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Abstract

Modern technologies generate vast amounts of fine-grained data at an unprecedented speed.

Nowadays, high-dimensional data, where the number of variables is much larger than the

sample size, occur in many applications, such as healthcare, social networks, and recommen-

dation systems, among others. The ubiquitous interest in these applications has spurred

remarkable progress in the area of high-dimensional data analysis in terms of point estima-

tion and computation. However, one of the fundamental inference task, namely quantifying

uncertainty or assessing statistical significance, is still in its infancy for such models. In the

first part of this dissertation, we present efficient procedures and corresponding theory for

constructing classical uncertainty measures like confidence intervals and p-values for single

regression coefficients in high-dimensional settings.

In the second part, we study the compressed sensing reconstruction problem, a well-

known example of estimation in high-dimensional settings. We propose a new approach

to this problem that is drastically different from the classical wisdom in this area. Our

construction of the sensing matrix is inspired by the idea of spatial coupling in coding

theory and similar ideas in statistical physics. For reconstruction, we use an approximate

message passing algorithm. This is an iterative algorithm that takes advantage of the

statistical properties of the problem to improve convergence rate. Finally, we prove that

our method can effectively solve the reconstruction problem at (information-theoretically)

optimal undersampling rate and show its robustness to measurement noise.
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Notational Conventions

Notation Description

R real number
Rn vector space of n-dimensional real valued vectors
ei vector with one at the i-th position and zero everywhere else
[p] {1, . . . , p}
| · | if applied to a number, absolute value
| · | if applied to a set, cardinality of the set
I indicator function
(a)+ a if a > 0 and zero otherwise
P(·) probability of an event
E(·) expected value of a random variable
I identity matrix in any dimension

φ(x) e−x
2/2/
√

2π, the Gaussian density

Φ(·)
∫ x
− inf e

−u2/2/
√

2πdu, the Gaussian distribution

‖X‖ψ1 sub-exponential norm of random variable (or vector) X
‖X‖ψ2 sub-gaussian norm of random variable (or vector) X
vi i-th element of vector v

‖v‖p for a vector v, `p norm defined as (
∑

i |vi|p)1/p

‖v‖0 `0 norm of a vector. Number of nonzero elements in v.
〈u, v〉

∑
i uivi

supp(v) for a vector v, positions of nonzero entries in v
vI for vector v, restriction of v to indices in I
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Notation Description

Aij element (i, j) of matrix A
|A|∞ for a matrix A, the maximum magnitude of the entries
‖A‖p for a matrix A, `p operator norm
σmax(A) maximum singular value of matrix A
σmin(A) minimum singular value of matrix A
AJ submatrix of A with columns restricted to set J
AI,J submatrix of A formed by rows in I and columns in J

A−1
I,J shorthand for (A−1)I,J)

AT transpose of matrix A
f(n) = o(g(n)) f is dominated by g asymptotically

(∀k > 0, ∃n0, such that ∀n > n0, |f(n)| ≤ k|g(n)|)
f(n) = O(g(n)) f is bounded above by g asymptotically

(∃k > 0, ∃n0, such that ∀n > n0, |f(n)| ≤ k|g(n)|)
f(n) = ω(g(n)) f dominates g asymptotically

(∀k > 0, ∃n0, such that ∀n > n0, |f(n)| ≥ k|g(n)|)
d(pX), d(pX) upper and lower Rényi information dimension of pX
D(pX), D(pX) upper and lower MMSE dimension of pX



Chapter 1

Introduction

We are in the era of massive automated data collection, where we systematically obtain

many measurements without knowing which ones are really relevant to the phenomena of

interest. Microarrays and fMRI machines produce thousands of parallel datasets. Online

social networks are constantly accumulating location, interaction and other information

concerning hundreds of millions of users. Similar trend is now seen in healthcare systems,

online advertising, and electronic commerce, among others.

This is a big break from traditional statistical theory in the following sense. In statistical

data analysis, we have samples of a particular phenomena, and for each sample, we observe a

vector of values measured on several variables. In traditional statistical methodology it was

assumed that one has access to many samples and is dealing with a few relevant variables.

For example, in studying a specific disease, doctor uses her domain expertise to measure just

the right variables. However, the ubiquitous technological trend today is driving us towards

the regime of more samples but even more so, to an extensively larger numbers of variables.

Modern data sets are not only massive in sample size but also are remarkably feature-

rich. As a concrete example, a typical electronic health record (EHR) database contains

transcript records, lab results, medications, immunization status, medical images and a lot

of other detailed information of patients, leading to a huge number of numerical variables

(features). Moreover, one can construct new features by applying different functions to

the current variables, or by considering higher order features, like k-tuples. Therefore, in

principle one can construct an enormous set of of features.

Variables (features) are commonly thought of as dimensions on which we are collecting

information. In other words, the number of variables is regarded as the ambient dimension of

3
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data. The focus of high-dimensional statistics is on the regime where the ambient dimension

of data is of the same order or substantially larger than the sample size. The most useful

statistical models in this context are over-parameterized: the number of parameters (p) to

estimate is far larger than the number of samples (n).1

Curses of dimensionality. The expression “curse of dimensionality” is due to Bell-

man [10], where he used it to explain the difficulty of optimization and function evaluation

on product space. Indeed, high dimensionality introduces both computational and statisti-

cal challenges.

• Computational challenges: Suppose that we have a function of d variables and we

only know that it is Lipschitz. If we want to approximate this function over the

unit hypercube [0, 1]d, within uniform approximation error ε, then we require O(ε−d)

evaluations. A similar exponential explosion in computational complexity appears

when we want to optimize such a function over a bounded region.

• Statistical challenges: Suppose that we are given n i.i.d. pairs (Y1, X1), (Y2, X2), . . . ,

(Yn, Xn), with vectors Xi ∈ Rd and response variables Yi given by

Yi = f(Xi) + noise .

Further assume that we merely know f is a Lipschitz function and noise variables

are i.i.d Gaussian with mean 0 and variance 1. Under these assumptions, we aim to

estimate f from the observed samples.

We are interested in sample complexity for this task, namely how the accuracy of

estimation depends on n. Let F be the family of Lipschitz functions on [0, 1]d. A

standard argument in minimax decision theory [67] states that

inf
f̂

sup
f∈F

E(f̂(x)− f(x))2 ≥ Cn−2/(2+d) ,

for some constant C that depends on the Lipschitz constant. Further, this lower

bound is not asymptotic. Hence, in order to estimate f within an accuracy of ε, we

need O(ε−(2+d)/2) samples. The very slow rate of convergence in high dimensions is

another aspect of the curse of dimensionality.

1One can think of associating one parameter to each measured variable.
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Finally, over-parametrized models are prone to over-fitting in cases that the number of

parameters are too large with respect to the size of training samples. Over-fitting implies

poor generalization to correctly predict on new samples. Moreover, high-dimensionality

brings noise accumulation and spurious correlations between response and unrelated fea-

tures, which may lead to wrong statistical inference and false predictions.

Blessings of dimensionality. One of the main blessings of high-dimensionality is the

phenomenon of “concentration measure”. Roughly speaking, having many “identical” di-

mensions allows one to “average” over them.

To be more specific, let Sd−1 denote the surface of the unit sphere in Rd, and let P be

the uniform measure over Sd−1. Then, for a function f : Sd−1 → R that is L-Lipschitz, we

have

P
(
|f(x)− Ef(x)| > ε

)
≤ 2e−dε

2/(2L2) .

The slogan is that Lipschitz functions are nearly constant and the tails fall faster in

higher dimensions. Concentration of measure in high dimensions is the underlying tool in

establishing many results in statistics and probability theory.

We refer to [35] for more discussions on curses and blessings of dimensionality.

1.1 Structured estimation

In the high dimensional models the number of parameters p is comparable to or larger than

the sample size n, and therefore it is in general impossible to obtain consistent estimator

procedures. Indeed, when p > n, the problem of parameter estimation is ill-posed. On the

other hand, many such models enjoy various types of low-dimensional structures. Examples

of such structures include sparsity, rank conditions, smoothness, symmetry, etc. A common

tool in such settings is regularization that encourages the assumed structure. Regulariza-

tion has played fundamental role in statistics and related mathematical areas. It was first

introduced by Tikhonov [130] in connection with solving ill-posed integral equations. Since

then, it has become a standard tool in statistics.

A widely applicable approach to estimation, in the context of high-dimensional models,

is to solve a regularized optimization problem, which combines a loss function measuring

fidelity of the model to the samples, with some regularization that promotes the underlying
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structure. More precisely, let Zn = {Z1, Z2, . . . , Zn} be a collection of samples drawn inde-

pendently from some distribution, and let Ln(θ;Zn) be an empirical risk function defined

as

L(θ;Zn) ≡ 1

n

n∑
i=1

L(θ;Zi) .

Here L(θ;Zi) measures the fit of parameter θ to sample Zi. For instance, in the regression

setting, we have Zi = (Yi, Xi) with Yi ∈ R the response variable, Xi ∈ Rp the covariate

vector, and the least-squares loss L(θ;Zi) = 1
2(Yi − 〈Xi, θ〉)2. A regularized M-estimator θ̂

is constructed by minimizing a weighted combination of the empirical risk function with a

convex regularizer R : Rp → R+, that enforces a certain structure in the solution. Namely,

θ̂ ∈ argminθ∈Rp
(
Ln(θ;Zn) + λnR(θ)

)
, (1.1.1)

where λn > 0 is a regularization parameter to be chosen. In case the right hand side has

more than one minimizer, one of them can be selected arbitrarily for our purposes.

1.1.1 Some examples

We consider some classical examples of M-regularized estimators.

Ridge regression estimator: The simplest example of M-regularized estimators is the

ride regression estimate for linear models [65]. Given observations Zn = {Z1, Z2, . . . , Zn},
with Zi = (Yi, Xi) ∈ R×Rp, the Ridge regression estimator is defined by the following

choice of loss function and regularizer:

Ln(θ;Zn) =
1

2n

n∑
i=1

(Yi − 〈θ,Xi〉)2 , R(θ) =
1

2
‖θ‖22 . (1.1.2)

Lasso estimator: In many applications only a relatively small subset of covariates are

relevant to the response variable. Correspondingly, the parameter vector of interest

is sparse. In these cases, a very successful estimator is Lasso which uses `1 norm

regularizer to promote sparsity in the solution [30, 129]. For linear models, Lasso

estimator is given by

Ln(θ;Zn) =
1

2n

n∑
i=1

(Yi − 〈θ,Xi〉)2 , R(θ) = ‖θ‖1 =
n∑
i=1

|θi| . (1.1.3)
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Group-structured penalties: In many applications, we are interested in finding impor-

tant explanatory factors in predicting the response variable. Each explanatory factor

may be represented by a group of dummy variables. As an example, consider predict-

ing diabetes status of an individual based on her medical records. In this case, a factor

might be a specific lab test and different levels of the test outcome can be represented

through multiple variables. Since we are interested in finding the important factors

(group of variables), we would like to impose sparsity at the group level, rather than

individual variables. Various group-based regularizer have been studied to model such

structured sparsity. Consider a collection of groups G = {G1, G2, . . . , Gk}, such that

Gi ⊆ [p], and ∪ki=1Gi = [p]. Note that the groups may overlap. Moreover, for a vector

θ, let θG denote the restriction of θ to entries in G. Given a vector norm ‖ · ‖#, the

regularizer is defined as follows:

R(θ) ≡
∑
Gi∈G

‖θGi‖# . (1.1.4)

Perhaps, the most common choice is ‖ · ‖# = ‖ · ‖2, which is called group Lasso

norm [80, 123, 147, 105]. The other choice studied by several researchers is ‖ · ‖# =

‖ · ‖∞ [102, 132].

It is worth mentioning that when the groups are overlapping, the standard group

Lasso has a property that may be undesirable. Let θ̂ be regularized estimator (1.1.1),

when the standard group norm (1.1.4) is used as regularizer. Further, let Ŝ = supp(θ̂).

Then, it can be shown that the complement Ŝc of the support, i.e., Ŝc = {i ∈ [p] :

θ̂i = 0}, is always equal to the union of some of the groups. However, it is often

natural to look for estimators θ̂, whose support (rather than its complement) is given

by the union of some of the groups because these groups correspond to the important

factors we are seeking. Jacob et al. [69] introduced a variant of the group lasso, known

as latent group lasso to overcome this problem. It relies on the observation that for

overlapping groups, a vector θ has many possible group representations, where each

representation is given by a set of vectors wGi ∈ Rp, such that
∑

Gi∈G wGi = θ and

supp(wGi) ⊆ Gi. Minimizing over all such representations gives the latent group lasso

norm:

R(θ) ≡ inf
{ ∑
Gi∈G

‖wGi‖# : θ =
∑

Gi inG
wGi , supp(wGi) ⊆ Gi

}
.
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Notice that when the groups are non-overlapping, the latent group norm reduced to

the standard group norm by a simple use of triangle inequality. However, when the

groups overlap, the solution θ̂ (1.1.1) with latent group norm regularizer, is ensured

to have its support equal to a union of a subset of groups [69].

Low-rank matrix estimation: There is a tremendous amount of work on estimating ma-

trices with rank constraints. The rank constraints apply to many applications, includ-

ing principle component analysis, clustering, matrix completion. A natural approach

would be to enforce such constraints explicitly in the estimation procedure. However,

the rank function is non-convex and in many cases, this approach leads to compu-

tationally infeasible schemes or resists a rigorous analysis because of the presence of

local optima.

A natural surrogate for the rank function is the nuclear norm. Given a matrix Θ ∈
Rn1×n2 , let σ1, σ2, . . . , σn be the singular values of Θ, with n = min(n1, n2). Then,

rank(Θ) is merely the number of strictly positive singular values. The nuclear norm of

Θ is defined as ‖Θ‖∗ =
∑n

i=1 σi. In other words, rank is the `0 norm of the vector of

singular values, while the nuclear norm is its `1 norm. Analogous to the `1 norm as a

relaxation of `0 norm, nuclear norm serves as a natural convex relaxation of the rank

function. When nuclear norm is used as the regularizer in (1.1.1), it promotes low-rank

solutions. The statistical and computational behavior of nuclear-norm regularized

estimators has been well studied in various contexts [27, 26, 111, 59, 101].

1.1.2 More background and related work

High-dimensional regression has been the object of much theoretical investigation over the

last few years. Here, we restrict ourselves to high-dimensional linear regression and the

Lasso estimator (1.1.3). Before reviewing some of the obtained results, we need to establish

some notations. Suppose that we are given n i.i.d. pairs (Y1, X1), (Y2, X2), . . . , (Yn, Xn),

with Xi ∈ Rp and response variables Yi given by

Yi = 〈θ0, Xi〉+Wi , Wi ∼ N(0, σ2) . (1.1.5)
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Here θ0 ∈ Rp is a vector of parameters to be learned. In matrix form, letting Y =

(Y1, . . . , Yn)T and denoting X the design matrix with rows XT
1 , . . . , X

T
n , we have

Y = Xθ0 +W , W ∼ N(0, σ2In×n) . (1.1.6)

Recall Lasso estimator θ̂ = θ̂n(Y,X;λ) defined as

θ̂n(Y,X;λ) ≡ argmin
θ∈Rp

{ 1

2n
‖Y −Xθ‖22 + λ‖θ‖1

}
. (1.1.7)

We will omit the arguments Y,X, λ and superscript n, when they are clear form the context.

Further, let S = supp(θ0).

The focus has been so far on establishing order optimal guarantees on: (1) The prediction

error ‖X(θ̂ − θ0)‖2, see e.g. [58]; (2) The estimation error, typically quantified through

‖θ̂ − θ0‖q, with q ∈ [1, 2], see e.g. [25, 14, 110]; (3) The model selection (or support

recovery) properties typically by bounding P{supp(θ̂) 6= S}, see e.g. [95, 150, 140].

For prediction, there is no need to identify θ0 since we are interested only in XT
newθ0.

From this perspective, prediction is always an easier task than estimation of the parameter

θ0 or model selection. Roughly speaking,it is proved that with a proper choice for λ (of

order σ
√

(log p)/n), one has the following ‘oracle inequality’ with high probability

1

n
‖X(θ̂ − θ0)‖22 ≤ C1σ

2 s0 log p

n
, (1.1.8)

where C1 > 0 is a constant that depends on the Gram matrix Σ̂ = (XTX/n) [133].

For estimation guarantee, it is necessary to make specific assumptions on the design

matrix X, such as the restricted eigenvalue property of [14] or the compatibility condition

of [133]. In particular, Bickel, Ritov and Tsybakov [14] show that, under such conditions,

and for a suitable choice of λ (of order σ
√

(log p)/n), we have with high probability,

‖θ̂ − θ0‖qq ≤ C2s0λ
q , (1.1.9)

for 1 ≤ q ≤ 2 and some constant C2 > 0 that depends on the Gram matrix Σ̂ = (XTX/n).

For model selection guarantee, it was understood early on that even in the large-sample,

low-dimensional limit n → ∞ at p constant, supp(θ̂n) 6= S unless the columns of X with

index in S are roughly orthogonal to the ones with index outside S [81]. This assumption
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is formalized by the so-called irrepresentability condition, that can be stated in terms of the

empirical covariance matrix Σ̂ = (XTX/n). Letting Σ̂A,B be the submatrix (Σ̂i,j)i∈A,j∈B,

irrepresentability requires

‖Σ̂Sc,SΣ̂−1
S,S sign(θ0,S)‖∞ ≤ 1− η , (1.1.10)

for some η > 0 (here sign(u)i = +1, 0, −1 if, respectively, ui > 0, = 0, < 0). In an

early breakthrough, Zhao and Yu [150] proved that, if this condition holds with η uniformly

bounded away from 0, it guarantees correct model selection also in the high-dimensional

regime p� n. Meinshausen and Bühlmann [95] independently established the same result

for random Gaussian designs, with applications to learning Gaussian graphical models.

These papers applied to very sparse models, requiring in particular s0 = O(nc), for some

c < 1 with s0 = ‖θ0‖0 and parameter vectors with large coefficients. Namely, scaling the

columns of X such that Σ̂i,i ≤ 1, for i ∈ [p], they require θmin ≡ mini∈S |θ0,i| ≥ c′
√
s0/n.

Wainwright [140] strengthened considerably these results by allowing for general scalings

of s0, p, n and proving that much smaller non-zero coefficients can be detected. Namely,

he proved that for a broad class of empirical covariances it is only necessary that θmin ≥
cσ
√

(log p)/n. This scaling of the minimum non-zero entry is optimal up to constants.

Also, for specific classes of random Gaussian designs (including X with i.i.d. standard

Gaussian entries), the analysis of [140] provides tight bounds on the minimum sample size

for correct model selection. Namely, there exists c`, cu > 0 such that the Lasso fails with

high probability if n < c` s0 log p and succeeds with high probability if n ≥ cu s0 log p.

Recently, [73] has introduced generalized irrepresentability condition, an assumption that

is substantially weaker than irrepresentability. The authors prove that, under generalized

irrepresentability condition, the Gauss-Lasso estimator correctly recovers the active set of

variables.

A less ambitious goal than model selection is the task of variable screening, where one

requires to find a subset Ŝ ⊂ [p] of the variables that contains S, with high probability,

and |Ŝ| is much smaller than p. Therefore, variable screening allows for substantial di-

mensionality reduction, which is very useful when dealing with large data in practice. For

variable screening, design matrix X is required to have compatibility condition 2. Further,

the minimum nonzero parameter θmin should be sufficiently large; similar assumption to the

2The compatibility condition will be explained in Section 2.1. It is weaker than the irrepresentability
condition defined in (1.1.10) [133].
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one required for model selection.

This dissertation consists in two parts. In Part I, we study the problem of assigning

measures of confidence to single parameter estimates in high-dimensional models. This is

an important problem of inference which has recently gained significance attention among

researchers. In Part II, we study the reconstruction problem in compressed sensing, a well-

known estimation problem in high-dimensional models, and present a practical scheme to

achieve (information-theoretically) optimal undersampling rates for exact recovery. The

proposed method is also shown to be robust with respect to measurement noise.

1.2 Assigning statistical significance in high-dimensional

problems

To date, the bulk of high-dimensional statistical theory has focused on point estimation

such as consistency for prediction, oracle inequalities and estimation of parameter vector,

model selection, and variable screening. However, the fundamental problem of statistical

significance is far less understood in the high-dimensional setting. Uncertainty assessment

is particularly important when one seeks subtle statistical patterns in massive amount of

data. In this case, any claimed pattern should be supported with some type of significance

measure, which quantifies the confidence that the pattern is not a spurious correlation.

We consider a simple example to illustrate this point further. Let X ∈ Rn×p be a

design matrix with independent standard normal entries. For each configuration (n, p) =

(100, 500), (100, 5000), we generate 1000 realizations of X, and for each realization compute

r̂ = maxi≥2 |Ĉorr(Xe1,Xei)|, where Ĉorr(Xe1,Xei) denotes the sample correlation between

the first and the i-th variables.3 Figure 1.2.1 shows the empirical distribution of r̂. As

we observe, the maximum absolute sample correlation becomes higher as dimensionality

increases. This example demonstrates that empirical correlation is not the right metric

to claim statistically significant relationships between different variables when the design

matrix is not orthogonal.

Following the traditional thinking in frequentist statistics, we treat the parameter vector

θ0 as a deterministic (unknown) object and the observations as random samples generated

according to a model parametrized by θ0. We would like to estimate θ0 based on the

observed samples and accompany our point estimation with some measures of uncertainty.

3Recall that ei is the vector with one at the i-th position and zero everywhere else.
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Figure 1.2.1: Frequency of the maximum absolute sample correlation between the first
variable and the i-th variables. This is asn illustration of spurious correlation in high-
dimensions.

Two classical measures of uncertainty are confidence intervals and p-values, described below.

• Confidence interval: For each single parameter θ0,i, i ∈ [p], and a given significance

level α ∈ (0, 1), we are interested in constructing intervals [θi, θi] such that

P(θ0,i ∈ [θi, θi]) ≥ 1− α .

• Hypothesis testing and p-values: For each i ∈ [p], we are interested in testing whether

variable i is significant in predicting the response variable. More specifically, we are

interested in testing null hypotheses of the form

H0,i : θ0,i = 0 , (1.2.1)

versus its alternative HA,i : θ0,i 6= 0, for i ∈ [p]. Any hypothesis testing procedure

faces two types of errors: false positives or type I errors (incorrectly rejecting H0,i,

while θ0,i = 0), and false negatives or type II errors (failing to reject H0,i, while

θ0,i 6= 0). The probabilities of these two types of errors will be denoted, respectively,
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Figure 1.2.2: Lefthand side: low dimensional projection of the high probability region given
by (1.1.9) (q = 2). The ball radius is O(

√
(s0 log p)/n). Righthand side: confidence regions

for low dimensional targets, θI , where I is a subset of indices with constant size. The radius
here is O(1/

√
n).

by α and β. The quantity 1− β is also referred to as the power of the test, and α as

its significance level.

Central to any hypothesis testing procedure is the construction of p-value as a measure

of statistical significance. The challenge in high-dimensional models is indeed the

construction of p-values, which control type I error measure while having good power

for detecting alternatives. We will discuss these challenges in Section 1.2.2.

It is instructive to see how the estimation error bound (1.1.9) compares to our goal of

constructing confidence intervals. Note that the bound (1.1.9) is with high probability,

which gives absolute (asymptotic) certainty for the intervals. However, we are interested

in confidence intervals for single parameter θ0,i (low-dimensional targets), and if we use

the bound (1.1.9), with q = 2, the resulting intervals will be of size O(
√

(s0 log p)/n). By

contrast, for each single parameter θ0,i we construct (1 − α) confidence interval of size

O(1/
√
n) which is much smaller. This is schematically illustrated in Figure 1.2.2.

Similarly, the results for model selection require the stringent irrepresentability condition

to hold for the design matrix. Further, they assume the rather strong θmin condition, saying

that the nonzero parameters must be sufficiently large. These constraints are hard to be

fulfilled in many real problems and indeed the θmin condition cannot even be verified. Here,

instead of making binary choices about the activeness of variables in the model, we are

interested in developing procedures to quantify the statistical uncertainty that is intrinsic
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in any such decision. Hypothesis testing provides a standard framework to address this type

of problems. As we will see, to control type I error, there is no need to the θmin condition.

Further, we only assume compatibility condition on the design matrix which is weaker than

the irrepresentability condition.

1.2.1 Why is it important?

We discuss the importance of uncertainty assessment from three different perspectives.

• Scientific discoveries: Consider a prostate data set that contains a few hundreds

of samples in two classes, normal and tumor, along with expression levels of a few

thousands of genes for each sample. Suppose that we are interested in finding the

relevant genes in predicting prostate cancer. Clearly, this is a high-dimensional data

set since the number of variables (gene expression levels) are much larger than the

number of samples; a usual trend in genetics data analysis. As explained in the

previous example (cf. Figure 1.2.1), empirical correlation is not the right indicator

of relevance in this regime. If we make a claim about the importance of a gene on

prostate tumor, we need to support our finding with a confidence measure like p-value.

Otherwise, there is no evidence that our discovery is not just a spurious effect.

• Decision making: Uncertainty assessment is crucial whenever we intend to take actions

on the basis of our statistical model of the data. For instance, in targeted online

advertising, a typical inference task is to predict an individual’s buying activity on the

basis of her browsing history, location, position and relationships in a social network,

and so on. Typically, these problems are high-dimensional due to the large number of

attributes that are available for each individual. Existing methods allow to predict an

expected behavior for each individual, but do not account for its intrinsic variability.

Variability quantification is instead an important component of policy designs and

decision making strategies.

• Stopping rules in optimization: M-estimators are constructed by optimizing a suit-

ably regularized loss function, cf. (1.1.1). Solving such optimizations over millions of

samples and billions of variables is computationally very challenging. Note that the

classical polynomial time Interior Point methods (IPMs) are capable to solve convex

programs within high accuracy at a low iteration count. However, the iteration cost of

these methods scale nonlinearly with the problem’s dimension (number of samples and
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variables). As a result, these methods become impractical for very-large scale problems

since a single iteration lasts forever! Motivated by the need for arbitrary-scale, decen-

tralized solvers, the first order methods (FOMs) with computationally cheap iterations

have been developed. Well-known FOMs include gradient descent, coordinate descent,

Nesterov’s accelerated method [103, 104], Iterative Shrinkage Thresholding [9], and

Alternating Direction Method of Multiplier (ADMM) [15]. For problems with favor-

able geometry, good FOMs exhibit dimension-independent convergence rate; however,

they have only sublinear rate of convergence. As a result, these iterative algorithms

should be run for a large number of iterations, and we need some type of stopping

rule to know when to stop the algorithm if we desire to get within ε accuracy of the

solution.

Most of the stopping rules are based on the analysis of convergence rates of FOMs,

saying that in order to be within ε accuracy of θ̂, we need to run the method for nε, or

O(nε) number of iterations. A subtle point to note is that here optimization serves as

a tool to fulfill our inference goal, i.e, finding θ0. Hence, a holistic stopping rule must

measure how far we are from the object of interest θ0, not θ̂. For instance, one choice

would be based on the confidence intervals: At each iteration, construct a confidence

interval for θ0 as per the current estimate. Then stop the iterations when the change

in the consecutive estimates is negligible with respect to the interval size.

1.2.2 Why is it hard?

In a nutshell, the main challenges are due to high-dimensionality. In the low-dimensional

regime (p < n), either exact distributional characterization of the estimators are available, or

asymptotically exact ones can be derived from large sample theory [135]. On the other side,

fitting high-dimensional statistical models often requires the use of non-linear parameter

estimation procedures and in general, it is impossible to characterize distribution of such

estimators.4 Consequently, there is no commonly accepted procedure for constructing p-

values in high-dimensional of statistics.

As we will discuss in Section 2.2, M-estimator θ̂ is biased towards small R(θ), and of

course the bias vector is unknown. This is a major challenge in constructing confidence

intervals and computing p-values based on M-estimators.

4In some special cases, such as design matrices with i.i.d. Gaussian entries, the distribution of Lasso
estimator can be characterized. This will be discussed in details in Chapter 4.
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Further, (limiting) distribution of an M-estimator in non-continuous. For example, the

distribution of Lasso estimator is non-Gaussian with point mass at zero. Because of this,

standard bootstrap or subsampling techniques do not give honest confidence regions or

p-values.

1.2.3 Contributions & Organization (Part I)

We consider a general debiased estimator of the form θ̂u = θ̂n + (1/n)MXT(Y − Xθ̂n),

where θ̂n ≡ θ̂(Y,X;λ) denotes the Lasso estimator. We introduce a figure of merit of the

pair M,X, termed the generalized coherence parameter µ∗(X;M). We show that, if the

generalized coherence is small, then the debiasing procedure is effective in the sense that

Bias(θ̂u) is smaller than Bias(θ̂n) in order of magnitude.5

In case of random designs, we show that the generalized coherence parameter can be

made as small as
√

(log p)/n, through a convex optimization procedure for computing M

(cf. Algorithm 1). This results in a bound on the bias of θ̂u: the largest entry of the bias

is of order (s0 log p)/n. This must be compared with the standard deviation of θ̂ui , which is

of order σ/
√
n. The conclusion is that, for n = ω((s0 log p)2), the bias of θ̂u is negligible.

Distributional characterization. We further characterize the (limiting) distribution of

the debiased estimator θ̂u, whence we derive confidence intervals and hypothesis test-

ing procedures for low-dimensional marginals of θ0. The basic intuition is that θ̂u

is approximately Gaussian with mean θ0, and known covariance structure. Hence

standard optimal tests can be applied.

Chapter 2 focuses on the debasing approach, establishing its limiting distributional

characterization, and deriving confidence intervals for low dimensional marginals of θ0.

Section 2.4.3 extends our results to non-Gaussian noise using the central limit theorem

for triangular arrays, and Section 2.6 provides a generalization of this approach to

regularized maximum likelihood estimators.

In Chapter 3, we address the problem of hypothesis testing in high-dimensional regres-

sion models. Relying on the limiting distributional characterization of θ̂, we construct

valid two-sided p-values for H0,i. This controls the type I error of our proposed testing

procedure (3.0.3).

5We refer to Section 2.1 for a formal definition of bias.
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Optimality. In Chapter 3, we prove a general lower bound on the power of our testing

procedure. Moreover, taking a minimax point of view, we prove a general upper

bound on the minimax power of tests with a given significance level α, in the case of

Gaussian random designs with i.i.d. rows. By comparing these bounds, we conclude

that the asymptotic efficiency of our approach is constant-optimal. Namely, it is lower

bounded by a constant 1/ηΣ,s0 which is bounded away from 0. Here Σ is the population

level covariance matrix of the design, i.e. Σ = E(X1X
T
1 ), and ηΣ,s0 is always upper

bounded by the condition number of Σ. In particular, ηI,s0 = 1. Section 3.4 contains

an overview of some of the most recent and related procedures for hypothesis testing

in high-dimensional regression, namely multisample splitting [142, 96], Ridge-type

projection estimator [16], and low dimensional projection estimator (LDPE), proposed

by [149].

Hypothesis testing under optimal sample size. In Chapter 4, we focus on Gaussian

random designs with i.i.d. rows Xi ∼ N(0,Σ). In case of Σ = I, we build upon a

rigorous characterization of the asymptotic distribution of the Lasso estimator and

its debiased version, and propose a testing procedure under the optimal sample size,

i.e. n = O(s0 log(p/s0)). For general Gaussian designs, we show that a similar distri-

butional characterization (termed ‘standard distributional limit’) can be derived from

the replica heuristics in statistical physics. This derivation suggests near-optimality

of the statistical power for a large class of Gaussian designs.

Validation. In Chapter 5, we validate our approach on both synthetic and real data, com-

paring it with other proposals. In the interest of reproducibility, an R implementation

of our algorithm is available at http://www.stanford.edu/~montanar/sslasso/.

Proofs of theorems and technical lemmas in Part I are given in Chapter 6.

1.2.4 Previously published material

The chapters of Part I are based on previous publications:

• Publication [75]: Adel Javanmard and Andrea Montanari. Confidence Intervals and

Hypothesis Testing for High-Dimensional Regression. To appear in Journal of Ma-

chine Learning Research, 2014. (Short version [71] is published in Advances in Neural

Information Processing Systems, pages 1187-1195, 2013.)

http://www.stanford.edu/~montanar/sslasso/
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• Publication [72]: Adel Javanmard and Andrea Montanari. Hypothesis Testing in

High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic

Theory. To appear in IEEE Transaction on Information Theory, 2014.

1.3 Optimal compressed sensing via spatial coupling and

approximate message passing

Compressed sensing refers to a set of techniques that recover the signal accurately from

undersampled measurements. In other words, instead of first measuring the signal and then

compressing it, these techniques aim at measuring the signal in an already compressed form

without missing any information.

Traditional sampling methods, such as Shannon-Nyquist-Whittaker, demand sampling

rate proportional to the frequency bandwidth of the signal. By contrast, compressed sensing

techniques require sampling rate proportional to the information content of the signal.

Smaller sampling rate translates to faster and cheaper data collection and processing.

The theory of compressed sensing has three key ingredients: structure of the signal,

sensing mechanism, and reconstruction algorithm. In the following, we briefly discuss these

components.

Structure of the signal: Many real world signals enjoy some types of structure. For

instance, the signal of interest belong to some known class, or it is generated according

to some known distribution. A very common structure is sparsity, meaning that most

of the information is concentrated in relatively few coordinates of the signal. More

specifically, let x ∈ Rn be an n-dimensional signal, and define its `0 norm as

‖θ‖0 = |{i : θi 6= 0}| ,

i.e., the number of non-zero coordinates of x. We refer to ε ≡ ‖θ‖0/n as the sparsity

level of the signal as it represents the fraction of nonzero entries. Fortunately, many

natural signals have a small sparsity level in some domain. Sparsity has long been

used by compression algorithms to decrease storage costs; the goal of sparse recovery

and compressed sensing is to exploit sparsity to decrease the required sampling rate

for exact recovery.
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Sensing mechanism: The simplest way of taking measurements of signal x ∈ Rn is

through a linear operator, namely the measurements are given by

y = Ax , (1.3.1)

where A ∈ Rm×n is the measurement matrix. Of course, in most of the cases, the

measurement are contaminated by noise and hence we consider a more general model

y = Ax+ w , (1.3.2)

with w representing the noise vector. We recall that the reconstruction problem in

compressed sensing requires to reconstruct x from the measured vector y ∈ Rm, and

the measurement matrix A ∈ Rm×n.

Conventional wisdom in compressed sensing suggests that random isotropic vectors,

with small coherence number, provide a suitable class of measurement vectors. To

be more specific, in this case the sensing vectors are independently sampled from a

population F , such that F obeys the isotropy property

Eaa∗ = I , a ∼ F .

Further, the coherence parameter µ(F ) is defined to be the smallest number such that

max
1≤i≤n

|ai|2 ≤ µ(F )

holds deterministically or stochastically. It turns out the smaller µ(F ), the fewer

measurements are needed for accurate recovery. Some examples are the random ma-

trices whose entries are drawn independently form Gaussian, Bernoulli, or any other

sub-gaussian distribution. Another example is obtained by sampling, uniformly at

random, form rows of the DFT matrix.

Reconstruction algorithm: Since m < n, the system of equation (1.3.1) does not, in

general, admit a unique solution. Therefore the structure of the signal must be used

as a side information in the recovery algorithm. This leads to nonlinear and more

sophisticated schemes compared to the traditional sampling theory wherein the signals

are reconstructed by applying simple linear operators.
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One popular class of reconstruction schemes uses linear programming methods. Con-

sider the noiseless model (1.3.1). Among the infinitely many solutions, we are in-

terested in the sparsest one. This can be formulated as the following optimization

problem:

minimize
x

‖x‖0

subject to y = Ax
(1.3.3)

However, this optimization is NP-complete and cannot be used in practice. Chen et

al. [31] proposed the following convex optimization, called Basis Pursuit, as a convex

relaxation of (1.3.3).

minimize
x

‖x‖1

subject to y = Ax
(P1)

Clearly, this optimization can be cast as a linear programming problem. This method

is shown to be remarkably successful in recovering the signal and an elegant theory

has been developed for it [31, 30, 38, 23, 54].

There is a large corpus of research on recovering sparse signals from a few number of

measurements [36, 23, 37]. It is shown that if only k entries of x are non-vanishing, then

roughly m & 2k log(n/k) measurements are sufficient for A random, and reconstruction

can be solved efficiently by convex programming. Deterministic sensing matrices achieve

similar performance, provided they satisfy a suitable restricted isometry condition [28].

On top of this, reconstruction is robust with respect to additive noise in measurements

[24, 44], namely, under the noisy model (1.3.2) with, say, w ∈ Rm a random vector with

i.i.d. components wi ∼ N(0, σ2). In this context, the notions of ‘robustness’ or ‘stability’

refers to the existence of universal constants C such that the per-coordinate mean square

error in reconstructing x from noisy observation y is upper bounded by C σ2.

From an information-theoretic point of view it remains however unclear why we cannot

achieve the same goal with far fewer than 2 k log(n/k) measurements. Indeed, we can in-

terpret Eq. (1.3.1) as describing an analog data compression process, with y a compressed

version of x. From this point of view, we can encode all the information about x in a single

real number y ∈ R (i.e., use m = 1), because the cardinality of R is the same as the one of
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Rn. Motivated by this puzzling remark, Wu and Verdú [143] introduced a Shannon-theoretic

analogue of compressed sensing, wherein the vector x has i.i.d. components xi ∼ pX . Cru-

cially, the distribution pX is available to, and may be used by the reconstruction algorithm.

Under the mild assumptions that sensing is linear (as per (1.3.1)), and that the recon-

struction mapping is Lipschitz continuous, they proved that compression is asymptotically

lossless if and only if

m ≥ nd(pX) + o(n) . (1.3.4)

Here d(pX) is the (upper) Rényi information dimension of the distribution pX . We refer to

Section 7.1 for a precise definition of this quantity. Suffices to say that, if pX is ε-sparse

(i.e., if it puts mass at most ε on nonzeros) then d(pX) ≤ ε. Also, if pX is the convex

combination of a discrete part (sum of Dirac’s delta) and an absolutely continuous part

(with a density), then d(pX) is equal to the weight of the absolutely continuous part.

This result is quite striking. For instance, it implies that, for random k-sparse vectors,

m ≥ k + o(n) measurements are sufficient. Also, if the entries of x are random and take

values in, say, {−10,−9, . . . ,−9,+10}, then a sublinear number of measurements m =

o(n), is sufficient! At the same time, the result of Wu and Verdú presents two important

limitations. First, it does not provide robustness guarantees of the type described above.

Second and most importantly, it does not provide any computationally practical algorithm

for reconstructing x from measurements y.

In an independent line of work, Krzakala et al. [82] developed an approach that leverages

on the idea of spatial coupling. This idea was introduced in the compressed sensing literature

by Kudekar and Pfister [84] (see [85] and Section 7.3 for a discussion of earlier work on

this topic). Spatially coupled matrices are, roughly speaking, random sensing matrices

with a band-diagonal structure. The analogy is, this time, with channel coding.6 In this

context, spatial coupling, in conjunction with message-passing decoding, allows to achieve

Shannon capacity on memoryless communication channels. It is therefore natural to ask

whether an approach based on spatial coupling can enable to sense random vectors x at

an undersampling rate m/n close to the Rényi information dimension of the coordinates of

x, d(pX). Indeed, the authors of [82] evaluate such a scheme numerically on a few classes

of random vectors and demonstrate that it indeed achieves rates close to the fraction of

6Unlike [82], we follow here the terminology developed within coding theory.
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non-zero entries. They also support this claim by insightful statistical physics arguments.

In PartII of this dissertation, we fill the gap between the above works, and present the

following contributions:

Construction. We describe a construction for spatially coupled sensing matrices A that is

somewhat broader than the one of [82] and give precise prescriptions for the asymp-

totic values of various parameters. We also use a somewhat different reconstruc-

tion algorithm from the one in [82], by building on the approximate message passing

(AMP) approach of [42, 43]. AMP algorithms have the advantage of smaller memory

complexity with respect to standard message passing, and of smaller computational

complexity whenever fast multiplication procedures are available for A.

Rigorous proof of convergence. Our main contribution is a rigorous proof that the

above approach indeed achieves the information-theoretic limits set out by Wu and

Verdú [143]. Indeed, we prove that, for sequences of spatially coupled sensing matrices

{A(n)}n∈N, A(n) ∈ Rm(n)×n with asymptotic undersampling rate δ = limn→∞m(n)/n,

AMP reconstruction is with high probability successful in recovering the signal x, pro-

vided δ > d(pX).

Robustness to noise. We prove that the present approach is robust7 to noise in the fol-

lowing sense. For any signal distribution pX and undersampling rate δ, there exists a

constant C such that the output x̂(y) of the reconstruction algorithm achieves a mean

square error per coordinate n−1E{‖x̂(y) − x‖22} ≤ C σ2. This result holds under the

noisy measurement model (1.3.2) for a broad class of noise models for w, including

i.i.d. noise coordinates wi with E{w2
i } = σ2 <∞.

Non-random signals. Our proof does not apply uniquely to random signals x with i.i.d.

components, but indeed to more general sequences of signals {x(n)}n∈N, x(n) ∈ Rn

indexed by their dimension n. The conditions required are: (1) that the empirical

distribution of the coordinates of x(n) converges (weakly) to pX ; and (2) that ‖x(n)‖22
converges to the second moment of the asymptotic law pX .

There is a fundamental reason why this more general framework turns out to be

equivalent to the random signal model. This can be traced back to the fact that, within

7This robustness bound holds for all δ > D(pX), where D(pX) is the upper MMSE dimension of pX .
(see Definition 7.1.4). It is worth noting that D(pX) = d(pX) for a broad class of distributions pX including
distributions without singular continuous component.
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Classical Compressed Sensing Our Approach

Structure Sparsity Information dimension

Rate m = Ck log(n/k) m = d(pX) · n

Measurements Random isotropic vectors Spatially coupled matrices

Reconstruction Convex optimization Bayesian AMP

Robustness MSE ≤ Cσ2 MSE ≤ C(x)σ2

Table 1.3.1 Comparison between classical approach to compressed sensing and our approach.

our construction, the columns of the matrix A are probabilistically exchangeable.

Hence any vector x(n) is equivalent to the one whose coordinates have been randomly

permuted. The latter is in turn very close to the i.i.d. model. By the same token, the

rows of A are exchangeable and hence the noise vector w does not need to be random

either.

Interestingly, the present framework changes the notion of ‘structure’ that is relevant for

reconstructing the signal x. Indeed, the focus is shifted from the sparsity of x to the in-

formation dimension d(pX). In other words, the signal structure that facilitates recovery

from a small number of linear measurements is the low-dimensional structure in an infor-

mation theoretic sense, quantified by the information dimension of the signal. Table 1.3.1

provides a comparison between pillars of traditional compressed sensing and principles of

our approach. We refer to Part II for a detailed discussion on the salient features of our

approach presented in Table 1.3.1.

1.3.1 A toy example

The following example demonstrates the dramatic improvement achieved by our scheme.

Consider a signal x ∈ Rn whose coordinates are generated i.i.d. from the distribution

pX = 0.2δ0 + 0.3δ1 + 0.2δ−1 + 0.2δ3 + 0.1Uniform(−2, 2). Further suppose that we take

m noiseless linear measurements of x. Classical scheme based on `1 minimization (P1)

require m ≥ 0.97n for exact recovery. More generally, Donoho and Tanner [34] showed that

the reconstruction algorithm (P1) undergoes a phase transition: they characterized a curve

ε→ δ`1(ε) in the (ε, δ) plane such that the following happens for sensing matrices A ∈ Rm×n



CHAPTER 1. INTRODUCTION 24

δ`1(ε)

ε

δ

(0.8, 0.97)

Figure 1.3.3: Donoho-Tanner phase diagram for algorithm (P1)

with i.i.d. Gaussian entries, in the large-system limit n,m → ∞, with m/n = δ. The

reconstruction algorithm (P1) correctly recovers the original signal, with high probability,

provided δ > δ`1(ε), while for δ < δ`1(ε) the algorithm fails with high probability.8

Donoho-Tanner phase diagram is depicted in Figure 1.3.3. In our example, pX({0}) =

0.2 and hence ε = 0.8. Given that δ`1(0.8) = 0.97, the reconstruction scheme (P1) re-

quires m = nδ ≥ 0.97n for exact recovery and this is indeed the fundamental limit for its

performance.

On the other side, d(pX) = 0.1 and therefore our method can recover signal x accurately

from m = 0.1n spatially coupled measurements. Let us stress that our reconstruction

approach requires to know the underlying distribution pX and in this sense is not universal.

1.3.2 Organization (Part II)

In Chapter 7, we state formally our results and discuss their implications and limitations, as

well as relations with earlier work. Chapter 8.3 provides a precise description of the matrix

construction and the reconstruction algorithm. Chapter 10 reduces the proof of our main

results into two key lemmas. One of these lemmas is a (quite straightforward) generalization

of the state evolution technique of [42, 7]. The second lemma characterizes the behavior of

8A universality property is also conjectured for this phase transition phenomena, saying that if matrix
A is sampled randomly from a “well-behaved” probability distribution, reconstruction (P1) exhibits the
same phase transition. Extensive numerical evidence is presented by [34] for a wide collection of ensembles,
including partial Fourier, partial Hadamard, expander graphs, iid ±1.
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the state evolution recursion, and is proved in Chapter 11. In Chapter 12, we study the

problem of sampling a random signal with sparse support in frequency domain, and propose

a sampling scheme inspired by the idea of spatial coupling. As we discuss one possible

implementation of this idea is through Gabor transform. We show empirically that this

scheme achieves correct reconstruction at information-theoretically optimal undersampling

rate.

The proof of a number of intermediate technical steps is deferred to the appendices.

1.3.3 Previously published material

The chapters of Part II are based on previous publications:

• Publication [41]: David L. Donoho, Adel Javanmard and Andrea Montanari. Information-

Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate

Message Passing. IEEE Transactions on Information Theory, 59(11):7434-7464, 2013.

(Short version [40] is published in IEEE International Symposium on Information

Theory (ISIT), pages 1231-1235, 2012.)

• Publication [70]: Adel Javanmard and Andrea Montanari. Subsampling at Informa-

tion Theoretically Optimal Rates. In IEEE International Symposium on Information

Theory (ISIT), pages 2431-2435, 2012.

• Publication [74]: Adel Javanmard and Andrea Montanari. State Evolution for General

Approximate Message Passing Algorithms, with Applications to Spatial Coupling.

Journal of Information and Inference, 2(2):115-144, 2013.
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Assigning Statistical Significance in

High-Dimensional Problems
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Chapter 2

Confidence Intervals for

High-Dimensional Models

We recall the linear regression model with n i.i.d. samples and p parameters, as described

by (1.1.6), where the goal is to learn vector of parameters θ0.

In the classic setting, n � p and the estimation method of choice is ordinary least

squares yielding θ̂OLS = (XTX)−1XTY . Least squares θ̂OLS has an explicit formulation,

and admits an exact distributional characterization. In particular θ̂OLS is Gaussian with

mean θ0 and covariance σ2(XTX)−1. This directly allows to construct confidence intervals

for single parameters θ0,i based on the estimate θ̂OLS.1

In the high-dimensional setting where p > n, the matrix (XTX) is rank deficient and

one has to resort to structured estimators. We discussed some remarkable properties of

these estimator in the introduction. These properties, however, come at a price. Deriving

an exact characterization for the distribution of structured estimators is not tractable in

general, and hence there is no simple procedure to construct confidence intervals and p-

values. A closely related property is that structured estimators are biased, an unavoidable

property in high dimension, since a point estimate in p-dimension must be produced from

data in lower dimension Y ∈ Rn, n < p.

In our presentation, we focus on Lasso estimator θ̂n ≡ θ̂n(Y,X;λ), as per (1.1.7) which

promotes sparse reconstructions through an `1 penalty. Later in the chapter, we discuss the

case of general structured estimators.

1For instance, letting Q ≡ (XTX/n)−1, θ̂OLS
i − 1.96σ

√
Qii/n, θ̂

OLS
i + 1.96σ

√
Qii/n] is a 95% confidence

interval [141].
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2.1 Preliminaries and notations

In this section we introduce some basic definitions used throughout this part, starting with

simple notations.

For a matrix A and set of indices I, J , we let AI,J denote the submatrix formed by the

rows in I and columns in J . Also, AI,· (resp. A·,I) denotes the submatrix containing just

the rows (reps. columns) in I. Likewise, for a vector v, vI is the restriction of v to indices

in I. We use the shorthand A−1
I,J = (A−1)I,J . In particular, A−1

i,i = (A−1)i,i. The maximum

and the minimum singular values of A are respectively denoted by σmax(A) and σmin(A).

We write ‖v‖p for the standard `p norm of a vector v, i.e., ‖v‖p = (
∑

i |vi|p)1/p. and ‖v‖0
for the number of nonzero entries of v. For a matrix A, ‖A‖p is the `p operator norm, and

|A|p is the elementwise `p norm. For a vector v, supp(v) represents the positions of nonzero

entries of v. Throughout, φ(x) = e−x
2/2/
√

2π, and Φ(x) ≡
∫ x
−∞ φ(t)dt respectively denote

the PDF and the CDF of the standard normal distribution. Finally, with high probability

(w.h.p) means with probability converging to one as n→∞.

We let Σ̂ ≡ XTX/n be the sample covariance matrix. For p > n, Σ̂ is always singular.

However, we may require Σ̂ to be nonsingular for a restricted set of directions.

Definition 2.1.1. Given a symmetric matrix Σ̂ ∈ Rp×p and a set S ⊆ [p], the corresponding

compatibility constant is defined as

φ2(Σ̂, S) ≡ min
θ∈Rp

{ |S| 〈θ, Σ̂ θ〉
‖θS‖21

: θ ∈ Rp, ‖θSc‖1 ≤ 3‖θS‖1
}
. (2.1.1)

We say that Σ̂ ∈ Rp×p satisfies the compatibility condition for the set S ⊆ [p], with constant

φ0 if φ(Σ̂, S) ≥ φ0. We say that it holds for the design matrix X, if it holds for Σ̂ = XTX/n.

In the following, we shall drop the argument Σ̂ if clear from the context. Note that

a slightly more general definition is used normally [19, Section 6.13], where the condition

‖θSc‖1 ≤ 3‖θS‖1, is replaced by ‖θSc‖1 ≤ L‖θS‖1. The resulting constant φ(Σ̂, S, L) depends

on L. For the sake of simplicity, we restrict ourselves to the case L = 3.

Definition 2.1.2. The sub-gaussian norm of a random variable X, denoted by ‖X‖ψ2, is

defined as

‖X‖ψ2 = sup
q≥1

q−1/2(E|X|q)1/q .
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For a random vector X ∈ Rn, its sub-gaussian norm is defined as

‖X‖ψ2 = sup
x∈Sn−1

‖〈X,x〉‖ψ2 ,

where Sn−1 denotes the unit sphere in Rn.

Definition 2.1.3. The sub-exponential norm of a random variable X, denoted by ‖X‖ψ1,

is defined as

‖X‖ψ1 = sup
q≥1

q−1(E|X|q)1/q .

For a random vector X ∈ Rn, its sub-exponential norm is defined as

‖X‖ψ1 = sup
x∈Sn−1

‖〈X,x〉‖ψ1 ,

where Sn−1 denotes the unit sphere in Rn.

We next formally define bias of an estimator.

Definition 2.1.4. Given an estimator θ̃n of the parameter vector θ0, we define its bias to

be the vector

Bias(θ̃n) ≡ E{θ̃n − θ0|X} . (2.1.2)

Note that, if the design is random, Bias(θ̃n) is a measurable function of X. If the de-

sign is deterministic, Bias(θ̃n) is a deterministic quantity as well, and the conditioning is

superfluous.

Throughout, we denote by S ≡ supp(θ0) the support of θ0 ∈ Rp, defined as

supp(θ0) ≡ {i ∈ [p] : θ0,i 6= 0} ,

where we use the notation [p] = {1, . . . , p}. We further let s0 ≡ |S|.

2.2 The bias of the Lasso

Structured estimators are biased due to the regularization term. In particular, Lasso esti-

mator is biased towards small `1 norm.
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Let us begin with the simple case of X = I, n = p. The observed samples are given by

Y = θ0 + W . In this case, Lasso estimator is given by the soft thresholding function, i.e.,

θ̂n = η(Y ;λ), where η : R× R+ → R is defined as

η(y;λ) =


y − λ if y > λ,

0 if − λ ≤ y ≤ λ,

y + λ otherwise.

(2.2.1)

and for a vector u ∈ Rn, we let η(u) denote the vector (η(u1), · · · , η(un)) obtained by

applying η component-wise. By a simple algebraic manipulation, we have

Bias(θ̂ni ) = −λ+ (λ− θ0,i)Φ(λ− θ0,i) + (λ+ θ0,i)Φ(−λ− θ0,i) + φ(λ− θ0,i)− φ(−λ− θ0,i).

Clearly, by choosing θ0,i large enough, Bias(θni ) and therefore ‖Bias(θ̂n)‖∞ will be larger

than cλ for any fixed 0 < c < 1. Following theorem lower bounds the bias of the Lasso for

a broad class of design matrices.

Theorem 2.2.1. Consider linear model (1.1.6) and suppose that X has independent sub-

gaussian rows, with mean zero and subgaussian norm ‖X1‖ψ2 = κ, for some constant

κ ∈ (0,∞). Let θ̂n be the Lasso estimator, with λ = cσ
√

(log p)/n. Then, there exist

positive constants c∗, c∗∗ such that if n ≥ (3c∗∗s0/c)
2 log p and p ≥ 1348/(c2−48), then the

following holds true: there exist a set of design matrices Bn ⊆ Rn×p, and coefficient vectors

θ0 ∈ Rp, ‖θ0‖0 ≤ s0, such that

X ∈ Bn ⇒ ‖Bias(θ̂n)‖∞ ≥
λ

3
=
cσ

3

√
log p

n
, (2.2.2)

P(Bn) ≥ 1− 4 e−c1n − 2 p−3 , (2.2.3)

where c1 = 1/(4c∗κ
4).

A formal proof of this theorem is given in Section 6.1.4.

Bias of the Lasso estimator is a major difficulty in achieving our goal, namely construct-

ing confidence intervals for single parameters θ0,i. To overcome this challenge, we construct

a debiased estimator θ̂u from the Lasso solution, and characterize its limiting distribution.

Armed with such characterization, we construct confidence intervals for the true parameters.
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2.3 Compensating the bias of the Lasso

In this section we present our construction of a debiased estimator θ̂u and compare its bias

with the bias of the Lasso estimator.

2.3.1 A debiased estimator for θ0

We begin with the classical case n > p. Here, the least squares estimator is given by

θ̂OLS = (Σ̂−1XTY/n), where Σ̂ ≡ (XXT/n) denotes the sample covariance. Further, θ̂OLS

is unbiased estimator for θ0.

In the high-dimensional regime, however, Σ̂ is not invertible since n < p and therefore

θ̂OLS cannot even be defined. Instead, we define a similar estimator θ̃, using a matrix

M ∈ Rp×p in lieu of Σ̂−1. (Take M to be an arbitrary matrix for now. We will discuss a

specific choice of M later.)

Define

θ̃ ≡ 1

n
MXTY . (2.3.1)

Plugging Y = Xθ0 +W in (2.3.1), we get

θ̃ =
1

n
MXTXθ0 +

1

n
MXTW

= θ0 + (M Σ̂− I)θ0︸ ︷︷ ︸
Bias

+
1

n
MXTW︸ ︷︷ ︸

zero-mean noise

.

Note that Bias(θ̃) depends on the unknown vector of parameters θ0. In order to debias the

estimator, we use Lasso solution θ̂n as an estimate of θ0. This leads us to a new estimator

θ̂∗ defined as follows.

θ̂∗(Y,X;M,λ) ≡ θ̃ − (M Σ̂− I)θ̂n(λ)

=
1

n
MXTY − (M Σ̂− I)θ̂n(λ)

= θ̂n(λ) +
1

n
MXT(Y −Xθ̂n(λ)) . (2.3.2)

For notational simplicity, we shall omit the arguments Y,X,M, λ unless they are required

for clarity.
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2.3.1.1 How to choose M?

The quality of this debiasing procedure depends of course on the choice of M , as well as on

the design X. We characterize the pair (X,M) by the following figure of merit.

Definition 2.3.1. Given the pair X ∈ Rn×p and M ∈ Rp×p, let Σ̂ = XTX/n denote the

associated sample covariance. Then, the generalized coherence parameter of X,M , denoted

by µ∗(X;M), is

µ∗(X;M) ≡
∣∣M Σ̂− I

∣∣
∞ . (2.3.3)

Here and below | · |∞ denotes the entrywise `∞ norm. The minimum (generalized) coher-

ence of X is µmin(X) = minM∈Rp×p µ∗(X;M). We denote by Mmin(X) any minimizer of

µ∗(X;M).

Note that the minimum coherence can be computed efficiently since M 7→ µ∗(X;M) is

a convex function (even more, the optimization problem is a linear program).

The motivation for our terminology can be grasped by considering the following special

case.

Remark 2.3.2. Assume that the columns of X are normalized to have `2 norm equal to
√
n

(i.e. ‖Xei‖2 =
√
n for all i ∈ [p]), and M = I. Then (M Σ̂ − I)i,i = 0, and the maximum

|M Σ̂ − I|∞ = maxi 6=j |(Σ̂)ij |. In other words µ(X; I) is the maximum normalized scalar

product between distinct columns of X:

µ∗(X; I) =
1

n
max
i 6=j

∣∣〈Xei,Xej〉∣∣ . (2.3.4)

The quantity (2.3.4) is known as the coherence parameter of the matrix X/
√
n and

was first defined in the context of approximation theory by Mallat and Zhang [92], and by

Donoho and Huo [39].

Assuming, for simplicity, that the columns of X are normalized so that ‖Xei‖2 =
√
n, a

small value of the coherence parameter µ∗(X; I) means that the columns of X are roughly

orthogonal. We emphasize however that µ∗(X;M) can be much smaller than its classi-

cal coherence parameter µ∗(X; I). For instance, µ∗(X; I) = 0 if and only if X/
√
n is an

orthogonal matrix. On the other hand, µmin(X) = 0 if and only if X has rank p.2

2Of course this example requires n ≥ p. It is the simplest example that illustrates the difference between
coherence and generalized coherence, and it is not hard to find related examples with n < p.
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The following theorem is a slight generalization of a result of [134] and its proof is given

in Section 6.1.1. Let us emphasize that it applies to deterministic design matrices X.

Theorem 2.3.3. Let X ∈ Rn×p be any (deterministic) design matrix, and θ̂∗ = θ̂∗(Y,X;M,λ)

be a general debiased estimator as per Eq. (2.3.2). Then, setting Z = MXTW/
√
n, we have

√
n(θ̂∗ − θ0) = Z + ∆ , Z ∼ N(0, σ2M Σ̂MT) , ∆ =

√
n(M Σ̂− I)(θ0 − θ̂n) . (2.3.5)

Further, assume that X satisfies the compatibility condition for the set S = supp(θ0), |S| ≤
s0, with constant φ0, and has generalized coherence parameter µ∗ = µ∗(X;M), and let

K ≡ maxi∈[p] Σ̂i,i. Then, letting λ = σ
√

(c2 log p)/n, we have

P
(
‖∆‖∞ ≥

4cµ∗σs0

φ2
0

√
log p

)
≤ 2p−c0 , c0 =

c2

32K
− 1 . (2.3.6)

Further, if M = Mmin(X) minimizes the convex cost function |M Σ̂ − I|∞, then µ∗ can be

replaced by µmin(X) in Eq. (2.3.6).

The above theorem decomposes the estimation error (θ̂∗−θ0) into a zero mean Gaussian

term Z/
√
n and a bias term ∆/

√
n whose maximum entry is bounded as per Eq. (2.3.6).

This estimate on ‖∆‖∞ depends on the design matrix through two constants: the com-

patibility constant φ0 and the generalized coherence parameter µ∗(X;M). The former is

a well studied property of the design matrix [19, 133], and assuming φ0 of order one is

nearly necessary for the Lasso to achieve optimal estimation rate in high dimension. On

the contrary, the definition of µ∗(X;M) is a new contribution of the present work.

The next theorem establishes that, for a natural probabilistic model of the design matrix

X, both φ0 and µ∗(X;M) can be bounded with probability converging rapidly to one as

n, p→∞.

Theorem 2.3.4. Let Σ ∈ Rp×p be such that σmin(Σ) ≥ Cmin > 0, and σmax(Σ) ≤ Cmax <

∞, and maxi∈[p] Σii ≤ 1. Assume XΣ−1/2 to have independent subgaussian rows, with zero

mean and subgaussian norm ‖Σ−1/2X1‖ψ2 = κ, for some constant κ ∈ (0,∞).

(a) For φ0, s0,K ∈ R>0, let En = En(φ0, s0,K) be the event that the compatibility condition

holds for Σ̂ = (XTX/n), for all sets S ⊆ [p], |S| ≤ s0 with constant φ0 > 0, and that
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maxi∈[p] Σ̂i,i ≤ K. Explicitly

En(φ0, s0,K) ≡
{

X ∈ Rn×p : min
S: |S|≤s0

φ(Σ̂, S) ≥ φ0, max
i∈[p]

Σ̂i,i ≤ K, Σ̂ = (XTX/n)
}
.

(2.3.7)

Then there exists c∗ ≤ 2000 such that the following happens. If n ≥ ν0 s0 log(p/s0),

ν0 ≡ 5× 104c∗(Cmax/Cmin)2κ4, φ0 =
√
Cmin/2, and K ≥ 1 + 20κ2

√
(log p)/n, then

P
(
X ∈ En(φ0, s0,K)

)
≥ 1− 4 e−c1n , c1 ≡

1

4c∗κ4
. (2.3.8)

(b) For a > 0, let Gn = Gn(a) be the following event:

Gn(a) ≡
{

X ∈ Rn×p : µmin(X) < a

√
log p

n

}
. (2.3.9)

Then, for n ≥ a2Cmin log p/(4e2Cmaxκ
4)

P
(
X ∈ Gn(a)

)
≥ 1− 2 p−c2 , c2 ≡

a2Cmin

24e2κ4Cmax
− 2 . (2.3.10)

The proof of this theorem is given in Section 6.1.2 (for part (a)) and Section 6.1.3 (part

(b)).

The proof that event En holds with high probability relies crucially on a theorem by

Rudelson and Zhou [116, Theorem 6]. Simplifying somewhat, the latter states that, if the

restricted eigenvalue condition of [14] holds for the population covariance Σ, then it holds

with high probability for the sample covariance Σ̂. (Recall that the restricted eigenvalue

condition is implied by a lower bound on the minimum singular value3, and that it implies

the compatibility condition [133].)

Motivated by Theorem 2.3.3, we propose a procedure for constructing matrix M . Our

approach is to construct M by solving a convex program that aims at optimizing two objec-

tives. One one hand, we try to control |M Σ̂−I|∞ which, as shown in Theorem 2.3.3, controls

the non-Gaussianity and bias of the estimator. On the other, we minimize [M Σ̂M ]i,i, for

each i ∈ [p], which controls the variance of of the i-th coordinate of the estimator. The pro-

cedure and the corresponding debiased estimator θ̂u are described in Algorithm 1. Note that

3Note, in particular, at the cost of further complicating the last statement, the condition σmin(Σ) = Ω(1)
can be further weakened.
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Algorithm 1 Unbiased estimator for θ0 in high-dimensional linear regression models

Input: Measurement vector Y , design matrix X, parameters λ, µ.
Output: Unbiased estimator θ̂u.

1: Let θ̂n = θ̂n(Y,X;λ) be the Lasso estimator as per Eq. (1.1.7).
2: Set Σ̂ ≡ (XTX)/n.
3: for i = 1, 2, . . . , p do
4: Let mi be a solution of the convex program:

minimize mTΣ̂m

subject to ‖Σ̂m− ei‖∞ ≤ µ ,
(2.3.11)

where ei ∈ Rp is the vector with one at the i-th position and zero everywhere else.
5: Set M = (m1, . . . ,mp)

T. If any of the above problems is not feasible, then set M = Ip×p.

6: Define the estimator θ̂u as follows:

θ̂u = θ̂n(λ) +
1

n
MXT(Y −Xθ̂n(λ)) (2.3.12)

event Gn, defined by (2.3.9), can be equivalently stated as the event that problem (2.3.11),

for all i ∈ [p], is feasible with µ = a
√

(log p)/n.

Finally, by putting together Theorem 2.3.3 and Theorem 2.3.4, we obtain the following

conclusion. We refer to Section 6.1.5 for the proof of Theorem 2.3.5.

Theorem 2.3.5. Consider the linear model (1.1.6) and let θ̂u be defined as per Eq. (2.3.12)

in Algorithm 1, with µ = a
√

(log p)/n. Then, setting Z = MXTW/
√
n, we have

√
n(θ̂u − θ0) = Z + ∆ , Z|X ∼ N(0, σ2M Σ̂MT) , ∆ =

√
n(M Σ̂− I)(θ0 − θ̂n) . (2.3.13)

Further, under the assumptions of Theorem 2.3.4, and for n ≥ max(ν0s0 log(p/s0), ν1 log p),

ν1 = max(1600κ4, a2/(4e2κ4)), and λ = σ
√

(c2 log p)/n, we have

P
{
‖∆‖∞ ≥

(16ac σ

Cmin

)s0 log p√
n

}
≤ 4 e−c1n + 4 p−c̃0∧c2 . (2.3.14)

where c̃0 = (c2/48)− 1 and c1, c2 are given by Eqs. (2.3.8) and (2.3.10).

Finally, the tail bound (2.3.14) holds for any choice of M that is only function of the

design matrix X, and satisfies the feasibility condition in Eq. (2.3.11), i.e. |M Σ̂− I|∞ ≤ µ.

Assuming σ,Cmin of order one, the last theorem establishes that, for random designs,
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the maximum size of the ‘bias term’ ∆i over i ∈ [p] is:

‖∆‖∞ = O
(s0 log p√

n

)
(2.3.15)

On the other hand, the ‘noise term’ Zi is roughly of order

√
[M Σ̂MT]ii. Bounds on the

variances [M Σ̂MT]ii will be given in next Chapter (cf. Eq. (6.2.1) in the Proof of The-

orem 3.1.1) showing that, if M is computed through Algorithm 1, [M Σ̂MT]ii is of order

one for a broad family of random designs. As a consequence |∆i| is much smaller than |Zi|
whenever s0 = o(

√
n/ log p). We summarize these remarks below.

Remark 2.3.6. Theorem 2.3.5 only requires that the support size satisfies s0 = O(n/ log p).

If we further assume s0 = o(
√
n/ log p), then we have ‖∆‖∞ = o(1) with high probability.

Hence, θ̂u is an asymptotically unbiased estimator for θ0.

A more formal comparison of the bias of θ̂u, and of the one of the Lasso estimator θ̂n can

be found in Section 2.3.2 below. Section 2.3.3 compares our approach with other related

work.

As it can be seen from the statement of Theorem 2.3.3 and Theorem 2.3.4, the claim

of Theorem 2.3.5 does not rely on the specific choice of the objective function in opti-

mization problem (2.3.11) and only uses the constraint on ‖Σ̂m − ei‖∞. In particular it

holds for any matrix M that is feasible. On the other hand, the specific objective function

problem (2.3.11) minimizes the variance of the noise term, Var(Zi).

2.3.2 Discussion: bias reduction

Theorems 2.3.3 and 2.3.4 provide a quantitative framework to discuss in what sense the

Lasso estimator θ̂n is asymptotically biased, while the debiased estimator θ̂u is asymptoti-

cally unbiased.

Invoking definition of bias (2.1.2), it follows from Eq. (2.3.5) that

Bias(θ̂u) =
1√
n
E{∆|X} . (2.3.16)

Applying Theorem 2.3.5 with high probability, ‖∆‖∞ = O(s0 log p/
√
n). The next corollary

states that this bound on ‖∆‖∞ translates into a bound on Bias(θ̂u) for all X in a set that

has probability rapidly converging to one as n, p get large.
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Corollary 2.3.7. Under the assumptions of Theorem 2.3.5, let c1, c2 be defined as per

equations (2.3.8) and (2.3.10). Then we have

X ∈ En(
√
Cmin/2, s0, 3/2) ∩ Gn(a) ⇒ ‖Bias(θ̂u)‖∞ ≤

160a

Cmin
· σs0 log p

n
, (2.3.17)

P
(
X ∈ En(

√
Cmin/2, s0, 3/2) ∩ Gn(a)

)
≥ 1− 4e−c1n − 2 p−c2 . (2.3.18)

The proof of this corollary can be found in Section 6.1.6.

This result can be contrasted with a converse result for the Lasso estimator. Namely, as

stated in Theorem 2.2.1, there are choices of the vector θ0, and of the design covariance Σ,

such that ‖Bias(θ̂n)‖∞ is of order σ
√

(log p)/n. Comparing this bound with the bound on

‖Bias(θ̂u)‖∞, as established in Corollary 2.3.7, we conclude that if s0 is significantly smaller

than
√
n/ log p (which is the main regime studied in this chapter), then ‖Bias(θ̂n)‖∞ �

‖Bias(θ̂u)‖∞. Hence, our approach has effectively reduced the bias.

2.3.3 Comparison with earlier results

The idea of constructing a debiased estimator of the form θ̂u = θ̂n + (1/n)MXT(Y −Xθ̂n)

was used by Javanmard and Montanari in [72], that suggested the choice M = cΣ−1, with

Σ = E(X1X
T
1 ) the population covariance matrix and c a positive constant. We discuss this

approach meticulously in Chapter 4. Van de Geer, Bühlmann, Ritov and Dezeure [134] used

the same construction with M an estimate of Σ−1 which is appropriate for sparse inverse

covariances. These authors prove semi-parametric optimality in a non-asymptotic setting,

provided the sample size is at least n = Ω((s0 log p)2).

The rationale for choosing M to be an estimate of Σ−1 is as follows.

One step of Newton method. Recall that Lasso estimator is given as the solution of

the optimization problem below:

θ̂n ≡ argmin
θ∈Rp

{ 1

2n
‖Y −Xθ‖2 + λ‖θ‖1

}
.

Lasso solution θ̂n is biased due to the regularization term. On the other hand, it is easy to

see that

argmin
θ∈Rp

1

2n
E(‖Y −Xθ‖2) = θ0 , (2.3.19)
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where the expectation is taken with respect to the law of the samples {(Yi, Xi)}ni=1. There-

fore, a natural approach for debiasing is to take θ̂n as the initial guess and perform one step

of Newton method to move towards the minimizer of (2.3.19), i.e., θ0. This leads to

θ̂∗(Y,X; Σ−1, λ) = θ̂n +
1

n
Σ−1XT(Y −Xθ̂n) .

This justifies the choice of M = Σ−1.

From a technical point of view, the presented approach in this chapter starts from a

simple decomposition of the debiased estimator θ̂u into a Gaussian part and an error term,

already used in [134]. However, departing radically from earlier work, we realize that M

need not be a good estimator of Σ−1 in order for the debiasing procedure to work. We

instead set M as to minimize the error term and the variance of the Gaussian term. As

a consequence of this choice, our approach applies to general covariance structures Σ. By

contrast, earlier approaches applied only to sparse Σ, as in [72], or sparse Σ−1 as in [134].

The only assumptions we make on Σ are the standard compatibility conditions required for

high-dimensional consistency [19].

In the case of linear statistical models considered here, the authors of [134] construct

a debiased estimator of the form (2.3.2). However, instead of solving the optimization

problem (2.3.11), they follow [149] and use the regression coefficients of the i-th column of

X on the other columns to construct the i-th row of M . These regression coefficients are

computed, once again, using the Lasso (node-wise Lasso). It useful to spell out the most

important differences between our contribution and the ones of [134]:

1. The case of fixed non-random designs is covered by [134, Theorem 2.1], which should

be compared to our Theorem 2.3.3. While in our case the bias is controlled by the

generalized coherence parameter, a similar role is played in [134] by the regularization

parameters of the nodewise Lasso.

2. The case of random designs is covered by [134, Theorem 2.2, Theorem 2.4], which

should be compared with our Theorem 2.3.5. In this case, the assumptions underlying

our result are less restrictive. More precisely:

(a) [134, Theorem 2.2, Theorem 2.4] assume X has i.i.d. rows, while we only assume

the rows are independent.

(b) [134, Theorem 2.2, Theorem 2.4] assumes the rows of the inverse covariance
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matrix Σ−1 are sparse. More precisely, letting sj be the number of non-zero

entries of the j-th row of Σ−1, [134] assumes maxj∈[p] sj = o(n/ log p), that is

much smaller than p. We do not make any sparsity assumption on Σ−1, and sj

can be as large as p. [134, Theorem 2.4] also considers a slightly different setting,

where X has bounded entries, under analogous sparsity assumptions.

It is currently unknown whether the sparsity assumption in [134] is required for that

approach to work, or it is rather an artifact of the specific analysis. Indeed [134,

Theorem 2.1] can in principle be used to weaken this condition.

In addition, our Theorem 2.3.5 provides the specific dependence on the maximum and

minimum singular value of Σ̂.

Note that solving the convex problem (2.3.11) is not more burdensome than solving

the nodewise Lasso as in [149, 134], This can be confirmed by checking that the dual of

problem (2.3.11) is an `1-regularized quadratic optimization problem. It has therefore the

same complexity as the nodewise Lasso (but it is different from the nodewise Lasso). We

refer to Section 5.1 for a thorough discussion on this.

2.4 Confidence intervals

A direct application of Theorem 2.3.5 is to derive confidence intervals for each single pa-

rameter θ0,i of a high-dimensional model. Throughout, we make the sparsity assumption

s0 = o(
√
n/ log p) and omit explicit constants that can be readily derived from Theorem

2.3.5.

2.4.1 Preliminary lemmas

As discussed above, the bias term ∆ is negligible with respect to the random term Z in

the decomposition (2.3.13), provided the latter has variance of order one. Our first lemma

establishes that this is indeed the case.

Lemma 2.4.1. Let M = (m1, . . . ,mp)
T be the matrix with rows mT

i obtained by solving

convex program (2.3.11) in Algorithm 1. Then for all i ∈ [p],

[M Σ̂MT]i,i ≥
(1− µ)2

Σ̂i,i

.
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Lemma 2.4.1 is proved in Appendix A.1.

Using this fact, we can then characterize the asymptotic distribution of the residu-

als (θ̂u − θ0,i). Theorem 2.3.5 naturally suggests to consider the scaled residual
√
n(θ̂ui −

θ0,i)/(σ[M Σ̂MT]
1/2
i,i ). In the next lemma we consider a slightly more general scaling, replac-

ing σ by a consistent estimator σ̂.

Lemma 2.4.2. Consider a sequence of design matrices X ∈ Rn×p, with dimensions n→∞,

p = p(n) → ∞ satisfying the following assumptions, for constants Cmin, Cmax, κ ∈ (0,∞)

independent of n. For each n, Σ ∈ Rp×p is such that σmin(Σ) ≥ Cmin > 0, and σmax(Σ) ≤
Cmax < ∞, and maxi∈[p] Σii ≤ 1. Assume XΣ−1/2 to have independent subgaussian rows,

with zero mean and subgaussian norm ‖Σ−1/2X1‖ψ2 ≤ κ,

Consider the linear model (1.1.6) and let θ̂u be defined as per Eq. (2.3.12) in Algorithm 1,

with µ = a
√

(log p)/n and λ = σ
√

(c2 log p)/n, with a, c large enough constants. Finally,

let σ̂ = σ̂(y,X) be an estimator of the noise level satisfying, for any ε > 0,

lim
n→∞

sup
θ0∈Rp; ‖θ0‖0≤s0

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) = 0 . (2.4.1)

If s0 = o(
√
n/ log p) (s0 ≥ 1), then, for all x ∈ R, we have

lim
n→∞

sup
θ0∈Rp; ‖θ0‖0≤s0

∣∣∣∣∣P
{√

n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ x

}
− Φ(x)

∣∣∣∣∣ = 0 . (2.4.2)

The proof of this lemma can be found in Section 6.1.7. We also note that the dependence

of a and c on Cmin, Cmax, κ can be easily reconstructed from Theorem 2.3.4.

The last lemma requires a consistent estimator of σ, in the sense of Eq. (2.4.1). Several

proposals have been made to estimate the noise level in high-dimensional linear regression.

A short list of references includes [50, 51, 122, 148, 124, 11, 49, 112, 32, 52, 5]. Consistency

results have been proved for several of these estimators.

In order to demonstrate that the consistency criterion (2.4.1) can be achieved, we use

the scaled Lasso [124] given by

{θ̂n(λ̃), σ̂(λ̃)} ≡ arg min
θ∈Rp,σ>0

{ 1

2σn
‖Y −Xθ‖22 +

σ

2
+ λ̃‖θ‖1

}
. (2.4.3)

This is a joint convex optimization problem which provides an estimate of the noise level

in addition to an estimate of θ0.
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The following lemma uses the analysis of [124] to show that σ̂ satisfies the consistency

criterion (2.4.1).

Lemma 2.4.3. Under the assumptions of Lemma 2.4.2, let σ̂ = σ̂(λ̃) be the scaled Lasso

estimator of the noise level, see (2.4.3), with λ̃ = 10
√

(2 log p)/n. Then σ̂ satisfies (2.4.1).

The proof of this lemma is fairly straightforward and can be found in Appendix A.2.

In view of Lemma 2.4.2, it is quite straightforward to construct asymptotically valid

confidence intervals. Namely, for i ∈ [p] and significance level α ∈ (0, 1), we let

Ji(α) ≡ [θ̂ui − δ(α, n), θ̂ui + δ(α, n)] ,

δ(α, n) ≡ Φ−1(1− α/2)
σ̂√
n

[M Σ̂MT]
1/2
i,i .

(2.4.4)

Theorem 2.4.4. Consider a sequence of design matrices X ∈ Rn×p, with dimensions

n→∞, p = p(n)→∞ satisfying the assumptions of Lemma 2.4.2.

Consider the linear model (1.1.6) and let θ̂u be defined as per Eq. (2.3.12) in Algorithm 1,

with µ = a
√

(log p)/n and λ = σ
√

(c2 log p)/n, with a, c large enough constants. Finally,

let σ̂ = σ̂(y,X) a consistent estimator of the noise level in the sense of Eq. (2.4.1). Then

the confidence interval Ji(α) is asymptotically valid, namely

lim
n→∞

P
(
θ0,i ∈ Ji(α)

)
= 1− α . (2.4.5)

Proof: The proof is an immediate consequence of Lemma 2.4.2 since

lim
n→∞

P
(
θ0,i ∈ Ji(α)

)
= lim
n→∞

P

{√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ Φ−1(1− α/2)

}

− lim
n→∞

P

{√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ −Φ−1(1− α/2)

}
=1− α . (2.4.6)

2.4.2 Generalization to simultaneous confidence intervals

In many situations, it is necessary to perform statistical inference on more than one of the

parameters simultaneously. For instance, we might be interested in performing inference

about θ0,R ≡ (θ0,i)i∈R for some set R ⊆ [p].
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The simplest generalization of our method is to the case in which |R| stays finite as

n, p→∞. In this case we have the following generalization of Lemma 2.4.2. (The proof is

the same as for Lemma 2.4.2, and hence we omit it.)

Lemma 2.4.5. Under the assumptions of Lemma 2.4.2, define

Q(n) ≡ σ̂2

n
[M Σ̂MT] . (2.4.7)

Let R = R(n) be a sequence of sets R(n) ⊆ [p], with |R(n)| = k fixed as n, p → ∞, and

further assume s0 = o(
√
n/ log p), with s0 ≥ 1. Then, for all x = (x1, . . . , xk) ∈ Rk, we

have

lim
n→∞

sup
θ0∈Rp; ‖θ0‖0≤s0

∣∣∣P{(Q
(n)
R,R)−1/2(θ̂uR − θ0,R) ≤ x

}
− Φk(x)

∣∣∣ = 0 , (2.4.8)

where (a1, . . . , ak) ≤ (b1, . . . , bk) indicates that a1 ≤ b1,. . .ak ≤ bk, and Φk(x) = Φ(x1) ×
· · · × Φ(xk).

This lemma allows to construct confidence regions for low-dimensional projections of

θ0, much in the same way as we used Lemma 2.4.2 to compute confidence intervals for

one-dimensional projections in Section 2.4.

Explicitly, let Ck,α ⊆ Rk be any Borel set such that
∫
Ck,α φk(x) dx ≥ 1− α , where

φk(x) =
1

(2π)k/2
exp

(
− ‖x‖

2

2

)
,

is the k-dimensional Gaussian density. Then, for R ⊆ [p], we define JR(α) ⊆ Rk as follows

JR(α) ≡ θ̂uR + (Q
(n)
R,R)1/2Ck,α . (2.4.9)

Then Lemma 2.4.5 implies (under the assumptions stated there) that JR(α) is a valid

confidence region

lim
n→∞

P
(
θ0,R ∈ JR(α)

)
= 1− α . (2.4.10)
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2.4.3 Non-Gaussian noise

As can be seen from the proof of Theorem 2.3.5, Z = MXTW/
√
n, and since the noise

is Gaussian, i.e., W ∼ N(0, σ2I), we have Z|X ∼ N(0, σ2M Σ̂MT). We claim that the dis-

tribution of the coordinates of Z is asymptotically Gaussian, even if W is non-Gaussian,

provided the definition of M is modified slightly. As a consequence, the definition of confi-

dence intervals in Corollary 2.4.4 remains valid in this broader setting.

In case of non-Gaussian noise, we write

√
n(θ̂ui − θ0,i)

σ[M Σ̂MT]
1/2
i,i

=
1√
n

mT
i XTW

σ[mT
i Σ̂mi]1/2

+ o(1)

=
1√
n

n∑
j=1

mT
i XjWj

σ[mT
i Σ̂mi]1/2

+ o(1) .

Conditional on X, the summands ξj = mT
i XjWj/(σ[mT

i Σ̂mi]
1/2) are independent and zero

mean. Further,
∑n

j=1 E(ξ2
j |X) = 1. Therefore, if Lindenberg condition holds, namely for

every ε > 0, almost surely

lim
n→∞

1

n

n∑
j=1

E(ξ2
j I{|ξj |>ε√n}|X) = 0 , (2.4.11)

then
∑n

j=1 ξj/
√
n|X d−→ N(0, 1), from which we can build the valid confidence intervals as

in (2.4.4).

In order to ensure that the Lindeberg condition holds, we modify the optimization

problem (2.4.12) as follows:

minimize mTΣ̂m

subject to ‖Σ̂m− ei‖∞ ≤ µ

‖Xm‖∞ ≤ nβ for arbitrary fixed 1/4 < β < 1/2

(2.4.12)

Next theorem shows the validity of the proposed p-values in the non-Gaussian noise setting.

Theorem 2.4.6. Suppose that the noise variables Wi are independent with E(Wi) = 0,

E(W 2
i ) = σ2, and E(|Wi|2+a) ≤ C σ2+a for some a > 0.

Let M = (m1, . . . ,mp)
T be the matrix with rows mT

i obtained by solving optimization
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problem (2.4.12). Then under the assumptions of Theorem 2.3.5, and for sparsity level

s0 = o(
√
n/ log p), an asymptotic two-sided confidence interval for θ0,i with significance α

is given by Ii = [θ̂ui − δ(α, n), θ̂ui + δ(α, n)] where

δ(α, n) = Φ−1(1− α/2)σ̂ n−1/2
√

[M Σ̂MT]i,i . (2.4.13)

Theorem 2.4.6 is proved in Section 6.1.8.

2.5 Comparison with Local Asymptotic Normality

Our approach is based on an asymptotic distributional characterization of a debiased esti-

mator, cf. Theorem 2.3.5. As shown, debiased estimator θ̂u is asymptotically normal under

proper scaling of sample size. This is analogous to what happens in classical statistics, where

local asymptotic normality (LAN) can be used to characterize an estimator distribution, and

hence derive test statistics [87, 135].

This analogy is only superficial, and the mathematical phenomenon underlying Theorem

2.3.5 is altogether different from the one in local asymptotic normality. We refer to [8] for

a more complete understanding, and only mention a few points:

1. LAN theory holds in the low-dimensional limit, where the number of parameters p is

much smaller than the number of samples n. Even more, the focus is on p fixed, and

n→∞.

In contrast, the Gaussian limit in Theorem 2.3.5 holds with p proportional to n.

2. Indeed, in the present case, the Lasso estimator (which is of course a special case

of M-estimator) θ̂ is not normal. Only the debiased estimator θ̂u is asymptotically

normal. Further, while LAN theory holds quite generally in the classical asymptotics,

the present theory is more sensitive to the properties of the design matrix X.

2.6 General regularized maximum likelihood

In this section, we generalize our results beyond the linear regression model to regularized

maximum likelihood. For univariate y, and vector x ∈ Rq, we let {fθ(y|x)}θ∈Rp be a family

of conditional probability densities parameterized by θ, that are absolutely continuous with
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respect to a common measure ω(dy), and suppose that the gradient ∇θfθ(y|x) exists and

is square integrable.

As in for linear regression, we assume that the data is given by n i.i.d. pairs (X1, Y1),

· · · , (Xn, Yn), where conditional on Xi, the response variable Yi is distributed as

Yi ∼ fθ0( · |Xi) .

for some parameter vector θ0 ∈ Rp. We consider the following regularized estimator:

θ̂ ≡ arg min
θ∈Rp

{
`(θ) + λR(θ)

}
, (2.6.1)

with `(θ) =
∑n

i=1 `i(θ)/n, and `i(θ) = − log fθ(Yi|Xi) the normalized negative log-likelihood.

We next generalize the definition of Σ̂. Let Ii(θ) be the Fisher information of fθ(Y |Xi),

defined as

Ii(θ) ≡ E
[(
∇θ log fθ(Y |Xi)

)(
∇θ log fθ(Y |Xi)

)T∣∣∣Xi

]
= −E

[(
∇2
θ log f(Y |Xi, θ)

)∣∣∣Xi

]
,

where expectation is taken with respect to the law fθ0(·|Xi), and ∇2
θ denotes the Hessian

operator. The second identity here holds under suitable regularity conditions [88].

We assume E[Ii(θ)] � 0, with expectation taken with respect to the law of {Xi}ni=1, and

define Σ̂ ∈ Rp×p as follows:

Σ̂ ≡ 1

n

n∑
i=1

Ii(θ̂) . (2.6.2)

Note that (in general) Σ̂ depends on θ̂. Finally, the debiased estimator θ̂u is defined by

θ̂u ≡ θ̂ −M∗∇θ`(θ̂) , (2.6.3)

with M∗ given again by the solution of the convex program (2.3.11), with the definition of Σ̂

provided here. Notice that this construction is analogous to the one in [134] (although the

present setting is somewhat more general) with the crucial difference of the construction of

M∗.

A formal justification can be given in complete analogy with the linear case. Here we

only provide a simple heuristic.
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By Taylor expansion of `(θ̂) around θ0 we get θ̂u ≈ θ̂−M∗∇θ`(θ0)−M∗∇2
θ`(θ0)(θ̂− θ0).

Approximating ∇2
θ`(θ0) ≈ Σ̂ (which amounts to taking expectation with respect to the

response variables Yi), we get θ̂u− θ0 ≈ −M∗∇θ`(θ0)− (M∗Σ̂− I)(θ̂− θ̂0). Conditionally on

{Xi}1≤i≤n, the first term has zero expectation and covariance M∗Σ̂M
T
∗ . Further, by central

limit theorem, its low-dimensional marginals are approximately Gaussian. The bias term

−(M∗Σ̂ − I)(θ̂ − θ̂0) can be bounded as in the linear regression case, building on the fact

that M∗ is chosen as to minimize |M Σ̂− I|∞.

Example (`1-regularized logistic regression). Under this model, the binary response

Yi ∈ {0, 1} is distributed as Yi ∼ fθ0( · |Xi) where

fθ0(1|x) =
1

1 + e−〈x,θ0〉
,

fθ0(0|x) =
1

1 + e〈x,θ0〉
.

It is easy to see that in this case Ii(θ̂) = q̂i(1 − q̂i)XiX
T
i , with q̂i = (1 + e−〈θ̂,Xi〉)−1, and

thus

Σ̂ =
1

n

n∑
i=1

q̂i(1− q̂i)XiX
T
i .



Chapter 3

Hypothesis Testing in

High-Dimensional Regression

An important advantage of sparse linear regression models is that they provide parsimonious

explanations of the data in terms of a small number of covariates. The easiest way to select

the ‘active’ covariates is to choose the indexes i for which θ̂ni 6= 0. This approach however

does not provide a measure of statistical significance for the finding that the coefficient is

non-zero.

In this chapter, we focus on hypothesis testing in high-dimensional regression models.

More specifically, considering the linear regression model (1.1.6), we are interested in testing

null hypothesis of the form:

H0,i : θ0,i = 0 , (3.0.1)

versus the alternative HA,i : θ0,i 6= 0, for i ∈ [p] ≡ {1, 2, · · · , p}, and constructing p-values

for these tests. A testing procedure faces two types of error: type I error and type II error.

• Type I error : It is the incorrect rejection of a true null hypothesis.

• Type II error : It is the failure to reject a false null hypothesis.

The quality of a test is measured in terms of the probabilities of type I and type II errors,

respectively denoted by α and β. The quantity α is also referred to as significance level

(false positive rate) of the test, and 1− β as its statistical power (true positive rate).

47
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It is important to consider the tradeoff between statistical significance and power. Indeed

any significance level α can be achieved by randomly rejecting H0,i with probability α. This

test achieves power 1−β = α. Further note that, without further assumption, no nontrivial

power can be achieved. In fact, choosing θ0,i 6= 0 arbitrarily close to zero, H0,i becomes

indistinguishable from its alternative. We will therefore assume that, whenever θ0,i 6= 0, we

have |θ0,i| > γ as well. The smallest value of µ such that the power and significance reach

some fixed non-trivial value (e.g., α = 0.05 and 1− β ≥ 0.9) has a particularly compelling

interpretation, and provides an answer to the following question:

What is the minimum magnitude of θ0,i to be able to distinguish it from the

noise level, with a given degree of confidence?

Some intuition can be gained by considering special cases. For the case of orthogonal designs

we have n = p and XTX = nIn×n. By an orthogonal transformation, we can restrict

ourselves to X =
√
n In×n, i.e., yi =

√
n θ0,i + wi. Hence testing hypothesis H0,i reduces

to testing for the mean of a univariate Gaussian. It is easy to see that we can distinguish

the i-th entry from noise only if its size is at least of order σ/
√
n. More precisely, for

any α ∈ (0, 1), β ∈ (0, α), we can achieve significance α and power 1 − β if and only if

|θ0,i| ≥ c(α, β)σ/
√
n for some constant c(α, β) [89, Section 3.9].

In this chapter, we propose a procedure for testing H0,i versus its alternative HA,i. we

further prove that this test achieves a ‘nearly optimal’ power-significance trade-off in the

case of Gaussian random designs with i.i.d. rows. Here, ‘optimality’ is in the minimax sense.

More specifically, we first prove a general upper bound on the minimax power of tests with

a given significance level α, over the family of s0-sparse parameter vectors. We next show

that our procedure exhibits the same trade-off, provided that the sample size is increased

by a factor ηΣ,s0 , or equivalently if the the noise level σ is decreased by a factor
√
ηΣ,s0 .

Here, Σ denotes the population level covariance of the Gaussian design, i.e. Σ = E(X1X
T
1 ),

and ηΣ,s0 is always upper bounded by the condition number of Σ. In particular, ηI,s0 = 1.

Motivated by the distributional characterization of the debiased estimator θ̂u, provided

in Theorem 2.3.5, we construct a p-value Pi for the test H0,i as follows:

Pi = 2

(
1− Φ

( √
n |θ̂ui |

σ̂[M Σ̂MT]
1/2
i,i

))
. (3.0.2)
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The decision rule is then based on the p-value Pi:

T̂i,X(Y ) =

1 if Pi ≤ α (reject H0,i) ,

0 otherwise (accept H0,i) ,
(3.0.3)

where α is the fixed target type I error probability.

3.1 Minimax formulation

We consider the minimax criterion to measure the quality of a testing procedure. In order

to define it formally, we first need to establish some notations.

A testing procedure for the family of hypotheses H0,i, cf. Eq. (3.0.1), is given by a

family of measurable functions {Ti,X}i∈[p], with Ti,X : Rn → {0, 1}. Here Ti,X(Y ) = 1 has

the interpretation that hypothesis H0,i is rejected when the observation is Y ∈ Rn and the

design matrix is X. We will hereafter drop the subscript X whenever clear from the context.

As mentioned above, we will measure the quality of a test Ti in terms of its significance

level α and power 1− β. Adopting a minimax point of view, we require that these metrics

are achieved uniformly over s0-sparse vectors. Formally, for γ > 0, we let

αn(Ti) ≡ sup
{
Pθ0(Ti,X(Y ) = 1) : θ0 ∈ Rp, ‖θ0‖0 ≤ s0(n), θ0,i = 0

}
. (3.1.1)

βn(Ti; γ) ≡ sup
{
Pθ0(Ti,X(Y ) = 0) : θ0 ∈ Rp, ‖θ0‖0 ≤ s0(n), |θ0,i| ≥ γ

}
. (3.1.2)

In words, for any s0-sparse vector with θi = 0, the probability of false alarm is upper

bounded by αn(Ti). On the other hand, if θ is s0-sparse with |θi| ≥ γ, the probability of

misdetection is upper bounded by βn(Ti;µ). Note that Pθ(·) is the induced probability dis-

tribution on (Y,X) for random design X and noise realization w, given the fixed parameter

vector θ. Throughout we will accept randomized testing procedures as well.1

Our next theorem establishes bounds on αn(T̂i) and βn(T̂i; γ) for our decision rule (3.0.3).

Theorem 3.1.1. Consider a sequence of design matrices X ∈ Rn×p, with dimensions

n→∞, p = p(n)→∞ satisfying the assumptions of Lemma 2.4.2.

Consider the linear model (1.1.6) and let θ̂u be defined as per Eq. (2.3.12) in Algorithm 1,

with µ = a
√

(log p)/n and λ = σ
√

(c2 log p)/n, with a, c large enough constants. Finally,

1Formally, this corresponds to assuming Ti(Y ) = Ti(Y ;U) with U uniform in [0, 1] and independent of
the other random variables.
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let σ̂ = σ̂(y,X) a consistent estimator of the noise level in the sense of Eq. (2.4.1), and T̂

be the test defined in Eq. (3.0.3).

Then the following holds true for any fixed sequence of integers i = i(n):

lim
n→∞

αn(T̂i) ≤ α . (3.1.3)

lim inf
n→∞

1− βn(T̂i; γ)

1− β∗i,n(γ)
≥ 1 , 1− β∗i,n(γ) ≡ G

(
α,

√
nγ

σ[Σ−1
i,i ]1/2

)
, (3.1.4)

where, for α ∈ [0, 1] and u ∈ R+, the function G(α, u) is defined as follows:

G(α, u) = 2− Φ(Φ−1(1− α/2) + u)− Φ(Φ−1(1− α/2)− u) .

Theorem 3.1.1 is proved in Section 6.2.1. It is easy to see that, for any α > 0, u 7→
G(α, u) is continuous and monotone increasing. Moreover, G(α, 0) = α which is the trivial

power obtained by randomly rejecting H0,i with probability α. As γ deviates from zero,

we obtain nontrivial power. Notice that in order to achieve a specific power β > α, our

scheme requires γ ≥ cβ(σ/
√
n), for some constant cβ that depends on β. This is because

Σ−1
i,i ≤ σmax(Σ−1) ≤ (σmin(Σ))−1 = O(1).

3.2 Familywise error rate

A common scenario in much of empirical research is to test multiple hypotheses simulta-

neous. Accounting for the multiplicity of individual tests can be achieved by controlling

an appropriate error rate. The traditional or classical familywise error rate(FWER) is the

probability of one or more false discoveries. Formally considering the family of hypotheses

{H0,i : θ0,i = 0}i∈[p], we want to propose Ti,X : Rn → {0, 1}, for each i ∈ [p], X ∈ Rn×p

such that

FWER(T, n) ≡ sup
θ0∈Rp,‖θ0‖0≤s0

P
{
∃i ∈ [p] : θ0,i = 0 , Ti,X(Y ) = 1

}
, (3.2.1)

Here T = {Ti,X}i∈[p] represents the family of tests.
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In order to achieve familywise error control, we adopt a standard trick based on Bon-

ferroni inequality. Given p-values defined as per Eq. (3.0.2), we let

T̂F
i,X(Y ) =

1 if Pi ≤ α/p (reject H0,i) ,

0 otherwise (accept H0,i) .
(3.2.2)

Then we have the following error control guarantee.

Theorem 3.2.1. Consider a sequence of design matrices X ∈ Rn×p, with dimensions

n→∞, p = p(n)→∞ satisfying the assumptions of Lemma 2.4.2.

Consider the linear model (1.1.6) and let θ̂u be defined as per Eq. (2.3.12) in Algorithm

1, with µ = a
√

(log p)/n and λ = σ
√

(c2 log p)/n, with a, c large enough constants. Finally,

let σ̂ = σ̂(y,X) be a consistent estimator of the noise level in the sense of Eq. (2.4.1), and

T̂ be the test defined in Eq. (3.2.2). Then:

lim sup
n→∞

FWER(T̂F, n) ≤ α . (3.2.3)

The proof of this theorem is similar to the one of Lemma 2.4.2 and Theorem 3.1.1, and

is deferred to Section 6.2.2.

3.3 Minimax optimality of a test

We show near optimality of testing procedure (3.0.3) for the case of random designs with

i.i.d. Gaussian rows. To this end, we first develop an upper bound for the minimax power

of tests with a given significance level α, under Gaussian random design model. Near

optimality of test (3.0.3) is then proved by comparing its statistical power, as derived in

Theorem 3.1.1 with the developed upper bound.

Definition 3.3.1. The minimax power for testing hypothesis H0,i against the alternative

|θi| ≥ γ is given by the function 1− βopt
i,n ( · ; γ) : [0, 1]→ [0, 1] where, for α ∈ [0, 1]

1− βopt
i,n (α; γ) ≡ sup

Ti

{
1− βn(Ti; γ) : αn(Ti) ≤ α

}
, (3.3.1)

where αn(Ti) and βn(Ti; γ) are respectively given by (3.1.1) and (3.1.2).
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Note that for standard Gaussian designs (and more generally for designs with exchange-

able columns), αn(Ti), βn(Ti; γ) do not depend on the index i ∈ [p].

The following are straightforward yet useful properties.

Remark 3.3.2. The optimal power α 7→ 1−βopt
i,n (α; γ) is non-decreasing. Further, by using

a test such that Ti,X(Y ) = 1 with probability α independently of Y , X, we conclude that

1− βopt
i,n (α; γ) ≥ α.

Proof. To prove the first property, notice that, for any α ≤ α′ we have 1 − βopt
i,n (α; γ) ≤

1−βopt
i,n (α′; γ). Indeed 1−βopt

i,n (α′; γ) is obtained by taking the supremum in Eq. (3.3.1) over

a family of tests that includes those over which the supremum is taken for 1− βopt
i,n (α; γ).

Next, a completely randomized test outputs Ti,X(Y ) = 1 with probability α indepen-

dently of X, Y . We then have Pθ
(
Ti,X(Y ) = 0

)
= 1−α for any θ, whence βn(Ti; γ) = 1−α.

Since this test offers –by definition– the prescribed control on type I errors, we have, by

Eq. (3.3.1), 1− βopt
i,n (α; γ) ≥ 1− βn(Ti; γ) = α.

3.3.1 Upper bound on the minimax power

Our upper bound on the minimax power is stated in terms of the function G : [0, 1]×R+ →
[0, 1], (α, u) 7→ G(α, u), defined as follows.

G(α, u) ≡ 2− Φ
(

Φ−1(1− α

2
) + u

)
− Φ

(
Φ−1(1− α

2
)− u

)
. (3.3.2)

It is easy to check that, for any α > 0, u 7→ G(α, u) is continuous and monotone increasing.

For u fixed α 7→ G(α, u) is continuous and monotone increasing. Finally G(α, 0) = α and

limu→∞G(α, u) = 1.

We then have the following upper bound on the optimal power of random Gaussian

designs. We provide a proof outline in Section 3.3.1.1, and refer to Section 6.2.5 for the

complete proof.

Theorem 3.3.3. For i ∈ [p], let 1−βopt
i,n (α; γ) be the minimax power of a Gaussian random

design X with covariance matrix Σ ∈ Rp×p, as per Definition 3.3.1. For S ⊆ [p]\{i}, define
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Σi|S ≡ Σii − Σi,SΣ−1
S,SΣS,i ∈ R. Then, for any ` ∈ R and |S| < s0,

1− βopt
i,n (α; γ) ≤ G

(
α,

γ

σeff(`)

)
+ Fn−s0+1(n− s0 + `) ,

σeff(`) ≡ σ√
Σi|S(n− s0 + `)

,
(3.3.3)

where Fk(x) = P(Zk ≥ x), and Zk is a chi-squared random variable with k degrees of

freedom.

In other words, the statistical power is upper bounded by the one of testing the mean

of a scalar Gaussian random variable, with effective noise variance σ2
eff ≈ σ2/[Σi|S(n− s0)].

(Note indeed that by concentration of a chi-squared random variable around their mean, `

can be taken small as compared to n− s0.)

The next corollary specializes the above result to the case of standard Gaussian designs.

(The proof is immediate and hence we omit it.)

Corollary 3.3.4. For i ∈ [p], let 1− βopt
i,n (α; γ) be the minimax power of a standard Gaus-

sian design X with covariance matrix Σ = Ip×p, cf. Definition 3.3.1. Then, for any

ξ ∈ [0, (3/2)
√
n− s0 + 1] we have

1− βopt
i,n (α; γ) ≤ G

(
α,
γ(
√
n− s0 + 1 + ξ)

σ

)
+ e−ξ

2/8 . (3.3.4)

It is instructive to look at the last result from a slightly different point of view. Given

α ∈ (0, 1) and 1− β ∈ (α, 1), how big does the entry γ need to be so that 1− βopt
i,n (α; γ) ≥

1 − β? It follows from Corollary 3.3.4 that to achieve a pair (α, β) as above we require

γ ≥ γUB = cσ/
√
n for some c = c(α, β).

As further clarified in the next section and in Section 6.2.3, Theorem 3.3.3 by an oracle-

based argument. Namely, we upper bound the power of any hypothesis testing method, by

the power of an oracle that knows, for each coordinates j ∈ [p] \ i, whether θ0,j ∈ supp(θ0)

or not. In other words the procedure has access to supp(θ0)\{i}. At first sight, this oracle

appears exceedingly powerful, and hence the bound might be loose. Surprisingly, the bound

turns out to be tight, at least in an asymptotic sense, as demonstrated in Section 4.1.
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3.3.1.1 Proof outline

The proof of Theorem 3.3.3 is based on a simple reduction to the binary hypothesis testing

problem. We first introduce the binary testing problem, in which the vector of coefficients

θ is chosen randomly according to one of two distributions.

Definition 3.3.5. Let Q0 be a probability distribution on Rp supported on R0 ≡ {θ ∈ Rp :

‖θ‖0 ≤ s0, θi = 0}, and Q1 a probability distribution supported on R1 ≡ {θ ∈ Rp : ‖θ‖0 ≤
s0, |θi| ≥ γ}. For fixed design matrix X ∈ Rn×p, and z ∈ {0, 1}, let PQ,z,X denote the law

of y as per model (1.3.2) when θ0 is chosen randomly with θ0 ∼ Qz.
We denote by 1−βbin

i,X( · ;Q) the optimal power for the binary hypothesis testing problem

θ0 ∼ Q0 versus θ0 ∼ Q1, namely:

βbin
i,X(αX;Q) ≡ inf

T

{
PQ,1,X(Ti,X(Y ) = 0) : PQ,0,X(Ti,X(Y ) = 1) ≤ αX

}
. (3.3.5)

The reduction is stated in the next lemma.

Lemma 3.3.6. Let Q0, Q1 be any two probability measures supported, respectively, on R0

and R1 as per Definition 3.3.5. Then, the minimax power for testing hypothesis H0,i under

the random design model, cf. Definition 3.3.1, is bounded as

βopt
i,n (α; γ) ≥ inf

{
Eβbin

i,X(αX;Q) : E(αX) ≤ α
}
. (3.3.6)

Here expectation is taken with respect to the law of X and the inf is over all measurable

functions X 7→ αX.

For the proof we refer to Section 6.2.3.

The binary hypothesis testing problem is characterized in the next lemma by reducing

it to a simple regression problem. Let x̃i = Xei denote the i-th column of design X. For

S ⊆ [p], we denote by PS the orthogonal projector on the linear space spanned by the

columns {x̃i}i∈S . We also let P⊥S = In×n−PS be the projector on the orthogonal subspace.

Lemma 3.3.7. Let X ∈ Rn×p and i ∈ [p]. For S ⊂ [p] \ {i}, α ∈ [0, 1], define

1− βoracle
i,X (α;S, γ) = G

(
α,
γ‖P⊥S x̃i‖2

σ

)
. (3.3.7)
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If |S| < s0 then for any ξ > 0 there exists distributions Q0, Q1 as per Definition 3.3.5,

depending on i, S, γ but not on X, such that βbin
i,X(α;Q) ≥ βoracle

i,X (α;S, γ)− ξ.

The proof of this Lemma is presented in Section 6.2.4.

The proof of Theorem 3.3.3 follows from Lemmas 3.3.6 and 3.3.7, cf. Section 6.2.5.

3.3.2 Near optimality of T̂i,X(Y )

Comparing the established upper bound in Theorem 3.3.3 with the result of Theorem 3.1.1,

we get the following corollary.

Corollary 3.3.8. Consider a Gaussian random design model that satisfies the conditions

of Theorem 3.1.1, and for i ∈ [p], let T̂i be the testing procedure defined in Eq. (3.0.3), with

θ̂u as in Algorithm 1. Further, let

ηΣ,s0 ≡ min
i∈[p];S

{
Σi|S Σ−1

ii : S ⊆ [p]\{i}, |S| < s0

}
. (3.3.8)

Under the sparsity assumption s0 = o(
√
n/ log p), the following holds true. If {Ti} is

any sequence of tests with lim supn→∞ αn(Ti) ≤ α, then for any fixed sequence of integers

i = i(n), we have

lim inf
n→∞

1− βn(T̂i; γ)

1− βn/ηΣ,s0
(Ti; γ)

≥ 1 , (3.3.9)

where βn(T ; γ) for a test T is defined by (3.1.2).

In other words, the asymptotic efficiency of the sequence tests {T̂i}i∈[p] is at least 1/ηΣ,s0.

Hence, our testing procedure has nearly optimal power in the following sense. It has

power at least as large as the power of any other testing procedure, provided the latter is

applied to a sample size decreased by a factor ηΣ,s0 .

Further, under the assumptions of Theorem 2.3.5, the factor ηΣ,s0 is a bounded constant.

Indeed

ηΣ,s0 ≤ Σ−1
i,i Σi,i ≤

σmax(Σ)

σmin(Σ)
≤ Cmax

Cmin
, (3.3.10)

since Σ−1
ii ≤ (σmin(Σ))−1, and Σi|S ≤ Σi,i ≤ σmax(Σ) due to ΣS,S � 0.
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Note that n, γ and σ appears in our upper bound (3.3.3) in the combination γ
√
n/σ,

which is the natural measure of the signal-to-noise ratio (where, for simplicity, we neglected

s0 = o(
√
n/ log p) with respect to n). Hence, the above result can be restated as follows. The

testing procedure (3.0.3) has power at least as large as the power of any other procedure,

provided the latter is applied at a noise level augmented by a factor
√
ηΣ,s0 .

3.4 Other proposals

The method of Van de Geer, Bühlmann, Ritov and Dezeure [134], explained in Section 2.3.3

can also be used for constructing p-values and testing null hypotheses H0,i : θ0,i = 0 versus

alternative H0,A : θ0,i 6= 0. Here, we discuss tow other proposal. Numerical comparison

among the methods is given in Chapter 5.

3.4.1 Multisample splitting

As we discussed in Sectionsec:WhyHard, while the problem of uncertainty assessment is

challenging in high-dimensional models (n < p), well-established methods are proposed for

low-dimensional models (n > p) using the large sample theory. The idea behind sample

splitting method is based on a reduction from the high-dimensional domain to the low-

dimensional domain.

More specifically, in this approach the sample set is split into two equal parts. On the

first part, Lasso estimator is used to select the variables and then restricting to the chosen

variables, statistical inference is performed based on the second half of the data. Note that

the latter is a low-dimensional problems as the size of chosen variables is expected to be

much smaller than the sample size.

The procedure is explained in Algorithm 2 aiming for controlling the familywise error

rate (FWER).

One major assumption here is that the screening property holds for the first part, namely

Ŝ ⊇ S. The whole idea is implicit in [142]. In practice, however, the screening property is

not satisfied exactly. We refer to [18] for constructing valid p-values under weaker condition.

A nice property of Algorithm 2 is that the correction for multiplicity of testing involves

only the factor |Ŝ|, whereas in classical Bonferroni the p-values are multiplied by p to adjust

for multiple testing.

A major difficulty of the single sample splitting method is that it undergoes a p-value
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Algorithm 2 Single sample splitting for multiple testing of H0,i, for i ∈ [p]

Input: Measurement vector Y , design matrix X.
Output: Adjusted p-values for controlling FWER.

1: Split sample set [n] into two equal subsets I1 and I2.
2: Applying Lasso estimator on I1, select the variables Ŝ ⊆ [p]. Choosing regularization

parameter large enough, ensure that |Ŝ| ≤ |I2| = n/2.
3: Consider the sample set I2 restricted to the reduced set of variables Ŝ. Compute p-

values Pi for H0,i, i ∈ Ŝ, using classical least squares (the t-test). This is well defined

since |Ŝ| ≤ |I2|. For i /∈ Ŝ, assign Pi = 1.
4: For multiple testing, adjust the p-values as

Pcorr,i = min(Pi · |Ŝ|, 1) .

lottery phenomenon: Different splits leads to widely different corresponding p-values. To

overcome this problem, Meinshausen et al. [96] proposed the multisample splitting proce-

dure, summarized in Algorithm 3

The idea is to run the single sample splitting Algorithm 2 B times, for a large B, leading

to p-values P
(1)
corr,i, · · · , P

(B)
corr,i, for i ∈ [p]. These p-values are then aggregated to a single

p-value Pi.

Note that p-values P
(1)
corr,i, · · · , P

(B)
corr,i are dependent since all the different splits are stem

from the same full data set, and therefore the aggregation should be done carefully. The

method of [96] aggregates the p-values through empirical η-quantiles Q(η):

Qi(η) ≡ min
{

empirical η-quantile (P
(b)
corr,i/η; b = 1, · · · , B), 1

}
. (3.4.1)

3.4.2 Bias-corrected projection estimator

We begin with a general linear estimator for estimating parameters θ0,i. Namely, for each

i ∈ [p], consider a vector Zi ∈ Rn and a corresponding estimator

θ̂0,i =
〈Zi, Y 〉
〈Zi, x̃i〉

,
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Algorithm 3 Multisample splitting for multiple testing of H0,i, for i ∈ [p]

Input: Measurement vector Y , design matrix X, parameters B, 0 < ηmin<1.
Output: Adjusted p-values for controlling FWER.

1: Run the single sample splitting Algorithm 2 B times. Let {P (b)
corr,i : b = 1, · · · , B} be

the produced p-values.
2: Aggregate the p-values from the previous step, leading to a single p-value Pi, for i ∈ [p],

in the following way:

Pi = min
{

(1− log(ηmin)) inf
η∈(ηmin,1)

Qi(η), 1
}
,

where Qi(η) is given by (3.4.1).

where x̃i = Xei denotes the i-th column of X. Substituting for Y =
∑p

j=1 x̃jθ0,j +W and

using E(W ) = 0, we obtain

E(θ̂i) = θ0,i +
∑

j∈[p],j 6=i

Pijθ0,j , Pij =
〈Zi, x̃j〉
〈Zi, x̃j〉

.

Clearly, any linear estimator is biased in the high-dimensional regime (n < p), since there

is no vector Zi ∈ Rn that is orthogonal to all the (p− 1) vectors x̃j , for j ∈ [p], j 6= i.

The ideas is to correct bias of such linear estimator using the Lasso. This leads to the

following bias-corrected estimator:

θ̂corr,i = θ̂i −
∑
j 6=i

Pij θ̂Lasso,j .

Concrete suggestions are proposed for choosing vectors Zi. In [16], these vectors are cho-

sen based on Ridge regression (Ridge-type projection estimator θ̂corr−Ridge). The authors

in [149], use Zi constructed based on Lasso regression (Low-dimensional projection estimator

θ̂corr−Lasso).

It is shown that θ̂corr−Ridge and θ̂corr−Lasso are unbiased under sparsity scaling s0 =

o((n/ log p)ξ) for some ξ ∈ (0, 1/2), or equivalently under sample size n = ω((log p)s
1/ξ
0 ).

More specifically,
√
n(θ̂corr,i − θ0,i)/σ̂i → N(0, 1) ,

where σ̂2
i = σ̂2ωi with σ̂ a consistent estimate of σ (e.g., using the scaled Lasso (2.4.3)),

and ωi is given explicitly based on the design X. Confidence intervals and p-values are then
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derived based on such distributional characterization.

When specialized to the case of standard Gaussian designs Xi ∼ N(0, Ip×p), these meth-

ods require |θ0,i| ≥ c max{σs0 log p/ n, σ/
√
n} to reject hypothesis H0,i with a given degree

of confidence (with c being a constant independent of the problem dimensions). By contrast,

as discussed below Eq. (3.1.4), testing procedure (3.0.3) requires |θ0,i| ≥ cβ(σ/
√
n) to achieve

a specific power β, with cβ depending upon power β. In other words, the Ridge-based and

the low-dimensional projection estimators require the coefficient of interest to be larger by

a diverging factor O(s0 log p/
√
n) than what is required by testing procedure (3.0.3).

In Chapter 5, we also present extensive simulation results indicating that the proposed

methods of [16] and [149] are overly conservative. Namely, they achieve smaller type I error

than the prescribed level α and this comes at the cost of a smaller statistical power than

testing procedure (3.0.3).



Chapter 4

Hypothesis Testing under Optimal

Sample Size

The methods presented in previous chapters for constructing confidence intervals and hy-

pothesis testing require the sample size n that asymptotically dominates (s0 log p)2. On the

other hand, nearly optimal estimation via Lasso is possible for significantly smaller sample

size, namely for n ≥ Cs0 log p, for some constant C [25, 14]. This suggests the following

natural question

Is it possible to design a minimax optimal test for hypotheses H0,i, for optimal

sample size n = O(s0 log(p/s0))?

In this chapter we provide an affirmative answer in case of random designs with i.i.d.

Gaussian rows.

Our approach is based on a debiasing of the Lasso estimator, slightly different from the

one presented in Chapter 2. In case of standard Gaussian designs, our analysis is based

on rigorous characterization of the asymptotic distribution of the Lasso estimator and its

debiased version. In case of non-standard Gaussian designs, i.e. i.i.d. rows Xi ∼ N(0,Σ), we

derive a similar distributional characterization, termed standard distributional limit. The

analysis assumes Σ is known and is based on the powerful replica heuristics in statistical

physics.

The Gaussian design assumption arises naturally in some important applications. Con-

sider for instance the problem of learning a high-dimensional Gaussian graphical model from

data. In this case we are given i.i.d. samples Z1, Z2, · · · , Zn ∼ N(0,K−1), with K a sparse

60
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positive definite matrix whose non-zero entries encode the underlying graph structure. As

first shown by Meinshausen and Bühlmann [95], the i-th row of K can be estimated by

performing linear regression of the i-th entry of the samples Z1, Z2, · · · , Zn onto the other

entries [113]. This reduces the problem to a high-dimensional regression model under Gaus-

sian designs. Standard Gaussian designs were also shown to provide useful insights for

compressed sensing applications [37, 45, 46, 48].

4.1 Hypothesis testing for standard Gaussian designs

In Subsection 4.1.1 we describe our hypothesis testing procedure (that we refer to as

SDL-test) in the case of standard Gaussian designs. In Subsection 4.1.2, we develop

asymptotic bounds on the probability of type I and type II errors. The test is shown to

nearly achieve the ideal tradeoff between significance level α and power 1 − β, using the

upper bound stated in Section 3.3.

Our results are based on a characterization of the high-dimensional behavior of the Lasso

estimator, developed in [8]. For the reader’s convenience, and to provide further context,

we recall this result in subsection 4.1.3.

4.1.1 Hypothesis testing procedure

Our SDL-test procedure for standard Gaussian designs is described in Algorithm 4.

The key is the construction of the unbiased estimator θ̂u in step 3. The asymptotic

analysis developed in [8] and in the next section establishes that θ̂u is an asymptotically

unbiased estimator of θ0, and the empirical distribution of {θ̂ui − θ0,i}pi=1 is asymptotically

normal with variance τ2. Further, the variance τ2 can be consistently estimated using the

residual vector r ≡ d(y − Xθ̂)/
√
n. These results establish that (in a sense that will be

made precise next) the regression model (1.3.2) is asymptotically equivalent to a simpler

sequence model

θ̂u = θ0 + noise (4.1.1)

with noise having zero mean. In particular, under the null hypothesis H0,i, θ̂
u
i is asymp-

totically gaussian with mean 0 and variance τ2. This motivates rejecting the null if

|θ̂ui | ≥ τΦ−1(1 − α/2). Note that debiased estimator θ̂u (4.1.3) is defined in a very similar
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Algorithm 4 SDL-test : Testing hypothesis H0,i under standard Gaussian design.

Input: regularization parameter λ, significance level α
Output: p-values Pi, test statistics Ti,X(Y )

1: Let

θ̂(λ) = argminθ∈Rp
{ 1

2n
‖Y −Xθ‖2 + λ‖θ‖1

}
.

2: Let

d =

(
1− 1

n
‖θ̂(λ)‖0

)−1

, τ =
1

Φ−1(0.75)

d√
n
|(Y −Xθ̂(λ))|(n/2), (4.1.2)

where for v ∈ RK , |v|` is the `-th largest entry in the vector (|v1|, · · · , |vn|).
3: Let

θ̂u = θ̂(λ) +
d

n
XT(Y −Xθ̂(λ)). (4.1.3)

4: Assign the p-values Pi for the test H0,i as follows.

Pi = 2
(

1− Φ
(∣∣ θ̂ui
τ

∣∣)).
5: The decision rule is then based on the p-values:

Ti,X(Y ) =

{
1 if Pi ≤ α (reject the null hypothesis H0,i),

0 otherwise (accept the null hypothesis).

way to the debiased estimator (2.3.12), in Chapter 2, with M = d ·I. We refer to Section 4.3

for a thorough discussion on the role of this factor.

4.1.2 Asymptotic analysis

For given dimension p, an instance of the standard Gaussian design model is defined by the

tuple (θ0, n, σ), where θ0 ∈ Rp, n ∈ N, σ ∈ R+. We consider sequences of instances indexed

by the problem dimension {(θ0(p), n(p), σ(p))}p∈N.

Definition 4.1.1. The sequence of instances {(θ0(p), n(p), σ(p))}p∈N indexed by p is said

to be a converging sequence if n(p)/p → δ ∈ (0,∞), σ(p)2/n → σ2
0, and the empirical
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distribution of the entries θ0(p) converges weakly to a probability measure pΘ0 on R with

bounded second moment. Further p−1
∑

i∈[p] θ0,i(p)
2 → EpΘ0

{Θ2
0}.

Note that this definition assumes the coefficients θ0,i are of order one, while the noise

is scaled as σ(p)2 = Θ(n). Equivalently, we could have assumed θ0,i = Θ(1/
√
n) and

σ2(p) = Θ(1): the two settings only differ by a scaling of Y . We favor the first scaling as it

simplifies somewhat the notation in the following.

As before, we will measure the quality of the proposed test in terms of its significance

level (size) α and power 1 − β. Recall that α and β respectively indicate the type I error

(false positive) and type II error (false negative) rates. The following theorem establishes

that the Pi’s are indeed valid p-values, i.e., allow to control type I errors. Throughout

S0(p) = {i ∈ [p] : θ0,i(p) 6= 0} is the support of θ0(p).

Theorem 4.1.2. Let {(θ0(p), n(p), σ(p))}p∈N be a converging sequence of instances of the

standard Gaussian design model. Assume limp→∞ |S0(p)|/p = P(Θ0 6= 0). Then, for i ∈
Sc0(p), we have

lim
p→∞

Pθ0(p)(Ti,X(Y ) = 1) = α . (4.1.4)

A more general form of Theorem 4.1.2 (cf. Theorem 4.2.3) is proved in Section 6.3.2.

We indeed prove the stronger claim that the following holds true almost surely

lim
p→∞

1

|Sc0(p)|
∑

i∈Sc0(p)

Ti,X(Y ) = α . (4.1.5)

The result of Theorem 4.1.2 follows then by taking the expectation of both sides of Eq. (4.1.5)

and using bounded convergence theorem and exchangeability of the columns of X.

Our next theorem proves a lower bound for the power of the proposed test. Here, we

assume that the non-zero entries of θ0 are lower bounded in magnitude. Otherwise, it would

be impossible to distinguish arbitrarily small parameters θ0,i from θ0,i = 0. Notice that for

the testing procedure (3.0.3) to achieve the near optimal minimax power, we only required

|θ0,i| ≥ γ where θ0,i is the parameter of interest. By contrast, here we are assuming that

|θ0,i| ≥ γ for all i ∈ S0(p).

Theorem 4.1.3. There exists a (deterministic) choice of λ = λ(pΘ0 , σ, ε, δ) such that the

following happens.
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Let {(θ0(p), n(p), σ(p))}p∈N be a converging sequence of instances under the standard

Gaussian design model. Assume that |S0(p)| ≤ εp, and for all i ∈ S0(p), |θ0,i(p)| ≥ γ with

γ = γ0σ(p)/
√
n(p). for i ∈ S0(p), we have

lim
p→∞

Pθ0(p)(Ti,X(Y ) = 1) ≥ G
(
α,
γ0

τ∗

)
, (4.1.6)

where τ∗ = τ∗(σ0, ε, δ) is defined as follows

τ2
∗ =


1

1−M(ε)/δ
, if δ > M(ε),

∞, if δ ≤M(ε).

(4.1.7)

Here, M(ε) is given by the following parametric expression in terms of the parameter κ ∈
(0,∞):

ε =
2(φ(κ)− κΦ(−κ))

κ+ 2(φ(κ)− κΦ(−κ))
, M(ε) =

2φ(κ)

κ+ 2(φ(κ)− κΦ(−κ))
. (4.1.8)

In Appendix B.2, we also provide an explicit formula for the regularization parameter

λ = λ(pΘ0 , σ, ε, δ) that achieves this power. Theorem 4.1.3 is proved in Section 6.3.1. We

indeed prove the stronger claim that the following holds true almost surely:

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

Ti,X(Y ) ≥ G
(
α,
γ0

τ∗

)
. (4.1.9)

The result of Theorem 4.1.3 follows then by taking the expectation of both sides of Eq. (4.1.9)

and using exchangeability of the columns of X.

Again, it is convenient to rephrase Theorem 4.1.3 in terms of the minimum value of γ

for which we can achieve statistical power 1− β ∈ (α, 1) at significance level α. It is known

that M(ε) = 2ε log(1/ε) (1+O(ε)) [44]. Hence, for n ≥ 2 s0 log(p/s0) (1+O(s0/p)), we have

τ2
∗ = O(1). Since limu→∞G(α, u) = 1, any pre-assigned statistical power can be achieved

by taking γ ≥ C(ε, δ)σ/
√
n.

Let us finally comment on the choice of the regularization parameter λ. Theorem 4.1.2

holds irrespective of λ, as long as it is kept fixed in the asymptotic limit. In other words,

control of type I errors is fairly insensitive to the regularization parameters. On the other

hand, to achieve optimal minimax power, it is necessary to tune λ to the correct value. The

tuned value of λ = λ(pΘ0 , σ, ε, δ) for the standard Gaussian sequence model is provided in
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Appendix B.2. Further, the factor σ (and hence the need to estimate the noise level) can be

omitted if –instead of the Lasso– we use the scaled Lasso [124]. In Chapter 5, Section 5.4,

we discuss another way of choosing λ that also avoid estimating the noise level.

4.1.3 Gaussian limit

Theorems 4.1.2 and 4.1.3 are based on an asymptotic distributional characterization of the

Lasso estimator developed in [8]. We restate it here for the reader’s convenience.

Theorem 4.1.4 ([8]). Let {(θ0(p), n(p), σ(p))}p∈N be a converging sequence of instances of

the standard Gaussian design model. Denote by θ̂ = θ̂(Y,X, λ) the Lasso estimator given

as per Eq. (1.1.7) and define θ̂u ∈ Rp, r ∈ Rn by letting

θ̂u ≡ θ̂ +
d

n
XT(Y −Xθ̂) , r ≡ d√

n
(Y −Xθ̂) , (4.1.10)

with d = (1− ‖θ̂‖0/n)−1.

Then, with probability one, the empirical distribution of {(θ0,i, θ̂
u
i )}pi=1 converges weakly

to the probability distribution of (Θ0,Θ0 + τ0Z), for some τ0 ∈ R, where Z ∼ N(0, 1), and

Θ0 ∼ pΘ0 is independent of Z. Furthermore, with probability one, the empirical distribution

of {ri}pi=1 converges weakly to N(0, τ2
0 ).

Finally τ0 ∈ R is defined by the unique solution of Eqs. (B.1.4) and (B.1.5) in Appendix

B.1.

In particular, this result implies that the empirical distribution of {θ̂ui − θ0,i}pi=1 is

asymptotically normal with variance τ2
0 . This naturally motivates the use of |θ̂ui |/τ0 as a

test statistics for hypothesis H0,i : θ0,i = 0.

The definitions of d and τ in step 2 are also motivated by Theorem 4.1.4. In particular,

d(Y − Xθ̂)/
√
n is asymptotically normal with variance τ2

0 . This is used in step 2, where

τ is just the robust median absolute deviation (MAD) estimator (we choose this estimator

since it is more resilient to outliers than the sample variance [66]).

4.2 Hypothesis testing for nonstandard Gaussian designs

In this section, we generalize our testing procedure to nonstandard Gaussian design models

where the rows of the design matrix X are drawn independently from distribution N(0,Σ).
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We first describe the generalized SDL-test procedure in subsection 4.2.1 under the

assumption that Σ is known. In subsection 4.2.2, we show that this generalization can be

justified from a certain generalization of the Gaussian limit theorem 4.1.4 to nonstandard

Gaussian designs. Establishing such a generalization of Theorem 4.1.4 appears extremely

challenging. We nevertheless show that such a limit theorem follows from the replica method

of statistical physics in section 4.2.3.

Finally, in Section 4.2.4 we propose Algorithm 6, a procedure for estimating the covari-

ance Σ.

4.2.1 Hypothesis testing procedure

The hypothesis testing procedure SDL-test for general Gaussian designs is defined in Al-

gorithm 5. The basic intuition of this generalization is that (θ̂ui − θ̂0,i)/(τ [(Σ−1)ii]
1/2) is

expected to be asymptotically N(0, 1), whence the definition of (two-sided) p-values Pi fol-

lows as in step 4. Parameters d and τ in step 2 are defined in the same manner to the

standard Gaussian designs.

4.2.2 Asymptotic analysis

For given dimension p, an instance of the nonstandard Gaussian design model is defined by

the tuple (Σ, θ0, n, σ), where Σ ∈ Rp×p, Σ � 0, θ0 ∈ Rp, n ∈ N, σ ∈ R+. We are interested

in the asymptotic properties of sequences of instances indexed by the problem dimension

{(Σ(p), θ0(p), n(p), σ(p))}p∈N. Motivated by Proposition 4.1.4, we define a property of a

sequence of instances that we refer to as standard distributional limit.

Definition 4.2.1. A sequence of instances {(Σ(p), θ0(p), n(p), σ(p))}p∈N indexed by p is

said to have an (almost sure) standard distributional limit if there exist τ, d ∈ R (with d

potentially random, and both τ , d potentially depending on p), such that the following holds.

Denote by θ̂ = θ̂(y,X, λ) the Lasso estimator given as per Eq. (1.1.7) and define θ̂u ∈ Rp,
r ∈ Rn by letting

θ̂u ≡ θ̂ +
d

n
Σ−1XT(Y −Xθ̂) , r ≡ d√

n
(Y −Xθ̂). (4.2.3)

Let vi = (θ0,i, (θ̂
u
i − θ0,i)/τ, (Σ

−1)ii), for 1 ≤ i ≤ p, and ν(p) be the empirical distribution of
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Algorithm 5 SDL-test: Testing hypothesis H0,i under nonstandard Gaussian design.

Input: regularization parameter λ, significance level α, covariance matrix Σ
Output: p-values Pi, test statistics Ti,X(Y )

1: Let

θ̂(λ) = argminθ∈Rp
{ 1

2n
‖Y −Xθ‖2 + λ‖θ‖1

}
.

2: Let

d =

(
1− 1

n
‖θ̂(λ)‖0

)−1

, τ =
1

Φ−1(0.75)

d√
n
|(Y −Xθ̂(λ))|(n/2), (4.2.1)

where for v ∈ RK , |v|` is the `-th largest entry in the vector (|v1|, · · · , |vn|).
3: Let

θ̂u = θ̂(λ) +
d

n
Σ−1XT(Y −Xθ̂(λ)). (4.2.2)

4: Assign the p-values Pi for the test H0,i as follows.

Pi = 2

(
1− Φ

(∣∣∣ θ̂ui
τ [(Σ−1)ii]1/2

∣∣∣)).
5: The decision rule is then based on the p-values:

Ti,X(Y ) =

{
1 if Pi ≤ α (reject the null hypothesis H0,i),

0 otherwise (accept the null hypothesis).

{vi}pi=1 defined as

ν(p) =
1

p

p∑
i=1

δvi , (4.2.4)

where δvi denotes the Dirac delta function centered at vi. Then, with probability one, the

empirical distribution ν(p) converges weakly to a probability measure ν on R3 as p → ∞.

Here, ν is the probability distribution of (Θ0,Υ
1/2Z,Υ), where Z ∼ N(0, 1), and Θ0 and Υ

are random variables independent of Z. Furthermore, with probability one, the empirical

distribution of {ri/τ}ni=1 converges weakly to N(0, 1).
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Remark 4.2.2. This definition is non-empty by Theorem 4.1.4. Indeed, if {(θ0(p), n(p), σ(p))}p∈N
is converging as per Definition 4.1.1, and a > 0 is a constant, then Theorem 4.1.4 states

that {(Σ(p) = a Ip×p, θ0(p), n(p), σ(p))}p∈N has a standard distributional limit.

Proving the standard distributional limit for general sequences {(Σ(p), θ0(p), n(p), σ(p))}p∈N
is an outstanding mathematical challenge. In Section 4.2.3 we discuss non-rigorous evidence

towards its validity using replica method in statistical physics. The numerical simulations

in Chapter 5 further support the usefulness of this notion.

We will next show that the SDL-test procedure is appropriate for any random design

model for which the standard distributional limit holds. Our first theorem is a generalization

of Theorem 4.1.2 to this setting.

Theorem 4.2.3. Let {(Σ(p), θ0(p), n(p), σ(p))}p∈N be a sequence of instances for which a

standard distributional limit holds. Further assume limp→∞ |S0(p)|/p = P(Θ0 6= 0). Then,

lim
p→∞

1

|Sc0(p)|
∑

i∈Sc0(p)

Pθ0(p)(Ti,X(Y ) = 1) = α . (4.2.5)

The proof of Theorem 4.2.3 is deferred to Section 6.3.2. In the proof, we show the

stronger result that the following holds true almost surely

lim
p→∞

1

|Sc0(p)|
∑

i∈Sc0(p)

Ti,X(Y ) = α . (4.2.6)

The result of Theorem 4.2.3 follows then by taking the expectation of both sides of Eq. (4.2.6)

and using bounded convergence theorem.

The following theorem characterizes the power of SDL-test for general Σ, and under

the assumption that a standard distributional limit holds.

Theorem 4.2.4. Let {(Σ(p), θ0(p), n(p), σ(p))}p∈N be a sequence of instances with stan-

dard distributional limit. Assume (without loss of generality) σ(p) =
√
n(p), and further

|θ0,i(p)|/[(Σ−1)ii]
1/2 ≥ γ0 for all i ∈ S0(p), and limo→∞ |S0(p)|/p = P(Θ0 6= 0) ∈ (0, 1).

Then,

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

Pθ0(p)(Ti,X(Y ) = 1) ≥ G
(
α,
γ0

τ

)
. (4.2.7)
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Theorem 4.2.4 is proved in Section 6.3.3. We indeed prove the stronger result that the

following holds true almost surely

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

Ti,X(Y ) ≥ G
(
α,
γ0

τ

)
. (4.2.8)

Note that in Theorem 4.1.3, τ∗ admits an explicit formula that, for a suitable choice

of λ, leads to an analytical lower bound for the power. By contrast, in Theorem 4.2.4, τ

depends upon λ implicitly and can be estimated from the data as in step 3 of SDL-test

procedure. The result of Theorem 4.2.4 holds for any value of λ.

4.2.3 Gaussian limit via the replica heuristics

As mentioned above, the standard distributional limit follows from Theorem 4.1.4 for Σ =

Ip×p. Even in this simple case, the proof is rather challenging [8]. Partial generalization to

non-gaussian designs and other convex problems appeared recently in [6] and [106], each

requiring over 50 pages of proofs.

On the other hand, these and similar asymptotic results can be derived heuristically

using the ‘replica method’ from statistical physics. In Appendix B.3, we use this approach

to derive the following claim1.

Replica Method Claim 4.2.5. Assume the sequence of instances {(Σ(p), θ0(p), n(p), σ(p))}p∈N
is such that, as p→∞: (i) n(p)/p→ δ > 0; (ii) σ(p)2/n(p)→ σ2

0 > 0; (iii) The sequence

of functions

E(p)(a, b) ≡ 1

p
E min
θ∈Rp

{ b
2
‖θ − θ0 −

√
aΣ−1/2z‖2Σ + λ‖θ‖1

}
, (4.2.9)

with ‖v‖2Σ ≡ 〈v,Σv〉 and z ∼ N(0, Ip×p) admits a differentiable limit E(a, b) on R+ × R+,

with ∇E(p)(a, b)→ ∇E(a, b). Then the sequence has a standard distributional limit. Further

let

ηb(Y ) ≡ arg min
θ∈Rp

{ b
2
‖θ − Y ‖2Σ + λ‖θ‖1

}
, (4.2.10)

E1(a, b) ≡ lim
p→∞

1

p
E
{∥∥ηb(θ0 +

√
aΣ−1/2z)− θ0

∥∥2

Σ

}
, (4.2.11)

1In Appendix B.3 we derive indeed a more general result, where the `1 regularization is replaced by an
arbitrary separable penalty.
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where the the limit exists by the above assumptions on the convergence of E(p)(a, b). Then,

the parameters τ and d of the standard distributional limit are obtained by setting d =

(1− θ̂/n)−1 and solving the following with respect to τ2:

τ2 = σ2
0 +

1

δ
E1(τ2, 1/d) . (4.2.12)

In other words, the replica method indicates that the standard distributional limit holds

for a large class of non-diagonal covariance structures Σ. It is worth stressing that conver-

gence assumption for the sequence E(p)(a, b) is quite mild, and is satisfied by a large family

of covariance matrices. For instance, it can be proved that it holds for block-diagonal ma-

trices Σ as long as the blocks have bounded length and the blocks empirical distribution

converges.

The replica method is a non-rigorous but highly sophisticated calculation procedure

that has proved successful in a number of very difficult problems in probability theory

and probabilistic combinatorics. Attempts to make the replica method rigorous have been

pursued over the last 30 years by some world-leading mathematicians [126, 107, 60, 2].

This effort achieved spectacular successes, but so far does not provide tools to prove the

above replica claim. In particular, the rigorous work mainly focuses on ‘i.i.d. randomness’,

corresponding to the case covered by Theorem 4.1.4.

Over the last ten years, the replica method has been used to derive a number of fascinat-

ing results in information theory and communications theory, see e.g. [127, 63, 128, 21, 145].

More recently, several groups used it successfully in the analysis of high-dimensional sparse

regression under standard Gaussian designs [109, 77, 61, 145, 125, 131, 76]. The rigorous

analysis of ours and other groups [100, 8, 6, 106] subsequently confirmed these heuristic

calculations in several cases.

There is a fundamental reason that makes establishing the standard distributional limit

a challenging task. This requires in fact to characterize the distribution of the estima-

tor (1.1.7) in a regime where the standard deviation of θ̂i is of the same order as its mean.

Further, θ̂i does not converge to the true value θ0,i, hence making perturbative arguments

ineffective.
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4.2.4 Covariance estimation

So far we assumed that the design covariance Σ is known. This setting is relevant for semi-

supervised learning applications, where the data analyst has access to a large number N � p

of ‘unlabeled examples’. These are i.i.d. feature vectors U1, U2,. . .UN with U1 ∼ N(0,Σ)

distributed as X1, for which the response variable Yi is not available. In this case Σ can be

estimated accurately by N−1
∑n

i=1 uiu
T
i . We refer to [29] for further background on such

applications.

In other applications, Σ is unknown and no additional data is available. In this case we

proceed as follows:

1. We estimate Σ from the design matrix X (equivalently, from the feature vectors X1,

X2, · · · , Xn). We let Σ̂ denote the resulting estimate.

2. We use Σ̂ instead of Σ in step 3 of our hypothesis testing procedure.

The problem of estimating covariance matrices in high-dimensional setting has attracted

considerable attention in the past. Several estimation methods provide a consistent estimate

Σ̂, under suitable structural assumptions on Σ. For instance if Σ−1 is sparse, one can

apply the graphical model method of [95], the regression approach of [113], or CLIME

estimator [20], to name a few.

Since the covariance estimation problem is not the focus here, we will test the above

approach using a very simple covariance estimation method. Namely, we assume that Σ is

sparse and estimate it by thresholding the empirical covariance. A detailed description of

this estimator is given in Algorithm 6. We refer to [13] for a theoretical analysis of this

type of methods. Note that the Lasso is unlikely to perform well if the columns of X are

highly correlated and hence the assumption of sparse Σ is very natural. On the other hand,

we would like to emphasize that this covariance thresholding estimation is only one among

many possible approaches.

In our numerical experiments in Chapter 5, we use the estimated covariance returned

by Algorithm 6. As shown there, computed p-values appear to be fairly robust with respect

to errors in the estimation of Σ. It would be interesting to develop a rigorous analysis of

SDL-test that accounts for the covariance estimation error.
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Algorithm 6 Subroutine for estimating covariance Σ

Input: Design matrix X
Output: Estimate Σ̂

1: Let C = (1/n)XTX ∈ Rp×p.
2: Let σ1 be the empirical variance of the entries in S and let A = {Cij : |Cij | ≤ 3σ1}.
3: Let σ2 be the variance of entries in A.
4: Construct Ĉ as follows:

Ĉij = Cij I(|Cij | ≥ 3σ2). (4.2.13)

5: Denote by ζ1 and ζ2 the smallest and the smallest positive eigenvalues of Ĉ respectively.
6: Set

Σ̂ = Ĉ + (ζ2 − ζ1)I . (4.2.14)

4.3 Role of the factor d

It is worth stressing one subtle, yet interesting, difference between debiasing methods of the

Lasso stated in the previous chapter, with the one of the present chapter, i.e. (4.2.2). In all

of these approaches, a debiased estimator is constructed of the form (2.3.2). However:

• The approach of [149, 134] sets M to be an estimate of Σ−1. In the idealized situation

where Σ is known, this construction reduces to setting M = Σ−1.

• By contrast, prescription (4.2.2) amounts to setting M = dΣ−1, with d = (1 −
‖θ̂‖0/n)−1. In other words, we choose M as a scaled version of the inverse covariance.

The mathematical reason for the specific scaling factor is elucidated by the proof of The-

orem 4.1.4 in [8]. Here we limit ourselves to illustrating through numerical simulations

that this factor is indeed crucial to ensure the normality of (θ̂ui − θ0,i) in the regime

n = Θ(s0 log(p/s0)).

We consider a setup where the rows of the design matrix are generated independently

from N(0,Σ) with Σjk (for j ≤ k) given by

Σjk =


1 if k = j ,

0.1 if k ∈ {j + 1, · · · , j + 5} or k ∈ {j + p− 5, . . . , j + p− 1},

0 for all other j ≤ k.

(4.3.1)
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Elements below the diagonal are given by the symmetry condition Σkj = Σjk. (Notice that

this is a circulant matrix.)

We fix undersampling ratio δ = n/p and sparsity level ε = s0/p and consider values

p ∈ {250, 500, 750, · · · , 3500}. We also take active sets S0 with |S0| = s0 chosen uniformly

at random from the index set {1, · · · , p} and set θ0,i = 0.15 for i ∈ S.

The goal is to illustrate the effect of the scaling factor d on the empirical distribution

of (θ̂ui − θ0,i), for large n, p, s0. As we will see, the effect becomes more pronounced as the

ratio n/s0 = δ/ε (i.e. the number of samples per non-zero coefficient) becomes smaller.

As above, we use θ̂u for the unbiased estimator (4.2.2) (which amounts to Eq. (2.3.2) with

M = dΣ−1). We will use θ̂d=1 for the ‘ideal’ unbiased estimator corresponding to the

proposal of [149, 134] (which amounts to Eq. (2.3.2) with M = Σ−1).

• Small n/s0 : We set ε = 0.2, δ = 0.6 (and thus n = 3s0). Let v = (vi)
p
i=1 with

vi ≡ (θ̂i − θ0,i)/(τ [(Σ−1)ii]
1/2). In Fig 4.3.1(a), the empirical kurtosis2 of {vi}pi=1 is

plotted for the two cases θ̂i = θ̂ui , and θ̂i = θ̂d=1
i . When using θ̂u, the kurtosis is

very small and data are consistent with the kurtosis vanishing as p → ∞. This is

suggestive of the fact that (θ̂ui − θ0,i)/(τ [(Σ−1)ii]
1/2) is asymptotically Gaussian, and

hence satisfies a standard distributional limit. However, if we use θ̂d=1, the empirical

kurtosis of v does not converge to zero.

In Fig. 4.3.2, we plot the histogram of v for p = 3000 and using both θ̂u and θ̂d=1.

Again, the plots clearly demonstrate importance of d in obtaining a Gaussian behavior.

• Large n/s0 : We set ε = 0.02, δ = 0.6 (and thus n = 30s0). Figures 4.3.1(b) and

4.3.3 show similar plots for this case. As we see, the effect of d becomes less noticeable

here. The reason is that we expect ‖θ̂‖0/n = O(s0/n), and d = (1 − ‖θ̂‖0/n)−1 =

1 +O(s0/n) ≈ 1 for s0 much smaller than n.

2Recall that the empirical of sample kurtosis is defined as κ ≡ (m4/m
2
2)−3 with m` ≡ p−1 ∑p

i=1(vi− v)`

and v ≡ p−1 ∑p
i=1 vi.
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Figure 4.3.1: Empirical kurtosis of vector v with and without normalization factor d. In
left panel n = 3 s0 (with ε = 0.2, δ = 0.6) and in the right panel n = 30 s0 (with ε = 0.02,
δ = 0.6).
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Figure 4.3.2: Histogram of v for n = 3 s0 (ε = 0.2, δ = 0.6) and p = 3000. In left panel,
factor d is computed by Eq. (4.2.1) and in the right panel, d = 1.
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Figure 4.3.3: Histogram of v for n = 30 s0 (ε = 0.02, δ = 0.6) and p = 3000. In left panel,
factor d is computed by Eq. (4.2.1) and in the right panel, d = 1.



Chapter 5

Numerical Validation

We compare performance of the debiasing approach Algorithm 1 with the Ridge-type and

the low-dimensional projection estimators (explained in Section 3.4.2), and the SDL-test

test (Algorithm 4 and Algorithm 5) on both synthetic and real data. We also validate the

theoretical results about the type I error and power of testing procedure (3.0.3) (Section 3.1)

and the results about the SDL-test (Sections 4.1.2, 4.2.2) by numerical simulations.

In the interest of reproducibility, an R implementation of Algorithm 1 is available at

http://www.stanford.edu/~montanar/sslasso/. Recall that in step 4 of Algorithm 1 we

need to solve the following optimization for i ∈ [p]:

minimize mTΣ̂m

subject to ‖Σ̂m− ei‖∞ ≤ µ ,
(5.0.1)

These optimizations can be solved in parallel, since they are decoupled. Before proceeding

to the numerical experiments, we will briefly remark on this optimization.

5.1 Remark on optimization (5.0.1)

We recast the problem as follows:

minimize mTΣ̂m

subject to 〈z, Σ̂m− ei〉 ≤ µ ,

‖z‖1 = 1 .

77
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The Lagrangian is then given by

L(ν,m, z) = mTΣ̂m+ ν
(
〈z, Σ̂m− ei〉 − µ

)
, ‖z‖1 = 1 .

Optimizing over m, we get
∂L
∂m

= 2Σ̂m∗ + νΣ̂z = 0 ,

with m∗ the optimizer. Therefore, m∗ = −νz/2. The dual problem is then given by

maximize − ν2

4
zTΣ̂z − ν〈z, ei〉 − νµ

subject to ‖z‖1 = 1 .

We let β = −m∗ = νz/2. Hence, ‖β‖1 = ν/2 since ‖z‖1 = 1. Rewriting the dual problem

in terms of β, we arrive at:

minimize
β∈Rp

1

2
βTΣ̂β + 〈β, ei〉+ µ‖β‖1 (5.1.1)

We use a line search to find the smallest value of µ that makes (5.0.1) feasible.

For a fixed µ, we solve the dual problem (5.1.1) by coordinate descent. Write (5.1.1) as

1

2
Σ̂j,jβ

2
j + Σ̂j,∼jβ∼jβj +

∑
`,k 6=j

Σ̂`,kβ`βk + βi + µ‖β∼j‖1 + µ|βj | ,

where Σ̂j,∼j and β∼j respectively denote the j-th row of Σ̂ with Σ̂j,j removed, and the

restriction of β to coordinates other than j. Minimizing w.r.t. βj , we get

βj +
Σ̂j,∼jβ∼j + δij

Σ̂j,j

+
( µ

Σ̂j,j

)
ξ = 0 ,

where δij = I(i = j) and ξ ∈ ∂|βj |, with ∂| · | denoting the subdifferential of | · | at βj .

It is easy to see that βj is given by

βj ←−
1

Σ̂j,j

η(−Σ̂j,∼jβ∼j − δij ;µ) , (5.1.2)

where η(·) is the soft thresholding function defined by (2.2.1). The update (5.1.2) is repeated

for j = 1, 2, · · · , p, 1, 2, · · · , p, · · · until convergence.
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5.2 Experiment 1

In this experiment, we compare Algorithm 1, multisample splitting (cf. Section 3.4.1), and

the Ridge-type projection estimator (cf. Section 3.4.2) on synthetic data.

Consider linear model (1.3.2), where the rows of design matrix X are fixed i.i.d. realiza-

tions from N(0,Σ), where Σ ∈ Rp×p is a circulant symmetric matrix with entries Σjk given

as follows for j ≤ k:

Σjk =



1 if k = j ,

0.1 if k ∈ {j + 1, . . . , j + 5}

or k ∈ {j + p− 5, . . . , j + p− 1} ,

0 for all other j ≤ k .

(5.2.1)

Regarding the regression coefficient, we consider a uniformly random support S ⊆ [p], with

|S| = s0 and let θ0,i = b for i ∈ S and θ0,i = 0 otherwise. The measurement errors are

Wi ∼ N(0, 1), for i ∈ [n]. We consider several configurations of (n, p, s0, b) and for each

configuration report our results based on 20 independent realizations of the model with

fixed design and fixed regression coefficients. In other words, we repeat experiments over

20 independent realization of the measurement errors.

We use the regularization parameter λ = 4σ̂
√

(2 log p)/n, where σ̂ is given by the scaled

Lasso (2.4.3) with λ̃ = 10
√

(2 log p)/n. Furthermore, parameter µ (cf. Eq. (2.3.11)) is set

to µ = 2
√

(log p)/n. This choice of µ is guided by Theorem 2.3.4 (b).

Throughout, we set the significance level α = 0.05.

Confidence intervals. For each configuration, we consider 20 independent realizations

of measurement noise and for each parameter θ0,i, we compute the average length of the

corresponding confidence interval, denoted by Avglength(Ji(α)) where Ji(α) is given by

equation (2.4.4) and the average is taken over the realizations. We then define

` ≡ p−1
∑
i∈[p]

Avglength(Ji(α)) . (5.2.2)

We also consider the average length of intervals for the active and inactive parameters, as
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Configuration

Measure

` `S `Sc Ĉov ĈovS ĈovSc

(1000, 600, 10, 0.5) 0.1870 0.1834 0.1870 0.9766 0.9600 0.9767
(1000, 600, 10, 0.25) 0.1757 0.1780 0.1757 0.9810 0.9000 0.9818
(1000, 600, 10, 0.1) 0.1809 0.1823 0.1809 0.9760 1 0.9757
(1000, 600, 30, 0.5) 0.2107 0.2108 0.2107 0.9780 0.9866 0.9777
(1000, 600, 30, 0.25) 0.1956 0.1961 0.1956 0.9660 0.9660 0.9659
(1000, 600, 30, 0.1) 0.2023 0.2043 0.2023 0.9720 0.9333 0.9732
(2000, 1500, 50, 0.5) 0.1383 0.1391 0.1383 0.9754 0.9800 0.9752
(2000, 1500, 50, 0.25) 0.1356 0.1363 0.1355 0.9720 0.9600 0.9723
(2000, 1500, 50, 0.1) 0.1361 0.1361 0.1361 0.9805 1 0.9800
(2000, 1500, 25, 0.5) 0.1233 0.1233 0.1233 0.9731 0.9680 0.9731
(2000, 1500, 25, 0.25) 0.1208 0.1208 0.1208 0.9735 1 0.9731
(2000, 1500, 25, 0.1) 0.1242 0.1237 0.1242 0.9670 0.9200 0.9676

Table 5.2.1 Simulation results for the synthetic data described in Experiment 1. The results
corresponds to 95% confidence intervals.

follows:

`S ≡ s−1
0

∑
i∈S

Avglength(Ji(α)) , `Sc ≡ (p− s0)−1
∑
i∈Sc

Avglength(Ji(α)) . (5.2.3)

Similarly, we consider average coverage for individual parameters. We define the follow-

ing three metrics:

Ĉov ≡ p−1
∑
i∈[p]

P̂[θ0,i ∈ Ji(α)] , (5.2.4)

ĈovS ≡ s−1
0

∑
i∈S

P̂[θ0,i ∈ Ji(α)] , (5.2.5)

ĈovSc ≡ (p− s0)−1
∑
i∈Sc

P̂[0 ∈ Ji(α)] , (5.2.6)

where P̂ denotes the empirical probability computed based on the 20 realizations for each

configuration. The results are reported in Table 5.2.1. In Fig. 5.2.1, we plot the constructed

95%-confidence intervals for one realization of configuration (n, p, s0, b) = (1000, 600, 10, 1).

For sake of clarity, we plot the confidence intervals for only 100 of the 1000 parameters.

False positive rates and statistical powers. Table 5.2.2 summarizes the false positive

rates and the statistical powers achieved by our proposed method, the multisample-splitting
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Figure 5.2.1: 95% confidence intervals for one realization of configuration (n, p, s0, b) =
(1000, 600, 10, 1). For clarity, we plot the confidence intervals for only 100 of the 1000 pa-
rameters. The true parameters θ0,i are in red and the coordinates of the debiased estimator

θ̂u are in black.

method [96], and the Ridge-type projection estimator [16] for several configurations. The

results are obtained by taking average over 20 independent realizations of measurement

errors for each configuration. As we see the multisample-splitting achieves false positive

rate 0 on all of the configurations considered here, making no type I error. However, the

true positive rate is always smaller than that of our proposed method. By contrast, our

method achieves false positive rate close to the pre-assigned significance level α = 0.05 and

obtains much higher true positive rate. Similar to the multisample-splitting, the Ridge-

type projection estimator is conservative and achieves false positive rate smaller than α.

This, however, comes at the cost of a smaller true positive rate than our method. It is

worth noting that an ideal testing procedure should allow to control the level of statistical

significance α, and obtain the maximum true positive rate at that level.

Here, we used the R-package hdi to test multisample-splitting and the Ridge-type pro-

jection estimator.

Let Z = (zi)
p
i=1 denote the vector with zi ≡

√
n(θ̂ui − θ0,i)/σ̂

√
[M Σ̂MT]i,i. Fig. 5.2.2

shows the sample quantiles of Z versus the quantiles of the standard normal distribution for
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Our method Multisample-splitting Ridge-type projection estimator
Configuration FP TP FP TP FP TP

(1000, 600, 10, 0.5) 0.0452 1 0 1 0.0284 0.8531
(1000, 600, 10, 0.25) 0.0393 1 0 0.4 0.02691 0.7506
(1000, 600, 10, 0.1) 0.0383 0.8 0 0 0.2638 0.6523
(1000, 600, 30, 0.5) 0.0433 1 0 1 0.0263 0.8700
(1000, 600, 30, 0.25) 0.0525 1 0 0.4 0.2844 0.8403
(1000, 600, 30, 0.1) 0.0402 0.7330 0 0 0.2238 0.6180
(2000, 1500, 50, 0.5) 0.0421 1 0 1 0.0301 0.9013
(2000, 1500, 50, 0.25) 0.0415 1 0 1 0.0292 0.8835
(2000, 1500, 50, 0.1) 0.0384 0.9400 0 0 0.02655 0.7603
(2000, 1500, 25, 0.5) 0.0509 1 0 1 0.0361 0.9101
(2000, 1500, 25, 0.25) 0.0481 1 0 1 0.3470 0.8904
(2000, 1500, 25, 0.1) 0.0551 1 0 0.16 0.0401 0.8203

Table 5.2.2 Simulation results for the synthetic data described in Experiment 1. The false
positive rates (FP) and the true positive rates (TP) are computed at significance level
α = 0.05.

one realization of the configuration (n, p, s0, b) = (1000, 600, 10, 1). The scattered points are

close to the line with unit slope and zero intercept. This confirms the result of Theorem 2.4.2

regarding the gaussianity of the entries zi.

For the same problem, in Fig. 5.2.3 we plot the empirical CDF of the computed p-values

restricted to the variables outside the support. Clearly, the p-values for these entries are

uniformly distributed as expected.

5.3 Experiment 2

In this experiment, we compare Algorithm 1, multisample splitting (cf. Section 3.4.1), and

the Ridge-type projection estimator (cf. Section 3.4.2) on real data.

We consider a high-throughput genomic data set concerning riboflavin (vitamin B2)

production rate. This data set is made publicly available by [17] and contains n = 71

samples and p = 4, 088 covariates corresponding to p = 4, 088 genes. For each sample, there

is a real-valued response variable indicating the logarithm of the riboflavin production rate

along with the logarithm of the expression level of the p = 4, 088 genes as the covariates.

Following [17], we model the riboflavin production rate as a linear model with p = 4, 088

covariates and n = 71 samples, as in Eq. (1.1.6). We use the R package glmnet [56] to fit

the Lasso estimator. Similar to the previous section, we use the regularization parameter
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Figure 5.2.2: Q-Q plot of Z for one realization of configuration (n, p, s0, b) =
(1000, 600, 10, 1).
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Figure 5.2.3: Empirical CDF of the computed p-values (restricted to entries outside the
support) for one realization of configuration (n, p, s0, b) = (1000, 600, 10, 1). Clearly the
plot confirms that the p-values are distributed according to uniform distribution.
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λ = 4σ̂
√

(2 log p)/n, where σ̂ is given by the scaled Lasso as per equation (2.4.3) with

λ̃ = 10
√

(2 log p)/n. This leads to the choice λ = 0.036. The resulting model contains

30 genes (plus an intercept term) corresponding to the nonzero parameters of the lasso

estimator.

We use Eq. (3.0.2) to construct p-values for different genes. Adjusting FWER to 5%

significance level, we find two significant genes, namely genes YXLD-at and YXLE-at. By

contrast, the multisample-splitting method proposed in [96] finds only the gene YXLD-at

at the FWER-adjusted 5% significance level. Also the Ridge-type projection estimator,

proposed in [16], returns no significance gene. (See [17] for further discussion on these

methods.) This indicates that these methods are more conservative and produce typically

larger p-values.

In Fig. 5.3.4 we plot the empirical CDF of the computed p-values for riboflavin example.

Clearly the plot confirms that the p-values are distributed according to uniform distribution.
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Figure 5.3.4: Empirical CDF of the computed p-values for riboflavin example. Clearly the
plot confirms that the p-values are distributed according to uniform distribution.

5.4 Experiment 3

The goal of this experiment is to compare the SDL-test test (cf. Algorithm 4) with

the Ridge-type projection estimator [16] and the low-dimensional projection estimator
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SDL−test (α = 0.05)
SDL−test (α = 0.025)
Ridge−based regression ( α = 0.05)
Ridge−based regression ( α = 0.025)
Asymptotic Bound

Figure 5.4.5: Comparison between SDL-test ( Algorithm 4), Ridge-based regression [16]
and the asymptotic bound for SDL-test (established in Theorem 4.1.3). Here, p =
1000, n = 600, s0 = 25, γ = 0.15.

(LDPE) [149] (cf. Section Subsection 3.4.2) on synthetic data and standard Gaussian de-

sign. we further corroborate the theoretical results of Section 4.1.2 by simulation.

We generate synthetic data from the linear model (1.1.6) with W ∼ N(0, Ip×p) and the

following configurations.

Design matrix: For pairs of values (n, p) = {(300, 1000), (600, 1000), (600, 2000)}, the

design matrix is generated from a realization of n i.i.d. rows Xi ∼ N(0, Ip×p).

Regression parameters: We consider active sets S0 with |S0| = s0 ∈ {10, 20, 25, 50, 100},
chosen uniformly at random from the index set {1, · · · , p}. We also consider two different

strengths of active parameters θ0,i = γ, for i ∈ S0, with γ ∈ {0.1, 0.15}.
We examine the performance of SDL-test (cf. Algorithm 4) at significance levels

α = 0.025, 0.05. The experiments are done using glmnet-package in R that fits the entire

Lasso path for linear regression models. Let ε = s0/p and δ = n/p. We do not assume ε is

known, but rather estimate it as ε̄ = 0.25 δ/ log(2/δ). The value of ε̄ is half the maximum

sparsity level ε for the given δ such that the Lasso estimator can correctly recover the

parameter vector if the measurements were noiseless [42, 8]. Provided it makes sense to use

Lasso at all, ε̄ is thus a reasonable ballpark estimate.
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Figure 5.4.6: Comparison between SDL-test , Ridge-based regression [16], and
LDPE [149]. The curve corresponds to the asymptotic bound for SDL-test as established
in Theorem 4.1.3. For the same values of type I error achieved by methods, SDL-test
results in a higher statistical power. Here, p = 1000, n = 600, s0 = 25, γ = 0.15.

The regularization parameter λ is chosen as to satisfy

λd = κ∗τ (5.4.1)

where τ and d are determined in step 2 of the procedure. Here κ∗ = κ∗(ε̄) is the minimax

threshold value for estimation using soft thresholding in the Gaussian sequence model, see

[44] and Remark B.2.1. Note that τ and d in the equation above depend implicitly upon λ.

Since glmnet returns the entire Lasso path, the value of λ solving the above equation can

be computed by the bisection method.

As mentioned above, the control of type I error is fairly robust for a wide range of values

of λ. However, the above is an educated guess based on the analysis of [42, 8]. We also

tried the values of λ proposed for instance in [133, 16] on the basis of oracle inequalities.

Figure 5.4.5 shows the results of SDL-test and the method of [16] for parameter values

p = 1000, n = 600, s0 = 25, γ = 0.15, and significance levels α ∈ {0.025, 0.05}. Each

point in the plot corresponds to one realization of this configuration (there are a total

of 10 realizations). We also depict the theoretical curve (α,G(α, γ0/τ∗)), predicted by

Theorem 4.1.3. The empirical results are in good agreement with the asymptotic prediction.
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We compare SDL-test with the Ridge-based regression method [16] and the low dimen-

sional projection estimator (LDPE ) [149]. Tables 5.4.1 and 5.4.2 summarize the results

for a few configurations (p, n, s0, γ), and α = 0.05, 0.025.

As demonstrated by these results, LDPE [149] and the Ridge-based regression [16] are

both overly conservative. Namely, they achieve smaller type I error than the prescribed

level α and this comes at the cost of a smaller statistical power than our testing procedure.

This is to be expected since the approach of [16] and [149] cover a broader class of design

matrices X, and are not tailored to random designs.

Note that being overly conservative is a drawback, when this comes at the expense

of statistical power. The data analysts should be able to decide the level of statistical

significance α, and obtain optimal statistical power at that level.

The reader might wonder whether the loss in statistical power of methods in [16] and

[149] is entirely due to the fact that these methods achieve a smaller number of false positives

than requested. In Fig. 5.4.6, we run SDL-test , Ridge-based regression [16], and LDPE

for α ∈ {0.01, 0.02, · · · , 0.1} and for 10 realizations of the problem per each value of α. We

plot the average type I error and the average power of each method versus α. As we see even

for the same empirical fraction of type I errors, SDL-test results in a higher statistical

power.
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Method Type I err Type I err Avg. power Avg. power
(mean) (std.) (mean) (std)

SDL-test (1000, 600, 50, 0.15) 0.06189 0.01663 0.83600 0.04300
Ridge-based regression (1000, 600, 50, 0.15) 0.00989 0.00239 0.35000 0.07071

LDPE (1000, 600, 50, 0.15) 0.03925 0.00588 0.55302 0.07608
Asymptotic Bound (1000, 600, 50, 0.15) 0.05 NA 0.84721 NA

SDL-test (1000, 600, 25, 0.15) 0.0572 0.0190 0.8840 0.0638
Ridge-based regression (1000, 600, 25, 0.15) 0.0203 0.0052 0.3680 0.1144

LDPE (1000, 600, 25, 0.15) 0.04010 0.00917 0.62313 0.05408
Asymptotic Bound (1000, 600, 25, 0.15) 0.05 NA 0.9057 NA

SDL-test (1000, 300, 50, 0.15) 0.05547 0.01554 0.45800 0.06957
Ridge-based regression (1000, 300, 50, 0.15) 0.01084 0.00306 0.19200 0.04541

LDPE (1000, 300, 50, 0.15) 0.03022 0.00601 0.23008 0.08180
Asymptotic Bound (1000, 300, 50, 0.15) 0.05 NA 0.31224 NA

SDL-test (1000, 300, 25, 0.15) 0.05149 0.01948 0.55600 0.11384
Ridge-based regression (1000, 300, 25, 0.15) 0.00964 0.00436 0.32400 0.09324

LDPE (1000, 300, 25, 0.15) 0.04001 0.00531 0.34091 0.06408
Asymptotic Bound (1000, 300, 25, 0.15) 0.05 NA 0.51364 NA

SDL-test (2000, 600, 100, 0.1) 0.05037 0.00874 0.44800 0.04940
Ridge-based regression (2000, 600, 100, 0.1) 0.01232 0.00265 0.21900 0.03143

LDPE (2000, 600, 100, 0.1) 0.03012 0.00862 0.31003 0.06338
Asymptotic Bound (2000, 600, 100, 0.1) 0.05 NA 0.28324 NA

SDL-test (2000, 600, 50, 0.1) 0.05769 0.00725 0.52800 0.08548
Ridge-based regression (2000, 600, 50, 0.1) 0.01451 0.00303 0.27000 0.04137

LDPE (2000, 600, 50, 0.1) 0.03221 0.01001 0.35063 0.05848
Asymptotic Bound (2000, 600, 50, 0.1) 0.05 NA 0.46818 NA

SDL-test (2000, 600, 20, 0.1) 0.05167 0.00814 0.58000 0.11595
Ridge-based regression (2000, 600, 20, 0.1) 0.01879 0.00402 0.34500 0.09846

LDPE (2000, 600, 20, 0.1) 0.04021 0.00608 0.42048 0.08331
Asymptotic Bound (2000, 600, 20, 0.1) 0.05 NA 0.58879 NA

SDL-test (2000, 600, 100, 0.15) 0.05368 0.01004 0.64500 0.05104
Ridge-based regression (2000, 600, 100, 0.15) 0.00921 0.00197 0.30700 0.04877

LDPE (2000, 600, 100, 0.15) 0.02890 0.00493 0.58003 0.06338
Asymptotic Bound (2000, 600, 100, 0.15) 0.05 NA 0.54728 NA

SDL-test (2000, 600, 20, 0.15) 0.04944 0.01142 0.89500 0.07619
Ridge-based regression (2000, 600, 20, 0.15) 0.01763 0.00329 0.64000 0.08756

LDPE (2000, 600, 20, 0.15) 0.03554 0.005047 0.73560 0.04008
Asymptotic Bound (2000, 600, 20, 0.15) 0.05 NA 0.90608 NA

Table 5.4.1 Comparison between SDL-test, Ridge-based regression [16], LDPE [149] and the
asymptotic bound for SDL-test (cf. Theorem 4.1.3) in Experiment 3. The significance level is
α = 0.05. The means and the standard deviations are obtained by testing over 10 realizations of
the corresponding configuration. Here a quadruple such as (1000, 600, 50, 0.1) denotes the values of
p = 1000, n = 600, s0 = 50, γ = 0.1.
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Method Type I err Type I err Avg. power Avg. power
(mean) (std.) (mean) (std)

SDL-test (1000, 600, 50, 0.15) 0.02874 0.00546 0.75600 0.07706
Ridge-based regression (1000, 600, 50, 0.15) 0.00379 0.00282 0.22800 0.06052

LDPE (1000, 600, 100, 0.1) 0.01459 0.00605 0.41503 0.08482
Asymptotic Bound (1000, 600, 50, 0.15) 0.025 NA 0.77107 NA

SDL-test (1000, 600, 25, 0.15) 0.03262 0.00925 0.79200 0.04131
Ridge-based regression (1000, 600, 25, 0.15) 0.00759 0.00223 0.28800 0.07729

LDPE (1000, 600, 25, 0.15) 0.01032 0.00490 0.55032 0.07428
Asymptotic Bound (1000, 600, 25, 0.15) 0.025 NA 0.84912 NA

SDL-test (1000, 300, 50, 0.15) 0.02916 0.00924 0.36000 0.08380
Ridge-based regression (1000, 300, 50, 0.15) 0.00400 0.00257 0.10800 0.05432

LDPE (1000, 300, 50, 0.15) 0.01520 0.00652 0.25332 0.06285
Asymptotic Bound (1000, 300, 50, 0.15) 0.025 NA 0.22001 NA

SDL-test (1000, 300, 25, 0.15) 0.03005 0.00894 0.42400 0.08884
Ridge-based regression (1000, 300, 25, 0.15) 0.00492 0.00226 0.21600 0.06310

LDPE (1000, 300, 25, 0.15) 0.00881 0.00377 0.31305 0.05218
Asymptotic Bound (1000, 300, 25, 0.15) 0.025 NA 0.40207 NA

SDL-test (2000, 600, 100, 0.1) 0.03079 0.00663 0.33000 0.05033
Ridge-based regression (2000, 600, 100, 0.1) 0.00484 0.00179 0.11200 0.03615

LDPE (2000, 600, 100, 0.1) 0.01403 0.00970 0.24308 0.06041
Asymptotic Bound (2000, 600, 100, 0.1) 0.025 NA 0.19598 NA

SDL-test (2000, 600, 50, 0.1) 0.02585 0.00481 0.41200 0.06197
Ridge-based regression (2000, 600, 50, 0.1) 0.00662 0.00098 0.20600 0.03406

LDPE (2000, 600, 50, 0.1) 0.01601 0.00440 0.27031 0.03248
Asymptotic Bound (2000, 600, 50, 0.1) 0.025 NA 0.35865 NA

SDL-test (2000, 600, 20, 0.1) 0.02626 0.00510 0.47500 0.10607
Ridge-based regression (2000, 600, 20, 0.1) 0.00838 0.00232 0.23500 0.08182

LDPE (2000, 600, 20, 0.1) 0.02012 0.00628 0.34553 0.09848
Asymptotic Bound (2000, 600, 20, 0.1) 0.025 NA 0.47698 NA

SDL-test (2000, 600, 100, 0.15) 0.02484 0.00691 0.52700 0.09522
Ridge-based regression (2000, 600, 100, 0.15) 0.00311 0.00154 0.22500 0.04007

LDPE (2000, 600, 100, 0.15) 0.01482 0.00717 0.38405 0.03248
Asymptotic Bound (2000, 600, 100, 0.15) 0.025 NA 0.43511 NA

SDL-test (2000, 600, 20, 0.15) 0.03116 0.01304 0.81500 0.09443
Ridge-based regression (2000, 600, 20, 0.15) 0.00727 0.00131 0.54500 0.09560

LDPE (2000, 600, 20, 0.15) 0.01801 0.00399 0.68101 0.06255
Asymptotic Bound (2000, 600, 20, 0.15) 0.025 NA 0.84963 NA

Table 5.4.2 Comparison between SDL-test, Ridge-based regression [16], LDPE [149] and the
asymptotic bound for SDL-test (cf. Theorem 4.1.3) in Experiment 3. The significance level is
α = 0.025. The means and the standard deviations are obtained by testing over 10 realizations of
the corresponding configuration. Here a quadruple such as (1000, 600, 50, 0.1) denotes the values of
p = 1000, n = 600, s0 = 50, γ = 0.1
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5.5 Experiment 4

In carrying out comparison between SDL-test , Ridge-type projection estimator [16] and

the low-dimensional projection estimator (LDPE) [149] for correlated Gaussian designs, we

consider the same setup as Experiment 3. The only difference is that the rows of the design

matrix are independently Xi ∼ N(0,Σ). We choose Σ ∈ Rp×p to be a the symmetric matrix

with entries Σjk are defined as follows for j ≤ k

Σjk =



1 if k = j ,

0.1 if k ∈ {j + 1, · · · , j + 5}

or k ∈ {j + p− 5, . . . , j + p− 1},

0 for all other j ≤ k.

(5.5.1)

Elements below the diagonal are given by the symmetry condition Σkj = Σjk. (Notice that

this is a circulant matrix.)

In Fig. 5.5.7(a), we compare SDL-testwith the Ridge-based regression method pro-

posed in [16]. While the type I errors of SDL-test are in good match with the chosen

significance level α, the method of [16] is conservative. As in the case of standard Gaus-

sian designs, this results in significantly smaller type I errors than α and smaller average

power in return. Also, in Fig. 5.5.8, we run SDL-test , Ridge-based regression [16], and

LDPE [149] for α ∈ {0.01, 0.02, · · · , 0.1} and for 10 realizations of the problem per each

value of α. We plot the average type I error and the average power of each method versus

α. As we see, similar to the case of standard Gaussian designs, even for the same empirical

fraction of type I errors, SDL-test results in a higher statistical power.

Tables 5.5.1 and 5.5.2 summarize the results of comparison among these methods for

several configurations (p, n, s0, γ), and α = 0.05, 0.025.

Let z = (zi)
p
i=1 denote the vector with entries zi ≡ θ̂ui /(τ [(Σ−1)ii]

1/2). In Fig. 5.5.7(b)

we plot the normalized histograms of zS0 (in red) and zSc0 (in white), where zS0 and zSc0
respectively denote the restrictions of z to the active set S0 and the inactive set Sc0. The

plot clearly exhibits the fact that zSc0 has (asymptotically) standard normal distribution

and the histogram of zS0 appears as a distinguishable bump. This is the core intuition in

defining SDL-test.
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Figure 5.5.7: Numerical results for Experiment 4 and p = 2000, n = 600, s0 = 50, γ = 0.1.
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Figure 5.5.8: Comparison between SDL-test , Ridge-based regression [16], and LDPE [149]
in the setting of Experiment 4. For the same values of type I error achieved by methods,
SDL-test results in a higher statistical power. Here, p = 1000, n = 600, s0 = 25, γ = 0.15.

5.6 Experiment 5

In this experiment, we apply SDL-test and the Ridge-type projection estimator [16] on

the UCI communities and crimes dataset [55]. This concerns the prediction of the rate of

violent crime in different communities within US, based on other demographic attributes

of the communities. The dataset consists of a response variable along with 122 predictive

attributes for 1994 communities. Covariates are quantitative, including e.g., the fraction of

urban population or the median family income. We consider a linear model as in (1.1.6)

and hypotheses H0,i. Rejection of H0,i indicates that the i-th attribute is significant in

predicting the response variable.

We perform the following preprocessing steps: (i) Each missing value is replaced by the

mean of the non missing values of that attribute for other communities. (ii) We eliminate

16 attributes to make the ensemble of the attribute vectors linearly independent. Thus we

obtain a design matrix Xtot ∈ Rntot×p with ntot = 1994 and p = 106; (iii) We normalize

each column of the resulting design matrix to have mean zero and `2 norm equal to
√
ntot.

In order to evaluate various hypothesis testing procedures, we need to know the true

significant variables. To this end, we let θ0 = (XT
totXtot)

−1XT
totY be the least-square es-

timator, using the whole data set. Figure 5.6.9 shows the the entries of θ0. Clearly, only
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Method Type I err Type I err Avg. power Avg. power
(mean) (std.) (mean) (std)

SDL-test (1000, 600, 50, 0.15) 0.05179 0.01262 0.81400 0.07604
Ridge-based regression (1000, 600, 50, 0.15) 0.01095 0.00352 0.34000 0.05735

LDPE (1000, 600, 50, 0.15) 0.02653 0.00574 0.66800 0.07823
Lower bound (1000, 600, 50, 0.15) 0.05 NA 0.84013 0.03810

SDL-test (1000, 600, 25, 0.15) 0.04937 0.01840 0.85600 0.06310
Ridge-based regression (1000, 600, 25, 0.15) 0.01969 0.00358 0.46800 0.08011

LDPE (1000, 600, 25, 0.15) 0.01374 0.00709 0.63200 0.07155
Lower bound (1000, 600, 25, 0.15) 0.05 NA 0.86362 0.02227

SDL-test (1000, 300, 50, 0.15) 0.05111 0.01947 0.43800 0.09402
Ridge-based regression (1000, 300, 50, 0.15) 0.01011 0.00362 0.20200 0.05029

LDPE (1000, 300, 50, 0.15) 0.03621 0.00701 0.37600 0.07127
Lower bound (1000, 300, 50, 0.15) 0.05 NA 0.43435 0.03983

SDL-test (1000, 300, 25, 0.15) 0.05262 0.01854 0.53600 0.08044
Ridge-based regression (1000, 300, 25, 0.15) 0.01344 0.00258 0.33200 0.08230

LDPE (1000, 300, 25, 0.15) 0.01682 0.00352 0.36800 0.10354
Lower bound (1000, 300, 25, 0.15) 0.05 NA 0.50198 0.05738

SDL-test (2000, 600, 100, 0.1) 0.05268 0.01105 0.43900 0.04383
Ridge-based regression (2000, 600, 100, 0.1) 0.01205 0.00284 0.21200 0.04392

LDPE (2000, 600, 100, 0.1) 0.028102 0.00720 0.33419 0.04837
Lower bound (2000, 600, 100, 0.1) 0.05 NA 0.41398 0.03424

SDL-test (2000, 600, 50, 0.1) 0.05856 0.00531 0.50800 0.05350
Ridge-based regression (2000, 600, 50, 0.1) 0.01344 0.00225 0.26000 0.03771

LDPE (2000, 600, 50, 0.1) 0.03029 0.00602 0.37305 0.07281
Lower bound (2000, 600, 50, 0.1) 0.05 NA 0.49026 0.02625

SDL-test (2000, 600, 20, 0.1) 0.04955 0.00824 0.57500 0.13385
Ridge-based regression (2000, 600, 20, 0.1) 0.01672 0.00282 0.35500 0.08960

LDPE (2000, 600, 20, 0.1) 0.03099 0.00805 0.31350 0.04482
Lower bound (2000, 600, 20, 0.1) 0.05 NA 0.58947 0.04472
SDL-test (2000, 600, 100, 0.15) 0.05284 0.00949 0.61600 0.06802

Ridge-based regression (2000, 600, 100, 0.15) 0.00895 0.00272 0.31800 0.04131
LDPE (2000, 600, 100, 0.15) 0.01022 0.00570 0.35904 0.05205

Lower bound (2000, 600, 100, 0.15) 0.05 NA 0.64924 0.05312
SDL-test (2000, 600, 20, 0.15) 0.05318 0.00871 0.85500 0.11891

Ridge-based regression (2000, 600, 20, 0.15) 0.01838 0.00305 0.68000 0.12517
LDPE (2000, 600, 20, 0.15) 0.02512 0.00817 0.36434 0.05824

Lower bound (2000, 600, 20, 0.15) 0.05 NA 0.87988 0.03708

Table 5.5.1 Comparison between SDL-test, Ridge-based regression [16], LDPE [149] and the lower
bound for the statistical power of SDL-test (cf. Theorem 4.2.4) in Experiment 4. The significance
level is α = 0.05. The means and the standard deviations are obtained by testing over 10 realizations
of the corresponding configuration. Here a quadruple such as (1000, 600, 50, 0.1) denotes the values
of p = 1000, n = 600, s0 = 50, γ = 0.1
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Method Type I err Type I err Avg. power Avg. power
(mean) (std.) (mean) (std)

SDL-test (1000, 600, 50, 0.15) 0.02579 0.00967 0.71800 0.03824
Ridge-based regression (1000, 600, 50, 0.15) 0.00326 0.00274 0.21000 0.05437

LDPE (1000, 600, 50, 0.15) 0.01245 0.00391 0.64807 0.065020
Lower bound (1000, 600, 50, 0.15) 0.025 NA 0.75676 0.05937

SDL-test (1000, 600, 25, 0.15) 0.02462 0.00866 0.75600 0.12429
Ridge-based regression (1000, 600, 25, 0.15) 0.01077 0.00346 0.30400 0.08262

LDPE (1000, 600, 25, 0.15) 0.00931 0.00183 0.68503 0.17889
Lower bound (1000, 600, 25, 0.15) 0.025 NA 0.80044 0.05435

SDL-test (1000, 300, 50, 0.15) 0.02646 0.01473 0.39200 0.11478
Ridge-based regression (1000, 300, 50, 0.15) 0.00368 0.00239 0.15000 0.04137

LDPE (1000, 300, 50, 0.15) 0.01200 0.00425 0.28800 0.09654
Lower bound (1000, 300, 50, 0.15) 0.025 NA 0.36084 0.04315

SDL-test (1000, 300, 25, 0.15) 0.02400 0.00892 0.42400 0.09834
Ridge-based regression (1000, 300, 25, 0.15) 0.00513 0.00118 0.18800 0.07786

LDPE (1000, 300, 25, 0.15) 0.00492 0.00169 0.24500 0.07483
Lower bound (1000, 300, 25, 0.15) 0.025 NA 0.42709 0.03217

SDL-test (2000, 600, 100, 0.1) 0.03268 0.00607 0.32600 0.07412
Ridge-based regression (2000, 600, 100, 0.1) 0.00432 0.00179 0.14100 0.05065

LDPE (2000, 600, 100, 0.1) 0.01240 0.00572 0.20503 0.09280
Lower bound (2000, 600, 100, 0.1) 0.025 NA 0.32958 0.03179

SDL-test (2000, 600, 50, 0.1) 0.03108 0.00745 0.41800 0.04662
Ridge-based regression (2000, 600, 50, 0.1) 0.00687 0.00170 0.18800 0.06680

LDPE (2000, 600, 50, 0.1) 0.014005 0.00740 0.25331 0.04247
Lower bound (2000, 600, 50, 0.1) 0.025 NA 0.40404 0.06553

SDL-test (2000, 600, 20, 0.1) 0.02965 0.00844 0.38500 0.07091
Ridge-based regression (2000, 600, 20, 0.1) 0.00864 0.00219 0.22500 0.07906

LDPE (2000, 600, 20, 0.1) 0.01912 0.00837 0.31551 0.06288
Lower bound (2000, 600, 20, 0.1) 0.025 NA 0.47549 0.06233
SDL-test (2000, 600, 100, 0.15) 0.026737 0.009541 0.528000 0.062681

Ridge-based regression (2000, 600, 100, 0.15) 0.002947 0.000867 0.236000 0.035653
LDPE (2000, 600, 100, 0.15) 0.01012 0.00417 0.36503 0.05823

Lower bound (2000, 600, 100, 0.15) 0.025 NA 0.54512 0.05511
SDL-test (2000, 600, 20, 0.15) 0.03298 0.00771 0.79000 0.12202

Ridge-based regression (2000, 600, 20, 0.15) 0.00732 0.00195 0.53500 0.07091
LDPE (2000, 600, 20, 0.15) 0.01302 0.00711 0.60033 0.03441

Lower bound (2000, 600, 20, 0.15) 0.025 NA 0.81899 0.03012

Table 5.5.2 Comparison between SDL-test, Ridge-based regression [16], LDPE [149] and the
lower bound for the statistical power of SDL-test (cf. Theorem 4.2.4) in Experiment 4. The
significance level is α = 0.025. The means and the standard deviations are obtained by testing
over 10 realizations of the corresponding configuration. Here a quadruple such as (1000, 600, 50, 0.1)
denotes the values of p = 1000, n = 600, s0 = 50, γ = 0.1
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Figure 5.6.9: Parameter vector θ0 for the communities data set.

a few entries have non negligible values which correspond to the predictive attributes. In

computing type I errors and powers, we take the elements in θ0 with magnitude larger than

0.04 as active and the others as inactive.

In order to validate our approach in the high-dimensional p > n regime, we take random

subsamples of the communities (hence subsamples of the rows of Xtot) of size n = 84. We

compare SDL-test with the method of [16], over 20 realizations and significance levels

α = 0.01, 0.025, 0.05. The fraction of type I errors and statistical power is computed by

comparing to θ0. Table 5.6.1 summarizes the results. As the reader can see, Ridge-type

projection estimator is very conservative yielding to no type-I errors but a much smaller

power than SDL-test.

In Table 5.6.2, we report the relevant features obtained from the whole dataset as

described above, corresponding to the nonzero entries in θ0. We also report the features

identified as relevant by SDL-test and those identified as relevant by Ridge-type projection

estimator, from one random subsample of communities of size n = 84. Features description

is available in [55].

Finally, in Fig. 5.6.10 we plot the normalized histograms of vS0 (in red) and vSc0 (in

white). Recall that v = (vi)
p
i=1 denotes the vector with vi ≡ θ̂ui /(τ [(Σ−1)ii]

1/2). Further,

vS0 and vSc0 respectively denote the restrictions of v to the active set S0 and the inactive set

Sc0. This plot demonstrates that vSc0 has roughly standard normal distribution as expected
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Figure 5.6.10: Normalized histogram of vS0 (in red) and vSc0 (in white) for the communities
data set.

by the developed theory in Chapter 4.

Method Type I err Avg. power
(mean) (mean)

SDL-test (α = 0.05) 0.0172043 0.4807692
Ridge-based regression 0 0.1423077

SDL-test (α = 0.025) 0.01129032 0.4230769
Ridge-based regression 0 0.1269231

SDL-test (α = 0.01) 0.008602151 0.3576923
Ridge-based regression 0 0.1076923

Table 5.6.1 Simulation results for the communities data set.
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Relevant features

racePctHisp, PctTeen2Par, PctImmigRecent, PctImmigRec8, Pc-
tImmigRec10, PctNotSpeakEnglWell, OwnOccHiQuart, Num-
Street, PctSameState85, LemasSwFTFieldPerPop, LemasTotRe-
qPerPop, RacialMatchCommPol, PolicOperBudg

α = 0.01
Relevant features

(SDL-test )

racePctHisp, PctTeen2Par, PctImmigRecent, PctImmigRec8, Pc-
tImmigRec10, PctNotSpeakEnglWell, OwnOccHiQuart, Num-
Street, PctSameState85, LemasSwFTFieldPerPop, LemasTotRe-
qPerPop, RacialMatchCommPol, PolicOperBudg

Relevant features
(Ridge-based regression)

racePctHisp, PctSameState85

α = 0.025
Relevant features

(SDL-test )

racePctHisp, PctTeen2Par, PctImmigRecent, PctImmigRec8, Pc-
tImmigRec10, PctNotSpeakEnglWell, PctHousOccup, OwnOc-
cHiQuart, NumStreet, PctSameState85, LemasSwFTFieldPer-
Pop, LemasTotReqPerPop, RacialMatchCommPol, PolicOper-
Budg

Relevant features
(Ridge-based regression)

racePctHisp, PctSameState85

α = 0.05
Relevant features

(SDL-test )

racePctHisp, PctUnemployed, PctTeen2Par, PctImmigRecent,
PctImmigRec8, PctImmigRec10, PctNotSpeakEnglWell, Pc-
tHousOccup, OwnOccHiQuart, NumStreet, PctSameState85,
LemasSwornFT, LemasSwFTFieldPerPop, LemasTotReqPerPop,
RacialMatchCommPol, PctPolicWhite

Relevant features
(Ridge-based regression)

racePctHisp, PctSameState85

Table 5.6.2 The relevant features (using the whole dataset) and the relevant features pre-
dicted by SDL-test and the Ridge-type projection estimator [16] for a random subsample
of size n = 84 from the communities. The false positive predictions are in red.



Chapter 6

Proof of Theorems in Part I

This chapter contains proofs of Theorems and technical lemmas stated in Chapter 2.

6.1 Proof of Theorems in Chapter 2

6.1.1 Proof of Theorem 2.3.3

Substituting Y = Xθ0 +W in the definition (2.3.2), we get

θ̂∗ = θ̂n +
1

n
MXTX(θ0 − θ̂n) +

1

n
MXTW

= θ0 +
1√
n
Z +

1√
n

∆ ,
(6.1.1)

with Z,∆ defined as per the theorem statement. Further Z is Gaussian with the stated

covariance because it is a linear function of the Gaussian vector W ∼ N(0, σ2 Ip×p).

We are left with the task of proving the bound (2.3.6) on ∆. Note that by definition

(2.3.1), we have

‖∆‖∞ ≤
√
n |M Σ̂− I|∞ ‖θ̂n − θ0‖1 =

√
nµ∗‖θ̂n − θ0‖1 . (6.1.2)

By [19, Theorem 6.1, Lemma 6.2], we have, for any λ ≥ 4σ
√

2K log(pet2/2)/n

P
(
‖θ̂n − θ0‖1 ≥

4λs0

φ2
0

)
≤ 2 e−t

2/2 . (6.1.3)

(More precisely, we consider the trivial generalization of [19, Lemma 6.2] to the case

98
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(XTX/n)ii ≤ K, instead of (XTX/n)ii = 1 for all i ∈ [p].)

Substituting Eq. (6.1.2) in the last bound, we get

P
(
‖∆‖∞ ≥

4λµ∗s0
√
n

φ2
0

)
≤ 2 e−t

2/2 . (6.1.4)

Finally, the claim follows by selecting t so that et
2/2 = pc0 .

6.1.2 Proof of Theorem 2.3.4.(a)

Note that the event En requires two conditions. Hence, its complement is given by

En(φ0, s0,K)c = B1,n(φ0, s0) ∪ B2,n(K) , (6.1.5)

B1,n(φ0, s0) ≡
{

X ∈ Rn×p : min
S: |S|≤s0

φ(Σ̂, S) < φ0, Σ̂ = (XTX/n)
}
, (6.1.6)

B2,n(K) ≡
{

X ∈ Rn×p : max
i∈[p]

Σ̂i,i > K, Σ̂ = (XTX/n)
}
. (6.1.7)

We will bound separately the probability of B1,n and the probability of B2,n. The claim of

Theorem 2.3.4.(a) follows by union bound.

6.1.2.1 Controlling B1,n(φ0, s0)

It is also useful to recall the notion of restricted eigenvalue, introduced by Bickel, Ritov and

Tsybakov [14].

Definition 6.1.1. Given a symmetric matrix Q ∈ Rp×p an integer s0 ≥ 1, and L > 0, the

restricted eigenvalue of Q is defined as

φ2
RE(Q, s0, L) ≡ min

S⊆[p],|S|≤s0
min
θ∈Rp

{〈θ,Q θ〉
‖θS‖22

: θ ∈ Rp, ‖θSc‖1 ≤ L‖θS‖1
}
. (6.1.8)

[116] proves that, if the population covariance satisfies the restricted eigenvalue condi-

tion, then the sample covariance satisfies it as well, with high probability. More precisely,

by [116, Theorem 6] we have

P
(
φRE(Σ̂, s0, 3) ≥ 1

2
φRE(Σ, s0, 9)

)
≥ 1− 2e−n/(4c∗κ

4) , (6.1.9)

for some c∗ ≤ 2000, m ≡ 6×104s0C
2
max/φ

2
RE(Σ, s0, 9), and every n ≥ 4c∗mκ

4 log(120ep/m).
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Note that φRE(Σ, s0, 9) ≥ σmin(Σ)1/2 ≥
√
Cmin, and by Cauchy-Schwartz,

min
S:|S|≤s0

φ(Σ̂, S) ≥ φRE(Σ̂, s0, 3) .

With the definitions in the statement (cf. Eq. (2.3.8)), we therefore have

P
(

min
S:|S|≤s0

φ(Σ̂, S) ≥ 1

2

√
Cmin

)
≥ 1− 2e−c1n . (6.1.10)

Equivalently, P(B1,n(φ0, s0)) ≤ 2 e−c1n.

6.1.2.2 Controlling B2,n(K)

By definition

Σ̂ii − 1 =
1

n

n∑
`=1

(〈X`, ei〉2 − 1) =
1

n

n∑
`=1

u`, . (6.1.11)

Note that u` are independent centered random variables. Further, (recalling that, for any

random variables U, V , ‖U + V ‖ψ1 ≤ ‖U‖ψ1 + ‖V ‖ψ1 , and ‖U2‖ψ1 ≤ 2‖U‖2ψ2
) they are

subexponential with subexponential norm

‖u`‖ψ1 ≤ 2‖〈X`, ei〉2‖ψ1 ≤ 4‖〈X`, ei〉‖2ψ1

≤ 4‖〈Σ−1/2X`,Σ
1/2ei〉‖2ψ1

≤ 4κ2‖Σ1/2ei‖22 = 4κ2Σii = 4κ2 .

By Bernstein-type inequality for centered subexponential random variables, cf. [136], we

get

P
{ 1

n

∣∣∣ n∑
`=1

u`

∣∣∣ ≥ ε} ≤ 2 exp
[
− n

6
min

(
(
ε

4eκ2
)2,

ε

4eκ2

)]
. (6.1.12)

Hence, for all ε such that ε/(eκ2) ∈ [
√

(48 log p)/n, 4],

P
(

max
i∈[p]

Σ̂ii ≥ 1 + ε
)
≤ 2p exp

(
− nε2

24e2κ4

)
≤ 2e−c1n , (6.1.13)

which implies P(X ∈ B2,n(K)) ≤ 2 e−c1n for allK−1 ≥ 20κ2
√

(log p)/n ≥
√

(48e2κ4 log p)/n.
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6.1.3 Proof of Theorem 2.3.4.(b)

Obviously, we have

µmin(X) ≤
∣∣Σ−1Σ̂− I

∣∣ , (6.1.14)

and hence the statement follows immediately from the following estimate.

Lemma 6.1.2. Consider a random design matrix X ∈ Rp×p, with i.i.d. rows having mean

zero and population covariance Σ. Assume that

(i) We have σmin(Σ) ≥ Cmin > 0, and σmax(Σ) ≤ Cmax <∞.

(ii) The rows of XΣ−1/2 are sub-gaussian with κ = ‖Σ−1/2X1‖ψ2.

Let Σ̂ = (XTX)/n be the empirical covariance. Then, for any constant C > 0, the following

holds true.

P
{∣∣∣Σ−1Σ̂− I

∣∣∣
∞
≥ a

√
log p

n

}
≤ 2p−c2 , (6.1.15)

with c2 = (a2Cmin)/(24e2κ4Cmax)− 2.

Proof of Lemma 6.1.2. The proof is based on Bernstein-type inequality for sub-exponential

random variables [136]. Let X̃` = Σ−1/2X`, for ` ∈ [n], and write

Z ≡ Σ−1Σ̂− I =
1

n

n∑
`=1

{
Σ−1X`X

T
` − I

}
=

1

n

n∑
`=1

{
Σ−1/2X̃`X̃

T
` Σ1/2 − I

}
.

Fix i, j ∈ [p], and for ` ∈ [n], let v
(ij)
` = 〈Σ−1/2

i,· , X̃`〉〈Σ
1/2
j,· , X̃`〉−δi,j , where δi,j = 1{i=j}. No-

tice that E(v
(ij)
` ) = 0, and the v

(ij)
` are independent for ` ∈ [n]. Also, Zi,j = (1/n)

∑n
`=1 v

(ij)
` .

By [136, Remark 5.18], we have

‖v(ij)
` ‖ψ1 ≤ 2‖〈Σ−1/2

i,· , X̃`〉〈Σ
1/2
j,· , X̃`〉‖ψ1 .
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Moreover, for any two random variables X and Y , we have

‖XY ‖ψ1 = sup
p≥1

p−1E(|XY |p)1/p

≤ sup
p≥1

p−1E(|X|2p)1/2p E(|Y |2p)1/2p

≤ 2
(

sup
q≥2

q−1/2E(|X|q)1/q
)(

sup
q≥2

q−1/2E(|Y |q)1/q
)

≤ 2‖X‖ψ2 ‖Y ‖ψ2 .

Hence, by assumption (ii), we obtain

‖v(ij)
` ‖ψ1 ≤ 2‖〈Σ−1/2

i,· , X̃`〉‖ψ2‖〈Σ
1/2
j,· , X̃`〉‖ψ2

≤ 2‖Σ−1/2
i,· ‖2‖Σ

1/2
j,· ‖2κ

2 ≤ 2
√
Cmax/Cmin κ

2 .

Let κ′ = 2
√
Cmax/Cminκ

2. Applying Bernstein-type inequality for centered sub-exponential

random variables [136], we get

P
{ 1

n

∣∣∣ n∑
`=1

v
(ij)
`

∣∣∣ ≥ ε} ≤ 2 exp
[
− n

6
min

(
(
ε

eκ′
)2,

ε

eκ′

)]
.

Choosing ε = a
√

(log p)/n, and assuming n ≥ [a/(eκ′)]2 log p, we arrive at

P
{

1

n

∣∣∣ n∑
`=1

v
(ij)
`

∣∣∣ ≥ a√ log p

n

}
≤ 2p−a

2/(6e2κ′2) .

The result follows by union bounding over all possible pairs i, j ∈ [p].

6.1.4 Proof of Theorem 2.2.1

The KKT condition for the Lasso estimator reads

1

n
XT(Y −Xθ̂n) = λv(θ̂n) ,
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with v(θ̂n) ∈ Rp being a vector in the subgradient of the `1 norm at θ̂n. Adding θ̂n − θ0 to

both sides, and taking expectation over the noise, we get

Bias(θ̂∗) = Bias(θ̂n) + λE{v(θ̂n)|X} , (6.1.16)

where θ̂∗ is a debiased estimator of the general form (2.3.2), for M = I.

In the following, we show that there exist a set of design matrices Bn ⊆ Rn×p satisfying

the probability bound (2.2.3) and a constant 0 < c∗∗ ≤ 4800, such that for X ∈ Bn we have

‖Bias(θ̂∗)‖∞ ≤ c∗∗σs0 log p

n
, (6.1.17)

‖E{v(θ̂n)|X}‖∞ ≥ 2

3
. (6.1.18)

Note that by applying triangle inequality to (6.1.16), we have

‖Bias(θ̂n)‖∞ ≥ λ‖E{v(θ̂n)|X}‖∞ − ‖Bias(θ̂∗)‖∞ .

Using the bounds (6.1.17) and (6.1.18) in the above inequality, and invoking the assumption

n ≥ (3c∗∗σs0/c)
2 log p, we obtain the desired result.

We begin with proving inequality (6.1.17). By Theorem 2.3.4.(a), we have

P
(
X ∈ En(1/2, s0, 3/2)

)
≥ 1− 4 e−c1n . (6.1.19)

Further, by Lemma 6.1.2, with Σ̂ ≡ XTX/n, we have

P
(
µ∗(X; I) ≤ 30

√
log p

n

)
≥ 1− 2 p−3 . (6.1.20)

Hence, defining

Bn ≡ En(1/2, s0, 3/2) ∩
{

X ∈ Rn×p : µ∗(X; I) ≤ 30

√
log p

n

}
(6.1.21)

we have the desired probability bound (2.2.3). Let θ̂n = θ̂n(Y,X; I, λ). By Theorem 2.3.3,

we have, for any X ∈ Bn

θ̂∗ = θ0 +
1√
n
Z +

1√
n

∆ , Z|X ∼ N(0, σ2Σ̂) , (6.1.22)
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and further

P
{
‖∆‖∞ ≥

480cσs0 log p√
n

∣∣∣X} ≤ 2p1−(c2/48) . (6.1.23)

Let L = (480σs0 log p)/
√
n. Then,

‖Bias(θ̂u)‖∞ ≤
1√
n
E
{
‖∆‖∞

∣∣X}
=

L√
n

∫ ∞
0

P
{
‖∆‖∞ ≥ Lc

∣∣∣X} dc

≤ 2L√
n

∫ ∞
0

min(1, p1−(c2/48)) dc ≤ 10L√
n
,

where (6.1.23) is used in the second inequality. Therefore, for some constant c∗∗ ≤ 4800,

we have

‖Bias(θ̂∗)‖∞ ≤ c∗∗σ
s0 log p

n
. (6.1.24)

We next prove inequality (6.1.18). Note that v(θ̂n)i = 1 whenever θ̂ni > 0, and |v(θ̂n)i| ≤
1 for all coordinates i. Therefore, letting b0 ≡ 480cσ(s0 log p)/n we have

1− E{v(θ̂n)i|X} ≤ 2P
(
θ̂ni ≤ 0

∣∣∣X) ≤ 2P
(
θ̂ui ≤ λ

∣∣∣X) (6.1.25)

≤ 2P
(
θ0,i +

1√
n
Zi +

1√
n

∆i ≤ λ
∣∣∣X)

≤ 2P
( 1√

n
Zi ≤ λ+ b0 − θ0,i

∣∣∣X)+ 2P
(
‖∆‖∞ >

√
nb0

)
= 2Φ

(
(λ+ b0 − θ0,i)

√
n/(σ2Σ̂ii)

)
+ 4p1−(c2/48)

≤ 2Φ
(

(λ+ b0 − θ0,i)
√

2n/(3σ2)
)

+ 4p1−(c2/48) (6.1.26)

with Φ(x) the standard normal distribution function. Here, we used the relation θ̂u =

θ̂+λv(θ̂) in Eq. (6.1.25). Further, Eq. (6.1.26) holds because maxi∈[p] Σ̂ii ≤ 3/2 on Bn. We

then choose θ0 so that θ0,i ≥ b0 + λ+
√

30σ2/n, for i ∈ supp(θ0). We therefore obtain

E{v(θ̂n)i|X} ≥ 1− 2Φ(−
√

20)− 4p1−(c2/48) ≥ 2

3
, (6.1.27)

where in the last step we used the assumption p ≥ 1348/(c2−48).
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This completes the proof of the theorem.

6.1.5 Proof of Theorem 2.3.5

Let

∆0 ≡
(16ac σ

Cmin

)s0 log p√
n

(6.1.28)

be a shorthand for the bound on ‖∆‖∞ appearing in Eq. (2.3.14). Then we have

P
(
‖∆‖∞ ≥ ∆0

)
≤P
({
‖∆‖∞ ≥ ∆0

}
∩ En(

√
Cmin/2, s0, 3/2) ∩ Gn(a)

)
+ P

(
En(
√
Cmin/2, s0, 3/2)

)
+ P

(
Gcn(a)

)
≤P
({
‖∆‖∞ ≥ ∆0

}
∩ En(

√
Cmin/2, s0, 3/2) ∩ Gn(a)

)
+ 4 e−c1n + 2 p−c2 ,

where, in the firsr equation Ac denotes the complement of event A and the second inequality

follows from Theorem 2.3.4. Notice, in particular, that the bound (2.3.8) can be applied

for K = 3/2 since, under the present assumptions 20κ2
√

(log p)/n ≤ 1/2. Finally

P
({
‖∆‖∞ ≥ ∆0

}
∩ En(

√
Cmin/2, s0, 3/2) ∩ Gn(a)

)
≤ sup

X∈En(
√
Cmin/2,s0,3/2)∩Gn(a)

P
(
‖∆‖∞ ≥ ∆0

∣∣∣X) ≤ 2 p−c̃0 . (6.1.29)

Here the last inequality follows from Theorem 2.3.3 applied per given X ∈ En(
√
Cmin/2, s0, 3/2)∩

Gn(a) and hence using the bound (2.3.6) with φ0 =
√
Cmin/2, K = 3/2, µ∗ = a

√
(log p)/n.

6.1.6 Proof of Corollary 2.3.7

By Theorem 2.3.3, for any X ∈ En(
√
Cmin/2, s0, 3/2) ∩ Gn(a), we have

P
{
‖∆‖∞ ≥ Lc

∣∣∣X} ≤ 2 p1−(c2/48) , L ≡ 16aσ

Cmin

s0 log p√
n

. (6.1.30)
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This is obtained by setting φ0 =
√
Cmin/2, K = 3/2, µ∗ = a

√
(log p)/n in Eq. (2.3.6).

Hence

‖Bias(θ̂u)‖∞ ≤
1√
n
E
{
‖∆‖∞

∣∣X}
=

L√
n

∫ ∞
0

P
{
‖∆‖∞ ≥ Lc

∣∣∣X} dc

≤ 2L√
n

∫ ∞
0

min(1, p1−(c2/48)) dc ≤ 10L√
n
, (6.1.31)

which coincides with Eq. (2.3.17). The probability estimate (2.3.18) simply follows from

Theorem 2.3.4 using union bound.

6.1.7 Proof of Lemma 2.4.2

We will prove that, under the stated assumptions

lim sup
n→∞

sup
‖θ0‖0≤s0

P

{√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ x

}
≤ Φ(x) . (6.1.32)

A matching lower bound follows by a completely analogous argument.

Notice that by Eq. (2.3.13), we have

√
n(θ̂ui − θ0,i)

σ[M Σ̂MT]
1/2
ii

=
eTi MXTW

σ[M Σ̂MT]
1/2
ii

+
∆i

σ[M Σ̂MT]
1/2
ii

. (6.1.33)

Let V = XMTei/(σ[M Σ̂MT]
1/2
ii ) and Z̃ ≡ V TW . We claim that Z̃ ∼ N(0, 1). To see this,

note that ‖V ‖2 = 1, and V and W are independent. Hence,

P(Z̃ ≤ x) = E{P(V TW ≤ x|V )} = E{Φ(x)|V } = Φ(x) , (6.1.34)
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which proves our claim. In order to prove Eq. (6.1.32), fix ε > 0 and write

P

(√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ x

)
= P

(
σ

σ̂
Z̃ +

∆i

σ̂[M Σ̂MT]
1/2
i,i

≤ x

)

≤ P
(σ
σ̂
Z̃ ≤ x+ ε

)
+ P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)

≤ P
(
Z̃ ≤ x+ 2ε+ ε|x|

)
+ P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)

+ P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) .

By taking the limit and using the assumption (2.4.1), we obtain

lim sup
n→∞

sup
‖θ0‖0≤s0

P

(√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ x

)
≤

Φ(x+ 2ε+ ε|x|) + lim sup
n→∞

sup
‖θ0‖0≤s0

P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)
.

Since ε > 0 is arbitrary, it is therefore sufficient to show that the limit on the right hand

side vanishes for any ε > 0.

Note that [M Σ̂MT]i,i ≥ 1/(4Σ̂ii) for all n large enough, by Lemma 2.4.1, and since

µ = a
√

(log p)/n→ 0 as n, p→∞. We have therefore

P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)
≤ P

( 2

σ̂
Σ̂

1/2
ii |∆i| ≥ ε

)
≤ P

( 5

σ
|∆i| ≥ ε

)
+ P

( σ̂
σ
≤ 1

2

)
+ P(Σ̂ii ≥

√
2) .

Note that P
(
(σ̂/σ) ≤ 1/2

)
→ 0 by assumption (2.4.1), and P(Σ̂ii ≥

√
2) → 0 by Theorem

2.3.4.(b). Hence

lim sup
n→∞

sup
‖θ0‖0≤s0

P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)
≤ lim sup

n→∞
sup

‖θ0‖0≤s0
P
(
‖∆‖∞ ≥

εσ

5

)
≤ lim sup

n→∞

(
4 e−c1n + 4 p−(c̃0∧c2)

)
= 0 ,
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where the last inequality follows from Eq. (2.3.14), recalling that s0 = o(
√
n/ log p) and

hence (16acs0 log p)/(Cmin
√
n) ≤ ε/5 for all n large enough.

This completes the proof of Eq. (6.1.32). The matching lower bound follows by the same

argument.

6.1.8 Proof of Theorem 2.4.6

Under the assumptions of Theorem 2.3.5 and assuming s0 = o(
√
n/ log p), we have

√
n(θ̂u − θ0) =

1√
n
MXTW + ∆

with ‖∆‖∞ = o(1). Using Lemma 2.4.1, we have

√
n(θ̂ui − θ0,i)

σ[M Σ̂MT]
1/2
i,i

= Zi + o(1) , with Zi ≡
1√
n

mT
i XTW

σ[mT
i Σ̂mi]1/2

.

The following lemma characterizes the limiting distribution of Zi|X which implies the

validity of the proposed confidence intervals.

Lemma 6.1.3. Suppose that the noise variables Wi are independent with E(Wi) = 0, and

E(W 2
i ) = σ2, and E(|Wi|2+a) ≤ C σ2+a for some a > 0. Let M = (m1, . . . ,mp)

T be the

matrix with rows mT
i obtained by solving optimization problem (2.4.12). For i ∈ [p], define

Zi =
1√
n

mT
i XTW

σ[mT
i Σ̂mi]1/2

.

Under the assumptions of Theorem 2.3.5, for any sequence i = i(n) ∈ [p], and any x ∈ R,

we have

lim
n→∞

P(Zi ≤ x|X) = Φ(x) .

Lemma 6.1.3 is proved in Appendix A.3.
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6.2 Proof of Theorems in Chapter 3

6.2.1 Proof of Theorem 3.1.1

We begin with proving Eq. (3.1.3). Defining Zi ≡
√
n(θ̂ui − θ0,i)/(σ̂[M Σ̂MT]

1/2
i,i ), we have

lim
n→∞

αn(T̂i) = lim
n→∞

sup
θ0

{
P(Pi ≤ α) : i ∈ [p], ‖θ0‖0 ≤ s0, θ0,i = 0

}
= lim

n→∞
sup
θ0

{
P
(

Φ−1(1− α

2
) ≤

√
n|θ̂ui |

σ̂[M Σ̂MT]
1/2
i,i

)
: i ∈ [p], ‖θ0‖0 ≤ s0, θ0,i = 0

}
= lim

n→∞
sup
θ0

{
P
(

Φ−1(1− α

2
) ≤ |Zi|

)
: i ∈ [p], ‖θ0‖0 ≤ s0

}
≤ α ,

where the last inequality follows from Lemma 2.4.2.

We next prove Eq. (3.1.4). Recall that Σ−1
·,i is a feasible solution of (2.3.11), for 1 ≤ i ≤ p

with probability at least 1− 2p−c2 , as per Lemma 6.1.2). On this event, letting mi be the

solution of the optimization problem (2.3.11), we have

mT
i Σ̂mi ≤ Σ−1

i,· Σ̂Σ−1
·,i

= (Σ−1
i,· Σ̂Σ−1

·,i − Σ−1
ii ) + Σ−1

i,i

=
1

n

N∑
j=1

(V 2
j − Σ−1

ii ) + Σ−1
i,i ,

where Vj = Σ−1
i,· Xj are i.i.d. random variables with E(V 2

j ) = Σ−1
ii and sub-gaussian norm

‖Vj‖ψ2 ≤ ‖Σ
−1/2
i,· ‖2‖Σ

−1/2Xj‖ψ2 ≤ κ
√

Σ−1
i,i .

Letting Uj = V 2
j −Σ−1

ii , we have that Uj is zero mean and sub-exponential with ‖Uj‖ψ1 ≤
2‖V 2

j ‖ψ1 ≤ 4‖Vj‖2ψ2
≤ 4κ2Σ−1

ii ≤ 4κ2σmin(Σ)−1 ≤ 4κ2C−1
min ≡ κ′. Hence, by applying

Bernstein inequality (as, for instance, in the proof of Lemma 6.1.2), we have, for ε ≤ eκ′,

P
(
mT
i Σ̂mi ≥ Σ−1

i,i + ε
)
≤ 2 e−(n/6)(ε/eκ′)2

+ 2 p−c2 .

We can make c2 ≥ 2 by a suitable choice of a and therefore, by Borel-Cantelli we have the
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following almost surely

lim sup
n→∞

[mT
i Σ̂mi − Σ−1

i,i ] ≤ 0 . (6.2.1)

Now we are ready to prove the lower bound for the power. Let z∗ ≡ Φ−1(1 − α/2).

Then,

lim inf
n→∞

1− βn(T̂i; γ)

1− β∗i,n(γ)

= lim inf
n→∞

1

1− β∗i,n(γ)
inf
θ0

{
P(Pi ≤ α) : ‖θ0‖0 ≤ s0, |θ0,i| ≥ γ

}
= lim inf

n→∞

1

1− β∗i,n(γ)
inf
θ0

{
P
(
z∗ ≤

√
n|θ̂ui |

σ̂[M Σ̂MT]
1/2
i,i

)
: ‖θ0‖0 ≤ s0, |θ0,i| ≥ γ

}
= lim inf

n→∞

1

1− β∗i,n(γ)
inf
θ0

{
P
(
z∗ ≤

∣∣∣Zi +

√
nθ0,i

σ̂[M Σ̂MT]
1/2
i,i

∣∣∣) : ‖θ0‖0 ≤ s0, |θ0,i| ≥ γ
}

(a)

≥ lim inf
n→∞

1

1− β∗i,n(γ)
inf
θ0

{
P
(
z∗ ≤

∣∣∣Zi +

√
nγ

σ[Σ−1
i,i ]1/2

∣∣∣) : ‖θ0‖0 ≤ s0

}
= lim inf

n→∞

1

1− β∗i,n(γ)

{
1− Φ

(
z∗ −

√
nγ

σ[Σ−1
i,i ]1/2

)
+ Φ

(
− z∗ −

√
nγ

σ[Σ−1
i,i ]1/2

)}
= lim inf

n→∞

1

1− β∗i,n(γ)
G
(
α,

√
nγ

σ[Σ−1
i,i ]1/2

)
= 1 .

Here (a) follows from Eq. (6.2.1) and the fact |θ0,i| ≥ γ.

6.2.2 Proof of Theorem 3.2.1

Let Fp,s0 ≡ {x ∈ Rp : ‖x‖0 ≤ s0}, and fix ε ∈ (0, 1/10). By definition,

FWER(T̂F, n) = sup
θ0∈Fp,s0

P

{
∃i ∈ [p] \ supp(θ0), s.t.

√
n |θ̂ui − θ0,i|

σ̂[M Σ̂MT]
1/2
i,i

≥ Φ−1
(

1− α

2p

)}

≤ sup
θ0∈Fp,s0

P

{
∃i ∈ [p] \ supp(θ0), s.t.

√
n |θ̂ui − θ0,i|

σ[M Σ̂MT]
1/2
i,i

≥ (1− ε)Φ−1
(

1− α

2p

)}

+ sup
θ0∈Fp,s0

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) .
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Since the second term vanishes as n → ∞ by Eq. (2.4.1). Using Bonferroni inequality,

letting zα(ε) ≡ (1− ε)Φ−1
(
1− α

2p

)
, we have

lim sup
n→∞

FWER(T̂F, n) ≤ lim sup
n→∞

p∑
i=1

sup
θ0∈Fp,s0 ,θ0,i=0

P

{√
n |θ̂ui − θ0,i|

σ[M Σ̂MT]
1/2
i,i

≥ zα(ε)

}

= lim sup
n→∞

p∑
i=1

sup
θ0∈Fp,s0 ,θ0,i=0

P

{∣∣∣∣∣Z̃i +
∆i

σ[M Σ̂MT]
1/2
ii

∣∣∣∣∣ ≥ zα(ε)

}
,

where, by Theorem 2.3.5, Z̃i ∼ N(0, 1) and ∆i is given by Eq. (2.3.13). We then have

lim sup
n→∞

FWER(T̂F, n) ≤ lim sup
n→∞

p∑
i=1

P
{
|Z̃i| ≥ zα(ε)− ε

}
+ lim sup

n→∞

p∑
i=1

sup
θ0∈Fp,s0 ,θ0,i=0

P

{
‖∆‖∞ ≥

εσ

2Σ̂
1/2
ii

}
≤ 2p

(
1− Φ(zα(ε)− ε)

)
+ lim sup

n→∞
pmax
i∈[p]

P(Σ̂ii ≥ 2)

+ lim sup
n→∞

sup
θ0∈Fp,s0 ,θ0,i=0

pP
{
‖∆‖∞ ≥

εσ

4

}
, (6.2.2)

where in the first inequality, we used [M Σ̂MT]i,i ≥ 1/(4Σ̂ii) for all n large enough, by

Lemma 2.4.1, and since µ = a
√

(log p)/n → 0 as n, p → ∞. Now, the second term in the

right hand side of Eq. (6.2.2) vanishes by Theorem 2.3.4.(a), and the last term is zero by

Theorem 2.3.5, since s0 = o(
√
n/ log p). Therefore

lim sup
n→∞

FWER(T̂F, n) ≤ 2p
(
1− Φ(zα(ε)− ε)

)
. (6.2.3)

The claim follows by letting ε→ 0.

6.2.3 Proof of Lemma 3.3.6

Fix α ∈ [0, 1], γ > 0, and assume that the minimum error rate for type II errors in testing

hypothesis H0,i at significance level α is β = βopt
i,n (α; γ). Further fix ξ > 0 arbitrarily small.

By definition there exists a statistical test Ti,X : Rm → {0, 1} such that Pθ(Ti,X(Y ) = 1) ≤ α
for any θ ∈ R0 and Pθ(Ti,X(Y ) = 0) ≤ β + ξ for any θ ∈ R1 (with R0,R1 ∈ Rp defined as
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in Definition 3.3.5). Equivalently:

E
{
Pθ(Ti,X(Y ) = 1|X)

}
≤ α, for any θ ∈ R0,

E
{
Pθ(Ti,X(Y ) = 0|X)

}
≤ β + ξ, for any θ ∈ R1.

(6.2.4)

We now take expectation of these inequalities with respect to θ ∼ Q0 (in the first case)

and θ ∼ Q1 (in the second case) and we get, with the notation introduced in the Definition

3.3.5,

E
{
PQ,0,X(Ti,X(Y ) = 1)

}
≤ α ,

E
{
PQ,1,X(Ti,X(Y ) = 0)

}
≤ β + ξ .

Call αX ≡ PQ,0,X(Ti,X(Y ) = 1). By assumption, for any test T , we have PQ,1,X(Ti,X(Y ) =

0) ≥ βbin
i,X(αX;Q) and therefore the last inequalities imply

E
{
αX

}
≤ α ,

E
{
βbin
i,X(αX;Q)

}
≤ β + ξ .

(6.2.5)

The thesis follows since ξ > 0 is arbitrary.

6.2.4 Proof of Lemma 3.3.7

Fix X, α, i, S as in the statement and assume, without loss of generality, P⊥S x̃i 6= 0, and

rank(XS) = |S| < n. We take Q0 = N(0, J) where J ∈ Rp×p is the diagonal matrix with

Jjj = a if j ∈ S and Jjj = 0 otherwise. Here a ∈ R+ and will be chosen later. For the same

covariance matrix J , we let Q1 = N(γ ei, J) where ei is the i-th element of the standard

basis. Recalling that i /∈ S, and |S| < s0, the support of Q0 is in R0 and the support of Q1

is in R1.

Under PQ,0,X we have Y ∼ N(0, aXSXT
S + σ2I), and under PQ,1,X we have Y ∼

N(γx̃i, aXSXT
S + σ2I). Hence the binary hypothesis testing problem under study reduces

to the problem of testing a null hypothesis on the mean of a Gaussian random vector with

known covariance against a simple alternative. It is well known that the most powerful test

[89, Chapter 8] is obtained by comparing the ratio PQ,0,X(Y )/PQ,1,X(Y ) with a threshold.
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Equivalently, the most powerful test is of the form

Ti,X(Y ) = I
{
〈γx̃i, (aXSXT

S + σ2I)−1Y 〉 ≥ c
}
, (6.2.6)

for some c ∈ R that is to be chosen to achieve the desired significance level α. Letting

α ≡ 2Φ
(
− c

γ‖(aXSXT
S + σ2I)−1/2x̃i‖

)
, (6.2.7)

it is a straightforward calculation to drive the power of this test as

G
(
α, γ‖(aXSXT

S + σ2I)−1/2x̃i‖
)
,

where the function G(α, u) is defined as per Eq. (3.3.2). Next we show that the power of

this test converges to 1 − βoracle
i,X (α;S, γ) as a → ∞. Hence the claim is proved by taking

a ≥ a(ξ) for some a(ξ) large enough.

Write

(aXSXT
S + σ2I)−1/2 =

1

σ

(
I +

a

σ2
XSXT

S

)−1/2

=
1

σ

{
I−XS

(σ2

a
I + XT

SXS

)−1
XT
S

}1/2
, (6.2.8)

where the second step follows from matrix inversion lemma. Clearly, as a → ∞, the right

hand side of the above equation converges to (1/σ) P⊥S . Therefore, the power converges to

1− βoracle
i,X (α;S, γ) = G(α, γσ−1‖P⊥S x̃i‖).

6.2.5 Proof of Theorem 3.3.3

Let uX ≡ γ‖P⊥S x̃i‖2/σ. By Lemma 3.3.6 and 3.3.7, we have,

1− βopt
i,n (α; γ) ≤ sup

{
EG(αX, uX) : E(αX) ≤ α

}
, (6.2.9)

with the sup taken over measurable functions X 7→ αX, andG(α, u) defined as per Eq. (3.3.2).

It is easy to check that α 7→ G(α, u) is concave for any u ∈ R+ and u 7→ G(α, u) is
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non-decreasing for any α ∈ [0, 1]. Further G takes values in [0, 1]. Hence

EG(αX, uX) ≤ E
{
G(αX, uX)I(u ≤ u0)

}
+ P(uX > u0)

≤ E
{
G(αX, u0)

}
+ P(uX > u0)

≤ G(E(αX), u0) + P(uX > u0)

≤ G(α, u0) + P(uX > u0)

(6.2.10)

Since x̃i and XS are jointly Gaussian, we have

x̃i = Σi,SΣ−1
S,SXS + Σ

1/2
i|S zi , (6.2.11)

with zi ∼ N(0, In×n) independent of XS . It follows that

uX = (γ/σ) Σ
1/2
i|S ‖P

⊥
S zi‖2

d
= (γ/σ)

√
Σi|SZn−s0+1 , (6.2.12)

with Zn−s0+1 a chi-squared random variable with n−s0 +1 degrees of freedom. The desired

claim follows by taking u0 = (γ/σ)
√

Σi|S(n− s0 + `).

6.3 Proofs of Theorems in Chapter 4

6.3.1 Proof of Theorem 4.1.3

Since {(Σ(p) = Ip×p, θ0(p), n(p), σ(p))}p∈N has a standard distributional limit, the empirical

distribution of {(θ0,i, θ̂
u
i )}pi=1 converges weakly to (Θ0,Θ0 + τZ) (with probability one). By

the portmanteau theorem, and the fact that lim inf
p→∞

σ(p)/
√
n(p) = σ0, we have

P(0 < |Θ0| < γ0σ0) ≤ lim
p→∞

1

p

p∑
i=1

I
(

0 < θ0,i < γ0
σ(p)√
n(p)

)
= 0 . (6.3.1)

In addition, since γ0σ0/2 is a continuity point of the distribution of Θ0, we have

lim
p→∞

1

p

p∑
i=1

I(|θ0,i| ≥
γ0σ0

2
) = P(|Θ0| ≥

γ0σ0

2
). (6.3.2)
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Now, by Eq. (6.3.1), P(|Θ0| ≥ γ0σ0/2) = P(Θ0 6= 0). Further, I(|θ0,i| ≥ γ0σ0/2) = I(θ0,i 6=
0) for 1 ≤ i ≤ p, as p→∞. Therefore, Eq. (6.3.2) yields

lim
p→∞

1

p
|S0(p)| = lim

p→∞

1

p

p∑
i=1

I(θ0,i 6= 0) = P(Θ0 6= 0). (6.3.3)

Hence,

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

Ti,X(Y ) = lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

I(Pi ≤ α)

=
1

P(Θ0 6= 0)
lim
p→∞

1

p

p∑
i=1

I(Pi ≤ α, i ∈ S0(p))

=
1

P(Θ0 6= 0)
lim
p→∞

1

p

p∑
i=1

I
(

Φ−1
(

1− α

2

)
≤ |θ̂

u
i |
τ
, |θ0,i| ≥

γ0σ(p)√
n(p)

)
≥ 1

P(Θ0 6= 0)
P
(

Φ−1
(

1− α

2

)
≤
∣∣Θ0

τ
+ Z

∣∣, |Θ0| ≥ γ0σ0

)
.

Note that τ depends on the distribution pΘ0 . Since |S0(p)| ≤ εp, using Eq. (6.3.3), we

have P(Θ0 6= 0) ≤ ε, i.e. pΘ0 is ε-sparse. Let τ̃ denote the maximum τ corresponding to

densities in the family of ε-sparse densities. As shown in [42], τ̃ = τ∗σ0, where τ∗ is defined

by Eqs. (4.1.7) and (4.1.8). Consequently,

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

Ti,X(Y ) ≥ P
(

Φ−1
(

1− α

2

)
≤
∣∣γ0

τ∗
+ Z

∣∣)

= 1− P
(
− Φ−1

(
1− α

2

)
− γ0

τ∗
≤ Z ≤ Φ−1

(
1− α

2

)
− γ0

τ∗

)
= 1−

{
Φ
(

Φ−1
(

1− α

2

)
− γ0/τ∗

)
− Φ

(
− Φ−1

(
1− α

2

)
− γ0/τ∗

)}
= G

(
α,
γ0

τ∗

)
. (6.3.4)

Now, we take the expectation of both sides of Eq. (6.3.4) with respect to the law of

random design X and random noise W . Changing the order of limit and expectation by

applying dominated convergence theorem and using linearity of expectation, we obtain

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

EX,W {Ti,X(Y )} ≥ G
(
α,
γ0

τ∗

)
. (6.3.5)
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Since Ti,X(Y ) takes values in {0, 1}, we have EX,W {Ti,X(Y )} = Pθ0(p)(Ti,X(Y ) = 1). The re-

sult follows by noting that the columns of X are exchangeable and therefore Pθ0(p)(Ti,X(Y ) =

1) does not depend on i.

6.3.2 Proof of Theorem 4.2.3

Since the sequence {Σ(p), θ0(p), n(p), σ(p)}p∈N has a standard distributional limit, with

probability one the empirical distribution of {(θ0,i, θ̂
u
i , (Σ

−1)ii)}pi=1 converges weakly to the

distribution of (Θ0,Θ0 + τΥ1/2Z,Υ). Therefore, with probability one, the empirical distri-

bution of {
θ̂ui − θ0,i

τ [(Σ−1)ii]1/2

}p
i=1

converges weakly to N(0, 1). Hence,

lim
p→∞

1

|Sc0(p)|
∑

i∈Sc0(p)

Ti,X(Y ) = lim
p→∞

1

|Sc0(p)|
∑

i∈Sc0(p)

I(Pi ≤ α)

=
1

P(Θ0 = 0)
lim
p→∞

1

p

p∑
i=1

I(Pi ≤ α, i ∈ Sc0(p))

=
1

P(Θ0 = 0)
lim
p→∞

1

p

p∑
i=1

I
(

Φ−1
(

1− α

2

)
≤ |θ̂ui |
τ [(Σ−1)ii]1/2

, θ0,i = 0

)
=

1

P(Θ0 = 0)
P
(

Φ−1
(

1− α

2

)
≤ |Z|, Θ0 = 0

)
= P

(
Φ−1

(
1− α

2

)
≤ |Z|

)
= α.

Applying the same argument as in the proof of Theorem 4.1.3, we obtain the following by

taking the expectation of both sides of the above equation

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

Pθ0(p)(Ti,X(Y ) = 1) = α . (6.3.6)

In particular, for the standard Gaussian design (cf. Theorem 4.1.2), since the columns of

X are exchangeable we get limp→∞ Pθ0(p)(Ti,X(Y ) = 1) = α for all i ∈ S0(p).
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6.3.3 Proof of Theorem 4.2.4

The proof of Theorem 4.2.4 proceeds along the same lines as the proof of Theorem 4.1.3.

Since {(Σ(p), θ0(p), n(p), σ(p))}p∈N has a standard distributional limit, with probability one

the empirical distribution of {(θ0,i, θ̂
u
i , (Σ

−1)ii)}pi=1 converges weakly to the distribution of

(Θ0,Θ0 + τΥ1/2Z,Υ). Similar to Eq. (6.3.3), we have

lim
p→∞

1

p
|S0(p)| = P(Θ0 6= 0). (6.3.7)

Also

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

Ti,X(Y )

= lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

I(Pi ≤ α)

=
1

P(Θ0 6= 0)
lim
p→∞

1

p

p∑
i=1

I(Pi ≤ α, i ∈ S0(p))

=
1

P(Θ0 6= 0)
lim
p→∞

1

p

p∑
i=1

I
(

Φ−1
(

1− α

2

)
≤ |θ̂ui |
τ [(Σ−1)ii]1/2

,
|θ0,i|

[(Σ−1)ii]1/2
≥ γ0

)
=

1

P(Θ0 6= 0)
P
(

Φ−1
(

1− α

2

)
≤
∣∣ Θ0

τΥ1/2
+ Z

∣∣, |Θ0|
Υ1/2

≥ γ0

)
≥ 1

P(Θ0 6= 0)
P
(

Φ−1(1− α

2
) ≤

∣∣γ0

τ
+ Z

∣∣)
= 1−

{
Φ
(

Φ−1
(

1− α

2

)
− γ0

τ

)
− Φ

(
− Φ−1

(
1− α

2

)
− γ0

τ

)}
= G

(
α,
γ0

τ

)
. (6.3.8)

Similar to the proof of Theorem 4.1.3, by taking the expectation of both sides of the

above inequality we get

lim
p→∞

1

|S0(p)|
∑

i∈S0(p)

Pθ0(Ti,X(Y ) = 1) ≥ G
(
α,
γ0

τ

)
. (6.3.9)
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Chapter 7

Reconstruction at Optimal Rate

We consider noisy linear model wherein m linear measurements are taken of an unknown

n-dimensional signal x ∈ Rn as per the following

y = Ax+ w , (7.0.1)

where y ∈ Rm denotes the vector of measurements, A ∈ Rm×n represents the measurement

(sensing) matrix, and w ∈ Rn is the measurement noise.

The reconstruction problem requires to reconstruct x given y and A. We let δ =

limn→∞m/n be the asymptotic undersampling rate. In Part II of this dissertation, we

present a construction of matrix A and a reconstruction algorithm that solves the recon-

struction problem at information-theoretically optimal rate, namely δ > d(pX) for exact

reconstruction of x from noiseless measurements (w = 0), and δ > D(pX) for robust re-

construction under the noisy model. Here, it is assumed that the empirical distribution of

the entries of x converges weakly to a probability measure pX on the real line and d(pX)

and D(pX) respectively denote the (upper) Rényi information dimension and the (upper)

MMSE dimension of pX , defined below. In the next section, we state formally our results

and discuss their implications and limitations, as well as relations with earlier work.

7.1 Formal statement of the results

We consider the noisy model (1.3.2). An instance of the problem is therefore completely

specified by the triple (x,w,A). We will be interested in the asymptotic properties of

119
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sequence of instances indexed by the problem dimensions S = {(x(n), w(n), A(n))}n∈N. We

recall a definition from [8]. (More precisely, [8] introduces the B = 1 case of this definition.)

Definition 7.1.1. The sequence of instances S = {x(n), w(n), A(n)}n∈N indexed by n is

said to be a B-converging sequence if x(n) ∈ Rn, w(n) ∈ Rm, A(n) ∈ Rm×n with m = m(n)

is such that m/n→ δ ∈ (0,∞), and in addition the following conditions hold 1 :

(a) The empirical distribution of the entries of x(n) converges weakly to a probability

measure pX on R with bounded second moment. Further n−1
∑n

i=1 xi(n)2 → E{X2},
where the expectation is taken with respect to pX .

(b) The empirical distribution of the entries of w(n) converges weakly to a probability mea-

sure pW on R with bounded second moment. Further m−1
∑m

i=1wi(n)2 → E{W 2} ≡
σ2, where the expectation is taken with respect to pW .

(c) If {ei}1≤i≤n, ei ∈ Rn denotes the canonical basis, then lim sup
n→∞

maxi∈[n] ‖A(n)ei‖2 ≤ B,

lim inf
n→∞

mini∈[n] ‖A(n)ei‖2 ≥ 1/B.

We further say that {(x(n), w(n))}n≥0 is a converging sequence of instances, if they satisfy

conditions (a) and (b). We say that {A(n)}n≥0 is a B-converging sequence of sensing

matrices if they satisfy condition (c) above, and we call it a converging sequence if it is B-

converging for some B. Similarly, we say S is a converging sequence if it is B-converging

for some B.

Finally, if the sequence {(x(n), w(n), A(n))}n≥0 is random, the above conditions are

required to hold almost surely.

Notice that standard normalizations of the sensing matrix correspond to ‖A(n)ei‖22 = 1

(and hence B = 1) or to ‖A(n)ei‖22 = m(n)/n. The former corresponds to normalized

columns and the latter corresponds to normalized rows. Since throughout we assume

m(n)/n → δ ∈ (0,∞), these conventions only differ by a rescaling of the noise variance.

In order to simplify the proofs, we allow ourselves somewhat more freedom by taking B a

fixed constant.

1If (µk)k∈N is a sequence of measures and µ is another measure, all defined on R, the weak convergence
of µk to µ along with the convergence of their second moments to the second moment of µ is equivalent to
convergence in 2-Wasserstein distance [138]. Therefore, conditions (a)-(b) are equivalent to the following.
The empirical distributions of the signal x(n) and the empirical distributions of noise w(n) converge in
2-Wasserstein distance.
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Given a sensing matrix A, and a vector of measurements y, a reconstruction algorithm

produces an estimate x̂(A; y) ∈ Rn of x. In our work we assume that the empirical dis-

tribution pX , and the noise level σ2 are known to the estimator, and hence the mapping

x̂ : (A, y) 7→ x̂(A; y) implicitly depends on pX and σ2. Since however pX , σ
2 are fixed

throughout, we avoid the cumbersome notation x̂(A, y, pX , σ
2).

Given a converging sequence of instances S = {x(n), w(n), A(n)}n∈N, and an estimator

x̂, we define the asymptotic per-coordinate reconstruction mean square error as

MSE(S; x̂) = lim sup
n→∞

1

n

∥∥x̂(A(n); y(n)
)
− x(n)

∥∥2
. (7.1.1)

Notice that the quantity on the right hand side depends on the matrix A(n), which will be

random, and on the signal and noise vectors x(n), w(n) which can themselves be random.

Our results hold almost surely with respect to these random variables. In some applications

it is more customary to take the expectation with respect to the noise and signal distribution,

i.e., to consider the quantity

MSE(S; x̂) = lim sup
n→∞

1

n
E
∥∥x̂(A(n); y(n)

)
− x(n)

∥∥2
. (7.1.2)

It turns out that the almost sure bounds imply, in the present setting, bounds on the

expected mean square error MSE, as well.

In this part we study a specific low-complexity estimator, based on the AMP algorithm

first proposed in [42]. AMP is an iterative algorithm derived from the theory of belief

propagation in graphical models [99]. At each iteration t, it keeps track of an estimate

xt ∈ Rn of the unknown signal x. This is used to compute residuals (y−Axt) ∈ Rm. These

correspond to the part of observations that is not explained by the current estimate xt.

The residuals are then processed through a matched filter operator (roughly speaking, this

amounts to multiplying the residuals by the transpose of A) and then applying a non-linear

denoiser, to produce the new estimate xt+1.

Formally, we start with an initial guess x1
i = E{X} for all i ∈ [n] and proceed by

xt+1 = ηt(x
t + (Qt �A)∗rt) , (7.1.3)

rt = y −Axt + bt � rt−1 . (7.1.4)

The second equation corresponds to the computation of new residuals from the current
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estimate. The memory term (also known as ‘Onsager term’ in statistical physics) plays

a crucial role as emphasized in [42, 7, 6, 74]. The first equation describes matched filter,

with multiplication by (Qt�A)∗, followed by application of the denoiser ηt. Throughout �
indicates Hadamard (entrywise) product and X∗ denotes the transpose of matrix X.

For each t, the denoiser ηt : Rn → Rn is a differentiable non-linear function that depends

on the input distribution pX . Further, ηt is separable2, namely, for a vector v ∈ Rn, we

have ηt(v) = (η1,t(v1), . . . , ηn,t(vn)). The matrix Qt ∈ Rm×n and the vector bt ∈ Rm can be

efficiently computed from the current state xt of the algorithm, Further Qt does not depend

on the problem instance and hence can be precomputed. BothQt and bt are block-constants,

i.e., they can be partitioned into blocks such that within each block all the entries have the

same value. This property makes their evaluation, storage and manipulation particularly

convenient.

We refer to the next section for explicit definitions of these quantities. A crucial element

is the specific choice of ηi,t. The general guiding principle is that the argument yt =

xt + (Qt � A)∗rt in Eq. (7.1.3) should be interpreted as a noisy version of the unknown

signal x, i.e., yt = x + noise. The denoiser ηt must therefore be chosen as to minimize the

mean square error at iteration (t + 1). The papers [42, 33] take a minimax point of view,

and hence study denoisers that achieve the smallest mean square error over the worst case

signal x in a certain class. For instance, coordinate-wise soft thresholding is nearly minimax

optimal over the class of sparse signals [33]. Here we instead assume that the prior pX is

known, and hence the choice of ηi,t is uniquely dictated by the objective of minimizing the

mean square error at iteration t+ 1. In other words ηi,t takes the form of a Bayes optimal

estimator for the prior pX . In order to stress this point, we will occasionally refer to this

as the Bayes optimal AMP algorithm. As shown in Appendix C.2, xt is (almost surely) a

local Lipschitz continuous function of the observations y.

Finally notice that [43, 99] also derived AMP starting from a Bayesian graphical models

point of view, with the signal x modeled as random with i.i.d. entries. The algorithm in

Eqs. (7.1.3), (7.1.4) differs from the one in [43] in that the matched filter operation requires

scaling A by the matrix Qt. This is related to the fact that we will use a matrix A with

independent but not identically distributed entries and, as a consequence, the accuracy of

each entry xti depends on the index i as well as on t.

We denote by MSEAMP(S;σ2) the mean square error achieved by the Bayes optimal

2We refer to [33] for a study of non-separable denoisers in AMP algorithms.
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AMP algorithm, where we made explicit the dependence on σ2. Since the AMP estimate

depends on the iteration number t, the definition of MSEAMP(S;σ2) requires some care.

The basic point is that we need to iterate the algorithm only for a constant number of

iterations, as n gets large. Formally, we let

MSEAMP(S;σ2) ≡ lim
t→∞

lim sup
n→∞

1

n

∥∥xt(A(n); y(n)
)
− x(n)

∥∥2
. (7.1.5)

As discussed above, limits will be shown to exist almost surely, when the instances (x(n),

w(n),A(n)) are random, and almost sure upper bounds on MSEAMP(S;σ2) will be proved.

(Indeed MSEAMP(S;σ2) turns out to be deterministic.) On the other hand, one might be

interested in the expected error

MSEAMP(S;σ2) ≡ lim
t→∞

lim sup
n→∞

1

n
E
{∥∥xt(A(n); y(n)

)
− x(n)

∥∥2}
. (7.1.6)

7.1.1 Rényi information dimension

We will tie the success of our compressed sensing scheme to the fundamental information-

theoretic limit established in [143]. The latter is expressed in terms of the Rényi information

dimension of the probability measure pX .

Definition 7.1.2. Let pX be a probability measure over R, and X ∼ pX . The upper and

lower information dimension of pX are defined as

d(pX) = lim sup
`→∞

H([X]`)

log `
. (7.1.7)

d(pX) = lim inf
`→∞

H([X]`)

log `
. (7.1.8)

Here H( · ) denotes Shannon entropy and, for x ∈ R, [x]` ≡ b`xc/`, and bxc ≡ max{k ∈
Z : k ≤ x}. If the lim sup and lim inf coincide, then we let d(pX) = d(pX) = d(pX).

Whenever the limit of H([X]`)/ log ` exists and is finite3, the Rényi information di-

mension can also be characterized as follows. Write the binary expansion of X, X =

D0.D1D2D3 . . . with Di ∈ {0, 1} for i ≥ 1. Then d(pX) is the entropy rate of the stochastic

process {D1, D2, D3, . . . }. It is also convenient to recall the following result from [114, 143].

3This condition can be replaced by H(bXc) < ∞. A sufficient condition is that E[log(1 + |X|)] < ∞,
which is certainly satisfied if X has a finite variance [144].
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Proposition 7.1.3 ([114, 143]). Let pX be a probability measure over R, and X ∼ pX .

Assume H(bXc) to be finite. If pX = (1 − ε)νd + εν̃ with νd a discrete distribution (i.e.,

with countable support), then d(pX) ≤ ε. Further, if ν̃ has a density with respect to Lebesgue

measure, then d(pX) = d(pX) = d(pX) = ε. In particular, if P{X 6= 0} ≤ ε then d(pX) ≤ ε.

7.1.2 MMSE dimension

In order to present our result concerning the robust reconstruction, we need the definition

of MMSE dimension of the probability measure pX .

Given the signal distribution pX , we let mmse(s) denote the minimum mean square error

in estimating X ∼ pX from a noisy observation in gaussian noise, at signal-to-noise ratio s.

Formally

mmse(s) ≡ inf
η:R→R

E
{[
X − η(

√
sX + Z)

]2}
, (7.1.9)

where Z ∼ N(0, 1). Since the minimum mean square error estimator is just the conditional

expectation, this is given by

mmse(s) = E
{[
X − E[X|Y ]

]2}
, Y =

√
sX + Z . (7.1.10)

Notice that mmse(s) is naturally well defined for s = ∞, with mmse(∞) = 0. We will

therefore interpret it as a function mmse : R+ → R+ where R+ ≡ [0,∞] is the completed

non-negative real line.

We recall the inequality

0 ≤ mmse(s) ≤ 1

s
, (7.1.11)

obtained by the estimator η(y) = y/
√
s. A finer characterization of the scaling of mmse(s)

is provided by the following definition.

Definition 7.1.4 ([144]). The upper and lower MMSE dimension of the probability measure

pX over R are defined as

D(pX) = lim sup
s→∞

s ·mmse(s) , (7.1.12)

D(pX) = lim inf
s→∞

s ·mmse(s) . (7.1.13)
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If the lim sup and lim inf coincide, then we let D(pX) = D(pX) = D(pX).

It is also convenient to recall the following result from [144].

Proposition 7.1.5 ([144]). If H(bXc) <∞, then

D(pX) ≤ d(pX) ≤ d(pX) ≤ D(pX). (7.1.14)

Hence, if D(pX) exists, then d(pX) exists and D(pX) = d(pX). In particular, this is the

case if pX = (1 − ε)νd + εν̃ with νd a discrete distribution (i.e., with countable support),

and ν̃ has a density with respect to Lebesgue measure.

7.1.3 Main results

We are now in position to state our main results. The first one states that for any under-

sampling rate above Renyi information dimension δ > d(pX), we have MSEAMP(S;σ2)→ 0

as σ2 → 0 with, in particular, MSEAMP(S;σ2 = 0) = 0.

Theorem 7.1.6. Let pX be a probability measure on the real line and assume

δ > d(pX). (7.1.15)

Then there exists a random converging sequence of sensing matrices {A(n)}n≥0, A(n) ∈
Rm×n, m(n)/n→ δ (with distribution depending only on δ), for which the following holds.

For any ε > 0, there exists σ0 = σ0(ε, δ, pX) such that for any converging sequence of

instances {(x(n), w(n))}n≥0 with parameters (pX , σ
2, δ) and σ ∈ [0, σ0], we have, almost

surely

MSEAMP(S;σ2) ≤ ε . (7.1.16)

Further, under the same assumptions, we have MSEAMP(S;σ2) ≤ ε.

The second theorem characterizes the rate at which the mean square error goes to 0. In

particular, we show that MSEAMP(S;σ2) = O(σ2) provided δ > D(pX).

Theorem 7.1.7. Let pX be a probability measure on the real line and assume

δ > D(pX). (7.1.17)
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Then there exists a random converging sequence of sensing matrices {A(n)}n≥0, A(n) ∈
Rm×n, m(n)/n → δ (with distribution depending only on δ) and a finite stability constant

C = C(pX , δ), such that the following is true. For any converging sequence of instances

{(x(n), w(n))}n≥0 with parameters (pX , σ
2, δ), we have, almost surely

MSEAMP(S;σ2) ≤ C σ2 . (7.1.18)

Further, under the same assumptions, we have MSEAMP(S;σ2) ≤ C σ2.

Finally, the sensitivity to small noise is bounded as

lim sup
σ→0

1

σ2
MSEAMP(S;σ2) ≤ 4δ − 2D(pX)

δ −D(pX)
. (7.1.19)

The performance guarantees in Theorems 7.1.6 and 7.1.7 are achieved with special con-

structions of the sensing matrices A(n). These are matrices with independent Gaussian

entries with unequal variances (heteroscedastic entries), with a band diagonal structure.

The motivation for this construction, and connection with coding theory is further dis-

cussed in Section 9.1, while formal definitions are given in Section 8.1 and 8.4.

Notice that, by Proposition 7.1.5, D(pX) ≥ d(pX), and D(pX) = d(pX) for a broad class

of probability measures pX , including all measures that do not have a singular continuous

component (i.e., decomposes into a pure point mass component and an absolutely continuous

component).

The noiseless model (1.3.1) is covered as a special case of Theorem 7.1.6 by taking σ2 ↓ 0.

For the reader’s convenience, we state the result explicitly as a corollary.

Corollary 7.1.8. Let pX be a probability measure on the real line. Then, for any δ > d(pX)

there exists a random converging sequence of sensing matrices {A(n)}n≥0, A(n) ∈ Rm×n,

m(n)/n → δ (with distribution depending only on δ) such that, for any sequence of vec-

tors {x(n)}n≥0 whose empirical distribution converges to pX , the Bayes optimal AMP

asymptotically almost surely recovers x(n) from m(n) measurements y = A(n)x(n) ∈
Rm(n). (By ‘asymptotically almost surely’ we mean MSEAMP(S; 0) = 0 almost surely, and

MSEAMP(S; 0) = 0.)

Note that it would be interesting to prove a stronger guarantee in the noiseless case,

namely limt→∞ x
t(A(n); y(n)) = x(n) with probability converging to 1 as n → ∞. The

present work does not lead to a proof of this statement.
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7.2 Discussion

Theorem 7.1.6 and Corollary 7.1.8 are, in many ways, puzzling. It is instructive to spell

out in detail a few specific examples, and discuss interesting features.

Example 1 (Bernoulli-Gaussian signal). Consider a Bernoulli-Gaussian distribu-

tion

pX = (1− ε) δ0 + ε γµ,σ (7.2.1)

where γµ,σ(dx) = (2πσ2)−1/2 exp{−(x−µ)2/(2σ2)}dx is the Gaussian measure with mean µ

and variance σ2. This model has been studied numerically in a number of papers, including

[4, 82]. By Proposition 7.1.3, we have d(pX) = ε, and by Proposition 7.1.5, D(pX) =

D(pX) = ε as well.

Construct random signals x(n) ∈ Rn by sampling i.i.d. coordinates x(n)i ∼ pX .

Glivenko-Cantelli’s theorem implies that the empirical distribution of the coordinates of

x(n) converges almost surely to pX , hence we can apply Corollary 7.1.8 to recover x(n)

from m(n) = nε+o(n) spatially coupled measurements y(n) ∈ Rm(n). Notice that the num-

ber of non-zero entries in x(n) is, almost surely, k(n) = nε+o(n). Hence, we can restate the

implication of Corollary 7.1.8 as follows. A sequence of vectors x(n) with Bernoulli-Gaussian

distribution and k(n) nonzero entries can almost surely recovered by m(n) = k(n) + o(n)

spatially coupled measurements.

Example 2 (Mixture signal with a point mass). The above remarks generalize

immediately to arbitrary mixture distributions of the form

pX = (1− ε) δ0 + ε q , (7.2.2)

where q is a measure that is absolutely continuous with respect to Lebesgue measure, i.e.,

q(dx) = f(x) dx for some measurable function f . Then, by Proposition 7.1.3, we have

d(pX) = ε, and by Proposition 7.1.5, D(pX) = D(pX) = ε as well. Similar to Example

1, the number of non-zero entries in x(n) is, almost surely, k(n) = nε + o(n), and we can

recover x(n) from m(n) = nε+ o(n) spatially coupled measurements. This can be recast as

follows.

Corollary 7.2.1. Let {x(n)}n≥0 be a sequence of vectors with i.i.d. components x(n)i ∼ pX
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where pX is a mixture distribution as per Eq. (7.2.2). Denote by k(n) the number of nonzero

entries in x(n). Then, almost surely as n → ∞, Bayes optimal AMP recovers the signal

x(n) from m(n) = k(n) + o(n) spatially coupled measurements.

Under the regularity hypotheses of [143], no scheme can do substantially better, i.e.,

reconstruct x(n) from m(n) measurements if lim sup
n→∞

m(n)/k(n) < 1.

One way to think about this result is the following. If an oracle gave us the support

of x(n), we would still need m(n) ≥ k(n) − o(n) measurements to reconstruct the signal.

Indeed, the entries in the support have distribution q, and d(q) = 1. Corollary 7.1.8 implies

that the measurements overhead for estimating the support of x(n) is sublinear, o(n), even

when the support is of order n.

It is sometimes informally argued that compressed sensing requires at least Θ(k log(n/k))

for ‘information-theoretic reasons’, namely that specifying the support requires about nH(k/n)

≈ k log(n/k) bits. This argument is of course incomplete because it assumes that each mea-

surement yi is described by a bounded number of bits. Since it is folklore to say that sparse

signal recovery requires m ≥ C k log(n/k) measurement, it is instructive to survey the re-

sults of this type and explain why they do not apply to the present setting. This elucidates

further the implications of our results.

Specifically, [139, 1] prove information-theoretic lower bounds on the required number

of measurements, under specific constructions for the random sensing matrix A. Further,

these papers focus on the specific problem of exact support recovery. The paper [110] proves

minimax bounds for reconstructing vectors belonging to `p-balls. Notice that these bounds

are usually proved by exhibiting a least favorable prior, which is close to a signal with i.i.d.

coordinates. However, as the noise variance tends to zero, these bounds depend on the

sensing matrix in a way that is difficult to quantify. In particular, they provide no explicit

lower bound on the number of measurements required for exact recovery in the noiseless

limit. Similar bounds were obtained for arbitrary measurement matrices in [22]. Again,

these lower bounds vanish as noise tends to zero as soon as m(n) ≥ k(n).

A different line of work derives lower bounds from Gelfand’ width arguments [36, 79].

These lower bounds are only proved to be a necessary condition for a stronger reconstruction

guarantee. Namely, these works require the vector of measurements y = Ax to enable

recovery for all k-sparse vectors x ∈ Rn. This corresponds to the ‘strong’ phase transition

of [45, 37], and is also referred to as the ‘for all’ guarantee in the computer science literature

[12].
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The lower bound that comes closest to the present setting is the ‘randomized’ lower

bound [3]. In this work the authors consider a fixed signal x and a random sensing matrix

as in our setting. In other words they do not assume a standard minimax setting. However

they require an `1 − `1 error guarantee which is a stronger stability condition than what

is achieved in Theorem 7.1.7, allowing for a more powerful noise process. Indeed the same

paper also proves that recovery is possible from m(n) = O(k(n)) measurements under

stronger conditions.

Example 3 (Discrete signal). Let K be a fixed integer, a1, . . . , aK ∈ R, and

(p1, p2, . . . , pK) be a collection of non-negative numbers that add up to one. Consider

the probability distribution that puts mass pi on each ai

pX =

K∑
i=1

pi δai , (7.2.3)

and let x(n) be a signal with i.i.d. coordinates x(n)i ∼ pX . By Proposition 7.1.3, we have

d(pX) = 0. As above, the empirical distribution of the coordinates of the vectors x(n)

converges to pX . By applying Corollary 7.1.8 we obtain the following

Corollary 7.2.2. Let {x(n)}n≥0 be a sequence of vectors with i.i.d. components x(n)i ∼ pX
where pX is a discrete distribution as per Eq. (7.2.3). Then, almost surely as n→∞, Bayes

optimal AMP recovers the signal x(n) from m(n) = o(n) spatially coupled measurements.

It is important to further discuss the last statement because the reader might be misled

into too optimistic a conclusion. Consider any signal x ∈ Rn. For practical purposes, this

will be represented with finite precision, say as a vector of `-bit numbers. Hence, in practice,

the distribution pX is always discrete, with K = 2` a fixed number dictated by the precision

requirements. A sublinear number of measurements m(n) = o(n) will then be sufficient to

achieve this precision.

On the other hand, Theorem 7.1.6 and Corollary 7.1.8 are asymptotic statements, and

the convergence rate is not claimed to be uniform in pX . In particular, the values of n at

which it becomes accurate will likely increase with K.

Example 4 (A discrete-continuous mixture). Consider the probability distribution

pX = ε+ δ+1 + ε−δ−1 + ε q , (7.2.4)
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where ε+ +ε−+ε = 1 and the probability measure q has a density with respect to Lebesgue

measure. Again, let x(n) be a vector with i.i.d. components x(n)i ∼ pX . We can apply

Corollary 7.1.8 to conclude that m(n) = nε + o(n) spatially coupled measurements are

sufficient. This should be contrasted with the case of sensing matrices with i.i.d. entries

studied in [47] under convex reconstruction methods (namely solving the feasibility problem

y = Ax under the constraint ‖x‖∞ ≤ 1). In this case m(n) = n(1+ε)/2+o(n) measurements

are necessary.

In the next section we describe the basic intuition behind the surprising phenomenon

in Theorems 7.1.6 and 7.1.7, and why spatially coupled sensing matrices are so useful. We

conclude by stressing once more the limitations of these results:

• The Bayes optimal AMP algorithm requires knowledge of the signal distribution pX .

Notice however that only a good approximation of pX (call it p
X̃

, and denote by X̃

the corresponding random variable) is sufficient. Assume indeed that pX and p
X̃

can

be coupled in such a way that E{(X − X̃)2} ≤ σ̃2. Then

x = x̃+ u (7.2.5)

where ‖u‖22 . nσ̃2. This is roughly equivalent to adding to the noise vector z further

‘noise’ z̃ with variance σ̃2/δ. By this argument the guarantee in Theorem 7.1.7 de-

grades gracefully as p
X̃

gets different from pX . Another argument that leads to the

same conclusion consists in studying the evolution of the algorithm (7.1.3), (7.1.4)

when ηt is matched to the incorrect prior, see Appendix C.1.

Finally, it was demonstrated numerically in [137, 82] that, in some cases, a good

‘proxy’ for pX can be learned through an Expectation-Maximization-style iteration.

A rigorous study of this approach goes beyond the scope of the present work.

• In particular, the present approach does not provide uniform guarantees over the class

of, say, sparse signals characterized by pX({0}) ≥ 1− ε. In particular, both the phase

transition location, cf. Eq. (7.1.15), and the robustness constant, cf. Eq. (7.1.18),

depend on the distribution pX . This should be contrasted with the minimax approach

of [42, 44, 33] which provides uniform guarantees over sparse signals. See Table 7.2.1

for a comparison between the two schemes.

• As mentioned above, the guarantees in Theorems 7.1.6 and 7.1.7 are only asymptotic.
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Minimax setup [44] Bayesian setup (present approach)

Sensing matrix i.i.d. Gaussian entries Spatially-coupled matrices
(homoscedastic) (heteroscedastic)

Reconstruction algorithm AMP with soft thresholding Bayes optimal AMP
denoiser

Compression rate δ > M(ε) δ ≥ d(pX)

Sensitivity to noise M(ε)
1−M(ε)/δ

4δ−2D(pX)

δ−D(pX)

Table 7.2.1 Comparison between the minimax setup in [44] and the Bayesian setup consid-
ered in this dissertation. (cf. [44, Eq. (2.4)] for definition of M(ε)).

It would be important to develop analogous non-asymptotic results.

• The stability bound (7.1.18) is non-uniform, in that the proportionality constant C

depends on the signal distribution. It would be important to establish analogous

bounds that are uniform over suitable classes of distributions. (We do not expect

Eq. (7.1.18) to hold uniformly over all distributions.)

7.3 Related work

The most closely related earlier work was already discussed above.

More broadly, message passing algorithms for compressed sensing where the object of a

number of studies studies, starting with [4]. As mentioned, we will focus on approximate

message passing (AMP) as introduced in [42, 43]. As shown in [33] these algorithms can

be used in conjunction with a rich class of denoisers η( · ). A subset of these denoisers arise

as posterior mean associated to a prior pX . Several interesting examples were studied by

Schniter and collaborators [117, 118, 120], and by Rangan and collaborators [108, 78].

Spatial coupling has been the object of growing interest within coding theory over the

last few years. The first instance of spatially coupled code ensembles were the convolutional

LDPC codes of Felström and Zigangirov [53]. While the excellent performances of such codes

had been known for quite some time [121], the fundamental reason was not elucidated until

recently [85] (see also [90]). In particular [85] proved, for communication over the binary

erasure channel (BEC), that the thresholds of spatially coupled ensembles under message

passing decoding coincide with the thresholds of the base LDPC code under MAP decoding.

In particular, this implies that spatially coupled ensembles achieve capacity over the BEC.
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The analogous statement for general memoryless symmetric channels was first elucidated

in [83] and finally proved in [86]. The paper [64] discusses similar ideas in a number of

graphical models.

The first application of spatial coupling ideas to compressed sensing is due to Kudekar

and Pfister [84]. They consider a class of sparse spatially coupled sensing matrices, very

similar to parity check matrices for spatially coupled LDPC codes. On the other hand,

their proposed message passing algorithms do not make use of the signal distribution pX ,

and do not fully exploit the potential of spatially coupled matrices. The message passing

algorithm used here belongs to the general class introduced in [42]. The specific use of

the minimum-mean square error denoiser was suggested in [43]. The same choice is made

in [82], which also considers Gaussian matrices with heteroscedastic entries although the

variance structure is somewhat less general.

Finally, let us mention that robust sparse recovery of k-sparse vectors from m =

O(k log log(n/k)) measurement is possible, using suitable ‘adaptive’ sensing schemes [68].



Chapter 8

Matrix and algorithm construction

In this chapter, we define an ensemble of random matrices, and the corresponding choices

of Qt, bt, ηt that achieve the reconstruction guarantees in Theorems 7.1.6 and 7.1.7. We

proceed by first introducing a general ensemble of random matrices. Correspondingly,

we define a deterministic recursion named state evolution, that plays a crucial role in the

algorithm analysis. In Section 8.3, we define the algorithm parameters and construct specific

choices of Qt, bt, ηt. The last section also contains a restatement of Theorems 7.1.6 and

7.1.7, in which this construction is made explicit.

8.1 General matrix ensemble

The sensing matrixA will be constructed randomly, from an ensemble denoted byM(W,M,N).

The ensemble depends on two integers M,N ∈ N, and on a matrix with non-negative entries

W ∈ RR×C
+ , whose rows and columns are indexed by the finite sets R, C (respectively ‘rows’

and ‘columns’). The band-diagonal structure that is characteristic of spatial coupling is

imposed by a suitable choice of the matrix W . In this section we define the ensemble for a

general choice of W . In Section 8.4 we discuss a class of choices for W that corresponds to

spatial coupling, and that yields Theorems 7.1.6 and 7.1.7.

In a nutshell, the sensing matrix A is obtained from W through a suitable ‘lifting’

procedure. Each entry Wr,c is replaced by an M × N block with i.i.d. entries Aij ∼
N(0,Wr,c/M). Rows and columns of A are then re-ordered uniformly at random to ensure

exchangeability. For the reader familiar with the application of spatial coupling to coding

theory, it might be useful to notice the differences and analogies with graph liftings. In that

133
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case, the ‘lifted’ matrix is obtained by replacing each edge in the base graph with a random

permutation matrix.

Passing to the formal definition, we will assume that the matrix W is roughly row-

stochastic, i.e.,

1

2
≤
∑
c∈C

Wr,c ≤ 2 , for all r ∈ R . (8.1.1)

(This is a convenient simplification for ensuring correct normalization of A.) We will let

|R| ≡ Lr and |C| ≡ Lc denote the matrix dimensions. The ensemble parameters are related

to the sensing matrix dimensions by n = NLc and m = MLr.

In order to describe a random matrix A ∼ M(W,M,N) from this ensemble, partition

the columns and row indices in, respectively, Lc and Lr groups of equal size. Explicitly

[n] = ∪s∈CC(s) , |C(s)| = N ,

[m] = ∪r∈RR(r) , |R(r)| = M .

Here and below we use [k] to denote the set of first k integers [k] ≡ {1, 2, . . . , k}. Further,

if i ∈ R(r) or j ∈ C(s) we will write, respectively, r = g(i) or s = g(j). In other words g( · )
is the operator determining the group index of a given row or column.

With this notation we have the following concise definition of the ensemble.

Definition 8.1.1. A random sensing matrix A is distributed according to the ensemble

M(W,M,N) (and we write A ∼M(W,M,N)) if the partition of rows and columns ([m] =

∪r∈RR(r) and [n] = ∪s∈CC(s)) are uniformly random, and given this partitioning, the

entries {Aij , i ∈ [m], j ∈ [n]} are independent Gaussian random variables with 1

Aij ∼ N
(

0,
1

M
Wg(i),g(j)

)
. (8.1.2)

We refer to Fig. 8.1.1 for an illustration. Note that the randomness of the partitioning

of row and column indices is only used in the proof of Lemma 10.0.1 (cf. [74]), and hence

this and other illustrations assume that the partitions are contiguous.

Within the applications of spatial coupling to LDPC codes, see [83, 64, 86], the spatially-

coupled codes are constructed by ‘coupling’ or ‘chaining’ a sequence of sparse graphs. The

1As in many papers on compressed sensing, the matrix here has independent zero-mean Gaussian entries;
however, unlike standard practice, here the entries are of widely different variances.
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•
•
•
•

•
•
•
•

•
•
•
•

N
n

M

m

W1,1 W1,2 W1,3

W2,1 W2,2 W2,3 W2,4

W3,1 W3,2 W3,3 W3,4 W3,5

WLr−1,Lc−3WLr−1,Lc−2WLr−1,Lc−1WLr−1,Lc

WLr,Lc−2 WLr,Lc−1 WLr,Lc

Figure 8.1.1: Construction of the spatially coupled measurement matrix A as described in Sec-
tion 8.1. The matrix is divided into blocks with size M by N . (Number of blocks in each row and
each column are respectively Lc and Lr, hence m = MLr, n = NLc). The matrix elements Aij

are chosen as N(0, 1
MWg(i),g(j)). In this figure, Wi,j depends only on |i− j| and thus blocks on each

diagonal have the same variance.

indexes r ∈ R, c ∈ C in the above construction correspond to the index of the graph along

the chain in those constructions.

For proving Theorem 7.1.6 and Theorem 7.1.7 we will consider suitable sequences of

ensembles M(W,M,N) with undersampling ratio converging to δ. While a complete de-

scription is given below, let us stress that we take the limit M,N → ∞ (with M = Nδ)

before the limit Lr, Lc →∞ . Hence, the resulting matrix A is essentially dense: the fraction

of non-zero entries per row vanishes only after the number of groups goes to ∞.

8.2 State evolution

State evolution allows an exact asymptotic analysis of AMP algorithms in the limit of a large

number of dimensions. As indicated by the name, it bears close resemblance to the density

evolution method in iterative coding theory [115]. Somewhat surprisingly, this analysis
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approach is asymptotically exact despite the underlying factor graph being far from locally

tree-like.

State evolution was first developed in [42] on the basis of heuristic arguments, and

substantial numerical evidence. Subsequently, it was proved to hold for Gaussian sensing

matrices with i.i.d. entries, and a broad class of iterative algorithms in [7]. These proofs

were further generalized in [108], to cover ‘generalized’ AMP algorithms.

In the present case, state evolution takes the following form.2

Definition 8.2.1. Given W ∈ RR×C
+ roughly row-stochastic, and δ > 0, the corresponding

state evolution maps T′W : RR
+ → RC

+, T′′W : RC
+ → RR

+, are defined as follows. For

φ = (φa)a∈R ∈ RR
+, ψ = (ψi)i∈C ∈ RC

+, we let:

T′W (φ)i = mmse
(∑
b∈R

Wb,iφ
−1
b

)
, (8.2.1)

T′′W (ψ)a = σ2 +
1

δ

∑
i∈C

Wa,i ψi . (8.2.2)

We finally define TW = T′W ◦ T′′W .

In the following, we shall omit the subscripts from TW whenever clear from the context.

Definition 8.2.2. Given W ∈ RLr×Lc+ roughly row-stochastic, the corresponding state

evolution sequence is the sequence of vectors {φ(t), ψ(t)}t≥0, φ(t) = (φa(t))a∈R ∈ RR
+,

ψ(t) = (ψi(t))i∈C ∈ RC
+, defined recursively by φ(t) = T′′W (ψ(t)), ψ(t+ 1) = T′W (φ(t)), with

initial condition

ψi(0) =∞ for all i ∈ C . (8.2.3)

Hence, for all t ≥ 0,

φa(t) = σ2 +
1

δ

∑
i∈C

Wa,i ψi(t) ,

ψi(t+ 1) = mmse
(∑
b∈R

Wb,iφb(t)
−1
)
.

(8.2.4)

2In previous work, the state variable concerned a single scalar, representing the mean-squared error in the
current reconstruction, averaged across all coordinates. In this work, the dimensionality of the state variable
is much larger, because it contains ψ, an individualized MSE for each coordinate of the reconstruction and
also φ, a noise variance for the residuals rt for each measurement coordinate.
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The quantities ψi(t), φa(t) correspond to the asymptotic MSE achieved by the AMP

algorithm. More precisely, ψi(t) corresponds to the asymptotic mean square error E{(xtj −
xj)

2} for j ∈ C(i), as N → ∞. Analogously, φa(t) is the noise variance in residuals rtj

corresponding to rows j ∈ R(a). This correspondence is stated formally in Lemma 10.0.1

below. The state evolution (8.2.4) describes the evolution of these quantities. In particular,

the linear operation in Eq. (7.1.4) corresponds to a sum of noise variances as per Eq. (8.2.2)

and the application of denoisers ηt corresponds to a noise reduction as per Eq. (8.2.1).

As we will see, the definition of denoiser function ηt involves the state vector φ(t).

(Notice that the state vectors {φ(t), ψ(t)}t≥0 can be precomputed). Hence, ηt is ‘tuned’

according to the predicted reconstruction error at iteration t.

8.3 General algorithm definition

In order to fully define the AMP algorithm (7.1.3), (7.1.4), we need to provide constructions

for the matrix Qt, the nonlinearities ηt, and the vector bt. In doing this, we exploit the fact

that the state evolution sequence {φ(t)}t≥0 can be precomputed.

We define the matrix Qt by

Qtij ≡
φg(i)(t)

−1∑Lr
k=1Wk,g(j)φk(t)−1

. (8.3.1)

Notice that Qt is block-constant: for any r, s ∈ [L], the block QtR(r),C(s) has all its entries

equal.

As mentioned in Section ??, the function ηt : Rn → Rn is chosen to be separable, i.e.,

for v ∈ RN :

ηt(v) =
(
ηt,1(v1), ηt,2(v2), . . . , ηt,N (vN )

)
. (8.3.2)

We take ηt,i to be a conditional expectation estimator for X ∼ pX in gaussian noise:

ηt,i(vi) = E
{
X
∣∣X + sg(i)(t)

−1/2Z = vi
}
, sr(t) ≡

∑
u∈R

Wu,rφu(t)−1 . (8.3.3)

Notice that the function ηt,i( · ) depends on i only through the group index g(i), and in

fact only parametrically through sg(i)(t). It is also interesting to notice that the denoiser
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ηt,i( · ) does not have any tuning parameter to be optimized over. This was instead the case

for the soft-thresholding AMP algorithm studied in [42] for which the threshold level had

to be adjusted in a non-trivial manner to the sparsity level. This difference is due to the

fact that the prior pX is assumed to be known and hence the optimal denoiser is uniquely

determined to be the posterior expectation as per Eq. (8.3.3).

Finally, in order to define the vector bti, let us introduce the quantity

〈η′t〉u =
1

N

∑
i∈C(u)

η′t,i
(
xti + ((Qt �A)∗rt)i

)
. (8.3.4)

Recalling that Qt is block-constant, we define matrix Q̃t ∈ RLr×Lc as Q̃tr,u = Qti,j , with

i ∈ R(r) and j ∈ C(u). In words, Q̃t contains one representative of each block. The vector

bt is then defined by

bti ≡
1

δ

∑
u∈C

Wg(i),uQ̃
t−1
g(i),u 〈η

′
t−1〉u . (8.3.5)

Again bti is block-constant: the vector btC(u) has all its entries equal.

This completes our definition of the AMP algorithm. Let us conclude with a few com-

putational remarks:

1. The quantities Q̃t, φ(t) can be precomputed efficiently iteration by iteration, because

they are, respectively, Lr × Lc and Lr-dimensional, and, as discussed further below,

Lr, Lc are much smaller than m,n. The most complex part of this computation is

implementing the iteration (8.2.4), which has complexity O((Lr + Lc)
3), plus the

complexity of evaluating the mmse function, which is a one-dimensional integral.

2. The vector bt is also block-constant, so can be efficiently computed using Eq. (8.3.5).

3. Instead of computing φ(t) analytically by iteration (8.2.4), φ(t) can also be estimated

from data xt, rt. In particular, by generalizing the methods introduced in [42, 99], we

get the estimator

φ̂a(t) =
1

M
‖rtR(a)‖

2
2 , (8.3.6)

where rtR(a) = (rtj)j∈R(a) is the restriction of rt to the indices in R(a). An alternative



CHAPTER 8. MATRIX AND ALGORITHM CONSTRUCTION 139

more robust estimator (more resilient to outliers), would be

φ̂a(t)
1/2 =

1

Φ−1(3/4)
|rtR(a)|(M/2) , (8.3.7)

where Φ(z) is the Gaussian distribution function, and, for v ∈ RK , |v|(`) is the `-th

largest entry in the vector (|v1|, |v2|, . . . , |vK |). (See, e.g., [66] for background in robust

estimation.) The idea underlying both of the above estimators is that the components

of rtR(a) are asymptotically i.i.d. with mean zero and variance φa(t).

8.4 Choices of parameters, and spatial coupling

In order to prove our main Theorem 7.1.6, we use a sensing matrix from the ensemble

M(W,M,N) for a suitable choice of the matrix W ∈ RR×C. Our construction depends on

parameters ρ ∈ R+, L,L0 ∈ N, and on the ‘shape function’ W. As explained below, ρ will

be taken to be small, and hence we will treat 1/ρ as an integer to avoid rounding (which

introduces in any case a negligible error).

Here and below ∼= denotes identity between two sets up to a relabeling.

Definition 8.4.1. A shape function is a function W : R→ R+ continuously differentiable,

with support in [−1, 1] and such that
∫
RW(u) du = 1, and W(−u) =W(u).

We let C ∼= {−2ρ−1, . . . , 0, 1, . . . , L − 1}, so that Lc = L + 2ρ−1. Also let C0 =

{0, 1, . . . , L− 1}.
The rows are partitioned as follows:

R = R0 ∪
{
∪−1
i=−2ρ−1 Ri

}
,

where R0
∼= {−ρ−1, . . . , 0, 1, . . . , L − 1 + ρ−1}, and Ri = {iL0, . . . , (i + 1)L0 − 1}, for i =

−2ρ−1, . . . ,−1. Hence, |Ri| = L0, and Lr = Lc + 2ρ−1L0.

Finally, we take N so that n = NLc, and let M = Nδ so that m = MLr = N(Lc +

2ρ−1L0)δ. Notice that m/n = δ(Lc + 2ρ−1L0)/Lc. Since we will take Lc much larger than

L0/ρ, we in fact have m/n arbitrarily close to δ.

Given these inputs, we construct the corresponding matrix W = W (L,L0,W, ρ) as

follows.
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Figure 8.4.2: Matrix W. The shaded region indicates the non zero entries in the lower part of the
matrix. As shown (the lower part of ) the matrix W is band diagonal.

1. For i ∈ {−2ρ−1, . . . ,−1}, and each a ∈ Ri, we let Wa,i = 1. Further, Wa,j = 0 for all

j ∈ C \ {i}.

2. For all a ∈ R0
∼= {−ρ−1, . . . , 0, . . . , L− 1 + ρ−1}, we let

Wa,i = ρW
(
ρ (a− i)

)
i ∈ {−2ρ−1, . . . , L− 1}. (8.4.1)

The role of the rows in
{
∪−1
i=−2ρ−1Ri

}
and the corresponding rows in A are to oversample

the first few (namely the first 2ρ−1N) coordinates of the signal as explained in Section 9.1.

Furthermore, the restriction of W to the rows in R0 is band diagonal as W is supported on

[−1, 1]. See Fig. 8.4.2 for an illustration of the matrix W .

In the following we occasionally use the shorthand Wa−i ≡ ρW
(
ρ (a− i)

)
. Note that W
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is roughly row-stochastic. Also, the restriction of W to the rows in R0 is roughly column-

stochastic. This follows from the fact that the function W(·) has continuous (and thus

bounded) derivative on the compact interval [−1, 1], and
∫
RW(u)du = 1. Therefore, using

the standard convergence of Riemann sums to Riemann integrals and the fact that ρ is

small, we get the result.

We are now in position to restate Theorem 7.1.6 in a more explicit form.

Theorem 8.4.2. Let pX be a probability measure on the real line with δ > d(pX), and let

W : R→ R+ be a shape function. For any ε > 0, there exist L0, L, ρ, t0, σ2
0 = σ0(ε, δ, pX)2

such that L0/(Lρ) ≤ ε, and further the following holds true for W = W (L,L0,W, ρ).

For N ≥ 0, and A(n) ∼ M(W,M,N) with M = Nδ, and for all σ2 ≤ σ2
0, t ≥ t0, we

almost surely have

lim sup
N→∞

1

n

∥∥xt(A(n); y(n)
)
− x(n)

∥∥2 ≤ ε . (8.4.2)

Further, under the same assumptions, we have

lim sup
N→∞

1

n
E
{∥∥xt(A(n); y(n)

)
− x(n)

∥∥2} ≤ ε . (8.4.3)

In order to obtain a stronger form of robustness, as per Theorem 7.1.7, we slightly modify

the sensing scheme. We construct the sensing matrix Ã from A by appending 2ρ−1L0 rows

in the bottom.

Ã =

(
A

0 I

)
, (8.4.4)

where I is the identity matrix of dimensions 2ρ−1L0. Note that this corresponds to increas-

ing the number of measurements; however, the asymptotic undersampling rate remains δ,

provided that L0/(Lρ)→ 0, as n→∞.

The reconstruction scheme is modified as follows. Let x1 be the vector obtained by

restricting x to entries in ∪iC(i), where i ∈ {−2ρ−1, · · · , L − 2ρ−1 − 1}. Also, let x2 be

the vector obtained by restricting x to entries in ∪iC(i), where i ∈ {L− 2ρ−1, · · · , L− 1}.
Therefore, x = (x1, x2)T . Analogously, let y = (y1, y2)T where y1 is given by the restriction

of y to ∪i∈RR(i) and y2 corresponds to the additional 2ρ−1L0 rows. Define w1 and w2 from
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the noise vector w, analogously. Hence,(
y1

y2

)
=

(
A

0 I

)(
x1

x2

)
+

(
w1

w2

)
. (8.4.5)

Note that the sampling rate for vector x2 is one, i.e., y2 and x2 are of the same length

and are related to each other through the identity matrix I. Hence, we have a fairly good

approximation of these entries. We use the AMP algorithm as described in the previous

section to obtain an estimation of x1. Formally, let xt be the estimation at iteration t

obtained by applying the AMP algorithm to the problem y1 = Ax + w1. The modified

estimation is then x̃t = (xt1, y2)T .

As we will see later, this modification in the sensing matrix and algorithm, while not

necessary, simplifies some technical steps in the proof.

Theorem 8.4.3. Let pX be a probability measure on the real line with δ > D(pX), and let

W : R → R+ be a shape function. There exist L0, L, ρ, t0 and a finite stability constant

C = C(pX , δ), such that L0/(Lρ) < ε, for any given ε > 0, and the following holds true for

the modified reconstruction scheme.

For t ≥ t0, we almost surely have,

lim sup
N→∞

1

n

∥∥x̃t(Ã(n); y(n)
)
− x(n)

∥∥2 ≤ Cσ2. (8.4.6)

Further, under the same assumptions, we have

lim sup
N→∞

1

n
E
{∥∥x̃t(Ã(n); y(n)

)
− x(n)

∥∥2} ≤ Cσ2. (8.4.7)

Finally, in the asymptotic case where ` = Lρ→∞, ρ→ 0, L0 →∞, we have

lim sup
σ→0

1

σ2

{
lim
t→∞

lim sup
N→∞

1

n

∥∥x̃t(Ã(n); y(n)
)
− x(n)

∥∥2
}
≤ 4δ − 2D(pX)

δ −D(pX)
.

It is obvious that Theorems 8.4.2 and 8.4.3 respectively imply Theorems 7.1.6 and 7.1.7.

We shall therefore focus on the proofs of Theorems 8.4.2 and 8.4.3 in the rest of this part.

It is worth noting that as per Theorem 8.4.3, the sensitivity constant at small noise

depends on the signal distribution pX only through its upper MMSE dimension D(pX). In
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particular, for signal distribution of the form (7.2.2), the robustness guarantee is indepen-

dent of the q component.

Notice that the results of Theorems 8.4.2 and 8.4.3 only deal with a linear subsequence

n = NLc with N → ∞. However, this is sufficient to prove the claim of Theorems 7.1.6

and 7.1.7. More specifically, suppose that n is not a multiple of Lc. Let n′ be the smallest

number greater than n which is divisible by Lc, i.e., n′ = dn/LceLc, and let x̂ = (x, 0)T ∈ Rn′

be obtained by padding x with zeros. Let x̂t denote the Bayes optimal AMP estimate

of x̂ and xt be the restriction of x̂t to the first n entries. We have (1/n)‖xt − x‖2 ≤
(n′/n)(1/n′)‖x̂t − x̂‖2. The result of Theorem 7.1.6 follows by applying Theorem 8.4.2 (for

the sequence n = NLc, N → ∞), and noting that n′/n ≤ (1 + Lc/n) → 1, as N → ∞.

Similar comment applies to Theorems 8.4.3 and 7.1.7.



Chapter 9

Magic of Spatial Coupling

9.1 How does spatial coupling work?

Spatial coupling was developed in coding theory to construct capacity achieving LDPC codes

[53, 121, 83, 64, 86]. The standard construction starts from the parity check matrix of an

LDPC code that is sparse but unstructured apart from the degree sequence. A spatially

coupled ensemble is then obtained by enforcing a band-diagonal structure, while keeping

the degree sequence unchanged. Usually this is done by graph liftings, but the underlying

principle is more general [64].

Following the above intuition, spatially coupled sensing matrices A are, roughly speak-

ing, random band-diagonal matrices. The construction given below (as the one of [82])

uses matrices with independent zero-mean Gaussian entries, with non-identical variances

(heteroscedastic entries). However, the simulations of [70] suggest that a much broader set

of matrices display similar performances. As discussed in Section 8.1, the construction is

analogous to graph liftings. We start by a matrix of variances W = (Wr,c) and obtain the

sensing matrix A by replacing each entry Wr,c by a block with i.i.d. Gaussian entries with

variance proportional to Wr,c.

It is convenient to think of the graph structure that they induce on the reconstruction

problem. Associate one node (a variable node in the language of factor graphs) to each

coordinate i in the unknown signal x. Order these nodes on the real line R, putting the i-th

node at location i ∈ R. Analogously, associate a node (a factor node) to each coordinate

a in the measurement vector y, and place the node a at position a/δ on the same line.

Connect this node to all the variable nodes i such that Aai 6= 0. If A is band diagonal, only

144



CHAPTER 9. MAGIC OF SPATIAL COUPLING 145

€ 

1
δ

€ 

1

Additional  measurements  
associated to the first few coordinates 

Figure 9.1.1: Graph structure of a spatially coupled matrix. Variable nodes are shown as circle
and check nodes are represented by square.

nodes that are placed close enough will be connected by an edge. See Figure 9.1.1 for an

illustration.

In a spatially coupled matrix, additional measurements are associated to the first few

coordinates of x, say coordinates x1, . . . , xn0 with n0 much smaller than n. This has a

negligible impact on the overall undersampling ratio as n/n0 → ∞. Although the overall

undersampling remains δ < 1, the coordinates x1, . . . , xn0 are oversampled. This ensures

that these first coordinates are recovered correctly (up to a mean square error of order

σ2). As the algorithm is iterated, the contribution of these first few coordinates is correctly

subtracted from all the measurements, and hence we can effectively eliminate those nodes

from the graph. In the resulting graph, the first few variables are effectively oversampled

and hence the algorithm will reconstruct their values, up to a mean square error of order

σ2. As the process is iterated, variables are progressively reconstructed, proceeding from

left to right along the node layout.

While the above explains the basic dynamics of AMP reconstruction algorithms un-

der spatial coupling, a careful consideration reveals that this picture leaves open several

challenging questions. In particular, why does the overall undersampling factor δ have to

exceed d(pX) for reconstruction to be successful? Our proof is based on a potential function

argument. We will prove that there exists a potential function for the AMP algorithm, such

that, when δ > d(pX), this function has its global minimum close to exact reconstruction.

Further, we will prove that, unless this minimum is essentially achieved, AMP can always

decrease the function. This technique is different from the one followed in [85] for the LDPC

codes over the binary erasure channel, and we think it is of independent interest.
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9.2 Advantages of spatial coupling

Within the construction proposed in this dissertation, spatially coupled sensing matrices

have independent heteroscedastic entries (entries with different variances). In addition to

this, we also oversample a few number of coordinates of the signal, namely the first 2ρ−1N

coordinates. In this section we informally discuss the various components of this scheme.

It can be instructive to compare this construction with the case of homoscedastic Gaus-

sian matrices (i.i.d. entries). For the reader familiar with coding theory, this comparison

is analogous to the comparison between regular LDPC codes and spatially coupled regular

LDPC codes. Regular LDPC codes have been known since Gallager [57, 94] to achieve the

channel capacity, as the degree gets large, under maximum likelihood decoding. However

their performances under practical (belief propagation) decoding is rather poor. When

the code ensemble is modified via spatial coupling, the belief propagation performances im-

prove to become asymptotically equivalent to the maximum likelihood performances. Hence

spatially coupled LDPC codes achieve capacity under practical decoding schemes.

Similarly, standard (non-spatially coupled) sensing matrices achieve the information

theoretic limit under computationally unpractical recovery schemes [143], but do not per-

form ideally under practical reconstruction algorithms. Consider for instance Bayes optimal

AMP. Within the standard ensemble, the state evolution recursion reads

φ(t) = σ2 +
1

δ
ψ(t) ,

ψ(t+ 1) = mmse
(
φ(t)−1

)
.

(9.2.1)

Note that ψ(t + 1) is the minimum mean square error at signal-to-noise ratio φ(t)−1, i.e.,

treating the residual part as noise. Let δ̃(pX) ≡ sups≥0 s ·mmse(s) > d(pX). It is immediate

to see that the last recursion develops two (or possibly more) stable fixed points for δ <

δ̃(pX) and all σ2 small enough. The smallest fixed point, call it φgood, corresponds to correct

reconstruction and is such that φgood = O(σ2) as σ → 0. The largest fixed point, call it

φbad, corresponds to incorrect reconstruction and is such that φbad = Θ(1) as σ → 0. A

study of the above recursion shows that limt→∞ φ(t) = φbad. State evolution converges to

the ‘incorrect’ fixed point, hence predicting a large MSE for AMP.

On the contrary, for d(pX) < δ < δ̃(pX) the recursion (9.2.1) converges (for appropriate

choices of W as in the previous section) to the ‘ideal’ fixed point limt→∞ φa(t) = φgood for

all a (except possibly those near the boundaries). This is illustrated in Fig. 10.1.1. We also



CHAPTER 9. MAGIC OF SPATIAL COUPLING 147

refer to [64] for a survey of examples of the same phenomenon and to [82, 70] for further

discussion in compressed sensing.

The above discussion also clarifies why the posterior expectation denoiser is useful.

Spatially coupled sensing matrices do not yield better performances than the ones dictated

by the best fixed point in the ‘standard’ recursion (9.2.1). In particular, replacing the Bayes

optimal denoiser by another denoiser ηt amounts, roughly, to replacing mmse in Eq. (9.2.1)

by the MSE of another denoiser, hence leading to worse performances.

In particular, if the posterior expectation denoiser is replaced by soft thresholding, the

resulting state evolution recursion always has a unique stable fixed point for homoscedastic

matrices [42]. This suggests that spatial coupling does not lead to any improvement for soft

thresholding AMP and hence (via the correspondence of [8]) for Lasso or `1 reconstruction.

This expectation is indeed confirmed numerically in [70].



Chapter 10

Key Lemmas and Proof of the

Main Theorems

Our proof is based in a crucial way on state evolution. This effectively reduces the analysis

of the algorithm (7.1.3), (7.1.4) to the analysis of the deterministic recursion (8.2.4).

Lemma 10.0.1. Let W ∈ RR×C
+ be a roughly row-stochastic matrix (see Eq. (8.1.1))and

φ(t), Qt, bt be defined as in Section 8.3. Let M = M(N) be such that M/N → δ, as

N → ∞. Define m = MLr, n = NLc, and for each N ≥ 1, let A(n) ∼ M(W,M,N). Let

{(x(n), w(n))}n≥0 be a converging sequence of instances with parameters (pX , σ
2). Then,

for all t ≥ 1, almost surely we have

lim sup
N→∞

1

N
‖xtC(i)(A(n); y(n))− xC(i)‖22 = mmse

(∑
a∈R

Wa,iφa(t− 1)−1
)
. (10.0.1)

for all i ∈ C.

This lemma is a straightforward generalization of [7]. We leave out the formal proof of

this lemma since it does not require new ideas, but a significant amount of new notations.

We instead refer to our publication [74] which covers an even more general setting. In the

interest of self-containedness, and to develop useful intuition on state evolution, we present

an heuristic derivation of the state evolution equations (8.2.4) in Section 10.2.

The next Lemma provides the needed analysis of the recursion (8.2.4).

Lemma 10.0.2. Let δ > 0, and pX be a probability measure on the real line. Let W : R→
R+ be a shape function.

148
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(a) If δ > d(pX), then for any ε > 0, there exist σ0 = σ0(ε, δ, pX), ρ, L∗ > 0, such that

for any σ2 ∈ [0, σ2
0], L0 > 3/δ, and L > L∗, the following holds for W = W (L,L0,W, ρ):

lim
t→∞

1

L

L+ρ−1−1∑
a=−ρ−1

φa(t) ≤ ε. (10.0.2)

(b) If further δ > D(pX), then there exist ρ, L∗ > 0, and a finite stability constant C =

C(pX , δ), such that for L0 > 3/δ, and L > L∗, the following holds for W = W (L,L0,W, ρ).

lim
t→∞

1

L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤ Cσ2. (10.0.3)

Finally, in the asymptotic case where ` = Lρ→∞, ρ→ 0, L0 →∞, we have

lim sup
σ→0

lim
t→∞

1

σ2 L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤
3δ −D(pX)

δ −D(pX)
. (10.0.4)

The proof of this lemma is deferred to Section 11 and is indeed the technical core of our

result.

Now, we have in place all we need to prove our main results.

Proof (Theorem 8.4.2). Recall that C ∼= {−2ρ−1 · · · , L− 1}. Therefore,

lim sup
N→∞

1

n

∥∥xt(A(n); y(n)
)
− x(n)

∥∥2 ≤ 1

Lc

∑
i∈C

lim sup
N→∞

1

N

∥∥xtC(i)

(
A(n); y(n)

)
− xC(i)(n)

∥∥2

(a)

≤ 1

Lc

L−1∑
i=−2ρ−1

mmse

(∑
a∈R

Wa,iφa(t− 1)−1

)

(b)

≤ 1

Lc

L−1∑
i=−2ρ−1

mmse

∑
a∈R0

Wa,iφa(t− 1)−1


(c)

≤ 1

Lc

L−1∑
i=−2ρ−1

mmse

(
1

2
φi+ρ−1(t− 1)−1

)
(d)

≤ 1

Lc

L+ρ−1−1∑
a=−ρ−1

2φa(t− 1).

(10.0.5)
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Here, (a) follows from Lemma 10.0.1; (b) follows from the fact that mmse is non-increasing;

(c) holds because of the following facts: (i) φa(t) is nondecreasing in a for every t (see

Lemma 11.3.4 below). (ii) Restriction of W to the rows in R0 is roughly column-stochastic.

(iii) mmse is non-increasing; (d) follows from the inequality mmse(s) ≤ 1/s. The result is

immediate due to Lemma 10.0.2, Part (a).

Now, we prove the claim regarding the expected error. Let fn = 1
n‖x

t(A(n); y(n)) −
x(n)‖2. Since lim sup

n→∞
fn ≤ ε, there exists n0 such that fn ≤ 2ε for n ≥ n0. Applying reverse

Fatou’s lemma to the bounded sequence {fn}n≥n0 , we have lim sup
N→∞

Efn ≤ E[lim sup
N→∞

fn] ≤

ε.

Proof (Theorem 8.4.3). The proof proceeds in a similar manner to the proof of Theo-

rem 8.4.2.

lim sup
N→∞

1

n

∥∥x̃t(Ã(n); y(n)
)
− x(n)

∥∥2

≤ 1

Lc

{ L−2ρ−1−1∑
i=−2ρ−1

lim sup
N→∞

1

N

∥∥xtC(i)

(
A(n); y(n)

)
− xC(i)(n)

∥∥2
+ lim
N→∞

1

N

∥∥w2(n)
∥∥2
}

≤ 1

Lc

{ L−2ρ−1−1∑
i=−2ρ−1

mmse

(∑
a∈R

Wa,iφa(t− 1)−1

)
+ lim
N→∞

1

N

∥∥w2(n)
∥∥2
}

≤ 1

Lc

{ L−2ρ−1−1∑
i=−2ρ−1

mmse

∑
a∈R0

Wa,iφa(t− 1)−1

+ lim
N→∞

1

N

∥∥w2(n)
∥∥2
}

≤ 1

Lc

{ L−2ρ−1−1∑
i=−2ρ−1

mmse

(
1

2
φi+ρ−1(t− 1)−1

)
+ lim
N→∞

1

N

∥∥w2(n)
∥∥2
}

≤ 1

Lc

{ L−ρ−1−1∑
a=−ρ−1

2φa(t− 1) + lim
N→∞

1

N

∥∥w2(n)
∥∥2
}
≤ C σ2,

(10.0.6)

where the last step follows from Part (b) in Lemma 10.0.2, and Part (b) in Definition 7.1.1.

The claim regarding the expected error follows by a similar argument to the one in the

proof of Theorem 8.4.2.

Finally, in the asymptotic case, where ` = Lρ → ∞, L0 → ∞, ρ → 0, we have∑
a∈R0

Wa,i =
∑

a∈R0
ρW(ρ(a− i))→

∫
W(u) du = 1, and the bound in Eq. (10.0.6) can be

strengthened by replacing 2φa(t− 1) with φa(t− 1). Using Eq. (10.0.4) in Eq. (10.0.6), we

obtain the desired result.
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10.1 Numerical experiments

We consider a Bernoulli-Gaussian distribution pX = (1−ε)δ0+ε γ0,1. Recall that γµ,σ(dx) =

(2πσ2)−1/2 exp{−(x−µ)2/(2σ2)}dx. We construct a random signal x(n) ∈ Rn by sampling

i.i.d. coordinates x(n)i ∼ pX . We have d(pX) = ε by Proposition 7.1.3 and

ηt,i(vi) =
εγ1+s−1

g(i)
(vi)

εγ1+s−1
g(i)

(vi) + (1− ε)γs−1
g(i)

(vi)
· 1

1 + s−1
g(i)

vi. (10.1.1)

In the experiments, we use ε = 0.1, σ = 0.01, ρ = 0.1, M = 6, N = 50, L = 500, L0 = 5.

10.1.1 Evolution of the AMP algorithm

Our first set of experiments aims at illustrating the evolution of the profile φ(t) defined by

state evolution versus iteration t, and comparing the predicted errors by the state evolution

with the empirical errors.

Figure 10.1.1 shows the evolution of profile φ(t) ∈ RLr , given by the state evolution

recursion (8.2.4). As explained in Section 9.1, in the spatially coupled sensing matrix,

additional measurements are associated to the first few coordinates of x, namely, 2ρ−1N =

1000 first coordinates. This ensures that the values of these coordinates are recovered up

to a mean square error of order σ2. This is reflected in the figure as the profile φ becomes

of order σ2 on the first few entries after a few iterations (see t = 5 in the figure). As the

iteration proceeds, the contribution of these components is correctly subtracted from all the

measurements, and essentially they are removed from the problem. Now, in the resulting

problem the first few variables are effectively oversampled and the algorithm reconstructs

their values up to a mean square error of σ2. Correspondingly, the profile φ falls to a

value of order σ2 in the next few coordinates. As the process is iterated, all the variables

are progressively reconstructed and the profile φ follows a traveling wave with constant

velocity. After a sufficient number of iterations (t = 800 in the figure), φ is uniformly of

order σ2.

Next, we numerically verify that the deterministic state evolution recursion predicts the

performance of the AMP at each iteration. Define the empirical and the predicted mean
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Figure 10.1.1: Profile φa(t) versus a for several iteration numbers.

square errors respectively by

MSEAMP(t) =
1

n
‖xt(y)− x‖22, (10.1.2)

MSESE(t) =
1

Lc

∑
i∈C

mmse
(∑
a∈R

Wa,iφ
−1
a (t− 1)

)
. (10.1.3)

The values of MSEAMP(t) and MSESE(t) are depicted versus t in Fig. 10.1.2. (Values of

MSEAMP(t) and the error bars correspond to M = 30 Monte Carlo instances). This verifies

that the state evolution provides an iteration-by-iteration prediction of the AMP perfor-

mance. We observe that MSEAMP(t) (and MSESE(t)) decreases linearly versus t.

10.1.2 Phase diagram

Consider a noiseless setting and let A be a sensing matrix–reconstruction algorithm scheme.

The curve ε 7→ δA(ε) describes the sparsity-undersampling tradeoff of A if the following

happens in the large-system limit n,m→∞, with m/n = δ. The scheme A does (with high

probability) correctly recover the original signal provided δ > δA(ε), while for δ < δA(ε)

the algorithm fails with high probability.

The goal of this section is to numerically compute the sparsity-undersampling tradeoff

curve for the proposed scheme (spatially coupled sensing matrices and Bayes optimal AMP

). We consider a set of sparsity parameters ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and for each value of

ε, evaluate the empirical phase transition through a logit fit (we omit details, but follow



CHAPTER 10. KEY LEMMAS AND PROOF OF THE MAIN THEOREMS 153

0 200 400 600 800
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iteration

lo
g 10

 (
M

S
E

)

 

 

MSE
AMP

(t)

MSE
SE

(t)

Figure 10.1.2: Comparison of MSEAMP and MSESE across iteration.
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Figure 10.1.3: Phase diagram for the spatially coupled sensing matrices and Bayes optimal
AMP.

the methodology described in [42]). As shown in Fig 10.1.3, the numerical results are

consistent with the claim that this scheme achieves the information theoretic lower bound

δ > d(pX) = ε. (We indeed expect the gap to decrease further by taking larger values of

L).
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10.2 State evolution: an heuristic derivation

This section presents an heuristic derivation of the state evolution equations (8.2.4). Our

objective is to provide some basic intuition: a proof in a more general setting will appear

in a separate publication [74]. An heuristic derivation similar to the present one, for the

special cases of sensing matrices with i.i.d. entries was presented in [7].

Consider the recursion (7.1.3)-(7.1.4), and introduce the following modifications: (i) At

each iteration, replace the random matrix A with a new independent copy At; (ii) Replace

the observation vector y with yt = Atx + w; (iii) Eliminate the last term in the update

equation for rt. Then, we have the following update rules:

xt+1 = ηt(x
t + (Qt �At)∗rt) , (10.2.1)

rt = yt −Atxt , (10.2.2)

where A0, A1, A2, · · · are i.i.d. random matrices distributed according to the ensemble

M(W,M,N), i.e.,

Atij ∼ N
(

0,
1

M
Wg(i),g(j)

)
. (10.2.3)

Rewriting the recursion by eliminating rt, we obtain:

xt+1 = ηt((Q
t �At)∗yt + (I − (Qt �At)∗At)xt)

= ηt(x+ (Qt �At)∗w +Bt(xt − x)) ,
(10.2.4)

where Bt = I − (Qt�At)∗At ∈ Rn×n. Note that the recursion (10.2.4) does not correspond

to the AMP update rules defined per Eqs. (7.1.3) and (7.1.4). In particular, it does not

correspond to any practical algorithm since the sensing matrix A is a fixed input to a

reconstruction algorithm and is not resampled at each iteration. However, it is much easier

to analyze, since At is independent of xt and therefore the distribution of (Qt � At)∗rt

can be easily characterized. Also, it is useful for presenting the intuition behind the AMP

algorithm and to emphasize the role of the term bt � rt−1 in the update rule for rt. As

it emerges from the proof of [7], this term does asymptotically cancel dependencies across

iterations.

By virtue of the central limit theorem, each entry of Bt is approximately normal. More
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specifically, Bt
ij is approximately normal with mean zero and variance

1

M

∑
r∈R

Wr,g(i)Wr,g(j)(Q
t
r,g(i))

2 ,

for i, j ∈ [n]. Define τ̂t(s) = limN→∞ ‖xtC(s) − xC(s)‖2/N , for s ∈ C. It is easy to show

that distinct entries in Bt are approximately independent. Also, Bt is independent of

{Bs}1≤s≤t−1, and in particular, of xt − x. Hence, Bt(xt − x) converges to a vector, say v,

with i.i.d. normal entries, and for i ∈ [n],

E{vi} = 0, E{v2
i } =

N

M

∑
u∈C

∑
r∈R

Wr,g(i)Wr,u(Qtr,g(i))
2 τ̂t(u). (10.2.5)

Conditional on w, (Qt � At)∗w is a vector with i.i.d. zero-mean normal entries . Also,

the variance of its ith entry, for i ∈ [n], is

1

M

∑
r∈R

Wr,g(i)(Q
t
r,g(i))

2‖wR(r)‖2, (10.2.6)

which converges to
∑

r∈RWr,g(i)(Q
t
r,g(i))

2σ2, by the law of large numbers. With slightly

more work, it can be shown that these entries are approximately independent of the ones

of Bt(xt − x).

Summarizing, the ith entry of the vector in the argument of ηt in Eq. (10.2.4) converges

to X + τt(g(i))1/2Z with Z ∼ N(0, 1) independent of X, and

τt(s) =
∑
r∈R

Wr,s(Q
t
r,s)

2
{
σ2 +

1

δ

∑
u∈C

Wr,u τ̂t(u)
}
, (10.2.7)

for s ∈ C. In addition, using Eq. (10.2.4) and invoking Eqs. (8.3.2), (8.3.3), each entry of

xt+1
C(s) − xC(s) converges to ηt,s(X + τt(s)

1/2Z)−X, for s ∈ C. Therefore,

τ̂t+1(s) = lim
N→∞

1

N
‖xt+1

C(s) − xC(s)‖2

= E{[ηt,s(X + τt(s)
1/2Z)−X]2} = mmse(τt(s)

−1).

(10.2.8)
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Using Eqs. (10.2.7) and (10.2.8), we obtain:

τt+1(s) =
∑
r∈R

Wr,s(Q
t+1
r,s )2

{
σ2 +

1

δ

∑
u∈C

Wr,ummse(τt(u)−1)
}
. (10.2.9)

Applying the change of variable τt(u)−1 =
∑

b∈RWb,uφb(t)
−1, and substituting for Qt+1

r,s

from Eq. (8.3.1), we obtain the state evolution recursion, Eq. (8.2.4).

In conclusion, we showed that the state evolution recursion would hold if the matrix A

was resampled independently from the ensemble M(W,M,N), at each iteration. However,

in our proposed AMP algorithm, the matrix A is constant across iterations, and the above

argument is not valid since xt and A are dependent. The dependency between A and xt

cannot be neglected. Indeed, state evolution does not apply to the following naive iteration

in which we dropped the memory term bt � rt−1:

xt+1 = ηt(x
t + (Qt �A)∗rt) , (10.2.10)

rt = yt −Axt . (10.2.11)

Indeed, the term bt� rt−1 leads to an asymptotic cancellation of the dependencies between

A and xt as proved in [7, 74].



Chapter 11

Analysis of state evolution: Proof

of Lemma 10.0.2

This section is devoted to the analysis of the state evolution recursion for spatially coupled

matrices A, hence proving Lemma 10.0.2.

In order to prove Lemma 10.0.2, we will construct a free energy functional EW(φ) such

that the fixed points of the state evolution are the stationary points of EW . We then

assume by contradiction that the claim of the lemma does not hold, i.e., φ(t) converges

to a fixed point φ(∞) with φa(∞) � σ2 for a significant fraction of the indices a. We

then obtain a contradiction by describing an infinitesimal deformation of this fixed point

(roughly speaking, a shift to the right) that decreases its free energy.

11.1 Outline

A more precise outline of the proof is given below:

(i) We establish some useful properties of the state evolution sequence {φ(t), ψ(t)}t≥0.

This includes a monotonicity property as well as a lower and an upper bound for the

state vectors.

(ii) We define a modified state evolution sequence, denoted by {φmod(t), ψmod(t)}t≥0. This

sequence dominates the original state vectors (see Lemma 11.3.2) and hence it suffices

to focus on the modified state evolution to get the desired result. As we will see the

modified state evolution is more amenable to analysis.

157
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(iii) We next introduce continuum state evolution which serves as the continuous analog

of the modified state evolution. (The continuum states are functions rather than

vectors). The bounds on the continuum state evolution sequence lead to bounds on

the modified state vectors.

(iv) Analysis of the continuum state evolution incorporates the definition of a free energy

functional defined on the space of non-negative measurable functions with bounded

support. The energy is constructed in a way to ensure that the fixed points of the

continuum state evolution are the stationary points of the free energy. Then, we show

that if the undersampling rate is greater than the information dimension, the solution

of the continuum state evolution can be made as small as O(σ2). If this were not

the case, the (large) fixed point could be perturbed slightly in such a way that the

free energy decreases to the first order. However, since the fixed point is a stationary

point of the free energy, this leads to a contradiction.

11.2 Properties of the state evolution sequence

Throughout this section pX is a given probability distribution over the real line, andX ∼ pX .

Also, we will take σ > 0. The result for the noiseless model (Corollary 7.1.8) follows by

letting σ ↓ 0. Recall the inequality

mmse(s) ≤ min(Var(X),
1

s
) . (11.2.1)

Definition 11.2.1. For two vectors φ, φ̃ ∈ RK , we write φ � φ̃ if all φr ≥ φ̃r for r ∈
{1, . . . ,K}.

Proposition 11.2.2. For any W ∈ RR×C
+ , the maps T′W : RR

+ → RC
+ and T′′W : RC

+ → RR
+,

as defined in Definition 8.2.1, are monotone; i.e., if φ � φ̃ then T′W (φ) � T′W (φ̃), and if

ψ � ψ̃ then T′′W (ψ) � T′′W (ψ̃). Consequently, TW is also monotone.

Proof. It follows immediately from the fact that s 7→ mmse(s) is a monotone decreasing

function and the positivity of the matrix W .

Proposition 11.2.3. The state evolution sequence {φ(t), ψ(t)}t≥0 with initial condition

ψi(0) = ∞, for i ∈ C, is monotone decreasing, in the sense that φ(0) � φ(1) � φ(2) � . . .

and ψ(0) � ψ(1) � ψ(2) � . . . .
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Proof. Since ψi(0) = ∞ for all i, we have ψ(0) � ψ(1). The thesis follows from the

monotonicity of the state evolution map.

Proposition 11.2.4. The state evolution sequence {φ(t), ψ(t)}t≥0 is monotone increas-

ing in σ2. Namely, let 0 ≤ σ1 ≤ σ2 and {φ(1)(t), ψ(1)(t)}t≥0, {φ(2)(t), ψ(2)(t)}t≥0 be the

state evolution sequences corresponding to setting, respectively, σ2 = σ2
1 and σ2 = σ2

2 in

Eq. (8.2.4), with identical initial conditions. Then φ(1)(t) � φ(2)(t), ψ(1)(t) � ψ(2)(t) for

all t.

Proof. Follows immediately from Proposition 11.2.2 and the monotonicity of the one-step

mapping (8.2.4).

Lemma 11.2.5. Assume δL0 > 3. Then there exists t0 (depending only on pX), such that,

for all t ≥ t0 and all i ∈ {−2ρ−1, . . . ,−1}, a ∈ Ri, we have

ψi(t) ≤ mmse
( L0

2σ2

)
≤ 2σ2

L0
, (11.2.2)

φa(t) ≤ σ2 +
1

δ
mmse

( L0

2σ2

)
≤
(

1 +
2

δL0

)
σ2 . (11.2.3)

Proof. Take i ∈ {−2ρ−1, · · · ,−1}. For a ∈ Ri, we have φa(t) = σ2 + (1/δ)ψi(t). Further

from mmse(s) ≤ 1/s, we deduce that

ψi(t+ 1) = mmse
(∑
b∈R

Wb,iφb(t)
−1
)
≤
(∑
b∈R

Wb,iφb(t)
−1
)−1

≤
(∑
a∈Ri

Wa,iφa(t)
−1
)−1

=
(
L0φa(t)

−1
)−1

=
φa(t)

L0
.

(11.2.4)

Here we used the facts that Wa,i = 1, for a ∈ Ri and |Ri| = L0. Substituting in the earlier

relation, we get ψi(t + 1) ≤ (1/L0)(σ2 + (1/δ)ψi(t)). Recalling that δL0 > 3, we have

ψi(t) ≤ 2σ2/L0, for all t sufficiently large. Now, using this in the equation for φa(t), a ∈ Ri,

we obtain

φa(t) = σ2 +
1

δ
ψi(t) ≤

(
1 +

2

δL0

)
σ2. (11.2.5)
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We prove the other claims by repeatedly substituting in the previous bounds. In particular,

ψi(t) = mmse
(∑
b∈R

Wb,iφb(t− 1)−1
)
≤ mmse

(∑
a∈Ri

Wa,iφa(t)
−1
)

= mmse(L0φa(t)
−1) ≤ mmse

( L0

(1 + 2
δL0

)σ2

)
≤ mmse

( L0

2σ2

)
,

(11.2.6)

where we used Eq. (11.2.5) in the penultimate inequality. Finally,

φa(t) ≤ σ2 +
1

δ
ψi(t) ≤ σ2 +

1

δ
mmse

( L0

2σ2

)
, (11.2.7)

where the inequality follows from Eq. (11.2.6).

Next we prove a lower bound on the state evolution sequence. Here and below C0 ≡
C\{−2ρ−1, . . . ,−1} ∼= {0, . . . , L−1}. Also, recall that R0 ≡ {−ρ−1, . . . , 0, . . . , L−1+ρ−1}.
(See Fig. 8.4.2).

Lemma 11.2.6. For any t ≥ 0, and any i ∈ C0, ψi(t) ≥ mmse(2σ−2). Further, for any

a ∈ R0 and any t ≥ 0 we have φa(t) ≥ σ2 + (2δ)−1mmse(2σ2).

Proof. Since φa(t) ≥ σ2 by definition, we have, for i ≥ 0, ψi(t) ≥ mmse(σ−2
∑

bWbi) ≥
mmse(2σ−2), where we used the fact that the restriction of W to columns in C0 is roughly

column-stochastic. Plugging this into the expression for φa, we get

φa(t) ≥ σ2 +
1

δ

∑
i∈C

Wa,i mmse(2σ−2) ≥ σ2 +
1

2δ
mmse(2σ−2) . (11.2.8)

Notice that for L0,∗ ≥ 4 and for all L0 > L0,∗, the upper bound for ψi(t), i ∈
{−2ρ−1, · · · ,−1}, given in Lemma 11.2.5 is below the lower bound for ψi(t), with i ∈ C0,

given in Lemma 11.2.6; i.e., for all σ,

mmse
( L0

2σ2

)
≤ mmse

( 2

σ2

)
. (11.2.9)

11.3 Modified state evolution

First of all, by Proposition 11.2.4 we can assume, without loss of generality σ > 0.
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Motivated by the monotonicity properties of the state evolution sequence mentioned in

Lemmas 11.2.5 and 11.2.6, we introduce a new state evolution recursion that dominates

the original one and yet is more amenable to analysis. Namely, we define the modified

state evolution maps F′W : RR0
+ → RC0

+ , F′′W : RC0
+ → RR0

+ . For φ = (φa)a∈R0 ∈ RR0
+ ,

ψ = (ψi)i∈C0 ∈ RC0
+ , and for all i ∈ C0, a ∈ R0, let:

F′W (φ)i = mmse
( ∑
b∈R0

Wb−iφ
−1
b

)
, (11.3.1)

F′′W (ψ)a = σ2 +
1

δ

∑
i∈Z

Wa−i ψi . (11.3.2)

where, in the last equation we set by convention, ψi(t) = mmse(L0/(2σ
2)) for i ≤ −1, and

ψi = ∞ for i ≥ L, and recall the shorthand Wa−i ≡ ρW
(
ρ (a − i)

)
introduced in Section

8.4. We also let FW = F′W ◦ F′′W .

Definition 11.3.1. The modified state evolution sequence is the sequence {φ(t), ψ(t)}t≥0

with φ(t) = F′′W (ψ(t)) and ψ(t + 1) = F′W (φ(t)) for all t ≥ 0, and ψi(0) = ∞ for all

i ∈ C0. We also adopt the convention that, for i ≥ L, ψi(t) = +∞ and for i ≤ −1,

ψi(t) = mmse(L0/(2σ
2)), for all t.

Lemma 11.2.5 then implies the following.

Lemma 11.3.2. Let {φ(t), ψ(t)}t≥0 denote the state evolution sequence as per Definition

8.2.2, and {φmod(t), ψmod(t)}t≥0 denote the modified state evolution sequence as per Def-

inition 11.3.1. Then, there exists t0 (depending only on pX), such that, for all t ≥ t0,

φ(t) � φmod(t− t0) and ψ(t) � ψmod(t− t0).

Proof. Choose t0 = t(L0, δ) as given by Lemma 11.2.5. We prove the claims by induction on

t. For the induction basis (t = t0), we have from Lemma 11.2.5, ψi(t0) ≤ mmse(L0/(2σ
2)) =

ψmod
i (0), for i ≤ −1. Also, we have ψmod

i (0) =∞ ≥ ψi(t0), for i ≥ 0. Further,

φmod
a (0) = F′′W (ψmod(0))a ≥ T′′W (ψmod(0))a ≥ T′′W (ψ(t0))a = φa(t0), (11.3.3)

for a ∈ R0. Here, the last inequality follows from monotonicity of T′′W (Proposition 11.2.2).

Now, assume that the claim holds for t; we prove it for t+ 1. For i ∈ C0, we have

ψmod
i (t+ 1− t0) = F′W (φmod(t− t0))i = T′W (φmod(t− t0))i

≥ T′W (φ(t))i = ψi(t+ 1),
(11.3.4)
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where the inequality follows from monotonicity of T′W (Proposition 11.2.2) and the induction

hypothesis. In addition, for a ∈ R0,

φmod
a (t+ 1− t0) = F′′W (ψmod(t+ 1− t0))a ≥ T′′W (ψmod(t+ 1− t0))a

≥ T′′W (ψ(t+ 1))a = φa(t+ 1).
(11.3.5)

Here, the last inequality follows from monotonicity of T′′W and Eq. (11.3.4).

By Lemma 11.3.2, we can now focus on the modified state evolution sequence in order

to prove Lemma 10.0.2. Notice that the mapping FW has a particularly simple description

in terms of a shift-invariant state evolution mapping. Explicitly, define T′W,∞ : RZ → RZ,

T′′W,∞ : RZ → RZ, by letting, for φ, ψ ∈ RZ and all i, a ∈ Z:

T′W,∞(φ)i = mmse
(∑
b∈Z

Wb−iφ
−1
b

)
, (11.3.6)

T′′W,∞(ψ)a = σ2 +
1

δ

∑
i∈Z

Wa−i ψi . (11.3.7)

Further, define the embedding H : RC0 → RZ by letting

(Hψ)i =


mmse(L0/(2σ

2)) if i < 0,

ψi if 0 ≤ i ≤ L− 1,

+∞ if i ≥ L,

(11.3.8)

And the restriction mapping H′a,b : RZ → Rb−a+1 by H′a,bψ = (ψa, . . . , ψb).

Lemma 11.3.3. With the above definitions, FW = H′0,L−1 ◦ TW,∞ ◦ H.

Proof. Clearly, for any ψ = (ψi)i∈C0 , we have T′′W ◦ H(ψ)a = F′′W ◦ H(ψ)a for a ∈ R0, since

the definition of the embedding H is consistent with the convention adopted in defining the

modified state evolution. Moreover, for i ∈ C0
∼= {0, . . . , L− 1}, we have

T′W,∞(φ)i = mmse
(∑
b∈Z

Wb−iφ
−1
b

)
= mmse

( ∑
−ρ−1≤b≤L−1+ρ−1

Wb−iφ
−1
b

)
= mmse

( ∑
b∈R0

Wb−iφ
−1
b

)
= F′W (φ)i.

(11.3.9)

Hence, T′W,∞◦T′′W,∞◦H(ψ)i = F′W ◦F′′W ◦H(ψ)i, for i ∈ C0. Therefore, H′0,L−1◦TW,∞◦H(ψ) =
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FW ◦ H(ψ), for any ψ ∈ RC0
+ , which completes the proof.

We will say that a vector ψ ∈ RK is nondecreasing if, for every 1 ≤ i < j ≤ K, ψi ≤ ψj .

Lemma 11.3.4. If ψ ∈ RC0 is nondecreasing, with ψi ≥ mmse(L0/(2σ
2)) for all i, then

FW (ψ) is nondecreasing as well. In particular, if {φ(t), ψ(t)}t≥0 is the modified state evo-

lution sequence, then φ(t) and ψ(t) are nondecreasing for all t.

Proof. By Lemma 11.3.3, we know that FW = H′0,L−1 ◦ TW,∞ ◦ H. We first notice that, by

the assumption ψi ≥ mmse(L0/(2σ
2)), we have that H(ψ) is nondecreasing.

Next, if ψ ∈ RZ is nondecreasing, TW,∞(ψ) is nondecreasing as well. In fact, the

mappings T′W,∞ and T′′W,∞ both preserve the nondecreasing property, since both are shift

invariant, and mmse( · ) is a decreasing function. Finally, the restriction of a nondecreasing

vector is obviously nondecreasing.

This proves that FW preserves the nondecreasing property. To conclude that ψ(t) is

nondecreasing for all t, notice that the condition ψi(t) ≥ mmse(L0/(2σ
2)) is satisfied at all

t by Lemma 11.2.6 and condition (11.2.9). The claim for ψ(t) follows by induction.

Now, since F′′W preserves the nondecreasing property, we have φ(t) = F′′W (ψ(t)) is non-

decreasing for all t, as well.

11.4 Continuum state evolution

We start by defining the continuum state evolution mappings. For Ω ⊆ R, let M (Ω) be the

space of non-negative measurable functions on Ω (up to measure-zero redefinitions). Define

F ′W : M ([−1, ` + 1]) → M ([0, `]) and F ′′W : M ([0, `]) → M ([−1, ` + 1]) as follows. For

φ ∈M ([−1, `+ 1]), ψ ∈M ([0, `]), and for all x ∈ [0, `], y ∈ [−1, `+ 1], we let

F ′W(φ)(x) = mmse
(∫ `+1

−1
W(x− z)φ(z)−1dz

)
, (11.4.1)

F ′′W(ψ)(y) = σ2 +
1

δ

∫
R
W(y − x)ψ(x)dx , (11.4.2)

where we adopt the convention that ψ(x) = mmse(L0/(2σ
2)) for x < 0, and ψ(x) = ∞ for

x > `.

Definition 11.4.1. The continuum state evolution sequence is the sequence {φ( · ; t), ψ( · ; t)}t≥0,

with φ(t) = F ′′W(ψ(t)) and ψ(t + 1) = F ′W(φ(t)) for all t ≥ 0, and ψ(x; 0) = ∞ for all
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x ∈ [0, `].

Recalling Eq. (11.2.1), we have ψ(x; t) = F ′W(φ(t − 1))(x) ≤ Var(X), for t ≥ 1. Also,

φ(x; t) = F ′′W(ψ(t))(x) ≤ σ2 + (1/δ)Var(X), for t ≥ 1. Define,

ΦM = 1 +
1

δ
Var(X). (11.4.3)

Assuming σ < 1, we have φ(x; t) < ΦM , for all t ≥ 1.

The point of introducing continuum state evolution is that by construction of the matrix

W and the continuity ofW, when ρ is small, one can approximate summation by integration

and study the evolution of the continuum states which are represented by functions rather

than vectors. This observation is formally stated in lemma below.

Lemma 11.4.2. Let {φ( · ; t), ψ( · ; t)}t≥0 be the continuum state evolution sequence and

{φ(t), ψ(t)}t≥0 be the modified discrete state evolution sequence, with parameters ρ and

L = `/ρ. Then for any t ≥ 0

lim
ρ→0

1

L

L−1∑
i=0

∣∣ψi(t)− ψ(ρi; t)
∣∣ = 0 , (11.4.4)

lim
ρ→0

1

L

L−ρ−1−1∑
a=−ρ−1

∣∣φa(t)− φ(ρa; t)
∣∣ = 0 . (11.4.5)

Lemma 11.4.2 is proved in Appendix D.1.

Corollary 11.4.3. The continuum state evolution sequence {φ( · ; t), ψ( · ; t)}t≥0, with initial

condition ψ(x) = mmse(L0/(2σ
2)) for x < 0, and ψ(x) = ∞ for x > `, is monotone

decreasing, in the sense that φ(x; 0) ≥ φ(x; 1) ≥ φ(x; 2) ≥ · · · and ψ(x; 0) ≥ ψ(x; 1) ≥
ψ(x; 2) ≥ · · · , for all x ∈ [0, `].

Proof. Follows immediately from Lemmas 11.2.3 and 11.4.2.

Corollary 11.4.4. Let {φ( · ; t), ψ( · ; t)}t≥2 be the continuum state evolution sequence.

Then for any t, x 7→ ψ(x; t) and x 7→ φ(x; t) are nondecreasing Lipschitz continuous func-

tions.

Proof. Nondecreasing property of functions x 7→ ψ(x; t), and x 7→ φ(x; t) follows imme-

diately from Lemmas 11.3.4 and 11.4.2. Further, since ψ(x; t) is bounded for t ≥ 1, and
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W( · ) is Lipschitz continuous, recalling Eq. (11.4.2), the function x 7→ φ(x; t) is Lipschitz

continuous as well, for t ≥ 1. Similarly, since σ2 < φ(x; t) < ΦM , invoking Eq. (11.4.1), the

function x 7→ ψ(x; t) is Lipschitz continuous for t ≥ 2.

11.4.1 Free energy

A key role in our analysis is played by the free energy functional. In order to define the free

energy, we first provide some preliminaries. Define the mutual information between X and

a noisy observation of X at signal-to-noise ratio s by

I(s) ≡ I(X;
√
sX + Z) , (11.4.6)

with Z ∼ N(0, 1) independent of X ∼ pX . Recall the relation [62]

d

ds
I(s) =

1

2
mmse(s) . (11.4.7)

Furthermore, the following identities relate the scaling law of mutual information under

weak noise to Rényi information dimension [144].

Proposition 11.4.5. Assume H(bXc) <∞. Then

lim inf
s→∞

I(s)
1
2 log s

= d(pX),

lim sup
s→∞

I(s)
1
2 log s

= d(pX).

(11.4.8)

Now we are ready to define the free energy functional.

Definition 11.4.6. LetW( · ) be a shape function, and σ, δ > 0 be given. The corresponding

free energy is the functional EW : M ([−1, `+1])→ R defined as follows for φ ∈M ([−1, `+

1]):

EW(φ) =
δ

2

∫ `−1

−1

{ ς2(x)

φ(x)
+ log φ(x)

}
dx+

∫ `

0
I
(∫
W(x− z)φ(z)−1dz

)
dx, (11.4.9)

where

ς2(x) = σ2 +
1

δ

(∫
y≤0
W(y − x)dy

)
mmse

( L0

2σ2

)
. (11.4.10)
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The name ‘free energy’ is motivated by the connection with statistical physics, whereby

EW(φ) is the asymptotic log-partition function for the Gibbs-Boltzmann measure corre-

sponding to the posterior distribution of x given y. (This connection is however immaterial

for our proof and we will not explore it further, see for instance [82].)

Notice that this is where the Rényi information comes into the picture. The mutual

information appears in the expression of the free energy and the mutual information is

related to the Rényi information via Proposition 11.4.5.

Viewing EW as a function defined on the Banach space L2([−1, `]), we will denote by

∇EW(φ) its Fréchet derivative at φ. This will be identified, via standard duality, with

a function in L2([−1, `]). It is not hard to show that the Fréchet derivative exists on

{φ : φ(x) ≥ σ2} and is such that

∇EW(φ)(y) =

δ

2φ2(y)

{
φ(y)− ς2(y)− 1

δ

∫ `

0
W(x− y)mmse

( ∫
W(x− z)φ(z)−1dz

)
dx
}
,

(11.4.11)

for −1 ≤ y ≤ ` − 1. Note that the condition φ(x) ≥ σ2 is immediately satisfied by the

state evolution sequence since, by Eq. (11.4.2), F ′′W(ψ)(y) ≥ σ2 for all y (becauseW(y−x),

ψ(x; t) ≥ 0); see also Definition 11.4.1.

The specific choice of the free energy in Eq. (11.4.9) ensures that the fixed points of the

continuum state evolution are the stationary points of the free energy.

Corollary 11.4.7. If {φ, ψ} is the fixed point of the continuum state evolution, then

∇EW (φ)(y) = 0, for −1 ≤ y ≤ `− 1.

Proof. We have φ = F ′′W(ψ) and ψ = F ′W(φ), whereby for −1 ≤ y ≤ `− 1,

φ(y) = σ2 +
1

δ

∫
W(y − x)ψ(x)dx

= σ2 +
1

δ

(∫
x≤0
W(y − x)dx

)
mmse

(
L0

2σ2

)
+

1

δ

∫ `

0
W(y − x)mmse

(∫ `+1

−1
W(x− z)φ(z)−1dz

)
dx

= ς2(y) +
1

δ

∫ `

0
W(y − x)mmse

(∫ `+1

−1
W(x− z)φ(z)−1dz

)
dx.

(11.4.12)

The result follows immediately from Eq. (11.4.11).
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Definition 11.4.8. Define the potential function V : R+ → R+ as follows.

V (φ) =
δ

2

(σ2

φ
+ log φ

)
+ I(φ−1). (11.4.13)

As we will see later, the analysis of the continuum state evolution involves a decompo-

sition of the free energy functional into three terms and a careful treatment of each term

separately. The definition of the potential function V is motivated by that decomposition.

Using Eq. (11.4.8), we have for φ→ 0,

V (φ) =
δ

2

(σ2

φ
+ log φ

)
+

1

2
d(pX) log(φ−1)(1 + o(1))

=
δσ2

2φ
+

1

2

{
δ − d(pX)(1 + o(1))

}
log(φ).

(11.4.14)

Define

φ∗ = σ2 +
1

δ
mmse

( L0

2σ2

)
. (11.4.15)

Notice that σ2 < φ∗ ≤ (1+2/(δL0))σ2 < 2σ2, given that δL0 > 3. The following proposition

upper bounds V (φ∗) and its proof is deferred to Appendix D.2.

Proposition 11.4.9. There exists σ2 > 0, such that, for σ ∈ (0, σ2], we have

V (φ∗) ≤ δ

2
+
δ − d(pX)

4
log(2σ2). (11.4.16)

Now, we write the energy functional in terms of the potential function.

EW(φ) =

∫ `−1

−1
V (φ(x)) dx+

δ

2

∫ `−1

−1

ς2(x)− σ2

φ(x)
dx+ ẼW(φ), (11.4.17)

with,

ẼW(φ) =

∫ `

0

{
I(W ∗ φ(y)−1)− I(φ(y − 1)−1)

}
dy. (11.4.18)

11.4.2 Analysis of the continuum state evolution

Now we are ready to study the fixed points of the continuum state evolution.
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Lemma 11.4.10. Let δ > 0, and pX be a probability measure on the real line with δ >

d̄(pX). For any κ > 0, there exist `0, σ2
0 = σ0(κ, δ, pX)2, such that, for any ` > `0

and σ ∈ (0, σ0], and any fixed point of continuum state evolution,{φ, ψ}, with ψ and φ

nondecreasing Lipschitz functions and ψ(x) ≥ mmse(L0/(2σ
2)), the following holds.∫ `−1

−1
|φ(x)− φ∗| dx ≤ κ`. (11.4.19)

Proof. The claim is trivial for κ ≥ ΦM , since φ(x) ≤ ΦM . Fix κ < ΦM , and choose σ1,

such that φ∗ < κ/2, for σ ∈ (0, σ1]. Since φ is a fixed point of continuum state evolution,

we have ∇EW(φ) = 0, on the interval [−1, ` − 1] by Corollary 11.4.7. Now, assume that∫ `−1
−1 |φ(x) − φ∗| > κ`. We introduce an infinitesimal perturbation of φ that decreases the

energy in the first order; this contradicts the fact ∇EW(φ) = 0 on the interval [−1, `− 1].

Claim 11.4.11. For each fixed point of continuum state evolution that satisfies the hypoth-

esis of Lemma 11.4.10, the following holds. For any K > 0, there exists `0, such that,

for ` > `0 there exist x1 < x2 ∈ [0, ` − 1), with x2 − x1 = K and κ/2 + φ∗ < φ(x), for

x ∈ [x1, x2].

Claim 11.4.11 is proved in Appendix D.3.

Fix K > 2 and let x0 = (x1 + x2)/2. Thus, x0 ≥ 1. For a ∈ (0, 1], define

φa(x) =



φ(x), for x2 ≤ x,

φ( x2−x0
x2−x0−a x−

ax2
x2−x0−a), for x ∈ [x0 + a, x2),

φ(x− a), for x ∈ [−1 + a, x0 + a),

φ∗, for x ∈ [−1,−1 + a).

(11.4.20)

See Fig. 11.4.1 for an illustration. (Note that from Eq. (11.4.2), φ(−1) = φ∗). In the

following, we bound the difference of the free energies of functions φ and φa.

Proposition 11.4.12. For each fixed point of continuum state evolution, satisfying the

hypothesis of Lemma 11.4.10, there exists a constant C(K), such that∫ `−1

−1

{ ς2(x)− σ2

φa(x)
− ς2(x)− σ2

φ(x)

}
dx ≤ C(K)a.

We refer to Appendix D.4 for the proof of Proposition 11.4.12.
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Figure 11.4.1: An illustration of function φ(x) and its perturbation φa(x).

Proposition 11.4.13. For each fixed point of continuum state evolution, satisfying the

hypothesis of Lemma 11.4.10, there exists a constant C(κ,K), such that,

ẼW(φa)− ẼW(φ) ≤ C(κ,K)a.

Proof of Proposition 11.4.13 is deferred to Appendix D.5.

Using Eq. (11.4.17) and Proposition 11.4.13, we have

EW(φa)− EW(φ) ≤
∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx+ C(κ,K)a, (11.4.21)

where the constants (δ/2)C(K) and C(κ,K) are absorbed in C(κ,K).

We proceed by proving the following proposition. Its proof is deferred to Appendix D.6.

Proposition 11.4.14. For any C = C(κ,K), there exists σ0, such that for σ ∈ (0, σ0] the

following holds. ∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx < −2C(κ,K)a. (11.4.22)
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Fix C(κ,K) > 0. As a result of Eq. (11.4.21) and Proposition 11.4.14,

EW(φa)− EW(φ) <

∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx+ C(κ,K)a

≤ −C(κ,K)a .

(11.4.23)

Since φ is a Lipschitz function by assumption, it is easy to see that ‖φa − φ‖2 ≤ C a,

for some constant C. By Taylor expansion of the free energy functional around function φ,

we have

〈∇EW(φ), φa − φ〉 = EW(φa)− EW(φ) + o(‖φa − φ‖2)

≤ −C(κ,K)a+ o(a).
(11.4.24)

However, since {φ, ψ} is a fixed point of the continuum state evolution, we have∇EW(φ) = 0

on the interval [−1, ` − 1] (cf. Corollary 11.4.7). Also, φa − φ is zero out of [−1, ` − 1].

Therefore, 〈∇EW(φ), φa − φ〉 = 0, which leads to a contradiction in Eq (11.4.24). This

implies that our first assumption
∫ `−1
−1 |φ(x)− φ∗| dx > κ` is false. The result follows.

11.4.3 Analysis of the continuum state evolution: robust reconstruction

Next lemma pertains to the robust reconstruction of the signal. Prior to stating the lemma,

we need to establish some definitions. Due to technical reasons in the proof, we consider an

alternative decomposition of EW(φ) to Eq. (11.4.17).

Define the potential function Vrob : R+ → R+ as follows.

Vrob(φ) =
δ

2

(σ2

φ
+ log φ

)
, (11.4.25)

and decompose the Energy functional as:

EW(φ) =

∫ `−1

−1
Vrob(φ(x)) dx+

δ

2

∫ `−1

−1

ς2(x)− σ2

φ(x)
dx+ ẼW,rob(φ), (11.4.26)

with,

ẼW,rob(φ) =

∫ `

0
I(W ∗ φ(y)−1)dy. (11.4.27)

Lemma 11.4.15. Let δ > 0, and pX be a probability measure on the real line with δ >
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D(pX). For any 0 < α < 1, there exist `0 = `0(α), σ2
0 = σ0(pX , δ, α)2, such that , for any

` > `0 and σ ∈ (0, σ0], and for any fixed point of continuum state evolution, {φ, ψ}, with ψ

and φ nondecreasing Lipschitz functions and ψ(x) ≥ mmse(L0/(2σ
2)), the following holds.∫ `−1

−1
|φ(x)− φ∗| dx ≤ Cσ2` , (11.4.28)

with C = 2δ
(1−α)(δ−D(pX))

.

Proof. Suppose
∫ `−1
−1 |φ(x) − φ∗|dx > Cσ2`, for the given C. Similar to the proof of

Lemma 11.4.10, we obtain an infinitesimal perturbation of φ that decreases the free en-

ergy in the first order, contradicting the fact ∇EW(φ) = 0 on the interval [−1, `− 1].

By definition of upper MMSE dimension (Eq. (7.1.12)), for any ε > 0, there exists φ1,

such that, for φ ∈ [0, φ1],

mmse(φ−1) ≤ (D(pX) + ε)φ. (11.4.29)

Henceforth, fix ε and φ1.

Claim 11.4.16. For each fixed point of continuum state evolution that satisfies the hypothe-

sis of Lemma 11.4.15, the following holds. For any K > 0, 0 < α < 1, there exist `0 = `0(α)

and σ0 = σ0(ε, α, pX , δ), such that for ` > `0 and σ ∈ (0, σ0], there exist x1 < x2 ∈ [0, `−1),

with x2 − x1 = K and Cσ2(1− α) ≤ φ(x) ≤ φ1, for x ∈ [x1, x2].

Claim 11.4.16 is proved in Appendix D.7. For positive values of a, define

φa(x) =

φ(x), for x ≤ x1, x2 ≤ x,

(1− a)φ(x) for x ∈ (x1, x2).
(11.4.30)

Our aim is to show that EW(φa)− EW(φ) ≤ −c a, for some constant c > 0.

Invoking Eq. (11.4.17), we have

EW(φa)− EW(φ) =

∫ `−1

−1
{Vrobφa(x))− Vrob(φ(x))} dx

+
δ

2

∫ `−1

−1
(ς2(x)− σ2)

(
1

φa(x)
− 1

φ(x)

)
dx+ ẼW,rob(φa)− ẼW,rob(φ).

(11.4.31)
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The following proposition bounds each term on the right hand side separately.

Proposition 11.4.17. For the function φ(x) and its perturbation φa(x), we have∫ `−1

−1
{Vrob(φa(x))− Vrob(φ(x))} dx ≤ δ

2
K log(1− a) +K

δa

2C(1− α)(1− a)
, (11.4.32)∫ `−1

−1
(ς2(x)− σ2)

(
1

φa(x)
− 1

φ(x)

)
dx ≤ K a

C(1− α)(1− a)
, (11.4.33)

ẼW,rob(φa)− ẼW,rob(φ) ≤ −D(pX) + ε

2
(K + 2) log(1− a). (11.4.34)

We refer to Appendix D.8 for the proof of Proposition 11.4.17.

Combining the bounds given by Proposition 11.4.17, we obtain

EW(φa)− EW(φ) ≤
K

2
log(1− a)

{
δ − (D(pX) + ε)(1 +

2

K
)
}

+K
δa

C(1− α)(1− a)
.

(11.4.35)

Since δ > D(pX) by our assumption, and C = 2δ
(1−α)(δ−D(pX))

, there exist ε, a small enough

and K large enough, such that

c = δ − (D(pX) + ε)(1 +
2

K
)− 2δ

C(1− α)(1− a)
> 0.

Using Eq. (11.4.35), we get

EW(φa)− EW(φ) ≤ −cK
2
a. (11.4.36)

By an argument analogous to the one in the proof of Lemma 11.4.10, this is in contradiction

with ∇EW(φ) = 0. The result follows.

11.5 Proof of Lemma 10.0.2

By Lemma 11.3.2, φa(t) ≤ φmoda (t−t0), for a ∈ R0
∼= {ρ−1, · · · , L−1+ρ−1} and t ≥ t1(L0, δ).

Therefore, we only need to prove the claim for the modified state evolution. The idea of

the proof is as follows. In the previous section, we analyzed the continuum state evolution

and showed that at the fixed point, the function φ(x) is close to the constant φ∗. Also, in

Lemma 11.4.2, we proved that the modified state evolution is essentially approximated by
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the continuum state evolution as ρ→ 0. Combining these results implies the thesis.

Proof (Part(a)). By monotonicity of continuum state evolution (cf. Corollary 11.4.3),

limt→∞ φ(x; t) = φ(x) exists. Further, by continuity of state evolution recursions, φ(x)

is a fixed point. Finally, φ(x) is a nondecreasing Lipschitz function (cf. Corollary 11.4.4).

Using Lemma 11.4.10 in conjunction with the Dominated Convergence theorem, we have,

for any ε > 0

lim
t→∞

1

`

∫ `−1

−1
|φ(x; t)− φ∗|dx ≤ ε

4
, (11.5.1)

for σ ∈ (0, σ2
0] and ` > `0. Therefore, there exists t2 > 0 such that 1

`

∫ `−1
−1 |φ(x; t2)−φ∗|dx ≤

ε/2. Moreover, for any t ≥ 0,

1

`

∫ `−1

−1
|φ(x; t)− φ∗|dx = lim

ρ→0

ρ

`

L−ρ−1−1∑
a=−ρ−1

|φ(ρa; t)− φ∗|

= lim
ρ→0

1

L

L−ρ−1−1∑
a=−ρ−1

|φ(ρa; t)− φ∗|.

(11.5.2)

By triangle inequality, for any t ≥ 0,

lim
ρ→0

1

L

L−ρ−1−1∑
a=−ρ−1

|φa(t)− φ∗| ≤ lim
ρ→0

1

L

L−ρ−1−1∑
a=−ρ−1

|φa(t)− φ(ρa; t)|+

lim
ρ→0

1

L

L−ρ−1−1∑
a=−ρ−1

|φ(ρa; t)− φ∗|

=
1

`

∫ `−1

−1
|φ(x; t)− φ∗|dx,

(11.5.3)

where the last step follows from Lemma 11.4.2 and Eq. (11.5.2).
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Since the sequence {φ(t)} is monotone decreasing in t, we have

lim
ρ→0

lim
t→∞

1

L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤ lim
ρ→0

1

L

L−ρ−1−1∑
a=−ρ−1

φa(t2)

≤ lim
ρ→0

1

L

L−ρ−1−1∑
a=−ρ−1

(|φa(t2)− φ∗|+ φ∗)

≤ 1

`

∫ `−1

−1
|φ(x; t2)− φ∗|dx+ φ∗

≤ ε

2
+ φ∗.

(11.5.4)

Finally,

lim
t→∞

L+ρ−1−1∑
a=−ρ−1

φa(t) ≤
2ρ−1

L
ΦM +

ε

2
+ φ∗

≤ 2ρ−1

L∗
ΦM +

ε

2
+ 2σ0.

(11.5.5)

Clearly, by choosing L∗ large enough and σ0 sufficiently small, we can ensure that the right

hand side of Eq. (11.5.5) is less than ε.

Proof (Part(b)). Consider the following two cases.

• σ ≤ σ0: In this case, proceeding along the same lines as the proof of Part (a), and

using Lemma 11.4.15 in lieu of Lemma 11.4.10, we have

lim
t→∞

1

L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤ Cσ2 + φ∗ ≤
(

2δ

(1− α)(δ −D(pX))
+ 1 +

2

δL0

)
σ2 . (11.5.6)

• σ > σ0: Since φa(t) ≤ σ2 + (1/δ)Var(X) for any t > 0, we have

lim
t→∞

1

L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤ σ2 +
1

δ
Var(X) . (11.5.7)

Choosing

C = max
{ 2δ

(1− α)(δ −D(pX))
+ 1 +

2

δL0
, 1 +

Var(X)

δσ2
0

}
,
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proves the claim in both cases.

Finally, in the asymptotic case where ` = Lρ → ∞, ρ → 0, L0 → ∞, we have α → 0

and using Eq. (11.5.6), we get

lim sup
σ→0

lim
t→∞

1

σ2 L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤
3δ −D(pX)

δ −D(pX)
.



Chapter 12

Gabor Transform & Spatial

Coupling

As discussed in PartII, using spatial coupling and (approximate) message passing, our ap-

proach allows successful compressed sensing recovery from a number of measurements that

achieves the information-theoretic limit. However, this approach presents in fact several un-

realistic features. In particular, the entries of A are independent Gaussian entries with zero

mean and suitably chosen variances. It is obviously difficult to implement such a measure-

ment matrix through a physical sampling mechanism. This chapter aims at showing that

the spatial coupling phenomenon is significantly more robust and general than suggested

by the constructions of [82, 41].

We study the problem of sampling a random signal with sparse support in frequency

domain. Shannon famously considered a scheme that instantaneously samples the signal at

equispaced times. He proved that the signal can be reconstructed as long as the sampling

rate exceeds twice the bandwidth (Nyquist rate). Candès, Romberg, Tao introduced a

scheme that acquires instantaneous samples of the signal at random times. They proved

that the signal can be uniquely and efficiently reconstructed, provided the sampling rate

exceeds the frequency support of the signal, times logarithmic factors.

In this chapter, we consider a probabilistic model for the signal, and a sampling scheme

inspired by the idea of spatial coupling in coding theory. Namely, we propose to acquire non-

instantaneous samples at random times. Mathematically, this is implemented by acquiring

a small random subset of Gabor coefficients. We show empirically that this scheme achieves

correct reconstruction as soon as the sampling rate exceeds the frequency support of the

176
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signal, thus reaching the information theoretic limit.

12.1 Definitions

For the sake of simplicity, we consider a discrete-time model (analogous to the one of [23])

and denote signals in time domain as x ∈ Cn, x = (x(t))1≤t≤n = (x(1), . . . , x(n))T. Their

discrete Fourier transform is denoted by x̂ ∈ Cn, x̂ = (x̂(ω))ω∈Ωn , where Ωn = {ω = 2πk/n :

k ∈ {0, 1, . . . ,
n− 1}}. The Fourier transform x̂ = (Fx) is given by

x̂(ω) = 〈bω, x〉 =
n∑
t=1

bω(t) x(t) , bω(t) ≡ 1√
n
eiωt . (12.1.1)

Here 〈 · , · 〉 denotes the standard scalar product on Cn. Also, for a complex variable z, z

is the complex conjugate of z. Notice that (bω)ω∈Ωn is an orthonormal basis of Cn. This

implies Parseval’s identity 〈x̂1, x̂2〉 = 〈x1, x2〉. In addition, the inverse transform is given by

x(t) =
∑
ω∈Ωn

x̂(ω) bω(t) =
1√
n

∑
ω∈Ωn

x̂(ω) eiωt . (12.1.2)

We will denote by Tn = {1, . . . , n} the time domain, and will consider signals that are sparse

in the Fourier domain.

A sampling mechanism is defined by a measurement matrix A ∈ Rm×n. Measurement

vector y = (y(1), . . . , y(m))T ∈ Rm is given by

y = Ax+ w ≡ y0 + w , (12.1.3)

where w is a noise vector with variance σ2, and y0 is the vector of ideal (noiseless) measure-

ments. In other words, y(i) = 〈ai, x〉 where we let a∗1, . . . a
∗
m be the rows of A. Instantaneous

sampling corresponds to vectors ai that are canonical base vectors.

Measurements can also be given in terms of the Fourier transform of the signal:

y = AFx̂+ w , AF = AF∗ . (12.1.4)

The rows of AF are denoted by â∗1, . . . , â
∗
m, and obviously âi = Fai. Here and below, for a

matrix M , M∗ is the hermitian adjoint of M , i.e. M∗ij = Mji .
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12.2 Information theory model

In [23], Candès, Romberg, Tao studied a randomized scheme that samples the signal in-

stantaneously at uniformly random times. Mathematically, this corresponds to choosing the

measurement vectors ai to be a random subset of the canonical basis in Cn. They proved

that, with high probability, these measurements allow to reconstruct x uniquely and effi-

ciently, provided m ≥ C|S| log n, where S = {ω ∈ Ω : x̂(ω) 6= 0} is the frequency support

of the signal.

In this chapter, we consider a probabilistic model for the signal x̂, namely we assume

that the components x̂(ω), ω ∈ Ω are i.i.d. with P{x̂(ω) 6= 0} ≤ ε and E{|x̂(ω)|2} ≤ C <∞.

The distribution of x̂(ω) is assumed to be known. Indeed, information theoretic thinking has

led to impressive progress in digital communication, as demonstrated by the development

of modern iterative codes [115]. More broadly, probabilistic models can lead to better

understanding of limits and assumptions in relevant applications to digital communication

and sampling theory.

12.3 Contributions

The goal of present chapter is to show that the spatial coupling phenomenon is –in the

present context– significantly more general than suggested by the constructions of [82, 41].

Unfortunately, a rigorous analysis of message passing algorithms is beyond reach for sensing

matrices with dependent or deterministic entries. We thus introduce an ensemble of sensing

matrices, and show numerically that, under approximate message passing (AMP) recon-

struction, they allow recovery at undersampling rates close to the information dimension.

Similar simulations were already presented by Krzakala et al. [82] in the case of matrices

with independent entries.

Our matrix ensemble can be thought of as a modification of the one in [23] for imple-

menting spatial coupling. As mentioned above, [23] suggests to sample the signal pointwise

(instantaneously) in time. In the Fourier domain (in which the signal is sparse) this corre-

sponds to taking measurements that probe all frequencies with the same weight. In other

words, AF is not band-diagonal as required in spatial coupling. Our solution is to ‘smear

out’ the samples: instead of measuring x(t∗), we modulate the signal with a wave of fre-

quency ω∗, and integrate it over a window of size W−1 around t∗. In Fourier space, this
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corresponds to integrating over frequencies within a window W around ω∗. Each measure-

ment corresponds to a different time-frequency pair (t∗, ω∗). While there are many possible

implementations of this idea, the Gabor transform offers an analytically tractable avenue.

Our method can be thought of as a subsampling of a discretized Gabor transform of the

signal.

In [93], Gabor frames have also been used to exploit the sparsity of signals in time and

enable sampling multipulse signals at sub-Nyquist rates.

12.4 Sampling scheme

12.4.1 Constructing the sensing matrix

The sensing matrix A is drawn from a random ensemble denoted by M(n,m1, L, `, ξ, δ).

Here n,m1, L, ` are integers and ξ, δ ∈ (0, 1). The rows of A are partitioned as follows:

R =
{
∪m1
k=1 Rk

}
∪ R0, (12.4.1)

where |Rk| = L, and |R0| = bnδc. Hence, m = m1L + bnδc. Notice that m/n =

(m1L + bnδc)/n. Since we will take n much larger than m1L, the undersampling ratio

m/n will be arbitrary close to δ. Indeed, with an abuse of language, we will refer to δ as

the undersampling ratio.

We construct the sensing matrix A as follows:

1. For each k ∈ {1, · · · ,m1}, and each r ∈ Rk, ar = b2πk/n.

2. The rows {ar}r∈R0 are defined as

ar(t) = a(t; tr, ωr) , (12.4.2)

where {tr}r∈R0 are independent and uniformly random in Tn, and {ωr}r∈R0 are equi-

spaced in Ωn. Finally, for t∗ ∈ Tn, and ω∗ ∈ Ωn, we define

a(t; t∗, ω∗) =
1

C`
eiω∗t Pξ,`(t∗, t) , C` =

{∑
t∈Tn

Pξ,`(t∗, t)
2
}1/2

.

Here Pξ,`(t∗, t) is the probability that a random walk on the circle with n sites

{1, . . . , n} starting at time 0 at site t∗ is found at time ` at site t. The random
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walk is lazy, i.e. it stays on the same position with probability 1 − ξ ∈ (0, 1) and

moves with probability ξ choosing either of the adjacent sites with equal probability.

Notice that the probabilities Pξ,`(t∗, t) satisfy the recursion

Pξ,`+1(t∗, t) = (1− ξ)Pξ,`(t∗, t) +
ξ

2
Pξ,`(t∗ − 1, t)

+
ξ

2
Pξ,`(t∗ + 1, t) , Pξ,0(t∗, t) = I(t = t∗) ,

(12.4.3)

where sums on Tn are understood to be performed modulo n. We can think of Pξ,` as a

discretization of a Gaussian kernel. Indeed, for 1 � ` � n2 we have, by the local central

limit theorem,

Pξ,`(t∗, t) ≈
1

(2πξ`)1/2
exp

{
− (t− t∗)2

2ξ`

}
. (12.4.4)

and hence C` ≈ (4πξ`)−1/4.

The above completely define the sensing process. For the signal reconstruction we will

use AMP in the Fourier domain, i.e. we will try to reconstruct x̂ from y = AFx̂ + w. It is

therefore convenient to give explicit expressions for the measurement matrix in this domain.

1. For each k ∈ {1, · · · ,m1}, and each r ∈ Rk, we have âr = ek, where ek ∈ Rn refers

to the kth standard basis element, e.g., e1 = (1, 0, 0, · · · , 0). These rows are used to

sense the extreme of the spectrum frequencies.

2. For r ∈ R0, we have âr(ω) = â(ω; tr, ωr), where

â(ω; t∗, ω∗) =
1

C`
√
n
e−i(ω−ω∗)t∗

(
1− ξ + ξ cos(ω − ω∗)

)`
.

Again, to get some insight, we consider the asymptotic behavior for 1 � ` � n2. It is

easy to check that â is significantly different from 0 only if ω − ω∗ = O(`−1/2) and

â(ω; t∗, ω∗) ≈
1

C`
√
n

exp
{
− i(ω − ω∗)t∗ −

1

2
ξ`(ω − ω∗)2

}
.

Hence the measurement yi depends on the signal Fourier transform only within a window

of size W = O(`−1/2), with 1/n � W � 1. As claimed in the introduction, we recognize

that the rows of A are indeed (discretized) Gabor filters. Also it is easy to check that AF is

roughly band-diagonal with width W .
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12.4.2 Algorithm

We use a generalization of the AMP algorithm for spatially-coupled sensing matrices (cf.

Chapter 8) to the complex setting. Assume that the empirical law of the entries of x̂(n)

converges weakly to a limit p
X̂

, with bounded second moment. The algorithm proceeds by

the following iteration (initialized with x̂1
i = E{X̂} for all i ∈ [n]). For x̂t ∈ Cn, rt ∈ Cm,

x̂t+1 = ηt(x̂
t + (Qt �AF)∗rt) ,

rt = y −AFx̂
t + bt � rt−1 + dt � rt−1 .

(12.4.5)

Here ηt(v) = (ηt,1(v1), . . . , ηt,n(vn)), where ηt,i : C → C is a scalar denoiser. Similar to

Chapter 8, we assume that the prior p
X̂

is known and use the posterior expectation denoiser

ηt,i(vi) = E{X̂|X̂ + s
−1/2
i Z = vi} , si =

∑
a∈[m]

Waiφa(t)
−1 ,

where X̂ ∼ p
X̂

and Z ∼ NC(0, 1) is a standard complex normal random variable, indepen-

dent of X̂. Also, rt is the complex conjugate of rt and � indicates Hadamard (entrywise)

product. The matrix Qt ∈ Rm×n, and the vector bt ∈ Rm are given by

Qtai =
φa(t)

−1∑
b∈[m]Wbiφb(t)−1

, (12.4.6)

bta =
∑
i∈[n]

Qt−1
ai Wai ∂ηt−1,i , (12.4.7)

dta =
∑
i∈[n]

Qt−1
ai (AF)2

ai ∂ηt−1,i , (12.4.8)

where Wai ≡ |(AF)ai|2 and ∂ηt,i ≡ ∂ηt,i(x̂
t
i + ((Qt � AF)∗rt)i), ∂ηt,i ≡ ∂ηt,i(x̂

t
i + ((Qt �

AF)∗rt)i). Throughout, ηt,i(v) is viewed as a function of v, v, and v, v are taken as inde-

pendent variables in the sense that ∂v/∂v = 0. Then, ∂ηt,i and ∂ηt,i respectively denote the

partial derivative of ηt,i with respect to v and v. Also, derivative is understood here on the

complex domain. (These are the principles of Wirtinger’s calculus for the complex func-

tions [119]). Finally, the sequence {φ(t)}t≥0 is determined by the following state evolution

recursion.

φa(t+ 1) = σ2 +
∑
i∈[n]

Waimmse
( ∑
b∈[m]

Wbiφb(t)
−1
)
. (12.4.9)
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Here mmse( · ) is defined as follows. If X̂ ∼ p
X̂

and Y = X̂ + s−1/2Z for Z ∼ NC(0, 1)

independent of X̂, then

mmse(s) ≡ 1

2
E
{∣∣X̂ − E[X̂|Y ]

∣∣2} . (12.4.10)

12.5 Numerical simulations

We consider a Bernoulli-Gaussian distribution p
X̂

= (1−ε)δ0+ε γC, where γC is the standard

complex gaussian measure and δ0 is the delta function at 0. We construct a random signal

(x̂(ω))ω∈Ωn by sampling i.i.d. coordinates x̂(ω) ∼ p
X̂

. We have d(p
X̂

) = ε [143] and

ηt,i(vi) =
εγ1+s−1

i
(vi)

εγ1+s−1
i

(vi) + (1− ε)γs−1
i

(vi)
· 1

1 + s−1
i

vi, (12.5.1)

where γσ2(z) = 1/(πσ2) exp{−zz/σ2} is the density function of the complex normal distri-

bution with mean zero and variance σ2.

12.5.1 Evolution of the algorithm

Our first set of experiments aims at illustrating the spatial coupling phenomenon and check-

ing the predictions of state evolution. In these experiments we use ε = 0.1, σ = 0.001,

δ = 0.15, n = 5000, ` = 800, m1 = 20, L = 3, and ξ = 0.5.

State evolution yields an iteration-by-iteration prediction of the AMP performance in

the limit of a large number of dimensions. State evolution can be proved rigorously for

sensing matrices with independent entries [7, 6]. We also refer to [74] for a derivation which

directly studies the case of spatially-coupled matrices. We expect however the prediction

to be robust and will check it through numerical simulations for the current sensing matrix

AF. In particular, state evolution predicts that

E{|x̂ti(y)− x̂i|2} ≈ mmse
(∑
a∈R

Wa,iφ
−1
a (t− 1)

)
. (12.5.2)

Figure 12.5.1 shows the evolution of profile φ(t) ∈ Rm, given by the state evolution

recursion (12.4.9). This clearly demonstrates the spatial coupling phenomenon. In our

sampling scheme, additional measurements are associated to the first few coordinates of

x̂, namely, x̂1, · · · , x̂m1 . This has negligible effect on the undersampling rate ratio because
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Figure 12.5.1: Profile φa(t) versus a for several iteration numbers.

m1L/n→ 0. However, the Fourier components x̂1, · · · , x̂m1 are oversampled. This leads to

a correct reconstruction of these entries (up to a mean square error of order σ2). This is

reflected by the fact that φ becomes of order σ2 on the first few entries after a few iterations

(see t = 5 in the figure). As the iteration proceeds, the contribution of these components is

correctly subtracted from all the measurements, and essentially they are removed from the

problem. Now, in the resulting problem the first few variables are effectively oversampled

and the algorithm reconstructs their values up to a mean square error of σ2. Correspond-

ingly, the profile φ falls to a value of order σ2 in the next few coordinates. As the process

is iterated, all the variables are progressively reconstructed and the profile φ follows a trav-

eling wave with constant velocity. After a sufficient number of iterations (t = 400 in the

figure), φ is uniformly of order σ2.

In order to check the prediction of state evolution, we compare the empirical and the

predicted mean square errors

MSEAMP =
1

n
‖x̂t(y)− x̂‖22, (12.5.3)

MSESE =
1

n

n∑
i=1

mmse
(∑
a∈R

Wa,iφ
−1
a (t− 1)

)
. (12.5.4)

The values of MSEAMP and MSESE versus iteration are depicted in Fig. 12.5.2. (Values of

MSEAMP and the bar errors correspond to M = 30 Monte Carlo instances). This verifies

that the state evolution provides an iteration-by iteration prediction of AMP performance.
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Figure 12.5.2: Comparison of MSEAMP and MSESE across iteration.

We observe that MSEAMP (and MSESE) decreases linearly versus iteration.

12.5.2 Phase diagram

In this section, we consider the noiseless compressed sensing setting, and reconstruction

through different algorithms and sensing matrix ensembles.

Let A be a sensing matrix–reconstruction algorithm scheme. The curve ε 7→ δA(ε)

describes the sparsity-undersampling tradeoff of A if the following happens in the large-

system limit n,m → ∞, with m/n = δ. The scheme A does (with high probability)

correctly recover the original signal provided δ > δA(ε), while for δ < δA(ε) the algorithm

fails with high probability. We will consider three schemes. For each of them, we consider

a set of sparsity parameters ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and for each value of ε, evaluate the

empirical phase transition through a logit fit (we omit details, but follow the methodology

described in [42]).

12.5.2.1 Scheme I

We construct the sensing matrix as described in Section 12.4.1 and for reconstruction,

we use the algorithm described in Section 12.4.2. An illustration of the phase transition

phenomenon is provided in Fig. 12.5.3. This corresponds to ε = 0.2 and an estimated phase

transition location δ = 0.23.

As it is shown in Fig. 12.5.4, our results are consistent with the claim that this scheme
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Figure 12.5.3: Phase transition diagram for Scheme I, and ε = 0.2.

achieves successful reconstruction at rates close to the information theoretic lower bound

δ > d(p
X̂

) = ε. (We indeed expect the gap to decrease further by taking larger values of

`, n.)

12.5.2.2 Scheme II

The sensing matrix AF is obtained by choosing m rows of the Fourier matrix F at random.

In time domain, this corresponds to sampling at m random time instants as in [23]. Recon-

struction is done via AMP algorithm with posterior expectation as the denoiser η. More

specifically, through the following iterative procedure.

x̂t+1 = ηt(x̂
t +A∗rt) ,

rt = y −Ax̂t +
1

δ
rt−1〈∂ηt−1〉+

1

δ
rt−1〈∂ηt−1〉 .

(12.5.5)

Here ηt(v) = (ηt(v1), . . . , ηt(vn)), where ηt(vi) = E{X̂|X̂ + φ
1/2
t Z = vi} and Z ∼ NC(0, 1).

Also ∂ηt,i ≡ ∂ηt(x̂
t
i + (A∗rt)i), ∂ηt,i ≡ ∂ηt(x̂

t
i + (A∗rt)i) and for a vector u ∈ Rn, 〈u〉 =

n−1
∑n

i=1 ui.
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Figure 12.5.4: Phase transition lines for Schemes I, II, III.

The sequence φt is determined by state evolution

φt+1 =
1

δ
mmse(φ−1

t ) , φ0 = Var(X̂)/δ. (12.5.6)

When A has independent entries Aij ∼ N(0, 1/m), state evolution (12.5.6) predicts the

performance of the algorithm (12.5.5) [7]. Therefore, the algorithm successfully recovers

the original signal with high probability, provided

δ > δ̃(ε) = sup
s≥0

s ·mmse(s) . (12.5.7)

As shown in Fig. 12.5.4, the empirical phase transition for scheme II is very close to the

prediction δ̃(ε). Note that schemes I, II both use posterior expectation denoising. How-

ever, as observed in [82], spatially-coupled matrices in scheme I significantly improve the

performances.

12.5.2.3 Scheme III

We use the spatially-coupled sensing matrix described in Section 12.4.1, and an AMP algo-

rithm with soft-thresholding denoiser
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ηST (z; θ) =
(

1− θ

|z|

)
+
z . (12.5.8)

The algorithm is defined as in Eq. (12.4.5), except that the soft-thresholding denoiser is

used in lieu of the posterior expectation. Formally, let ηt(v) = (ηt,1(v1), · · · , ηt,n(vn)) with

ηt,i(vi) = ηST (vi, α
∗(ε)s

−1/2
i ), si =

∑
a∈[m]

Waiφa(t)
−1, (12.5.9)

and the sequence of profiles {φ(t)}t≥0 is given by the following recursion.

φa(t+ 1) =
∑
i∈[n]

Wai E{|ηt,i(X̂ + s
−1/2
i Z;α∗s

−1/2
i )− X̂|2}.

Finally α∗ = α∗(ε) is tuned to optimize the phase transition boundary.

This is in fact a generalization of the complex AMP (CAMP) algorithm that was de-

veloped in [91] for unstructured matrices. CAMP strives to solve the standard convex

relaxation

minimize ‖x̂‖1

subject to AFx̂ = y ,

where we recall ‖x̂‖1 ≡
∑

ω∈Ωn
|x̂(ω)|. For a given ε, we denote by δ`1(ε) the phase transition

location for `1 minimization, when sensing matrices with i.i.d. entries are used. This

coincides with the one of CAMP with optimally tuned α = α∗(ε) [146, 91].

The empirical phase transition of Scheme III is shown in Fig. 12.5.4. The results are

consistent with the claim that the phase boundary coincides with δ`1 . In other words,

spatially-coupled sensing matrix does not improve the performances under `1 reconstruc-

tion (or under AMP with soft-thresholding denoiser). This agrees with earlier findings by

Krzakala et al. for Gaussian matrices ([82], and private communications). This can be

inferred from the the state evolution map. For AMP with posterior expectation denoiser,

and for ε < δ < δ̃(ε), the state evolution map has two stable fixed points; one of order σ2,

and one much larger. Spatial coupling makes the algorithm converge to the ‘right’ fixed

point. However, the state evolution map corresponding to the soft-thresholding denoiser

is concave and has only one stable fixed point, much larger than σ2. Therefore, spatial

coupling is not helpful in this setting.



Appendix A

Supplement to Chapter 2

A.1 Proof of Lemma 2.4.1

Let Ci(µ) be the optimal value of the optimization problem (2.3.11). We claim that

Ci(µ) ≥ (1− µ)2

Σ̂ii

. (A.1.1)

To prove this claim notice that the constraint implies (by considering its i-th component):

1− 〈ei, Σ̂m〉 ≤ µ .

Therefore if m̃ is feasible and c ≥ 0, then

〈m̃, Σ̂m̃〉 ≥ 〈m̃, Σ̂m̃〉+ c(1− µ)− c〈ei, Σ̂m̃〉 ≥ min
m

{
〈m, Σ̂m〉+ c(1− µ)− c〈ei, Σ̂m〉

}
.

Minimizing over all feasible m̃ gives

Ci(µ) ≥ min
m

{
〈m, Σ̂m〉+ c(1− µ)− c〈ei, Σ̂m〉

}
. (A.1.2)

The minimum over m is achieved at m = cei/2. Plugging in for m, we get

Ci(µ) ≥ c(1− µ)− c2

4
Σ̂ii (A.1.3)

188
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Optimizing this bound over c, we obtain the claim (A.1.1), with the optimal choice being

c = 2(1− µ)/Σ̂ii.

A.2 Proof of Lemma 2.4.3

Let En = En(φ0, s0,K) be the event defined as per Theorem 2.3.4.(a). In particular, we take

φ0 =
√
Cmin/2, and K ≥ 1 + 20κ2

√
(log p)/n.1 Further note that we can assume without

loss of generality n ≥ ν0 s0 log(p/s0), since s0 = o(
√
n/ log p). Fixing ε > 0, we have

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) ≤ sup

X∈En
P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε ∣∣∣X)+ P

(
X 6∈ En

)
≤ sup

X∈En
P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε ∣∣∣X)+ 4 e−c1n ,

where c1 > 0 is a constant defined as per Theorem 2.3.4.(a).

We are therefore left with the task of bounding the first term in the last expression

above, uniformly over θ0 ∈ Rp, ‖θ0‖0 ≤ s0. For X ∈ En, we apply the result of [124,

Theorem 1]. More precisely, using the notations of [124], with λ0 = λ̃, ξ = 3, T = supp(θ0),

κ(ξ, T ) ≥ φ0, we have η∗(λ̃, ξ) ≤ 4s0λ̃
2/φ2

0. Further, let σ∗ be the oracle estimator of σ

introduced there. If ‖XTW/(nσ∗)‖∞ ≤ λ̃/4, using Eq. (13) in [124], we obtain

∣∣∣ σ̂
σ∗
− 1
∣∣∣ ≤ 2

√
s0λ̃

σ∗φ0
≤ ε

2
, (A.2.1)

where the last inequality follows for all n large enough since s0 = o(
√
n/ log p).

Hence

sup
X∈En

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε ∣∣∣X) ≤ sup

X∈En
P
(
‖XTW/n‖∞ > λ̃/4

∣∣∣X)+ sup
X∈En

P
(∣∣∣σ∗
σ
− 1
∣∣∣ ≥ ε

10

∣∣∣X) ,
(A.2.2)

where we note that the right hand side is independent of θ0. The first term vanishes as

n → ∞ by a standard tail bound on the supremum of p Gaussian random variables. The

second term also vanishes because it is controlled by the tail of a chi-squared random variable

(see [124]).

1 For instance K = 1.1 will work for all n large enough since (s0 log p)2/n → 0, with s0 ≥ 1, by
assumption.
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A.3 Proof of Lemma 6.1.3

Write

Zi =
1√
n

n∑
j=1

ξj with ξj ≡
mT
i XjWj

σ[mT
i Σ̂mi]1/2

.

Conditional on X, the summands ξj are zero mean and independent. Further,
∑n

j=1 E(ξ2
j |X) =

n. We next prove the Lindenberg condition as per Eq. (2.4.11). Let cn ≡ (mT
i Σ̂mi)

1/2. By

Lemma 2.4.1, we have lim infn→∞ cn ≥ c∞ > 0, almost surely. If all the optimization

problems in (2.4.12) are feasible, then |ξj | ≤ c−1
n ‖Xmi‖∞‖W‖∞/σ ≤ c−1

n nβ(‖W‖∞/σ).

Hence,

lim
n→∞

1

n

n∑
j=1

E
(
ξ2
j I{|ξj |>ε√n}|X

)
≤ lim

n→∞

1

n

n∑
j=1

E
(
ξ2
j I{‖W‖∞/σ>εcnn1/2−β}|X

)
= lim

n→∞

1

n

n∑
j=1

mT
i XjX

T
j mi

mT
i Σ̂mi

E(W̃ 2
j I{‖W̃‖∞>εc∞n1/2−β}

)
≤ lim

n→∞
E(W̃ 2

1 I{|W̃1|>εc∞n1/2−β}

)
≤ c′(ε) lim

n→∞
n−a(1/2−β)E{|W̃1|2+a} = 0 .

where W̃j = Wj/σ and the last limit follows since β < 1/2 and a > 0.

Using Lindenberg central limit theorem, we obtain Zi|X converges weakly to standard

normal distribution, and hence, X-almost surely

lim
n→∞

P(Zi ≤ x|X) = Φ(x) .

What remains is to show that with high probability all the p optimization problems

in (2.4.12) are feasible. In particular, we show that Σ−1
i,· is a feasible solution to the i-th

optimization problem, for i ∈ [p]. By Lemma 6.1.2, |Σ−1Σ̂− I|∞ ≤ µ, with high probability.

Moreover,

sup
j∈[p]
‖Σ−1

i,· Xj‖ψ2 = sup
j∈[p]
‖Σ−1/2

i,· Σ−1/2Xj‖ψ2

= ‖Σ−1/2
i,· ‖2 sup

j∈[p]
‖Σ−1/2Xj‖ψ2

= [Σ−1
i,i ]1/2 sup

j∈[p]
‖Σ−1/2Xj‖ψ2 = O(1) .
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Using tail bound for sub-gaussian variables Σ−1
i,· Xj and union bounding over j ∈ [n], we get

P(‖XΣ−1
·,i ‖∞ > nβ) ≤ ne−cn2β

,

for some constant c > 0. Note that s0 = o(
√
n/ log p) and β > 1/4 imply p = eo(n

2β). Hence,

almost surely, Σ−1
i,· is a feasible solution to optimization problem (2.4.12), for all i ∈ [p].



Appendix B

Supplement to Chapter 4

B.1 Effective noise variance τ 2
0

As stated in Theorem 4.1.4 the unbiased estimator θ̂u can be regarded –asymptotically– as

a noisy version of θ0 with noise variance τ2
0 . An explicit formula for τ0 is given in [8]. For

the reader’s convenience, we explain it here using our notations.

Denote by η : R× R+ → R the soft thresholding function

η(x; a) =


x− a if x > a,

0 if − a ≤ x ≤ a

x+ a otherwise.

(B.1.1)

Further define function F : R+ × R+ → R+ as

F(τ2, a) = σ2 +
1

δ
E{[η(Θ0 + τZ; a)−Θ0]2} , (B.1.2)

where Θ0 and Z are defined as in Theorem 4.1.4. Let κmin = κmin(δ) be the unique non-

negative solution of the equation

(1 + κ2)Φ(−κ)− κφ(κ) =
δ

2
. (B.1.3)

The effective noise variance τ2
0 is obtained by solving the following two equations for κ and

192
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τ , restricted to the interval κ ∈ (κmin,∞):

τ2 = F(τ2, κτ) , (B.1.4)

λ = κτ

[
1− 1

δ
P(|Θ0 + τZ| ≥ κτ)

]
. (B.1.5)

Existence and uniqueness of τ0 is proved in [8, Proposition 1.3].

B.2 Tunned regularization parameter λ

In previous appendix, we provided the value of τ0 for a given regularization parameter λ. In

this appendix, we discuss the tuned value for λ to achieve the power stated in Theorem 4.1.3.

Let Fε ≡ {pΘ0 : pΘ0({0}) ≥ 1− ε} be the family of ε-sparse distributions. Also denote

by M(ε, κ) the minimax risk of soft thresholding denoiser (at threshold value κ) over Fε,
i.e.,

M(ε, κ) = sup
pΘ0
∈Fε

E{[η(Θ0 + Z;κ)−Θ0]2} . (B.2.1)

The function M can be computed explicitly by evaluating the mean square error on the

worst case ε-sparse distribution. A simple calculation gives

M(ε, κ) = ε(1 + κ2) + (1− ε)[2(1 + κ2)Φ(−κ)− 2κφ(κ)] . (B.2.2)

Further, let

κ∗(ε) ≡ arg min
κ∈R+

M(ε, κ) . (B.2.3)

In words, κ∗(ε) is the minimax optimal value of threshold κ over Fε. The value of λ for

Theorem 4.1.3 is then obtained by solving Eq. (B.1.4) for τ with κ = κ∗(ε), and then

substituting κ∗ and τ in Eq. (B.1.5) to get λ = λ(pΘ0 , σ, ε, δ).

Remark B.2.1. The theory of [8, 44] implies that in the standard Gaussian setting and

for a converging sequence of instances {(θ0(p), n(p), σ(p))}p∈N, Eq. (B.1.5) is equivalent to

the following:

λd = κτ , (B.2.4)
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where the normalization factor d is given by Eq. (4.1.2).

B.3 Replica method calculation

In this section we outline the replica calculation leading to the Claim 4.2.5. Indeed we

consider an even more general setting, where the `1 regularization is replaced by an arbitrary

separable penalty. Namely, instead of the Lasso, we consider regularized least squares

estimators of the form

θ̂(Y,X) = arg min
θ∈Rp

{ 1

2n
‖Y −Xθ‖2 + J(θ)

}
, (B.3.1)

with J(θ) being a convex separable penalty function; namely for a vector θ ∈ Rp, we have

J(θ) = J1(θ1) + · · · + Jp(θp), with J` : R → R a convex function. Important instances

from this ensemble of estimators are Ridge-regression (J(θ) = λ‖θ‖2/2), and the Lasso

(J(θ) = λ‖θ‖1). The Replica Claim 4.2.5 is generalized to the present setting replacing

λ‖θ‖1 by J(θ). The only required modification concerns the definition of the factor d. We

let d be the unique positive solution of the following equation

1 =
1

d
+

1

n
Trace

{
(I + dΣ−1/2∇2J(θ̂)Σ−1/2)−1

}
, (B.3.2)

where ∇2J(θ̂) denotes the Hessian, which is diagonal since J is separable. If J is non

differentiable, then we formally set [∇2J(θ̂)]ii = ∞ for all the coordinates i such that J is

non-differentiable at θ̂i. It can be checked that this definition is well posed and yields the

previous choice for J(θ) = λ‖θ‖1.

We pass next to establishing the claim. We limit ourselves to the main steps, since

analogous calculations can be found in several earlier works [127, 63, 125]. For a general

introduction to the method and its motivation we refer to [98, 97]. Also, for the sake of

simplicity, we shall focus on characterizing the asymptotic distribution of θ̂u, cf. Eq. (4.2.3).

The distribution of r is derived by the same approach.

Fix a sequence of instances {(Σ(p), θ0(p), n(p), σ(p))}p∈N. For the sake of simplicity, we

assume σ(p)2 = n(p)σ2
0 and n(p) = pδ (the slightly more general case σ(p)2 = n(p)[σ2

0 +o(1)]

and n(p) = p[δ+o(1)] does not require any change to the derivation given here, but is more

cumbersome notationally). Fix g̃ : R × R × R → R a continuous function convex in its

first argument, and let g(u, y, z) ≡ maxx∈R[ux − g̃(x, y, z)] be its Lagrange dual. The
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replica calculation aims at estimating the following moment generating function (partition

function)

Zp(β, s) ≡
∫

exp
{
− β

2n
‖Y −Xθ‖22 − βJ(θ)− βs

p∑
i=1

[g(ui, θ0,i, (Σ
−1)ii)− uiθ̂ui ]

− β

2n
(sd̃)2‖XΣ−1u‖22

}
dθ du . (B.3.3)

Here (Yi, Xi) are i.i.d. pairs distributed as per model (1.1.5) and θ̂u = θ+(d̃/n) Σ−1XT(Y −
Xθ) with d̃ ∈ R to be defined below. Further, g : R× R× R→ R is a continuous function

strictly convex in its first argument. Finally, s ∈ R+ and β > 0 is a ‘temperature’ parameter

not to be confused with the type II error rate as used in the main text. We will eventually

show that the appropriate choice of d̃ is given by Eq. (B.3.2).

Within the replica method, it is assumed that the limits p → ∞, β → ∞ exist almost

surely for the quantity (pβ)−1 logZp(β, s), and that the order of the limits can be exchanged.

We therefore define

F(s) ≡ − lim
β→∞

lim
p→∞

1

pβ
logZp(β, s) (B.3.4)

≡ − lim
p→∞

lim
β→∞

1

pβ
logZp(β, s) . (B.3.5)

In other words F(s) is the exponential growth rate of Zp(β, s). It is also assumed that

p−1 logZp(β, s) concentrates tightly around its expectation so that F(s) can in fact be

evaluated by computing

F(s) = − lim
β→∞

lim
p→∞

1

pβ
E logZp(β, s) , (B.3.6)

where expectation is being taken with respect to the distribution of (Y1, X1), · · · , (Yn, Xn).

Notice that, by Eq. (B.3.5) and using Laplace method in the integral (B.3.3), we have

F(s) =

lim
p→∞

1

p
min
θ,u∈Rp

{ 1

2n
‖Y −Xθ‖22 + J(θ) + s

p∑
i=1

[g(ui, θ0,i, (Σ
−1)ii)− uiθ̂ui ] +

1

2n
(sd̃)2‖XΣ−1u‖22

}
.

(B.3.7)

Finally we assume that the derivative of F(s) as s → 0 can be obtained by differentiating
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inside the limit. This condition holds, for instance, if the cost function is strongly convex

at s = 0. We get

dF

ds
(s = 0) = lim

p→∞

1

p

p∑
i=1

min
ui∈R

[g(ui, θ0,i, (Σ
−1)ii)− uiθ̂ui ] (B.3.8)

where θ̂u = θ̂+(d̃/n) Σ−1XT(Y −Xθ̂) and θ̂ is the minimizer of the regularized least squares

as per Eq. (B.3.1). Since, by duality g̃(x, y, z) ≡ maxu∈R[ux− g(u, y, z)], we get

dF

ds
(s = 0) = − limp→∞

1
p

∑p
i=1 g̃(θ̂ui , θ0,i, (Σ

−1)ii) . (B.3.9)

Hence, by computing F(s) using Eq. (B.3.6) for a complete set of functions g̃, we get access

to the corresponding limit quantities (B.3.9) and hence, via standard weak convergence

arguments, to the joint empirical distribution of the triple (θ̂ui , θ0,i, (Σ
−1)ii), cf. Eq. (4.2.4).

In order to carry out the calculation of F(s), we begin by rewriting the partition function

(B.3.3) in a more convenient form. Using the definition of θ̂u and after a simple manipulation

Zp(β, s) =∫
exp

{
− β

2n
‖Y −X(θ + sd̃Σ−1u)‖22 − βJ(θ) + βs〈u, θ〉 − β s

p∑
i=1

g(ui, θ0,i, (Σ
−1)ii)

}
dθ du .

(B.3.10)

Define the measure ν(dθ) over θ ∈ Rp as follows

ν(dθ) =

∫
exp

{
− βJ(θ − sd̃Σ−1u) + βs〈θ − sd̃Σ−1u, u〉 − βs

p∑
i=1

g(ui, θ0,i, (Σ
−1)ii)

}
du .

(B.3.11)

Using this definition and with the change of variable θ′ = θ + sd̃Σ−1u, we can rewrite
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Eq. (B.3.10) as

Zp(β, s) ≡
∫

exp
{
− β

2n
‖Y −Xθ‖22

}
ν(dθ)

=

∫
exp

{
i

√
β

n
〈z, Y −Xθ〉

}
ν(dθ) γn(dz)

=

∫
exp

{
i

√
β

n
〈W, z〉+ i

√
β

n
〈z,X(θ0 − θ)〉

}
ν(dθ) γ(dz) , (B.3.12)

where γn(dz) denotes the standard Gaussian measure on Rn:

γn(dz) ≡ (2π)−
n
2 exp

(
− ‖z‖

2
2

2

)
dz.

The replica method aims at computing the expected log-partition function, cf. Eq. (B.3.6)

using the identity

E logZp(β, s) =
d

dk

∣∣∣∣
k=0

logE
{
Zp(β, s)k

}
. (B.3.13)

This formula would require computing fractional moments of Zp as k → 0. The replica

method consists in a prescription that allows to compute a formal expression for the k

integer, and then extrapolate it as k → 0. Crucially, the limit k → 0 is inverted with the

one p→∞:

lim
p→∞

1

p
E logZp(β, s) =

d

dk

∣∣∣∣
k=0

lim
p→∞

1

p
logE

{
Zp(β, s)k

}
. (B.3.14)

In order to represent Zp(β, s)k, we use the identity

(∫
f(x) ρ(dx)

)k
=

∫
f(x1)f(x2) · · · f(xk) ρ(dx1) · · · ρ(dxk) . (B.3.15)

In order to apply this formula to Eq. (B.3.12), we let, with a slight abuse of notation,

νk(dθ) ≡ ν(dθ1) × ν(dθ2) × · · · × ν(dθk) be a measure over (Rp)k, with θ1, . . . , θk ∈ Rp.
Analogously γkn(dz) ≡ γn(dz1)× γn(dz2)× · · · × γn(dzk), with z1, . . . , zk ∈ Rn. With these
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notations, we have

E{Zp(β, s)k} =

∫
E exp

{
i

√
β

n
〈W,

k∑
a=1

za〉+ i

√
β

n
〈X,

k∑
a=1

za(θ0 − θa)T〉
}
νk(dθ) γkn(dz) .

(B.3.16)

In the above expression E denotes expectation with respect to the noise vector W , and

the design matrix X. Further, we used 〈 · , · 〉 to denote matrix scalar product as well:

〈A,B〉 ≡ Trace(ATB).

At this point we can take the expectation with respect to W , X. We use the fact that,

for any M ∈ Rn×p, u ∈ Rn

E
{

exp
(
i〈W,u〉

)}
= exp

{
− 1

2
nσ2

0 ‖u‖22
}
,

E
{

exp
(
i〈M,X〉

)}
= exp

{
− 1

2
〈M,MΣ〉

}
,

(B.3.17)

Using these identities in Eq. (B.3.16), we obtain

E{Zkp } =∫
exp

{
− 1

2
βσ2

0

k∑
a=1

‖za‖22 −
β

2n

k∑
a,b=1

〈za, zb〉 〈(θa − θ0),Σ(θb − θ0)〉
}
νk(dθ) γkn(dz) .

(B.3.18)

We next use the identity

e−xy =
1

2πi

∫
(−i∞,i∞)

∫
(−∞,∞)

e−ζq+ζx−qy dζ dq , (B.3.19)

where the integral is over ζ ∈ (−i∞, i∞) (imaginary axis) and q ∈ (−∞,∞). We apply

this identity to Eq. (B.3.18), and introduce integration variables Q ≡ (Qab)1≤a,b≤k and
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Λ ≡ (Λab)1≤a,b≤k. Letting dQ ≡
∏
a,b dQab and dΛ ≡

∏
a,b dΛab

E{Zkp } =
( βn

4πi

)k2 ∫
exp

{
− pSk(Q,Λ)

}
dQdΛ , (B.3.20)

Sk(Q,Λ) =
βδ

2

k∑
a,b=1

ΛabQab −
1

p
log ξ(Λ)− δ log ξ̂(Q) , (B.3.21)

ξ(Λ) ≡
∫

exp
{β

2

k∑
a,b=1

Λab〈(θa − θ0),Σ(θb − θ0)〉
}
νk(dθ) , (B.3.22)

ξ̂(Q) ≡
∫

exp
{
− β

2

k∑
a,b=1

(σ2
0I +Q)a,b z

a
1 z

b
1

}
γk1 (dz1) . (B.3.23)

Notice that above we used the fact that, after introducingQ,Λ, the integral over (z1, . . . , zk) ∈
(Rn)k factors into n integrals over (R)k with measure γk1 (dz1).

We next use the saddle point method in Eq. (B.3.20) to obtain

− lim
p→∞

1

p
logE{Zkp } = Sk(Q∗,Λ∗) , (B.3.24)

where Q∗, Λ∗ is the saddle-point location. The replica method provides a hierarchy of

ansatz for this saddle-point. The first level of this hierarchy is the so-called replica symmetric

ansatz postulating that Q∗, Λ∗ ought to be invariant under permutations of the row/column

indices. This is motivated by the fact that Sk(Q,Λ) is indeed left unchanged by such change

of variables. This is equivalent to postulating that

Q∗ab =

q1 if a = b,

q0 otherwise,
, Λ∗ab =

βζ1 if a = b,

βζ0 otherwise,
(B.3.25)

where the factor β is for future convenience. Given that the partition function, cf. Eq. (B.3.3)

is the integral of a log-concave function, it is expected that the replica-symmetric ansatz

yields in fact the correct result [98, 97].

The next step consists in substituting the above expressions for Q∗, Λ∗ in Sk( · , · )
and then taking the limit k → 0. We will consider separately each term of Sk(Q,Λ),

cf. Eq. (B.3.21).
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Let us begin with the first term

k∑
a,b=1

Λ∗abQ
∗
ab = k βζ1q1 + k(k − 1)βζ0q0 . (B.3.26)

Hence

lim
k→0

βδ

2k

k∑
a,b=1

Λ∗abQ
∗
ab =

β2δ

2
(ζ1q1 − ζ0q0) . (B.3.27)

Let us consider ξ̂(Q∗). We have

log ξ̂(Q∗) = −1

2
log Det(I + βσ2I + βQ∗) (B.3.28)

= −k − 1

2
log
(
1 + β(q1 − q0)

)
− 1

2
log
(
1 + β(q1 − q0) + βk(σ2 + q0)

)
. (B.3.29)

In the limit k → 0 we thus obtain

lim
k→0

1

k
(−δ) log ξ̂(Q∗) =

δ

2
log
(
1 + β(q1 − q0)

)
+
δ

2

β(σ2 + q0)

1 + β(q1 − q0)
. (B.3.30)

Finally, introducing the notation ‖v‖2Σ ≡ 〈v,Σv〉, we have

ξ(Λ∗) ≡
∫

exp
{β2

2
(ζ1 − ζ0)

k∑
a=1

‖θa − θ0‖2Σ +
β2ζ0

2

k∑
a,b=1

〈(θa − θ0),Σ(θb − θ0)〉
}
νk(dθ) ,

= E
∫

exp
{β2

2
(ζ1 − ζ0)

k∑
a=1

‖θa − θ0‖2Σ + β
√
ζ0

k∑
a=1

〈z,Σ1/2(θa − θ0)〉
}
νk(dθ) ,

(B.3.31)

where expectation is with respect to z ∼ N(0, Ip×p). Notice that, given z ∈ Rp, the integrals

over θ1, θ2, . . . , θk factorize, whence

ξ(Λ∗) = E

{[∫
exp

{β2

2
(ζ1 − ζ0)‖θ − θ0‖2Σ + β

√
ζ0〈z,Σ1/2(θ − θ0)〉

}
ν(dθ)

]k}
. (B.3.32)
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Therefore

lim
k→0

(−1)

pk
log ξ(Λ∗) =

− 1

p
E
{

log

[∫
exp

{β2

2
(ζ1 − ζ0)‖θ − θ0‖2Σ + β

√
ζ0〈z,Σ1/2(θ − θ0)〉

}
ν(dθ)

]}
.

(B.3.33)

Putting Eqs. (B.3.27), (B.3.30), and (B.3.33) together we obtain

− lim
p→∞

1

pβ
E logZp = lim

k→0

1

kβ
Sk(Q∗,Λ∗)

=
βδ

2
(ζ1q1 − ζ0q0) +

δ

2β
log
(
1 + β(q1 − q0)

)
+
δ

2

σ2 + q0

1 + β(q1 − q0)

− lim
p→∞

1

pβ
E
{

log

[∫
exp

{β2

2
(ζ1 − ζ0)‖θ − θ0‖2Σ

+ β
√
ζ0〈z,Σ1/2(θ − θ0)〉

}
ν(dθ)

]}
. (B.3.34)

We can next take the limit β → ∞. In doing this, one has to be careful with respect

to the behavior of the saddle point parameters q0, q1, ζ0, ζ1. A careful analysis (omitted

here) shows that q0, q1 have the same limit, denoted here by q0, and ζ0, ζ1 have the same

limit, denoted by ζ0. Moreover q1 − q0 = (q/β) + o(β−1) and ζ1 − ζ0 = (−ζ/β) + o(β−1).

Substituting in the above expression, and using Eq. (B.3.6), we get

F(s) =
δ

2
(ζ0q − ζq0) +

δ

2

q0 + σ2

1 + q

+ lim
p→∞

1

p
E min
θ∈Rp

{ζ
2
‖θ − θ0‖2Σ −

√
ζ0〈z,Σ1/2(θ − θ0)〉+

˜̃
J(θ; s)

}
, (B.3.35)

˜̃
J(θ; s) = min

u∈Rp

{
J(θ − sd̃Σ−1u)− s〈θ − sd̃Σ−1u, u〉+ s

p∑
i=1

g(ui, θ0,i, (Σ
−1)ii)

}
. (B.3.36)
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After the change of variable θ − sd̃Σ−1u→ θ, this reads

F(s) =
δ

2
(ζ0q − ζq0) +

δ

2

q0 + σ2
0

1 + q
− ζ0

2ζ

+ lim
p→∞

1

p
E min
θ,u∈Rp

{ζ
2

∥∥∥θ − θ0 −
√
ζ0

ζ
Σ−1/2z + sd̃Σ−1u

∥∥∥2

Σ
+ J̃(θ, u; s)

}
,

J̃(θ, u; s) = J(θ)− s〈θ, u〉+ s

p∑
i=1

g(ui, θ0,i, (Σ
−1)ii) .

Finally, we must set ζ, ζ0 and q, q0 to their saddle point values. We start by using the

stationarity conditions with respect to q, q0:

∂F

∂q
(s) =

δ

2
ζ0 −

δ

2

q0 + σ2
0

(1 + q)2
, (B.3.37)

∂F

∂q0
(s) = −δ

2
ζ +

δ

2

1

1 + q
. (B.3.38)

We use these to eliminate q and q0. Renaming ζ0 = ζ2τ2, we get our final expression for

F(s):

F(s) =− 1

2
(1− δ)ζτ2 − δ

2
ζ2τ2 +

δ

2
σ2

0ζ

+ lim
p→∞

1

p
E min
θ,u∈Rp

{ζ
2

∥∥∥θ − θ0 − τΣ−1/2z + sd̃Σ−1u
∥∥∥2

Σ
+ J̃(θ, u; s)

}
, (B.3.39)

with

J̃(θ, u; s) = J(θ)− s〈θ, u〉+ s

p∑
i=1

g(ui, θ0,i, (Σ
−1)ii) . (B.3.40)

Here it is understood that ζ and τ2 are to be set to their saddle point values.

We are interested in the derivative of F(s) with respect to s, cf. Eq. (B.3.9). Consider

first the case s = 0. Using the assumption E(p)(a, b)→ E(a, b), cf. Eq. (4.2.9), we get

F(s = 0) = −1

2
(1− δ)ζτ2 − δ

2
ζ2τ2 +

δ

2
σ2

0ζ + E(τ2, ζ) . (B.3.41)
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The values of ζ, τ2 are obtained by setting to zero the partial derivatives

∂F

∂ζ
(s = 0) = −1

2
(1− δ)τ2 − δζτ2 +

δ

2
σ2

0 +
∂E

∂ζ
(τ2, ζ) , (B.3.42)

∂F

∂τ2
(s = 0) = −1

2
(1− δ)ζ − δ

2
ζ2 +

∂E

∂τ2
(τ2, ζ) , (B.3.43)

Define, as in the statement of the Replica Claim

E1(a, b) ≡ lim
p→∞

1

p
E
{∥∥ηb(θ0 +

√
aΣ−1/2z)− θ0

∥∥2

Σ

}
, (B.3.44)

E2(a, b) ≡ lim
p→∞

1

p
E
{

div ηb(θ0 +
√
aΣ−1/2z)

}
= lim

p→∞

1

pτ
E
{
〈ηb(θ0 +

√
aΣ−1/2z),Σ1/2z〉

}
, (B.3.45)

where the last identity follows by integration by parts. These limits exist by the assumption

that ∇E(p)(a, b)→ ∇E(a, b). In particular

∂E

∂ζ
(τ2, ζ) =

1

2
E1(τ2, ζ)− τ2 E2(τ2, ζ) +

1

2
τ2 , (B.3.46)

∂E

∂τ2
(τ2, ζ) = −ζ

2
E2(τ2, ζ) +

1

2
ζ . (B.3.47)

Substituting these expressions in Eqs. (B.3.42), (B.3.43), and simplifying, we conclude that

the derivatives vanish if and only if ζ, τ2 satisfy the following equations

τ2 = σ2
0 +

1

δ
E1(τ2, ζ) , (B.3.48)

ζ = 1− 1

δ
E2(τ2, ζ) . (B.3.49)

The solution of these equations is expected to be unique for J convex and σ2
0 > 0.

Next consider the derivative of F(s) with respect to s, which is our main object of

interest, cf. Eq. (B.3.9). By differentiating Eq. (B.3.39) and inverting the order of derivative

and limit, we get

dF

ds
(s = 0) = lim

p→∞

1

p
E min
u∈Rp

{
ζd̃〈u, θ̂ − θ0 − τΣ−1/2z〉 − 〈θ̂, u〉+

p∑
i=1

g(ui, θ0,i, (Σ
−1)ii)

}
,

where θ̂ is the minimizer at s = 0, i.e., θ̂ = ηζ(θ0 + τΣ−1/2z), and ζ, τ2 solve Eqs. (B.3.48),
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(B.3.49). At this point we choose d̃ = 1/ζ. Minimizing over u (recall that g̃(x, y, z) =

maxu∈R[ux− g(u, y, z)]), we get

dF

ds
(s = 0) = − lim

p→∞

1

p
E g̃(θ0,i + τ(Σ−1/2z)i, θ0,i, (Σ

−1)ii) . (B.3.50)

Comparing with Eq. (B.3.9), this proves the claim that the standard distributional limit

does indeed hold.

Notice that τ2 is given by Eq. (B.3.48) that, for d = 1/ζ coincides with the claimed

Eq. (4.2.12). Finally consider the scale parameter d = d(p) defined by Eq. (B.3.2). We

claim that

lim
p→∞

d(p) = d̃ =
1

ζ
. (B.3.51)

Consider, for the sake of simplicity, the case that J is differentiable and strictly convex (the

general case can be obtained as a limit). Then the minimum condition of the proximal

operator (4.2.10) reads

θ = ηb(Y ) ⇔ bΣ(Y − θ) = ∇J(θ) . (B.3.52)

Differentiating with respect to θ, and denoting by Dηb the Jacobian of ηb, we get Dηb(Y ) =

(I + b−1Σ−1∇2J(θ))−1 and hence

E2(a, b) = lim
p→∞

1

p
ETrace

{
(1 + b−1Σ−1/2∇2J(θ̂)Σ−1/2)−1

}
, (B.3.53)

θ̂ ≡ ηb(θ0 +
√
aΣ−1/2 z) . (B.3.54)

Hence, combining Eqs. (B.3.49) and (B.3.53) implies that d̃ = ζ−1 satisfies

1 =
1

d̃
+ lim
p→∞

1

n
ETrace

{
(1 + d̃Σ−1/2∇2J(θ̂)Σ−1/2)−1

}
, (B.3.55)

θ̂ ≡ η1/d̃(θ0 + τ Σ−1/2 z) . (B.3.56)

The claim (B.3.51) follows by comparing this with Eq. (B.3.2), and noting that, by the

above θ̂ is indeed asymptotically distributed as the estimator (B.3.1).



Appendix C

Supplement to Chapter 7

C.1 Dependence of the algorithm on the prior pX

In this appendix we briefly discuss the impact of a wrong estimation of the prior pX on the

AMP algorithm. Namely, suppose that instead of the true prior pX , we have an approxima-

tion of pX denoted by p
X̃

. The only change in the algorithm is in the posterior expectation

denoiser. That is to say, the denoiser η in Eq. (7.1.3) will be replaced by a new denoiser η̃.

We will quantify the discrepancy between pX and p
X̃

through their Kolmogorov-Smirnov

distance DKS(pX , pX̃). Denoting by FX(z) = pX((−∞, z]) and F
X̃

(z) = p
X̃

((−∞, z]) the

corresponding distribution functions, we have

DKS(pX , pX̃) = sup
z∈R

∣∣FX(z)− F
X̃

(z)
∣∣ .

The next lemma establishes a bound on the pointwise distance between η and η̃ in terms

of DKS(pX , pX̃).

Note that state evolution (8.2.4) applies also to the algorithm with the mismatched

denoiser, provided the mmse( · ) function is replaced by the mean square error for the non-

optimal denoiser η̃. Hence the bound on |η(y) − η̃(y)| given below can be translated into

a bound on the performance of AMP with the mismatched prior. A full study of this

issue goes beyond the scope of this dissertation and will be the object of a forthcoming

publication.

For the sake of simplicity we shall assume that pX , pX̃ have bounded supports. The

general case requires a more careful consideration.

205
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Lemma C.1.1. Let η : R → R be the Bayes optimal estimator for estimating X ∼ pX in

Gaussian noise η(y) = E(X|X + Z = y), with Z ∼ N(0, 1). Define denoiser η̃ similarly,

with respect to p
X̃

. Assume that pX is supported in [−M,M ]. Then for any p
X̃

supported

in [−M,M ], we have

|η(y)− η̃(y)| ≤ M(15 + 10M |y|)
E{e−X2/2}

DKS(pX , pX̃) e2M |y| .

Proof. Throughout the proof we let ∆ ≡ DKS(pX , pX̃), and ∆1 ≡ E{e−X2/2}.
Let γ(z) = exp(−z2/2)/

√
2π be the Gaussian density. We then have η(y) = E{Xγ(X −

y)}/E{γ(X−y)}. Let pW be the probability measure with Radon-Nikodym derivative with

respect to pX given by

dpW
dpX

(x) =
e−x

2/2

E{e−X2/2}
.

We define p
W̃

analogously from the measure p
X̃

and let W, W̃ be two random variables with

law pW and p
W̃

, respectively. We then have

η(y) =
E{WeyW }
E{eyW }

. (C.1.1)

Letting FW , F
W̃

denote the corresponding distribution functions, we have

FW (x) =

∫ x

−∞
dpW (w) =

∫ x
−∞ e

−z2/2 dpX(z)

E{e−X2/2}
=
e−x

2/2FX(x) +
∫ x
−∞ ze

−z2/2FX(z) dz∫∞
−∞ ze

−z2/2FX(z) dz
.

Letting NW (x) be the numerator in this expression, we have

∣∣NW (x)−N
W̃

(x)
∣∣ ≤ ∣∣FX(x)− F

X̃
(x)
∣∣+

∫ x

−∞
|z| e−z2/2

∣∣FX(z)− F
X̃

(z)
∣∣dz ≤ 3∆ .

Proceeding analogously for the denominator, we have

∣∣E{e−X2/2} − E{e−X̃2/2}
∣∣ ≤ ∫ ∞

−∞
|z| e−z2/2

∣∣FX(z)− F
X̃

(z)
∣∣dz ≤ 2∆ .
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Combining these bounds, we obtain

∣∣FW (x)− F
W̃

(x)
∣∣ =

∣∣∣ NW (x)

E{e−X2/2}
−

N
W̃

(x)

E{e−X̃2/2}

∣∣∣
≤
∣∣∣NW (x)−N

W̃
(x)

E{e−X2/2}

∣∣∣+
∣∣∣NW̃

(x)
( 1

E{e−X2/2}
− 1

E{e−X̃2/2}

)∣∣∣
=

∣∣NW (x)−N
W̃

(x)
∣∣

E{e−X2/2}
+ F

W̃
(x)

∣∣E{e−X2/2} − E{e−X̃2/2}
∣∣

E{e−X2/2}

≤ 3∆

∆1
+

2∆

∆1
=

5∆

∆1
.

(C.1.2)

Since, the above inequality holds for any x ∈ R, we get

DKS(pW , pW̃ ) ≤ 5∆

∆1
. (C.1.3)

Consider now Eq. (C.1.1). We have

∣∣E{eyW } − E{eyW̃ }
∣∣ = |y|

∫
eyx
∣∣FW (x)− F

W̃
(x)
∣∣dx

≤ |y|DKS(pW , pW̃ )

∫ M

−M
eyx dx ≤ eM |y|DKS(pW , pW̃ ) .

We proceed analogously for the numerator, namely,

∣∣E{WeyW } − E{W̃eyW̃ }
∣∣ =

∫
(1 + |yx|)eyx

∣∣FW (x)− F
W̃

(x)
∣∣dx

≤ DKS(pW , pW̃ )

∫ M

−M
(1 + |yx|)eyx dx ≤ 2M(1 +M |y|)eM |y|DKS(pW , pW̃ ) .

Combining these bounds and proceeding along similar lines to Eq. (C.1.2), we obtain

∣∣η̃(y)− η(y)
∣∣ ≤ 2M(1 +M |y|) + η̃(y)

E{eyW }
eM |y|DKS(pW , pW̃ ) . (C.1.4)

Note that η̃(y) ∈ [−M,M ] since p
X̃

is supported on [−M,M ], and thus |η̃(y)| ≤ M . Also,

pW is supported on [−M,M ] since it is absolutely continuous with respect to pX and pX is

supported on [−M,M ]. Therefore, E{eyW } ≥ e−M |y|. Using these bounds in Eq. (C.1.4),
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we obtain

∣∣η̃(y)− η(y)
∣∣ ≤M(3 + 2M |y|) e2M |y|DKS(pW , pW̃ ) . (C.1.5)

The result follows by plugging in the bound given by Eq. (C.1.3).

C.2 Lipschitz continuity of AMP

Let xt be the Bayes optimal AMP estimation at iteration t as given by Eqs. (7.1.3), (7.1.4).

We show that for each fixed iteration number t, the mapping y → xt(y) is locally Lipschitz

continuous.

Lemma C.2.1. For any R,B > 0, t ∈ N, there exists L = L(R,B; t) < ∞ such that for

any y, ỹ ∈ Rm with ‖y‖, ‖ỹ‖ ≤ R, and any matrix A with ‖A‖2 ≤ B we have

‖xt(y)− xt(ỹ)‖ ≤ L ‖y − ỹ‖ . (C.2.1)

Note that in the statement we assume ‖A‖2 to be finite. This happens as long as the

entries of A are bounded and hence almost surely within our setting.

Also, we assume ‖y‖, ‖ỹ‖ ≤ R for some fixed R. In other words, we prove that the

algorithm is locally Lipschitz. We can obtain an algorithm that is globally Lipschitz by

defining xt(y) via the AMP iteration for ‖y‖ ≤ R, and by an arbitrary bounded Lipschitz

extension for ‖y‖ ≥ R. Notice that ‖y‖ ≤ B‖x‖ + ‖w‖, and, by the law of large numbers,

‖x‖2 ≤ (E{X2}+ε)n, ‖w‖2 ≤ (σ2+ε)m with probability converging to 1. Hence, the globally

Lipschitz modification of AMP achieves the same performance as the original AMP, almost

surely. (Note that R can depend on n).

Proof (Lemma C.2.1). Suppose that we have two measurement vectors y and ỹ. Note that

the state evolution is completely characterized in terms of prior pX and noise variance σ2,

and can be precomputed (independent of measurement vector).

Let (xt, rt) correspond to the AMP with measurement vector y and (x̃t, r̃t) correspond

to the AMP with measurement vector ỹ. (To clarify, note that xt ≡ xt(y) and x̃t ≡ xt(ỹ)).

Further define

ξt = max(‖xt − x̃t‖, ‖rt − r̃t‖, ‖y − ỹ‖) .
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We show that

ξt ≤ Ct(1 + ‖y‖) ξt−1 , (C.2.2)

for a constant Ct. This establishes the claim since

‖xt − x̃t‖ ≤ ξt ≤ CtCt−1 . . . C2 (1 + ‖y‖)t−1ξ1 = CtCt−1 . . . C2 (1 + ‖y‖)t−1‖y − ỹ‖ ,

where the last step holds since x1
i = x̃1

i = E{X} and r1 − r̃1 = y − ỹ.

In order to prove Eq. (C.2.2), we need to prove the following two claims.

Claim C.2.2. For any fixed iteration number t, there exists a constant Ct, such that

‖rt‖ ≤ Ct max(‖x1‖, ‖y‖) .

Proof (Claim C.2.2). Define λt = max(‖xt+1‖, ‖rt‖, ‖y‖). Then,

‖rt‖ ≤ ‖y‖+ ‖A‖2‖xt‖+ ‖bt‖∞‖rt−1‖.

Note that A has bounded operator by assumption. Also, the posterior mean η is a smooth

function with bounded derivative. Therefore, recalling the definition of bt,

bt ≡ 1

δ

∑
u∈C

Wg(i),uQ̃
t−1
g(i),u〈η

′
t−1〉u ,

we have ‖bt‖∞ ≤ C1,t for some constant C1,t. Hence, ‖rt‖ ≤ C2,tλt−1. Moreover,

‖xt+1‖ = ‖ηt(xt + (Qt �A)∗rt)‖ ≤ C(‖xt‖+ ‖Qt �A‖2‖rt‖) ≤ C3,t max(‖xt‖, ‖rt‖) ,

for some constant C3,t. In the first inequality, we used the fact that η is Lipschitz continuous.

Therefore, λt ≤ C ′tλt−1, where C ′t = max(1, C2,t, C3,t, C2,tC3,t), and

‖rt‖ ≤ λt ≤ C ′t · · ·C ′1λ0 ≤ C ′t · · ·C ′1 max(‖x1‖, ‖y‖),

with x1
i = E{X}, for i ∈ [n].
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Claim C.2.3. For any fixed iteration number t, there exists a constant Ct, such that

‖bt � rt−1 − b̃t � r̃t−1‖ ≤ Ct(1 + ‖y‖) max(‖xt−1 − x̃t−1‖, ‖rt−1 − r̃t−1‖) .

Proof (Claim C.2.3). Using triangle inequality, we have

‖bt � rt−1 − b̃t � r̃t−1‖ ≤ ‖(bt − b̃t)� rt−1‖+ ‖b̃t � (rt−1 − r̃t−1)‖ . (C.2.3)

Since η′ is Lipschitz continuous, we have

‖bt − b̃t‖ ≤ C1,t(‖xt−1 − x̃t−1‖+ ‖rt−1 − r̃t−1‖) ,

for some constant C1,t. Also, as discussed in the proof of Claim C.2.2, the Onsager terms

bt are uniformly bounded. Applying these bounds to the right hand side of Eq. (C.2.3), we

obtain

‖bt � rt−1 − b̃t � r̃t−1‖ ≤ C1,t (‖xt−1 − x̃t−1‖+ ‖rt−1 − r̃t−1‖) ‖rt−1‖+ C2,t ‖rt−1 − r̃t−1‖

≤ Ct(1 + ‖y‖) max(‖xt−1 − x̃t−1‖, ‖rt−1 − r̃t−1‖) ,

for some constants C1,t, C2,t, Ct. The last inequality here follows from the bound given in

Claim C.2.2.

Now, we are ready to prove Eq. (C.2.2). We write

‖xt − x̃t‖ = ‖ηt−1(xt−1 + (Qt−1 �A)∗rt−1)− ηt−1(x̃t−1 + (Qt−1 �A)∗r̃t−1)‖

≤ C
(
‖xt−1 − x̃t−1‖+ ‖Qt−1 �A‖2‖rt−1 − r̃t−1‖

)
≤ C1,t max(‖xt−1 − x̃t−1‖, ‖rt−1 − r̃t−1‖, ‖y − ỹ‖) = C1,t ξt−1 , (C.2.4)

for some constant C1,t. Furthermore,

‖rt − r̃t‖ ≤ ‖y − ỹ‖+ ‖A‖2‖xt − x̃t‖+ ‖bt � rt−1 − b̃t � r̃t−1‖

≤ ‖y − ỹ‖+ ‖A‖2C1,t ξt−1 + C ′t(1 + ‖y‖) max(‖xt−1 − x̃t−1‖, ‖rt−1 − r̃t−1‖)

≤ C2,t (1 + ‖y‖) ξt−1 , (C.2.5)
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for some constant C2,t and using Eq. (C.2.4) and Claim C.2.3 in deriving the second in-

equality. Combining Eqs. (C.2.4) and (C.2.5), we obtain

ξt ≤ max(1, C1,t, C2,t) (1 + ‖y‖) ξt−1 .



Appendix D

Supplement to Chapter 11

D.1 Proof of Lemma 11.4.2

We prove the first claim, Eq. (11.4.4). The second one follows by a similar argument. The

proof uses induction on t. It is a simple exercise to show that the induction basis (t = 1)

holds (the calculation follows the same lines as the induction step). Assuming the claim for

t, we write, for i ∈ {0, 1, . . . , L− 1}

|ψi(t+ 1)− ψ(ρi; t+ 1)| =
∣∣∣mmse

( ∑
b∈R0

Wb−i [σ2 +
1

δ

∑
j∈Z

Wb−jψj(t)]
−1
)

−mmse
(∫ `+1

−1
W(z − ρi) [σ2 +

1

δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

)∣∣∣
≤
∣∣∣mmse

( ∑
b∈R0

Wb−i [σ2 +
1

δ

∑
j∈Z

Wb−jψj(t)]
−1
)

−mmse
( ∑
b∈R0

Wb−i [σ2 +
1

δ

∑
j∈Z

Wb−jψ(ρj; t)]−1
)∣∣∣

+
∣∣∣mmse

( ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1

δ

∑
j∈Z

ρW(ρ(b− j))ψ(ρj; t)]−1
)

−mmse
(∫ `+1

−1
W(z − ρi) [σ2 +

1

δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

)∣∣∣.

(D.1.1)

Now, we bound the two terms on the right hand side separately. Note that the arguments

of mmse( · ) in the above terms are at most 2/σ2. Since mmse has a continuous derivative,

there exists a constant C such that | d
ds mmse(s)| ≤ C, for s ∈ [0, 2/σ2]. Then, considering

212
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the first term in the upper bound (D.1.1), we have∣∣∣mmse
( ∑
b∈R0

Wb−i [σ2 +
1

δ

∑
j∈Z

Wb−jψj(t)]
−1
)
−mmse

( ∑
b∈R0

Wb−i [σ2 +
1

δ

∑
j∈Z

Wb−jψ(ρj; t)]−1
)∣∣∣

≤ C
∣∣∣ ∑
b∈R0

Wb−i

(
[σ2 +

1

δ

∑
j∈Z

Wb−jψj(t)]
−1 − [σ2 +

1

δ

∑
j∈Z

Wb−jψ(ρj; t)]−1
)∣∣∣

≤ C

σ4

∑
b∈R0

Wb−i
1

δ

∣∣∣ L−1∑
j=−∞

Wb−j(ψ(ρj; t)− ψj(t))
∣∣∣

≤ C

δσ4

∑
b∈R0

Wb−i

L−1∑
j=−∞

Wb−j |ψ(ρj; t)− ψj(t)|

=
C

δσ4

L−1∑
j=0

( ∑
b∈R0

Wb−iWb−j

)
|ψ(ρj; t)− ψj(t)|

≤ C

δσ4

(∑
i∈Z

W 2
i

) L−1∑
j=0

|ψ(ρj; t)− ψj(t)|

≤ C ′ρ

δσ4

L−1∑
j=0

|ψ(ρj; t)− ψj(t)|.

(D.1.2)

Here we used
∑

i∈ZW
2
i =

∑
i∈Z ρ

2W(ρi)2 ≤ C
∑
|i|≤ρ−1 ρ2 ≤ Cρ (where the first inequality

follows from the fact that W is bounded).
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To bound the second term in Eq. (D.1.1), note that∣∣∣mmse
( ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1

δ

∑
j∈Z

ρW(ρ(b− j))ψ(ρj; t)]−1
)

−mmse
(∫ `+1

−1
W(z − ρi) [σ2 +

1

δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

)∣∣∣
≤ C

∣∣∣ ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1

δ

∑
j∈Z

ρW(ρ(b− j))ψ(ρj; t)]−1

−
∫ `+1

−1
W(z − ρi) [σ2 +

1

δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

∣∣∣
≤ C

∣∣∣ ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1

δ

∑
j∈Z

ρW(ρ(b− j))ψ(ρj; t)]−1

−
∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1

δ

∫
R
W(ρb− y)ψ(y; t)dy]−1

∣∣∣
+ C

∣∣∣ ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1

δ

∫
R
W(ρb− y)ψ(y; t)dy]−1dz

−
∫ `+1

−1
W(z − ρi) [σ2 +

1

δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

∣∣∣
≤ C

δσ4

∑
b∈R0

ρW(ρ(b− i))
∣∣∣∑
j∈Z

ρF1(ρb; ρj)−
∫
R
F1(ρb; y)dy

∣∣∣
+ C

∣∣∣ ∑
b∈R0

ρF2(ρb)−
∫ `+1

−1
F2(z)dz

∣∣∣

(D.1.3)

where F1(x; y) = W(x− y)ψ(y; t) and F2(z) = W(z − ρi) [σ2 + 1
δ

∫
RW(z − y)ψ(y; t)dy]−1.

Since the functions W( · ) and ψ( · ) have continuous (and thus bounded) derivative on

compact interval [0, `], the same is true for F1 and F2. Using the standard convergence

of Riemann sums to Riemann integrals, right hand side of Eq. (D.1.3) can be bounded

by C3ρ/δσ
4, for some constant C3. Let εi(t) = |ψi(t) − ψ(ρi; t)|. Combining Eqs. (D.1.2)

and (D.1.3), we get

εi(t+ 1) ≤ ρ

δσ4

C ′ L−1∑
j=0

εj(t) + C3

 . (D.1.4)
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Therefore,

1

L

L−1∑
i=0

εi(t+ 1) ≤ `

δσ4

C ′
L

L−1∑
j=0

εj(t)

+
C3ρ

δσ4
. (D.1.5)

The claims follows from the induction hypothesis.

D.2 Proof of Proposition 11.4.9

By Eq. (11.4.8), for any ε > 0, there exists φ0, such that for 0 ≤ φ ≤ φ0,

I(φ−1) ≤ d(pX) + ε

2
log(φ−1). (D.2.1)

Therefore,

V (φ) ≤ δσ2

2φ
+
δ − d(pX)− ε

2
log φ. (D.2.2)

Now let ε = (δ−d(pX))/2 and σ2 =
√
φ0/2. Hence, for σ ∈ (0, σ2], we get φ∗ < 2σ2 ≤ φ0.

Plugging in φ∗ for φ in the above equation, we get

V (φ∗) ≤ δσ2

2φ∗
+
δ − d(pX)

4
log φ∗

<
δ

2
+
δ − d(pX)

4
log(2σ2) .

(D.2.3)

D.3 Proof of Claim 11.4.11

Recall that κ < ΦM and φ(x) is nondecreasing. Let

0 < θ =
ΦM − κ
ΦM − κ

2

< 1.
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We show that φ(θ`− 1) ≥ κ/2 +φ∗. If this is not true, using the nondecreasing property of

φ(x), we obtain∫ `−1

−1
|φ(x)− φ∗| dx =

∫ θ`−1

−1
|φ(x)− φ∗| dx+

∫ `−1

θ`−1
|φ(x)− φ∗| dx

<
κ

2
θ`+ ΦM (1− θ)`

= κ`,

(D.3.1)

contradicting our assumption. Therefore, φ(x) ≥ κ/2+φ∗, for θ`−1 ≤ x ≤ `−1. For given

K, choose `0 = K/(1− θ). Hence, for ` > `0, interval [θ`− 1, `− 1) has length at least K.

The result follows.

D.4 Proof of Proposition 11.4.12

We first establish some properties of function ς2(x).

Remark D.4.1. The function ς2(x) as defined in Eq. (11.4.10), is non increasing in x.

Also, ς2(x) = σ2 + (1/δ) mmse(L0/(2σ
2)), for x ≤ −1 and ς2(x) = σ2, for x ≥ 1. For

δL0 > 3, we have σ2 ≤ ς2(x) < 2σ2.

Remark D.4.2. The function ς2(x)/σ2 is Lipschitz continuous. More specifically, there

exists a constant C, such that, |ς2(α1)− ς2(α2)| < Cσ2|α2−α1|, for any two values α1, α2.

Further, if L0δ > 3 we can take C < 1.

The proof of Remarks D.4.1 and D.4.2 are immediate from Eq. (11.4.10).

To prove the proposition, we split the integral over the intervals [−1,−1 + a), [−1 +

a, x0 + a), [x0 + a, x2), [x2, `− 1), and bound each one separately. Firstly, note that∫ `−1

x2

{ ς2(x)− σ2

φa(x)
− ς2(x)− σ2

φ(x)

}
dx = 0, (D.4.1)

since φa(x) and φ(x) are identical for x ≥ x2.
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Secondly, let α = (x2 − x0)/(x2 − x0 − a), and β = (ax2)/(x2 − x0 − a). Then,∫ x2

x0+a

{ ς2(x)− σ2

φa(x)
− ς2(x)− σ2

φ(x)

}
dx

=

∫ x2

x0

ς2(x+β
α )− σ2

φ(x)

dx

α
−
∫ x2

x0+a

ς2(x)− σ2

φ(x)
dx

=

∫ x2

x0

{ 1

α

ς2(x+β
α )− σ2

φ(x)
− ς2(x)− σ2

φ(x)

}
dx+

∫ x0+a

x0

ς2(x)− σ2

φ(x)
dx

(a)

≤ 1

σ2

∫ x2

x0

∣∣∣ 1
α
ς2
(x+ β

α

)
− ς2(x)

∣∣∣ dx+
(

1− 1

α

)∫ x2

x0

σ2

φ(x)
dx+

∫ x0+a

x0

σ2

φ(x)
dx

≤ 1

σ2

∫ x2

x0

(
1− 1

α

)
ς2
(x+ β

α

)
dx+

1

σ2

∫ x2

x0

∣∣∣ς2
(x+ β

α

)
− ς2(x)

∣∣∣ dx+
K

2

(
1− 1

α

)
+ a

≤
(

1− 1

α

)
K +

1

σ2

∫ x2

x0

∣∣∣ς2
(x+ β

α

)
− ς2(x)

∣∣∣ dx+
K

2

(
1− 1

α

)
+ a

(b)

≤
(

1− 1

α

)
K + CK2

(
1− 1

α

)
+ CK a+

K

2

(
1− 1

α

)
+ a

≤ C(K)a,

(D.4.2)

where (a) follows from the fact σ2 ≤ φ(x) and Remark D.4.1; (b) follows from Remark D.4.2.

Thirdly, recall that φa(x) = φ(x− a), for x ∈ [−1 + a, x0 + a). Therefore,∫ x0+a

−1+a

{ ς2(x)− σ2

φa(x)
− ς2(x)− σ2

φ(x)

}
dx

=

∫ x0

−1

ς2(x+ a)− σ2

φ(x)
dx−

∫ x0+a

−1+a

ς2(x)− σ2

φ(x)
dx

=

∫ x0

−1

ς2(x+ a)− ς2(x)

φ(x)
dx−

∫ x0+a

x0

ς2(x)− σ2

φ(x)
dx+

∫ −1+a

−1

ς2(x)− σ2

φ(x)
dx

≤ 0 + 0 +

∫ −1+a

−1

σ2

φ(x)
dx

≤ a,

(D.4.3)

where the first inequality follows from Remark D.4.1 and the second follows from φ(x) ≥ σ2.

Finally, using the facts σ2 ≤ ς2(x) ≤ 2σ2, and σ2 ≤ φ(x), we have∫ −1+a

−1

{ ς2(x)− σ2

φa(x)
− ς2(x)− σ2

φ(x)

}
dx ≤ a. (D.4.4)
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Combining Eqs. (D.4.1), (D.4.2), (D.4.3), and (D.4.4) implies the desired result.

D.5 Proof of Proposition 11.4.13

Proof. Let ẼW(φa) = ẼW,1(φa) + ẼW,2(φa) + ẼW,3(φa), where

ẼW,1(φa) =

∫ `−1

x0+a
{I(W ∗ φa(y)−1)− I(φa(y − 1)−1)}dy,

ẼW,2(φa) =

∫ x0+a

a
{I(W ∗ φa(y)−1)− I(φa(y − 1)−1)}dy,

ẼW,3(φa) =

∫ a

0
{I(W ∗ φa(y)−1)− I(φa(y − 1)−1)}dy.

(D.5.1)

Also let ẼW(φ) = ẼW,1(φ) + ẼW,2,3(φ), where

ẼW,1(φ) =

∫ `−1

x0+a
{I(W ∗ φ(y)−1)− I(φ(y − 1)−1)}dy,

ẼW,2,3(φ) =

∫ x0+a

0
{I(W ∗ φ(y)−1)− I(φ(y − 1)−1)}dy.

(D.5.2)

The following remark is used several times in the proof.

Remark D.5.1. For any two values 0 ≤ α1 < α2,

I(α2)− I(α1) =

∫ α2

α1

1

2
mmse(z)dz ≤

∫ α2

α1

1

2z
dz =

1

2
log
(α2

α1

)
≤ 1

2

(
α2

α1
− 1

)
. (D.5.3)

• Bounding ẼW,1(φa)− ẼW,1(φ).

Notice that the functions φ(x) = φa(x), for x2 ≤ x. Also κ/2 < φa(x) ≤ φ(x) ≤ ΦM ,

for x1 < x < x2. Let α = (x2 − x1)/(x2 − x1 − a), and β = (ax2)/(x2 − x1 − a). Then,
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φa(x) = φ(αx− β) for x ∈ [x0 + a, x2). Hence,

ẼW,1(φa)− ẼW,1(φ)

=

∫ x2+1

x0+a
I(W ∗ φa(y)−1)− I(W ∗ φ(y)−1) dy +

∫ x2+1

x0+a
I(φ(y − 1)−1)− I(φa(y − 1)−1) dy

≤ 1

2

∫ x2+1

x0+a

1

W ∗ φ(y)−1
(W ∗ φa(y)−1 −W ∗ φ(y)−1) dy

≤ ΦM

2

∫ x2+1

x0+a

(∫ x2

x0+a−1
W(y − z)φa(z)−1 dz −

∫ x2

x0+a−1
W(y − z)φ(z)−1 dz

)
dy

=
ΦM

2

∫ x2+1

x0+a

(∫ x2

x0+a
W(y − z)φ(αz − β)−1 dz +

∫ x0+a

x0+a−1
W(y − z)φ(z − a)−1 dz

−
∫ x2

x0+a−1
W(y − z)φ(z)−1 dz

)
dy

≤ ΦM

2

∫ x2+1

x0+a

{∫ x2

x0

( 1

α
W(y − z + β

α
)−W(y − z)

)
φ(z)−1 dz

+

∫ x0

x0−1

(
W(y − z − a)−W(y − z)

)
φ(z)−1 dz

+

∫ x0+a−1

x0−1
W(y − z)φ(z)−1 dz

}
dy

≤ ΦM

2

∫ x2+1

x0+a

{∫ x2

x0

(
W(y − z + β

α
)−W(y − z)

)
φ(z)−1 dz

+

∫ x0

x0−1

(
W(y − z − a)−W(y − z)

)
φ(z)−1 dz

+

∫ x0+a−1

x0−1
W(y − z)φ(z)−1 dz

}
dy

≤ C1(1− 1

α
) + C2

β

α
+ C3 a ≤ C4 a. (D.5.4)

Here C1, C2, C3, C4 are some constants that depend only on K and κ. The last step follows

from the facts thatW( · ) is a bounded Lipschitz function and φ(z)−1 ≤ 2/κ for z ∈ [x1, x2].

Also, note that in the first inequality, I(φ(y− 1)−1)− I(φa(y− 1)−1) ≤ 0, since φ(y− 1)−1 ≤
φa(y − 1)−1, and I( · ) is nondecreasing.

• Bounding ẼW,2(φa)− ẼW,2,3(φ).
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We have

ẼW,2(φa) =

∫ x0+a

x0+a−1
{I(W ∗ φa(y)−1)− I(φa(y − 1)−1)}dy

+

∫ x0+a−1

a
{I(W ∗ φa(y)−1)− I(φa(y − 1)−1)}dy.

(D.5.5)

We treat each term separately. For the first term,∫ x0+a

x0+a−1
{I(W ∗ φa(y)−1)− I(φa(y − 1)−1)}dy

=

∫ x0+a

x0+a−1

{
I

(∫ x0+a+1

x0+a
W(y − z)φa(z)−1 dz +

∫ x0+a

x0+a−2
W(y − z)φa(z)−1 dz

)
− I(φa(y − 1)−1)

}
dy

=

∫ x0+a

x0+a−1
I

(∫ x0+α

x0

W(y − z + β

α
)φ(z)−1 dz

α
+

∫ x0

x0−2
W(y − a− z)φ(z)−1 dz

)
dy

−
∫ x0

x0−1
I(φ(y − 1)−1)dy

=

∫ x0

x0−1
I

(∫ x0+α

x0

W(y + a− z + β

α
)φ(z)−1 dz

α
+

∫ x0

x0−2
W(y − z)φ(z)−1 dz

)
dy

−
∫ x0

x0−1
I(φ(y − 1)−1)dy

≤ C5 a+

∫ x0

x0−1

{
I

(∫ x0+1

x0−2
W(y − z)φ(z)−1 dz

)
− I(φ(y − 1)−1)

}
dy

= C5 a+

∫ x0

x0−1

{
I(W ∗ φ(y)−1)− I(φ(y − 1)−1)

}
dy, (D.5.6)
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where the last inequality is an application of remark D.5.1. More specifically,

I

(∫ x0+α

x0

W(y + a− z + β

α
)φ(z)−1 dz

α
+

∫ x0

x0−2
W(y − z)φ(z)−1 dz

)
− I

(∫ x0+1

x0−2
W(y − z)φ(z)−1 dz

)
≤ ΦM

2

(∫ x0+α

x0

W(y + a− z + β

α
)φ(z)−1 dz

α
−
∫ x0+1

x0

W(y − z)φ(z)−1 dz

)
≤ ΦM

2

∫ x0+α

x0+1
W(y + a− z + β

α
)φ(z)−1 dz

+
ΦM

2

∫ x0+1

x0

(
W(y + a− z + β

α
)−W(y − z)

)
φ(z)−1dz

≤ C ′1(1− 1

α
) + C ′2

β

α
+ C ′3 a ≤ C5 a,

where C ′1, C
′
2, C

′
3, C5 are constants that depend only on κ. Here, the penultimate inequality

follows from α > 1, and the last one follows from the fact thatW( · ) is a bounded Lipschitz

function and that φ(z)−1 ≤ 2/κ, for z ∈ [x1, x2].

To bound the second term on the right hand side of Eq. (D.5.6), notice that φa(z) =

φ(z − a), for z ∈ [−1 + a, x0 + a), whereby∫ x0+a−1

a
{I(W ∗ φa(y)−1)− I(φa(y − 1)−1)}dy

=

∫ x0−1

0
{I(W ∗ φ(y)−1)− I(φ(y − 1)−1)}dy.

(D.5.7)

Now, using Eqs. (D.5.2), (D.5.5) and (D.5.7), we obtain

ẼW,2(φa)− ẼW,2,3(φ) ≤ C5 a−
∫ x0+a

x0

{I(W ∗ φ(y)−1)− I(φ(y − 1)−1)}dy

≤ C5 a+

∫ x0+a

x0

log

(
φ(y − 1)−1

W ∗ φ(y)−1

)
≤ C5 a+ a log(

ΦM

κ
) = C6 a,

(D.5.8)

where C6 is a constant that depends only on κ.

• Bounding ẼW,3(φa).

Notice that φa(y) ≥ σ2. Therefore, I(W ∗ φa(y)−1) ≤ I(σ−2), since I( · ) is nondecreasing.
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Recall that φa(y) = φ∗ < 2σ2, for y ∈ [−1,−1 + a). Consequently,

ẼW,3(φa) ≤
∫ a

0
{I(σ−2)− I(φ∗−1)}dy ≤ a

2
log
(φ∗
σ2

)
<
a

2
log 2, (D.5.9)

where the first inequality follows from Remark D.5.1.

Finally, we are in position to prove the proposition. Using Eqs. (D.5.4), (D.5.8) and (D.5.9),

we get

ẼW(φa)− ẼW(φ) ≤ C4 a+ C6 a+
a

2
log 2 = C(κ,K) a. (D.5.10)

D.6 Proof of Proposition 11.4.14

We have∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx =

∫ `−1

x2

{
V (φa(x))− V (φ(x))

}
dx

+
(∫ x2

x0+a
V (φa(x))dx−

∫ x2

x0

V (φ(x))dx
)

+
(∫ x0+a

−1+a
V (φa(x))dx−

∫ x0

−1
V (φ(x))dx

)
+

∫ −1+a

−1
V (φa(x))dx.

(D.6.1)

Notice that the first and the third terms on the right hand side are zero. Also,∫ x2

x0+a
V (φa(x))dx−

∫ x2

x0

V (φ(x))dx = − a

x2 − x0

∫ x2

x0

V (φ(x))dx,∫ −1+a

−1
V (φa(x))dx = aV (φ∗), ,

(D.6.2)

where the second equation holds because φa(x) = φ∗ for x ∈ [−1,−1 + a) in view of

Eq. (11.4.20).

Substituting Eq. (D.6.2) in Eq. (D.6.1), we get∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx =

a

x2 − x0

∫ x2

x0

{
V (φ∗)− V (φ(x))

}
dx. (D.6.3)
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Now we upper bound the right hand side of Eq. (D.6.3).

By Proposition 11.4.9, we have

V (φ∗) ≤ δ

2
+
δ − d(pX)

4
log(2σ2), (D.6.4)

for σ ∈ (0, σ2]. Also, since φ(x) > κ/2 for x ∈ [x0, x2], we have V (φ(x)) ≥ (δ/2) log φ >

(δ/2) log(κ/2). Therefore,

1

2

∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx =

a

2(x2 − x0)

∫ x2

x0

{
V (φ∗)− V (φ(x))

}
dx

<
a

2

[δ
2

+
δ − d(pX)

4
log(2σ2)− δ

2
log(

κ

2
)
]
.

(D.6.5)

It is now obvious that by choosing σ0 > 0 small enough, we can ensure that for values

σ ∈ (0, σ0],

a

2

[δ
2

+
δ − d(pX)

4
log(2σ2)− δ

2
log(

κ

2
)
]
< −2C(κ,K)a. (D.6.6)

(Notice that the right hand side of Eq. (D.6.6) does not depend on σ).

D.7 Proof of Claim 11.4.16

Similar to the proof of Claim 11.4.11, the assumption
∫ `−1
−1 |φ(x) − φ∗|dx > Cσ2` implies

φ(θ`− 1) > Cσ2(1− α), where

0 < θ =
ΦM − Cσ2

ΦM − Cσ2(1− α)
< 1.

Choose σ small enough such that φ∗ < φ1. Let κ = (φ1 − φ∗)(1 − θ)/2. Applying

Lemma 11.4.10, there exists `0, and σ0, such that,
∫ `−1
−1 |φ(x)− φ∗| dx ≤ κ`, for ` > `0 and

σ ∈ (0, σ0]. We claim that φ(µ`− 1) < φ1, with

µ = 1− κ

φ1 − φ∗
=

1 + θ

2
.
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Otherwise, by monotonicity of φ(x),

(φ1 − φ∗)(1− µ)` ≤
∫ `−1

µ`−1
|φ(x)− φ∗| dx <

∫ `−1

−1
|φ(x)− φ∗| dx ≤ κ`. (D.7.1)

Plugging in for µ yields a contradiction.

Therefore, Cσ2(1− α) < φ(x) < φ1, for x ∈ [θ`− 1, µ`− 1], and (µ− θ)` = (1− θ)`/2.

Choosing ` > max{`0, 2K/(1− θ)} gives the result.

D.8 Proof of Proposition 11.4.17

To prove Eq. (11.4.32), we write

∫ `−1

−1
{Vrob(φa(x))− Vrob(φ(x))} dx = −

∫ x2

x1

∫ φ(x)

φa(x)
V ′(s) ds dx

≤ −
∫ x2

x1

∫ φ(x)

φa(x)

δ

2s2

(
s− σ2

)
ds dx

= −δ
2

∫ x2

x1

{
log

(
φ(x)

φa(x)

)
+

σ2

φ(x)
− σ2

φa(x)

}
dx

≤ δ

2
K log(1− a) +K

δa

2C(1− α)(1− a)
,

(D.8.1)

where the second inequality follows from the fact Cσ2/2 < φ(x), for x ∈ [x1, x2].

Next, we pass to prove Eq. (11.4.33).∫ `−1

−1
(ς2(x)− σ2)

(
1

φa(x)
− 1

φ(x)

)
dx =

∫ x2

x1

ς2(x)− σ2

φ(x)

(
1

1− a
− 1

)
≤ a

1− a

∫ x2

x1

σ2

φ(x)
dx ≤ K a

C(1− α)(1− a)
,

(D.8.2)

where the first inequality follows from Remark D.4.1.
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Finally, we have

ẼW,rob(φa)− ẼW,rob(φ) =

∫ `

0
{I(W ∗ φa(y)−1)− I(W ∗ φ(y)−1)}dy

=

∫ `

0

∫ W∗φa(y)−1

W∗φ(y)−1

1

2
mmse(s) ds dy

≤ D(pX) + ε

2

∫ `

0

∫ W∗φa(y)−1

W∗φ(y)−1

s−1ds dy

≤ D(pX) + ε

2

∫ `

0
log

(
W ∗ φa(y)−1

W ∗ φ(y)−1

)
dy

≤ −D(pX) + ε

2
(K + 2) log(1− a),

(D.8.3)

where the first inequality follows from Eq. (11.4.29) and Claim 11.4.16.
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[114] A. Rényi. On the dimension and entropy of probability distributions. Acta Mathe-

matica Hungarica, 10:193–215, 1959. 123, 124

[115] T. J. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University

Press, Cambridge, 2008. 135, 178

[116] M. Rudelson and Z. Shuheng. Reconstruction from anisotropic random measurements.

IEEE Transactions on Information Theory, 59(6):3434–3447, 2013. 34, 99

[117] P. Schniter. Turbo Reconstruction of Structured Sparse Signals. In Proceedings of the

Conference on Information Sciences and Systems, Princeton, 2010. 131

[118] P. Schniter. A message-passing receiver for BICM-OFDM over unknown clustered-

sparse channels. arXiv:1101.4724, 2011. 131



BIBLIOGRAPHY 237

[119] P. J. Schreier and L. L. Scharf. Statistical signal processing of complex-valued data : the

theory of improper and noncircular signals. Cambridge University Press, Cambridge,

2010. 181

[120] S. Som, L. C. Potter, and P. Schniter. Compressive Imaging using Approximate

Message Passing and a Markov-Tree Prior. In Proc. Asilomar Conf. on Signals,

Systems, and Computers, November 2010. 131

[121] A. Sridharan, M. Lentmaier, D. J. Costello Jr, and K. S. Zigangirov. Convergence

analysis of a class of LDPC convolutional codes for the erasure channel. In 43rd

Annual Allerton Conference, Monticello, IL, September 2004. 131, 144
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