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Abstract—We study the compressed sensing reconstruction
problem for a broad class of random, band-diagonal sensing
matrices. This construction is inspired by the idea of spatial
coupling in coding theory. As demonstrated heuristically and
numerically by Krzakala et al. [11], message passing algorithms
can effectively solve the reconstruction problem for spatially
coupled measurements with undersampling rates close to the
fraction of non-zero coordinates.

We use an approximate message passing (AMP) algorithm and
analyze it through the state evolution method. We give a rigorous
proof that this approach is successful as soon as the undersam-
pling rate δ exceeds the (upper) Rényi information dimension
of the signal, d(pX). More precisely, for a sequence of signals
of diverging dimension n whose empirical distribution converges
to pX , reconstruction is with high probability successful from
d(pX)n+o(n) measurements taken according to a band diagonal
matrix.

For sparse signals, i.e. sequences of dimension n and k(n)
non-zero entries, this implies reconstruction from k(n) + o(n)
measurements. For ‘discrete’ signals, i.e. signals whose coordi-
nates take a fixed finite set of values, this implies reconstruction
from o(n) measurements. The result is robust with respect to
noise, does not apply uniquely to random signals, but requires
the knowledge of the empirical distribution of the signal pX .

I. INTRODUCTION

A. Background and contributions

Assume that m linear measurements are taken of an un-
known n-dimensional signal x ∈ Rn, according to the model

y = Ax . (1)

The reconstruction problem requires to reconstruct x from the
measured vector y ∈ Rm, and the sensing matrix A ∈ Rm×n.

It is an elementary fact of linear algebra that the reconstruc-
tion problem will not have a unique solution unless m ≥ n.
This observation is however challenged within compressed
sensing. A large corpus of research shows that, under the
assumption that x is sparse, a dramatically smaller number of
measurements is sufficient [6], [2]. Namely, if only k entries
of x are non-vanishing, then roughly m & 2k log(n/k) mea-
surements are sufficient for A random, and reconstruction can
be solved efficiently by convex programming. Deterministic
sensing matrices achieve similar performances, provided they
satisfy a suitable restricted isometry condition [4]. On top of
this, reconstruction is robust with respect to the addition of
noise [3], [5], i.e. under the model

y = Ax+ w , (2)

with –say– w ∈ Rm a random vector with i.i.d. components
wi ∼ N(0, σ2). In this context, the notions of ‘robustness’ or
‘stability’ refers to the existence of universal constants C such
that the per-coordinate mean square error in reconstructing x
from noisy observation y is upper bounded by C σ2.

From an information-theoretic point of view it remains
however unclear why we cannot achieve the same goal with
far fewer than 2 k log(n/k) measurements. Indeed, we can
interpret Eq. (1) as describing an analog data compression
process, with y a compressed version of x. From this point of
view, we can encode all the information about x in a single
real number y ∈ R (i.e. use m = 1), because the cardinality
of R is the same as the one of Rn. Motivated by this puzzling
remark, Wu and Verdú [15] introduced a Shannon-theoretic
analogue of compressed sensing, whereby the vector x has
i.i.d. components xi ∼ pX . Crucially, the distribution pX is
available to, and may be used by the reconstruction algorithm.
Under the mild assumptions that sensing is linear (as per
Eq. (1)), and that the reconstruction mapping is Lipschitz
continuous, they proved that compression is asymptotically
lossless if and only if

m ≥ nd(pX) + o(n) . (3)

Here d(pX) is the (upper) Rényi information dimension of the
distribution pX . We refer to Section II for a definition of this
quantity. Suffices to say that, if pX is ε-sparse (i.e. if it puts
mass at most ε on nonzeros) then d(pX) ≤ ε. Also, if pX
is the convex combination of a discrete part (sum of Dirac’s
delta) and an absolutely continuous part (with a density), then
d(pX) is equal to the weight of the absolutely continuous part.

This result is quite striking. For instance, it implies that,
for random k-sparse vectors, m ≥ k + o(n) measurements
are sufficient. Also, if the entries of x are random and take
values in –say– {−10,−9, . . . ,−9,+10}, then a sublinear
number of measurements m = o(n), is sufficient! At the
same time, the result of Wu and Verdú presents two important
limitations. First, it does not provide robustness guarantees
of the type described above. It therefore leaves open the
possibility that reconstruction is highly sensitive to noise when
m is significantly smaller than the number of measurements re-
quired in classical compressed sensing, namely Θ(k log(n/k))
for k-sparse vectors. Second, it does not provide any com-
putationally practical algorithms for reconstructing x from
measurements y.

In an independent line of work, Krzakala et al. [11] de-



veloped an approach that leverages on the idea of spatial
coupling. This idea was introduced for the compressed sens-
ing literature by Kudekar and Pfister [12]. Spatially coupled
matrices are –roughly speaking– random sensing matrices
with a band-diagonal structure. The analogy is, this time,
with channel coding. In this context, spatial coupling, in
conjunction with message-passing decoding, allows to achieve
Shannon capacity on memoryless communication channels.
By analogy, it is reasonable to hope that a similar approach
might enable to sense random vectors x at an undersampling
rate m/n close to the Rényi information dimension of the
coordinates of x, d(pX). Indeed, the authors of [11] evaluate
this approach numerically on a few classes of random vectors
and demonstrate that it indeed achieves rates close to the
fraction of non-zero entries. They also support this claim by
insightful statistical physics arguments.

Finally, let us mention that robust sparse recovery of k-
sparse vectors from m = O(k log log(n/k)) measurement is
possible, using suitable ‘adaptive’ sensing schemes [10].

B. Our Contribution

In this paper, we fill the gap between the above works, and
present the following contributions:
• Construction. We describe a construction for spatially
coupled sensing matrices A that is somewhat broader than the
one of [11] and give precise prescriptions for the asymptotics
of various parameters. We also use a somewhat different
reconstruction algorithm from the one in [11], by building
on the approximate message passing (AMP) approach of [8],
[9]. AMP algorithms have the advantage of smaller memory
complexity with respect to standard message passing, and of
smaller computational complexity whenever fast multiplication
procedures are available for A.
• Rigorous proof of convergence. Our main contribution
is a rigorous proof that the above approach indeed achieves
the information-theoretic limits set out by Wu and Verdú
[15]. Indeed, we prove that, for sequences of spatially cou-
pled sensing matrices {A(n)}n∈N, A(n) ∈ Rm(n)×n with
asymptotic undersampling rate δ = limn→∞m(n)/n, AMP
reconstruction is with high probability successful in recovering
the signal x, provided δ > d(pX).
• Robustness to noise. We prove that the present approach
is robust1 to noise in the following sense. For any signal dis-
tribution pX and undersampling rate δ, there exists a constant
C such that the output x̂(y) of the reconstruction algorithm
achieves a mean square error per coordinate n−1E{‖x̂(y) −
x‖22} ≤ C σ2. This result holds under the noisy measurement
model (2) for a broad class of noise models for w, including
i.i.d. noise coordinates wi with E{w2

i } = σ2 <∞.
• Non-random signals. Our proof does not apply uniquely to
random signals x with i.i.d. components, but indeed to more
general sequences of signals {x(n)}n∈N, x(n) ∈ Rn indexed

1This robustness bound holds for all δ > D(pX), where D(pX) = d(pX)
for a broad class of distributions pX (including distributions without singular
continuous component). When d(pX) < D(pX), a somewhat weaker
robustness bound holds for d(pX) < δ ≤ D(pX).

by their dimension n. The conditions required are: (1) that
the empirical distribution of the coordinates of x(n) converges
(weakly) to pX ; and (2) that ‖x(n)‖22 converges to the second
moment of the asymptotic law pX . Interestingly, the present
framework changes the notion of ‘structure’ that is relevant for
reconstructing the signal x. Indeed, the focus is shifted from
the sparsity of x to the information dimension d(pX).

C. Organization

In the next section we state formally our results, and
discuss their implications as well as the basic intuition behind
them. Section III provides a precise description of the matrix
construction and the reconstruction algorithm. Due to space
limitations, the proofs of the theorems are removed from this
version of the paper and can be found in [7].

II. FORMAL STATEMENT OF THE RESULTS

We consider the noisy model (2). An instance of the prob-
lem is therefore completely specified by the triple (x,w,A).
We will be interested in the asymptotic properties of se-
quence of instances indexed by the problem dimensions
S = {(x(n), w(n), A(n))}n∈N. We recall a definition from
[1]. (More precisely, [1] introduces the B = 1 case of this
definition.)

Definition II.1. The sequence of instances S =
{x(n), w(n), A(n)}n∈N indexed by n is said to be a
B-converging sequence if x(n) ∈ Rn, w(n) ∈ Rm, A(n) ∈
Rm×n with m = m(n) is such that m/n→ δ ∈ (0,∞), and
in addition the following conditions hold:

(a) The empirical distribution of the entries of x(n) con-
verges weakly to a probability measure pX on R with
bounded second moment. Further n−1

∑n
i=1 xi(n)2 →

EpX
{X2}.

(b) The empirical distribution of the entries of w(n) con-
verges weakly to a probability measure pW on R with
bounded second moment. Further m−1

∑m
i=1 wi(n)2 →

EpW
{W 2} ≡ σ2.

(c) If {ei}1≤i≤n, ei ∈ Rn denotes the canonical basis, then
lim sup
n→∞

maxi∈[n] ‖A(n)ei‖2 ≤ B,

lim inf
n→∞

mini∈[n] ‖A(n)ei‖2 ≥ 1/B.

We further say that S is a converging sequence if it is B-
converging for some B. We say that {A(n)}n≥0 is a converg-
ing sequence of sensing matrices if they satisfy condition (c)
above for some B.

Finally, if the sequence {(x(n), w(n), A(n))}n≥0 is ran-
dom, the above conditions are required to hold almost surely.

Given a sensing matrix A, and a vector of measurements y,
a reconstruction algorithm produces an estimate x̂(A; y) ∈ Rn
of x. In this paper we assume that the empirical distribution
pX , and the noise level σ2 are known to the estimator, and
hence the mapping x̂ : (A, y) 7→ x̂(A; y) implicitly depends
on pX and σ2. Since however pX , σ2 are fixed throughout, we
avoid the cumbersome notation x̂(A, y, pX , σ2).



Given a converging sequence of instances S =
{x(n), w(n), A(n)}n∈N, and an estimator x̂, we define the
asymptotic per-coordinate reconstruction mean square error as

MSE(S; x̂) = lim sup
n→∞

1
n

∥∥x̂(A(n); y(n)
)
− x(n)

∥∥2
. (4)

Notice that the quantity on the right hand side depends on the
matrix A(n), which will be random, and on the signal and
noise vectors x(n), w(n) which can themselves be random.
Our results hold almost surely with respect to these random
variables.

In this paper we study a specific low-complexity estimator,
based on the AMP algorithm first proposed in [8]. This pro-
ceed by the following iteration (initialized with x1

i = EpX
X

for all i ∈ [n]).

xt+1 = ηt(xt + (Qt �A)∗rt) , (5)
rt = y −Axt + bt � rt−1 . (6)

Here, for each t, ηt : Rn → Rn is a differentiable non-
linear function that depends on the input distribution pX .
Further, ηt is separable, namely, for a vector v ∈ Rn, we have
ηt(v) = (η1,t(v1), . . . , ηn,t(vn)). The matrix Qt ∈ Rm×n
and the vector bt ∈ Rm can be efficiently computed from
the current state xt of the algorithm, � indicates Hadamard
(entrywise) product and X∗ denotes the transpose of matrix X .
Further Qt does not depend on the problem instance and hence
can be precomputed. Both Qt and bt are block-constants.
This property makes their evaluation, storage and manipulation
particularly convenient. We refer to the next section for explicit
definitions of these quantities. In particular, the specific choice
of ηi,t is dictated by the objective of minimizing the mean
square error at iteration t+ 1, and hence takes the form of a
Bayes optimal estimator for the prior pX . In order to stress
this point, we will occasionally refer to this as to the Bayes
optimal AMP algorithm.

We denote by MSEAMP(S;σ2) the mean square error
achieved by the Bayes optimal AMP algorithm, where we
made explicit the dependence on σ2. Since the AMP esti-
mate depends on the iteration number t, the definition of
MSEAMP(S;σ2) requires some care. The basic point is that
we need to iterate the algorithm only for a constant number
of iterations, as n gets large. Formally, we let

MSEAMP(S;σ2) ≡ lim
t→∞

lim sup
n→∞

1
n

∥∥xt(A(n); y(n)
)
− x(n)

∥∥2
.

As discussed above, limits will be shown to exist almost surely,
when the instances (x(n), w(n), A(n)) are random, and almost
sure upper bounds on MSEAMP(S;σ2) will be proved. (Indeed
MSEAMP(S;σ2) turns out to be deterministic.)

We will tie the success of our compressed sensing scheme
to the fundamental information-theoretic limit established in
[15]. The latter is expressed in terms of the (upper) Rényi
information dimension of the probability measure pX [13],
denoted by d(pX). Further, our ‘stability’ result is expressed
in terms of the (upper) MMSE dimension of the probability

measure pX [16], denoted by D(pX). It is convenient to recall
the following result in this regard.

Proposition II.2 ([13], [16]). Consider the Lebesgue’s decom-
position of probability pX as pX = (1−α)νd+α1νac+α2νsc,
where νd is a discrete distribution, νac is an absolutely
continuos measure with respect to Lebesgue measure, and
νsc is a singular continuos measure with respect to Lebesgue
measure. Then, d(pX) ≤ D(pX) ≤ α = α1 + α2, and if
α2 = 0, then d(pX) = D(pX) = α.

We are now in position to state our main results.

Theorem II.3. Let pX be a probability measure on the real
line and assume δ > d(pX). Then there exists a random
converging sequence of sensing matrices {A(n)}n≥0, A(n) ∈
Rm×n, m(n)/n→ δ, for which the following holds. For any
ε > 0, there exists σ0 such that for any converging sequence
of instances {(x(n), w(n))}n≥0 with parameters (pX , σ2, δ)
and σ ∈ [0, σ0], we have, almost surely

MSEAMP(S;σ2) ≤ ε . (7)

Theorem II.4. Let pX be a probability measure on the
real line and assume δ > D(pX). Then there exists a
random converging sequence of sensing matrices {A(n)}n≥0,
A(n) ∈ Rm×n, m(n)/n → δ and a finite stability constant
C = C(pX , δ), such that the following is true. For any
converging sequence of instances {(x(n), w(n))}n≥0 with
parameters (pX , σ2, δ), we have, almost surely

MSEAMP(S;σ2) ≤ C σ2 . (8)

Notice that, by Proposition II.2, D(pX) ≥ d(pX), and
D(pX) = d(pX) for a broad class of probability measures
pX . Further, the noiseless model (1) is covered as a special
case of Theorem II.3 by taking σ2 ↓ 0.

A. Discussion

It is instructive to spell out in detail a specific example.
Example (Mixture signal with a point mass). Consider a
mixture distribution of the form

pX = (1− α) δ0 + α q , (9)

where q is a measure that is absolutely continuous with
respect to Lebesgue measure, i.e. q(dx) = f(x) dx for some
measurable function f . Then, by Proposition II.2, we have
d(pX) = D(pX) = α. Now let {x(n)}n≥0 be a sequence of
vectors with i.i.d. components x(n)i ∼ pX . Denote by k(n)
the number of nonzero entries in x(n). Then, almost surely as
n → ∞, Bayes optimal AMP recovers the signal x(n) from
m(n) = k(n) + o(n) spatially coupled measurements.

Under the regularity hypotheses of [15], no scheme can do
substantially better, i.e. reconstruct x(n) from m(n) measure-
ments if lim sup

n→∞
m(n)/k(n) < 1.

One way to think about this result is the following. If
an oracle gave us the support of x(n), we would still need
m(n) ≥ k(n)− o(n) measurements to reconstruct the signal.
Indeed, the entries in the support have distribution q, and



d(q) = 1. Theorem II.3 implies that the measurements
overhead for estimating the support of x(n) is sublinear, o(n),
even when the support is of order n.

In the next section we describe the basic intuition behind
the surprising phenomenon in Theorems II.3 and II.4, and why
are spatially-coupled sensing matrices so useful.

B. How does spatial coupling work?

Spatially-coupled sensing matrices A are –roughly
speaking– band diagonal matrices. It is convenient to think
of the graph structure that they induce on the reconstruction
problem. Associate one node (a variable node in the language
of factor graphs) to each coordinate i in the unknown signal
x. Order these nodes on the real line R, putting the i-th node
at location i ∈ R. Analogously, associate a node (a factor
node) to each coordinate a in the measurement vector y, and
place the node a at position a/δ on the same line. Connect
this node to all the variable nodes i such that Aai 6= 0. If A is
band diagonal, only nodes that are placed close enough will
be connected by an edge. See Figure 1 for an illustration.

In a spatially coupled matrix, additional measurements are
associated to the first few coordinates of x, say coordinates
x1, . . . , xn0 with n0 much smaller than n. This has a negligible
impact on the overall undersampling ratio as n/n0 → ∞.
Although the overall undersampling remains δ < 1, the coordi-
nates x1, . . . , xn0 are oversampled. This ensures that these first
coordinates are recovered correctly (up to a mean square error
of order σ2). As the algorithm is iterated, the contribution of
these first few coordinates is correctly subtracted from all the
measurements, and hence we can effectively eliminate those
nodes from the graph. In the resulting graph, the first few
variables are effectively oversampled and hence the algorithm
will reconstruct their values, up to a mean square error of
order σ2. As the process is iterated, variables are progressively
reconstructed, proceeding from left to right along the node
layout.

While the above explains the basic dynamics of AMP
reconstruction algorithms under spatial coupling, a careful
consideration reveals that this picture leaves open several
challenging questions. In particular, why does the overall un-
dersampling factor δ have to exceed d(pX) for reconstruction
to be successful? Our proof is based on a potential function
argument. We will prove that there exists a potential function
for the AMP algorithm, such that, when δ > d(pX), this
function has its global minimum close to exact reconstruction.
Further, we will prove that, unless this minimum is essentially
achieved, AMP can always decrease the function.

III. MATRIX AND ALGORITHM CONSTRUCTION

In this section, we define an ensemble of random matrices,
and the corresponding choices of Qt, bt, ηt that achieve the
reconstruction guarantees in Theorems II.3 and II.4.

A. General matrix ensemble

The sensing matrix A will be constructed randomly, from
an ensemble denoted byM(W,M,N). The ensemble depends

€ 
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Additional  measurements  
associated to the first few coordinates 

Fig. 1. Graph structure of a spatially coupled matrix. Variable nodes
are shown as circle and check nodes are represented by square.

on two integers M,N ∈ N, and on a matrix with non-negative
entries W ∈ RR×C

+ , whose rows and columns are indexed by
the finite sets R, C (respectively ‘rows’ and ‘columns’). The
matrix is roughly row-stochastic, i.e.

1
2
≤
∑
c∈C

Wr,c ≤ 2 , for all r ∈ R . (10)

We will let |R| ≡ Lr and |C| ≡ Lc denote the matrix di-
mensions. The ensemble parameters are related to the sensing
matrix dimensions by n = NLc and m = MLr.

In order to describe a random matrix A ∼ M(W,M,N)
from this ensemble, partition the columns and rows indices in,
respectively, Lc and Lr groups of equal size. Explicitly

[n] = ∪s∈CC(s) , |C(s)| = N ,

[m] = ∪r∈RR(r) , |R(r)| = M .

Here and below we use [k] to denote the set of first k integers
[k] ≡ {1, 2, . . . , k}. Further, if i ∈ R(r) or j ∈ C(s) we will
write, respectively, r = g(i) or s = g(j). In other words g( · )
is the operator determining the group index of a given row or
column.

With this notation we have the following concise definition
of the ensemble.

Definition III.1. A random sensing matrix A is distributed
according to the ensemble M(W,M,N) (and we write A ∼
M(W,M,N)) if the entries {Aij , i ∈ [m], j ∈ [n]} are
independent Gaussian random variables with

Aij ∼ N
(

0,
1
M

Wg(i),g(j)

)
. (11)

B. State evolution

State evolution allows an exact asymptotic analysis of AMP
algorithms in the limit of a large number of dimensions. As in-
dicated by the name, it bears close resemblance to the density
evolution method in iterative coding theory [14]. Somewhat
surprisingly, this analysis approach is asymptotically exact
despite the underlying factor graph being far from locally tree-
like.

State evolution recursion is used in defining the parameters
Qt, bt, ηt and also plays a crucial role in the algorithm
analysis [7]. In the present case, state evolution takes the
following form.

Definition III.2. Given W ∈ RLr×Lc
+ roughly row-stochastic,

the corresponding state evolution sequence is the sequence of



vectors {φ(t), ψ(t)}t≥0, φ(t) = (φa(t))a∈R ∈ RR
+, ψ(t) =

(ψi(t))i∈C ∈ RC
+, defined recursively by

φa(t) = σ2 +
1
δ

∑
i∈C

Wa,i ψi(t) ,

ψi(t+ 1) = mmse
(∑
b∈R

Wb,iφ
−1
b (t)

)
,

(12)

for all t ≥ 0, with initial condition ψi(0) =∞ for all i ∈ C .

C. General algorithm definition

In order to fully define the AMP algorithm (5), (6), we need
to provide constructions for the matrix Qt, the nonlinearities
ηt, and the vector bt. In doing this, we exploit the fact that
the state evolution sequence {φ(t)}t≥0 can be precomputed.

We define the matrix Qt by

Qtij ≡
φg(i)(t)−1∑Lr

k=1Wk,g(j)φk(t)−1
. (13)

Notice that Qt is block-constant: for any r ∈ R, s ∈ C, the
block QtR(r),C(s) has all its entries equal.

As mentioned in Section I, the function ηt : Rn → Rn is
chosen to be separable, i.e. for v ∈ RN :

ηt(v) =
(
ηt,1(v1), ηt,2(v2), . . . , ηt,N (vN )

)
. (14)

We take ηt,i to be a conditional expectation estimator for X ∼
pX in gaussian noise:

ηt,i(vi) = E
{
X
∣∣X + sg(i)(t)−1/2Z = vi

}
,

sr(t) ≡
∑
u∈R

Wu,rφu(t)−1 , (15)

where Z ∼ N(0, 1) and independent of X . Finally, in order to
define the vector bti, let us introduce the quantity

〈η′t〉u =
1
N

∑
i∈C(u)

η′t,i
(
xti + ((Qt �A)∗rt)i

)
. (16)

The vector bt is then defined by

bti ≡
1
δ

∑
u∈C

Wg(i),uQ̃
t−1
g(i),u 〈η

′
t−1〉u , (17)

where we defined Qti,j = Q̃tr,u for i ∈ R(r), j ∈ C(u). Again
bti is block-constant: the vector btC(u) has all its entries equal.

This completes our definition of the AMP algorithm.

D. Choices of parameters

In order to prove our main Theorem II.3, we use a sensing
matrix from the ensemble M(W,M,N) for a suitable choice
of the matrix W ∈ RR×C. Our construction depends on
parameters ρ ∈ R+, L,L0 ∈ N, and on the ‘shape function’
W . As explained below, ρ will be taken to be small, and
hence we will treat 1/ρ as an integer to avoid rounding (which
introduces in any case a negligible error).

Definition III.3. A shape function is a function W : R→ R+

continuously differentiable, with support in [−1, 1] and such
that

∫
RW(u) du = 1, and W(−u) =W(u).

We let C ∼= {−2ρ−1, . . . , 0, 1, . . . , L − 1}, so that Lc =
L+ 2ρ−1. The rows are partitioned as follows:

R = R0 ∪
{
∪−1
i=−2ρ−1 Ri

}
,

where R0
∼= {−ρ−1, . . . , 0, 1, . . . , L−1+ρ−1}, and |Ri| = L0.

Hence Lr = Lc + 2ρ−1L0.
Finally, we take N so that n = NLc, and let M = Nδ

so that m = MLr = N(Lc + 2ρ−1L0)δ. Notice that m/n =
δ(Lc + 2ρ−1L0)/Lc. Since we will take Lc much larger than
L0/ρ, we in fact have m/n arbitrarily close to δ.

Given these inputs, we construct the corresponding matrix
W = W (L,L0,W, ρ) as follows.

1) For i ∈ {−2ρ−1, . . . ,−1}, and each a ∈ Ri, we let
Wa,i = 1. Further, Wa,j = 0 for all j ∈ C \ {i}.

2) For all a ∈ R0
∼= {−ρ−1, . . . , 0, . . . , L − 1 + ρ−1}, we

let Wa,i = ρW
(
ρ (a− i)

)
for i ∈ {−2ρ−1, . . . , L− 1}.

It is not hard to check that W is roughly row-stochastic.
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[15] Y. Wu and S. Verdú. Rényi Information Dimension: Fundamental Limits
of Almost Lossless Analog Compression. IEEE Trans. on Inform.
Theory, 56:3721–3748, 2010.
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