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Modern data

I Lots of high-dimensional data, but highly structured.

I Learning the underlying structure is central to:
� Modeling
� Dimensionality reduction/ summarizing data
� Prediction

This talk:
Learning hidden (unobserved) variables that pervaded the data.
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Example: document modeling

Nursing Home Is Faulted Over Care After 
Storm
By MICHAEL POWELL and SHERI FINK
Amid the worst hurricane to hit New York City 
in nearly 80 years, officials have claimed that 
the Promenade Rehabilitation and Health 
Care Center failed to provide the most basic 
care to its patients.

In One Day, 11,000 Flee Syria as War and 
Hardship Worsen
By RICK GLADSTONE and NEIL 
MacFARQUHAR
The United Nations reported that 11,000 
Syrians fled on Friday, the vast majority of 
them clambering for safety over the Turkish 
border.

Obama to Insist on Tax Increase for the 
Wealthy
By HELENE COOPER and JONATHAN 
WEISMAN
Amid talk of compromise, President Obama 
and Speaker John A. Boehner both indicated 
unchanged stances on this issue, long a point 
of contention.

Hurricane Exposed Flaws in Protection of 
Tunnels
By ELISABETH ROSENTHAL
Nearly two weeks after Hurricane Sandy 
struck, the vital arteries that bring cars, trucks 
and subways into New York City’s 
transportation network have recovered, with 
one major exception: the Brooklyn-Battery 
Tunnel remains closed.

Behind New York Gas Lines, Warnings and 
Crossed Fingers
By DAVID W. CHEN, WINNIE HU and 
CLIFFORD KRAUSS
The return of 1970s-era gas lines to the five 
boroughs of New York City was not the result 
of a single miscalculation, but a combination 
of ignored warnings and indecisiveness.

Observations: words Hidden variables: topics
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Topics

genome disease software
molecular tuberculosis system
sequence penumonia parallel
DNA control hardware
human doctor cyber
genetics weak network
map resistance data

project fatal program
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Example: social network modeling

Observations: social interactions Hidden: communities, relationships
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Example: bio-informatics

Observations: gene expressions Hidden variables: gene regulators
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Linear Bayesian Network

Markov relationship on DAG
I PAi : parents of node i .
I P�(z ) =

Qn
i=1 P�(zi jzPAi ).

Linear model with latent nodes
I Observed variables fxig and hidden variables fhig.
I Linear relations: xi =

P
j2PAi

aijhj + �i

I uncorrelated noise variables �i
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Learning latent models

Goal: Given the observed data, learn structure and parameters of model.

Challenges:
I Identifiablity Many models can explain the observed data!

I ICA: no edge between hidden nodes
I LDA: hidden variables are drawn from a Dirichlet distribution
I latent trees, graphical models with long cycles.

[Anandkumar et.al. 2011, Choi et. al. 2011, Daskalakis et. al. 2006]

I Tractable learning algorithms:
I Maximum likelihood (tractable on trees, NP-hard in general)
I Expectation maximization [Redner, Walker 1984], Gibbs sampling

[Asuncion et. al. 2011]
I Local tests [Bresler et. al. 2008, Anadkumar et. al. 2012, ]
I Convex relaxations (e.g. Lasso) [Meinshausen, Bühlmann 2006,

Ravikumar, Wainwright 2010 ]
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An example

A = (aij )

� = (�ij )
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An example

A = (aij )

� = (�ij )

A(I � �)�1

�1 �2 �3

A prudent restriction on the model

broadly applicable tractable learning methods
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Sufficient conditions for identifiability

Task: Recover A

Structural Condition: (Additive) Graph
Expansion

jN (S)j � jS j+ dmax, for all S � H

Parametric Condition: Generic Parameters

kAvk0 > jNA(supp(v))j � jsupp(v)j

S

N (S)

Identifiability result

Under above conditions, A can be uniquely recovered from E[xxT].
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Intuition

I Denoising the moment: E[xxT] = AE[hhT]AT + E[��T]
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Intuition

I Denoising the moment: E[xxT] = AE[hhT]AT| {z }
lowrank

+ E[��T]| {z }
diagonal
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Intuition

I Denoising the moment: AE[hhT]AT

I For non-degenerate E[hhT], we know Col(A).

I Under above conditions, sparsest vectors in Col(A) are columns of A.

[Spielman, Wang, Wright 2012]
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Intuition

I Denoising the moment: AE[hhT]AT

I For non-degenerate E[hhT], we know Col(A).

I Under above conditions, sparsest vectors in Col(A) are columns of A.

Exhaustive search
1 Let U = Col(AE[hhT]AT)

2 min
z 6=0

kUzk0
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A tractable algorithm

Task: Recover A from U = Col(AE[hh>]AT).

TWMLearn
1 Let U = Col(AE[hhT])AT 2 Rn�k .
2 Solve

min
z
kUzk1; (eT

i U )z = 1 :

3 Set si = Uz , and S = fs1; : : : ; sng.
4 Return a maximal full rank subset of S.

Under “reasonable” conditions, the above program exactly recovers A
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Learning latent space parameters

Recall so far ...
Recovered A

I from second order moment E[xxT]

I under no assumption on the hidden variables!

What hidden structures can be learnt from low order observed moments?
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Multi-level DAGs

x

A
h

~A

~h

E[xxT] = AE[hhT]AT + E[��T]
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Multi-level DAGs

x

A
h

~A

~h

AyAE[hhT]AT(Ay)T
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Multi-level DAGs

h

~A

~h

E[hhT] = ~AE[~h ~hT] ~AT + E[~�~�T]
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Multi-level DAGs
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Multi-level DAGs

h

~A

~h

~Ay ~AE[~h ~hT] ~AT( ~Ay)T

Adel Javanmard (Stanford University) Linear Bayesian Networks 14 / 22



Multi-level DAGs

~h

E[~h ~hT]
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Linear structural equations

I Recall x = Ah + �

I Now additionally A is full rank
(each hidden nodes has at least one
observed neighbor)

I Linear dependence among hidden node:
hj =

P
i2PAj

�jihi + �j

( in matrix form h = �h + � )

I Noise variables �j are uncorrelated.

�

A

h

x

Spectral approach for learning
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Learning �: idea

x1 x2 x3 x4 x5

h1 h2 h3 h4

A

x = Ah + �

h = �h + �
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Learning �: idea

x1 x2 x3 x4 x5

h1 h2 h3 h4

A

x = Ah + �

h = �h + �

η1 η2 η3 η4

x1 x2 x3 x4 x5

A(I � �)�1

x = A(I � �)�1� + �
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Learning �: idea

I Employ spectral approach to learn A(I � �)�1

I second order moment:

E[xxT] = A(I � �)�1E[��T](A(I � �))T + E[��T]

I third order moment:

E[xxTh�; x i] = A(I � �)�1E[��Th�;AT�i](A(I � �))T + E[��Th�; �i]
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Learning �: idea

I Employ spectral approach to learn A(I � �)�1

I second order moment:

E[xxT] = A(I � �)�1E[��T](A(I � �))T + E[��T]

I third order moment:

E[xxTh�; x i] = A(I � �)�1E[��Th�;AT�i](A(I � �))T + E[��Th�; �i]

I Simultaneous diagonalization of the moments
( through SVD or tensor decompositions )

[Anandkumar, Foster, Hsu, Kakade, Liu 2012]

[Anandkumar, Ge, Hsu, Kakade 2012]

I “Col(A) = Col(A(I � �)�1)” + “expansion property” ) A and �
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Experiment

I k = 25 hidden nodes and n = 150 observed nodes

I Bernoulli-Gaussian model (p = 0:3), total number of edges = 1177.

I Noise variables distributed as exponential, poisson, chi-2, Gaussian
with mean zero and variances chosen randomly in [0:5; 1].
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number of samples = 25,000
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number of samples = 100,000
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number of samples = 400,000
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Conclusion

I Considered learning latent models with arbitrary hidden variable
dependencies.

I Constraint on the model: expansion of bipartite graph from hidden to
observed layer, generic parameter and non-degeneracy.

I Established identifiability of A under no assumption but
non-degeneracy of the hidden variables!

I Recovering A through `1 optimization.
I Can be used to learn topic-word matrix under the expansion constraint

and arbitrary topic dependencies.
I Learning the hidden space parameters and structure for multi-level

DAGs and linear structural equations.
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You are welcome to visit our poster presentation (Paper ID: 146)!

Thanks!

Adel Javanmard (Stanford University) Linear Bayesian Networks 22 / 22


