |〈xl − xk, yl − yk〉|.
The result follows as a direct consequence of proposi-

tions IV.5 and IV.6.

C. Proof of Proposition IV.5
We will focus here on the case d = 2. The general argument

proceeds along the same lines and is deferred to [8].
We first need to establish the following definition.

Definition 1. A chain Gij is a sequence of subgraphs
H1, H2, · · · , Hk along with the vertices i and j, such that,
each Hp is isomorphic to K4 and each two successive Hp

share one side. Further, i (resp. j) is connected to the two
vertices in V (H1) \ V (H2) (resp. V (Hk) \ V (Hk−1)).

Proposition IV.7. For any two nodes i and j in our random
geometric graph G, there exists a chain Gij ⊆ G.

Proposition IV.8. For any two nodes i and j, there exists a
constant C = C(d), such that,

|〈xi − xj , yi − yj〉| ≤ Cr−1
∑

(l,k)∈E(Gij)

|〈xl − xk, yl − yk〉| .

Proof: Assume that |V (Gij)| = m + 1 . Relabel the
vertices in the chain such that the nodes i and j have labels 0
and m respectively. Since both sides of the desired inequality
are invariant to translations, without loss of generality we
assume that x0 = y0 = 0. For a fixed vector ym consider
the following optimization problem.

Θ = min
y1,··· ,ym−1∈Rd

∑

(l,k)∈E(Gij)

|〈xl − xk, yl − yk〉| .

To each edge (l, k) ∈ E(Gij), assign a number λlk. For any
assignment with max |λlk| ≤ 1, we have

Θ ≥ min
y1,··· ,ym−1∈Rd

∑

(l,k)∈E(G∗)

λlk〈xl − xk, yl − yk〉

= min
y1,··· ,ym−1∈Rd

∑

l∈G∗

l #=0

∑

k∈∂l

λlk〈yl, xl − xk〉

= min
y1,··· ,ym−1∈Rd

∑

l∈G∗

l #=0

〈yl,
∑

k∈∂l

λlk(xl − xk)〉,

where ∂l denotes the set of adjacent vertices to l in Gij .
The numbers λlk that maximize the right hand side should
satisfy

∑
k∈∂l λlk(xl − xk) = 0,∀l 0= 0, m. Thus, Θ ≥

〈ym,
∑

k∈∂m λmk(xm − xk)〉. The result follows due to the
following Claim whose proof is deferred to [8].

Claim IV.4. There exist numbers λlk that satisfy the following
three conditions

∑

k∈∂l

λlk(xl − xk) = 0 ∀l 0= 0, m,

∑

k∈∂m

λmk(xm − xk) = xm,

max |λlk| ≤ Cr−1.

The proof of Proposition IV.5 is completed by the following
proposition, whose proof we omit due to space constraints.

Proposition IV.9. Let γ = (Gij)1≤i #=j≤n denote a collection
of chains for all

(n
2

)
node pairs. Let Γ be the collection of

all possible γ. There exists a probability distribution on Γ,
such that the maximum expected number of chains that contain
any particular edge, is upper bounded by Cr−d−1, for some
constant C.
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