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Abstract

For an undirected graph G, a zero-sum flow is an assignment of non-zero real

numbers to the edges, such that the sum of the values of all edges incident with

each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow,

then it has a zero-sum 6-flow. We prove this conjecture and Bouchet’s Conjecture

for bidirected graphs are equivalent. Among other results it is shown that if G is an

r-regular graph (r ≥ 3), then G has a zero-sum 7-flow. Furthermore, if r is divisible

by 3, then G has a zero-sum 5-flow. We also show a graph of order n with a zero-sum

flow has a zero-sum (n + 3)2-flow. Finally, the existence of k-flows for small graphs is

investigated.
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1 Introduction

Throughout this paper, all terminologies and notations on graph theory can be referred to

the textbook by D. B. West [9]. Let G be a directed graph. A k-flow on G is an assignment

of integers with maximum absolute value k−1 to each edge such that for every vertex, the

sum of the values of incoming edges is equal to the sum of the values of outgoing edges.

A nowhere-zero k-flow is a k-flow with no zero.

A celebrated conjecture of Tutte says that:

Conjecture. (Tutte’s 5-flow Conjecture [8]) Every bridgeless graph has a nowhere-zero

5-flow.

Jaeger showed that every bridgeless graph has a nowhere-zero 8-flow, see [6]. Next

Seymour proved that every bridgeless graph has a nowhere-zero 6-flow, see [7]. For a

thorough account on the above conjecture and subsequent results, see [4].

Let V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}. The incidence matrix of G, de-

noted by W (G), is an n×m matrix defined as

W (G)i,j =


+1 if ej is an incoming edge to vi,

−1 if ej is an outgoing edge from vi,

0 otherwise.

The flows of G are indeed the elements of the null space of W (G). If [c1, . . . , cm]T is

an element of the null space of W (G), then we can assign value ci to ei and consequently

obtain a flow. Therefore, in the language of linear algebra, Tutte’s 5-flow Conjecture says

that if G is a directed bridgeless graph, then there exists a vector in the null space of

W (G), whose entries are non-zero integers with absolute value less than 5.

One may also study the elements of null space of the incidence matrix of an undirected

graph. For an undirected graph G, the incidence matrix of G, W (G), is defined as follows:

W (G)i,j =

{
1 if ej and vi are incident,

0 otherwise.

An element of the null space of W (G) is a function f : E(G) −→ R such that for all

vertices v ∈ V (G) we have ∑
u∈N(v)

f(uv) = 0,
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Figure 1: A graph with a zero-sum 6-flow.

where N(v) denotes the set of adjacent vertices to vertex v. If f never takes the value zero,

then it is called a zero-sum flow on G. A zero-sum k-flow is a zero-sum flow whose values

are integers with absolute value less than k. Figure 1 shows a zero-sum 6-flow. There is

a conjecture for zero-sum flows similar to the Tutte’s 5-flow Conjecture for nowhere-zero

flows:

Let G be an undirected graph with incidence matrix W . If there exists a vector in

the null space of W whose entries are non-zero real numbers, then there also exists a

vector in that space, whose entries are non-zero integers with absolute value less than 6,

or equivalently,

Zero-Sum Conjecture [1]. If G is a graph with a zero-sum flow, then G admits a

zero-sum 6-flow.

Using the graph given in Figure 1, one can see that 6 can not be replaced with 5 (this

is proved in Section 5).

The following theorem determines all graphs having a zero-sum flow.

Theorem A [1]. Let G be a connected graph. Then the following hold:

(i) If G is bipartite, then G has a zero-sum flow if and only if it is bridgeless.

(ii) If G is not bipartite, then G has a zero-sum flow if and only if removing any of its

edges does not make any bipartite connected component.

Let G be a bipartite graph with parts X and Y . Orient each edge from X to Y . It is

easy to verify that a nowhere-zero flow for the oriented version of G gives a zero-sum flow

for G and conversely. So Theorem A and Seymour’s 6-flow theorem imply that:
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Corollary 1.1. If a bipartite graph has a zero-sum flow, then it has a zero-sum 6-flow.

The goal of this paper is to provide a deeper study of the concept of zero-sum flow.

In Section 2 we prove that Zero-Sum Conjecture and Bouchet’s Conjecture for bidirected

graphs are equivalent. In Section 3 we study zero-sum flows in regular graphs. We will

show that every graph of order n has a zero-sum (n + 3)2-flow in Section 4. Finally, in

Section 5, we investigate the existence of k-flows in small graphs, for some values of k.

2 Equivalence of Zero-Sum Conjecture and Bouchet’s Con-

jecture

A bidirected graph G is a graph with vertex set V (G) and edge set E(G) such that each

edge is oriented as one of the four possibilities: �-s s , - -s s , - �s s , � �s s .
An edge with orientation - �s s(resp., �-s s) is called an in-edge (resp., out-edge).

An edge that is neither an in-edge nor an out-edge is called an ordinary edge. Let G be a

bidirected graph. For any v ∈ V (G), the set of all edges with tails (resp. heads) at v is

denoted by E+(v) (resp. E−(v)). Function f : E(G) −→ R is a bidirected flow of G if for

every v ∈ V (G), we have ∑
e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e).

If f takes values from the set {±1, . . . ,±(k − 1)}, then it is called a nowhere-zero bidirected

k-flow.

Nowhere-zero bidirected flows generalize the concepts of nowhere-zero and zero-sum

flows. For if we orient all edges of G to be ordinary, then a nowhere-zero bidirected flow

in this setting corresponds to a usual nowhere-zero flow, and if we orient all edges of G to

be in-edge, then a bidirected flow corresponds to a zero-sum flow.

In 1983, Bouchet proposed the following interesting conjecture.

Bouchet’s Conjecture [3, 10]. Every bidirected graph which admits a nowhere-zero

bidirected flow will admit a nowhere-zero bidirected 6-flow.

The next theorem shows that for proving Bouchet’s Conjecture it is enough to show

that Zero-Sum Conjecture is true.

Theorem 2.1. Bouchet’s Conjecture and Zero-Sum Conjecture are equivalent.
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Proof. First suppose Bouchet’s Conjecture is true. Let H be an undirected graph and f

be a zero-sum flow on H. Construct a bidirected graph G from H such that all edges are

in-edge. It can be seen that G admits a nowhere-zero flow by the same values of f . So by

Bouchet’s Conjecture there exists a nowhere-zero 6-flow, say f ′, for G. Therefore f ′ is a

zero-sum 6-flow for H, and Zero-Sum Conjecture is true.

Next we will show that if Zero-Sum Conjecture holds, then Bouchet’s Conjecture is

true. Let G be a bidirected graph and g be a nowhere-zero bidirected flow for G. Remove

all directions of edges of G and denote the resultant graph by H. Replace those edges of

H that correspond to the ordinary edges of G with a path of length 2. Now, consider the

following values for each edge of H as follows:

�- - � � � - -
u v u v

a a a a

u v
G

u v
s s s s s s s s

u v u v u v
H

a −a a −ass s s s s s
u v

−a as ss
It can be easily seen that these values define a zero-sum k-flow for H if and only if g is

a nowhere-zero k-flow for G. Now, since Zero-Sum Conjecture holds, we conclude that

H has a zero-sum 6-flow. Hence G has a nowhere-zero bidirected 6-flow and Bouchet’s

Conjecture is true. �

3 Zero-sum 7-flows for regular graphs

An r-regular graph is a graph all of whose degrees are r. It has been proved that every

2r-regular graph, r > 1, has a zero-sum 3-flow, see [1].

In this section we want to study the existence of zero-sum flows for r-regular graphs.

Theorem 3.1. Let G be an r-regular graph (r ≥ 3). Then G has a zero-sum 7-flow. If

3 | r, then G has a zero-sum 5-flow.

Proof. First we define a new graph G′. Suppose that V (G) = {1, . . . , n} and let G′ be a

bipartite graph with two parts {u1, . . . , un} and {v1, . . . , vn}. Join ui to vj if and only if

the two vertices i and j are adjacent in G.

Assume that G′ has a zero-sum k-flow, and aij is the value of edge uivj . If aij +aji 6= 0

for all i,j, then we construct a zero-sum (2k− 1)-flow for G, in the following way. For two
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adjacent vertices i, j in G, let eij be the edge between them. Assign bij = aij + aji to eij .

By our assumption, bij ∈ {±1, . . . ,±(2k − 2)}. We have∑
vj∈N(ui)

aij = 0 ,
∑

uj∈N(vi)

aji = 0,

thus we find: ∑
j∈N(i)

bij =
∑

vj∈N(ui)

aij +
∑

uj∈N(vi)

aji = 0.

This means that the numbers bij , define a zero-sum (2k − 1)-flow for G.

The graph G′ is a bipartite r-regular graph. So by Hall’s Marriage Theorem [5], all

edges of G′ can be partitioned into r perfect matchings. Let E1, . . . , Er be the set of edges

of these matchings. If 3 | r, then let s = r/3 and define

f(e) =

{
2 e ∈ E1 ∪ E2 ∪ . . . ∪ Es

−1 e ∈ Es+1 ∪ . . . ∪ E3s.

Obviously, f is a zero-sum 3-flow for G′ that satisfies aij +aji 6= 0. Hence G has a zero-sum

5-flow.

If r ≡ 1 (mod 3), then we may assume that r = 3s + 4, and

f(e) =


2 e ∈ E1 ∪ E2 ∪ . . . ∪ Es, s > 0

−1 e ∈ Es+1 ∪ . . . ∪ E3s, s > 0

3 e ∈ E3s+1

−1 e ∈ E3s+2 ∪ E3s+3 ∪ E3s+4

is a zero-sum 4-flow for G′ that gives a zero-sum 7-flow for G by the above discussion.

If r ≡ 2 (mod 3), then we may assume that r = 3s + 5, and

f(e) =


2 e ∈ E1 ∪ E2 ∪ . . . ∪ Es, s > 0

−1 e ∈ Es+1 ∪ . . . ∪ E3s, s > 0

−3 e ∈ E3s+1 ∪ E3s+2

2 e ∈ E3s+3 ∪ E3s+4 ∪ E3s+5

is a zero-sum 4-flow that gives a zero-sum 7-flow for G. �

Now, we propose the following conjecture.

Conjecture 1. Every r-regular graph (r ≥ 3) has a zero-sum 5-flow.
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Let v be an arbitrary vertex of a graph G with degree k. An m-blowing of vertex v

(1 ≤ m ≤ k) is the replacement of v with the two vertices {v1, v2}, and joining v1 to m

arbitrary neighbors of v and v2 to the remaining k −m neighbors of v.

Theorem 3.2. If every r-regular graph has a zero-sum k-flow, then every graph whose

degrees are divisible by r, has a zero-sum k-flow.

Proof. Let G be a graph, v ∈ V (G) and deg(v) = `r (` > 1). By an r-blowing of v we

obtain two vertices, v1 of degree r and v2 of degree (`− 1)r. By repeating this procedure,

v is replaced with ` vertices {u1, . . . , u`} of degree r. We denote the resultant graph by G′.

Obviously, there is a correspondence between incident edges to {u1, . . . , u`} and incident

edges to v. So any zero-sum k-flow for G′ provides a zero-sum k-flow for G. For any vertex

in G′ of degree greater than r, we do the above process. Then we obtain an r-regular graph

and by assumption, this graph has a zero-sum k-flow. Thus G has a zero-sum k-flow. �

Now, as a consequence of the previous theorem, we have the following corollaries.

Corollary 3.1. Let G be a graph with gcd(deg(v1), deg(v2), . . . , deg(vn)) > 2. Then G

has a zero-sum 7-flow.

Corollary 3.2. Let G be a graph all of whose degrees are divisible by 3. Then G has a

zero-sum 5-flow.

4 Existence of zero-sum (n + 3)2-flows in graphs of order n

Let G be a graph with n vertices that has a zero-sum flow. The purpose of this section is

to prove that if n is even then G has a zero-sum (n + 3)2-flow, and if n is odd then G has

a zero-sum (n + 2)2-flow.

Lemma 4.1. Let G be a (2k + 1)-regular graph (k ≥ 1). Then G has a zero-sum

(2k + 3)-flow f such that for each edge e, f(e) ∈ {−2k, 1, 2k + 2}.

Proof. Construct G′ as in the proof of Theorem 3.1. By Hall’s Marriage Theorem the

edges of G′ can be partitioned into 2k + 1 perfect matchings. Select k of them, assign

k + 1 to their edges, and assign −k to the rest of edges. Now, as we did in the proof of
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Theorem 3.1, for each edge e, f(e) ∈ {(k+1)−k, (k+1)+(k+1),−k−k} = {−2k, 1, 2k+2}.
�

Corollary 4.1. Let G be a graph and k be a positive integer. If 2k + 1 | deg(v) for

each v ∈ V (G), then G has a zero-sum (2k + 3)-flow f , such that for each edge e,

f(e) ∈ {−2k, 1, 2k + 2}.

Proof. The proof uses the same idea as the proof of Theorem 3.2. �

For an undirected graph G and an abelian group (Γ,+), a Γ-flow on G is a function

f : E(G) −→ Γ such that for every v ∈ V (G), the sum of values of edges incident to v

is zero in Γ. A zero-sum Γ-flow is an Γ-flow that is nonzero on every edge. A zero-sum

R-flow is simply a zero-sum flow.

Theorem 4.1. If G has a zero-sum Z2k+1-flow, then G has a zero-sum (2k + 1)2-flow.

Proof. Let f be a zero-sum Z2k+1-flow for G. Consider a function g : E(G) −→ {1, . . . , 2k}
in such a way that for each edge e, g(e) = f(e) (mod 2k + 1). We construct a new graph

G1 from G. Let V (G1) = V (G) and for each e = vivj ∈ E(G), join vi to vj by g(e)

edges in G1 and denote the set of these edges by Q(e). All of the degrees of vertices

of G1 are divisible by 2k + 1, so by Corollary 4.1, G1 has a zero-sum (2k + 3)-flow, say

f1 : E(G1) −→ {−2k, 1, 2k + 2}. Now, for each edge e, let

h(e) =
∑

e1∈Q(e)

f1(e1).

Obviously, 1 ≤ |g(e)| ≤ 2k and |f1(ei)| ≤ 2k + 2. Therefore

|h(e)| ≤ 2k(2k + 2) = (2k + 1)2 − 1.

Also, for every edge e1 of G1, f1(e1) = 1 (mod 2k + 1), so for every edge e of G,

h(e) = g(e) 6= 0 (mod 2k + 1).

Hence h is a zero-sum (2k + 1)2-flow for G. �

Remark 1. There are some graphs that have zero-sum Z2k-flow but no zero-sum flow.

Consider the odd cycle C2n+1. By assigning k to each edge of C2n+1, we obtain a zero-sum

Z2k-flow, but it has no zero-sum flow.

8



By an even vertex in a graph, we mean a vertex with even degree. A graph is called

Eulerian if all of its vertices are even. An even circuit in a graph G is a sequence

C = (w0, w1, . . . , w2k) of not necessarily distinct vertices of G, where w0 = w2k and wiwi+1

are distinct edges of G, for i = 0, 1, . . . , 2k− 1. We denote by E(C) the set of 2k edges of

C. An odd circuit is defined similarly.

Lemma 4.2. The following hold:

a) Every even circuit has a zero-sum 2-flow.

b) Let C be an odd circuit and w be a vertex of C. Then there exists a function

f : E(C) −→ {±1}, such that
∑

u∈N(v) f(uv) = 0, for each v ∈ V (C)\{w} and∑
u∈N(w) f(uw) = 2.

c) Let C1 and C2 be odd circuits, v1 ∈ C1, v2 ∈ C2 and P be a path disjoint from E(C1)

and E(C2) that connects v1 to v2. Then there exists a zero-sum 3-flow with values

±1 on E(C1) ∪ E(C2), and ±2 on E(P ).

Proof. The proofs are simple, and are illustrated in the following figures. Note that for

Part (c), there are two slightly different cases depending on the parity of the length of P ,

and only one case is shown in the figure. �
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By a dumbbell in a graph, we mean two edge-disjoint odd cycles, C1 and C2 which are

connected to each other by a path P , which is edge-disjoint from C1 and C2.

The following lemma was proved in [3].

Lemma 4.3. If G is a graph with a zero-sum flow, then every edge of G is contained in

an even cycle or a dumbbell.
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A graph G is called Zk-strong if for any function φ : E(G) −→ Zk, there exists a

function f : E(G) −→ Zk such that f(e) 6= φ(e) for every edge e, and the sum of values

of edges incident with each vertex is zero. A graph with no edge is obviously Zk-strong

for every k. One can easily see that by setting φ ≡ 0, a Zk-strong graph has a zero-sum

Zk-flow.

Let k be a positive integer and G be a graph. A k-push operation on G is inserting

some new edges to G, such that first, the number of inserted edges is less than k, and

second, there exists an even circuit or a dumbbell in the new graph, containing the inserted

edges.

Lemma 4.4. Let G′ be a Z2k+1-strong graph. Suppose that one performs a (2k+1)-push

operation on G′ and obtains a new graph G. Then G is Z2k+1-strong.

Proof. Let I be the set of edges inserted to G′, C be an even circuit or dumbbell that

contains these edges, and φ : E(G) −→ Z2k+1 be an arbitrary function.

By Lemma 4.2, there exists a zero-sum 3-flow on C, say h. Define hi = ih (mod 2k+1)

for 1 ≤ i ≤ 2k + 1. It can be easily seen that each hi is a Z2k+1-flow on C. For an inserted

edge e, we have h(e) ∈ {−2,−1, 1, 2}. Thus h(e) and 2k + 1 are coprime. So there exists

exactly one i for which hi(e) = ih(e) = φ(e) (mod 2k + 1). Since the number of inserted

edges is less than 2k + 1, there exists j, 1 ≤ j ≤ 2k + 1 for which we have hj(e) 6= φ(e)

(mod 2k + 1) for every e ∈ I.

We define a new function φ′ : E(G′) −→ Z2k+1, which is equal to φ(e) − hj(e) when

e ∈ C ∩ E(G′) and φ(e) elsewhere. Since G′ is Z2k+1-strong, there exists a zero-sum

Z2k+1-flow g′ which is different from φ′ on every edge of G′. Now, we define the following

zero-sum Z2k+1-flow on G:

g(e) =


hj(e) e ∈ I

g′(e) + hj(e) e ∈ C\I
g′(e) e /∈ C

It is easy to check that g(e) 6= φ(e), for every e ∈ E(G), and the proof is complete. �

Lemma 4.5. Let G be a graph of order n and H be a subgraph of G. If G has a zero-sum

flow, then G can be obtained from H via a sequence of (n + 2)-push operations.

Proof. We use induction on |E(G)| − |E(H)|. The base case is H = G, which is trivial.

Assume that |E(H)| < |E(G)|, and take any e ∈ E(G)\E(H). By Lemma 4.3, there exists

10



an even cycle or a dumbbell C containing e. Clearly C has at most n + 1 edges. Hence

adding the edges of E(C)\E(H) to H is a (n + 2)-push operation. This operation results

in graph H ′ which is again a subgraph of G but has more edges than H. By induction

hypothesis, G can be obtained from H ′ via a sequence of (n + 2)-push operations. Thus

G can be also obtained from H via a sequence of (n + 2)-push operations. �

Theorem 4.2. Let G be a graph of order n with a zero-sum flow. If n is odd, then G has

a zero-sum (n + 2)2-flow. If n is even, then G has a zero-sum (n + 3)2-flow.

Proof. First assume that n is odd. Let H be the graph with vertex set V (G) and no

edge. Then H is Zn+2-strong. By Lemma 4.5, G can be obtained from H via a sequence

of (n + 2)-push operations. So, by Lemma 4.4, G is Zn+2-strong as well. Hence by

Theorem 4.1, G has a zero-sum (n + 2)2-flow.

If n is even, add a new isolated vertex to G. By the first part, the new graph has a

zero-sum (n + 3)2-flow. So G has a zero-sum (n + 3)2-flow, too. �

5 Zero-sum k-flows in small graphs

In this section, we study the graphs with minimum number of vertices having a zero-sum

flow, but no zero-sum k-flow, for a pre-assumed k. Many of these results are found by a

computer program search. We confine ourselves to those graphs having a zero-sum flow.

All graphs with less than 5 vertices have zero-sum 3-flow. There are exactly two graphs

of order 5 with no zero-sum 3-flow. They have size 8 and are given in Figure 2. There are

exactly 15 graphs of order 6 with no zero-sum 3-flow.
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Figure 2: The smallest graphs with no zero-sum 3-flow.

All graphs with less than 6 vertices have zero-sum 4-flow. There is exactly one graph

of order 6 and exactly one graph of order 7 with no zero-sum 4-flow. They are shown in

the following.
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Figure 3: (a) The smallest graph with no zero-sum 5-flow. (b) A zero-sum 6-flow for (a).

(c) A zero-sum Z4-flow for (a).
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Remark 2. It first seems that all graphs have zero-sum 5-flow. In fact this is true for

graphs up to 8 vertices. The smallest counterexample is the graph T , which is shown in

Figure 3(a). Indeed if there exists a zero-sum 5-flow for T , we have x + a + b = 0 and

y + b− a = 0. This implies that x + y = −2b and x− y = −2a and so |x| 6= |y| and x ≡ y

(mod 2). Similarly, we find that x ≡ y ≡ z (mod 2) and |x|, |y| and |z| should be distinct.

There are no x, y, z in {±1,±2,±3,±4}, with desired property. So T has no zero-sum

5-flow. Using a similar argument it can be proved that it has no zero-sum Z5-flow. But

it has zero-sum 6-flow, as shown in Figure 3(b). It has been proved that a graph has a

nowhere-zero Zk-flow if and only if it has a nowhere-zero k-flow, see [8]. This example

also shows that this is fact is not true for zero-sum flows, as T has a zero-sum Z4-flow,

(Figure 3(c)) but no zero-sum 4-flow.

Remark 3. There exist an infinite number of graphs G, with Θ(|V (G)|2) edges, having

no zero-sum 5-flow. Let H be a bipartite, 2-edge-connected graph with n vertices and

Θ(n2) edges. Let G be the graph shown in Figure 4(a) in which the vertices shown in H,

are from different parts. Since H is 2-edge-connected, by Theorem A, G has a zero-sum

flow. Since H is bipartite, a = b. If 0 < |x| < 5, then 0 < |y + a| < 5, since y + a = −x.

Using a zero-sum 5-flow for G, we can define a zero-sum 5-flow for the graph shown in

Figure 4(b), a contradiction. Hence G has no zero-sum 5-flow.

There is exactly one graph of order 9 and exactly one of order 10 with no zero-sum

5-flow. They are shown in Figure 5.
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There are exactly seven graphs of order 11 with no zero-sum 5-flow. They are shown

in Figure 6.

All bipartite graphs with less than 13 vertices have zero-sum 4-flow. There is just one

graph of order 13 and one graph of order 14 with no zero-sum 4-flow. They both have

zero-sum 5-flow, and are shown in Figure 7.

We have summarized our results in the following tables.

n Total number of non-isomorphic with no zero-sum 4-flow size

connected graphs of order n

6 112 1 10

7 853 1 10

n Total number of non-isomorphic with no zero-sum 5-flow size

connected graphs of order n

9 261080 1 12

10 11716571 1 13

11 1006700565 7 14 or 15

n Total number of non-isomorphic with no zero-sum 4-flow size

connected bipartite graphs of order n

13 2241730 1 18

14 31193324 1 19

15 575252112 5 20 or 21

In Figure 8, a graph with no zero-sum Z3-flow has been given. By Theorem A, the

graph has a zero-sum flow. To prove that it has no zero-sum Z3-flow, we note that the

sum of any three non-zero elements of Z3 is zero if and only if they are the same. So, if

there is a zero-sum Z3-flow, then all of the edges must have the same value. Thus the sum

of values of two edges incident with the vertex of degree 2 can not be zero.

Now, we close the paper with the following remark.

Remark 4. Let E(G) = {e1, . . . , em}. Define f(ei) = xi, where xi is an indeterminate
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Figure 4: An infinite family of graphs with no zero-sum 5-flow.
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Figure 5: Graphs of orders 9 and 10 with no zero-sum 5-flow.
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Figure 6: Graphs of order 11 with no zero-sum 5-flow.
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Figure 7: Bipartite graphs of orders 13 and 14 with no zero-sum 4-flow.
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Figure 8: A graph with no zero-sum Z3-flow.

variable. Define polynomial g(x1, . . . , xm) as follows:

g(x1, . . . , xm) =
∏

v∈V (G)

 ∑
ei and v are incident

xi

p−1

− 1

 .

Let S = {1, . . . , p− 1}. For every x ∈ Zp\{0}, we have xp−1 = 1. It is easy to see that

G has a zero-sum Zp-flow if and only if there exists an element a = (a1, . . . , am) ∈ Sm such

that g(a) 6= 0. Thus if we reduce g module of the ideal (xp−1
1 − 1, . . . , xp−1

m − 1) and call

it g, then g = g over Sm. But degxi(ḡ) ≤ p− 2, for i = 1, . . . ,m. Thus by Combinatorial

Nullstellensatz Theorem [2], G has a zero-sum Zp-flow if and only if g is not the zero

polynomial.
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