Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing

Adel Javanmard with David Donoho and Andrea Montanari

Stanford University

November 10, 2012

General problem

y = Ax + noise,

- ▶ x high-dimensional but highly structured
- ▶ How many linear measurements are needed?

Donoho, Javanmard, Montanari Compressed Sensing-Spatial Coupling

Normalization

$$ightarrow w \sim \mathrm{N}(0, \sigma^2 \, I_{m imes \, m})$$

$$ightarrow m,n
ightarrow\infty,\ m/n=\delta$$

$$ightarrow A = [A_1|\cdots|A_n] \qquad \|A_i\|_2 = \Theta(1)$$

Compressed sensing: Basic insights

Donoho, Candés, Romberg, Tao, Indyk, Gilbert, ... [2005-...]

Structure	\rightarrow	$\ x\ _0 \leq k$ adversarial
Rate	\rightarrow	$m = C k \log(n/k)$
Reconstruction	\rightarrow	Convex optimization
Measurements	\rightarrow	Random isotropic vectors
Robustness	\rightarrow	$ ext{MSE} \leq C \sigma^2$

Is this the optimal compression rate?

Compressed sensing: Basic insights

Donoho, Candés, Romberg, Tao, Indyk, Gilbert, ... [2005-...]

Structure	\rightarrow	$\ x\ _{0} \leq k$ adversarial
Rate	\rightarrow	$m = C k \log(n/k)$
Reconstruction	\rightarrow	Convex optimization
Measurements	\rightarrow	Random isotropic vectors
Robustness	\rightarrow	$ ext{MSE} \leq C \sigma^2$

Is this the optimal compression rate?

Donoho, Javanmard, Montanari Compressed Sensing-Spatial Coupling

This paper

$\mathbf{Structure} \rightarrow$	$x = x_{ ext{discr}} + x_{ ext{other}}; \ x_{ ext{other}}\ _0 \leq k ext{oblivious}$
$\mathbf{Rate} \rightarrow$	m=k+o(n)
$\mathbf{Reconstruction} \rightarrow$	Bayesian AMP
$\mathbf{Measurements} \ \rightarrow$	Spatially coupled matrices
${\bf Robustness} \rightarrow$	$ ext{MSE} \leq C(x)\sigma^2$

This paper

$\mathbf{Structure} \rightarrow$	$x = x_{ ext{discr}} + x_{ ext{other}}; \ x_{ ext{other}}\ _0 \leq k ext{oblivious}$
$\mathbf{Rate} \rightarrow$	m=k+o(n)
$\mathbf{Reconstruction} \rightarrow$	Bayesian AMP
$\mathbf{Measurements} \ \rightarrow$	Spatially coupled matrices
${\bf Robustness} \rightarrow$	$ ext{MSE} \leq C(x)\sigma^2$

• A toy example (random signal).

► Results.

- 'Spatially coupled' sensing matrices
- How does spatial coupling work?
- Bayes-optimal AMP

Proof technique.

State evolution

Supercooling.

▶ A toy example (random signal).

▶ Results.

- 'Spatially coupled' sensing matrices
- How does spatial coupling work?
- Bayes-optimal AMP

Proof technique.

State evolution

Supercooling.

A toy example (random signal).

▶ Results.

- 'Spatially coupled' sensing matrices
- How does spatial coupling work?
- Bayes-optimal AMP

Proof technique.

State evolution

▶ Supercooling.

A toy example (random signal).

▶ Results.

- Spatially coupled' sensing matrices
- How does spatial coupling work?
- Bayes-optimal AMP

Proof technique.

State evolution

Supercooling.

$$egin{array}{rcl} x&=&(x_1,\ldots,x_n), \quad x_i\sim_{ ext{i.i.d.}}p_X\,,\ y&=&Ax\,,\quad y\in\mathbb{R}^m\,, \end{array}$$

$p_X = 0.2 \,\delta_0 + 0.3 \,\delta_1 + 0.2 \,\delta_{-1} + 0.2 \,\delta_3 + 0.1 \,\mathrm{Uniform}(-2,2).$

 p_X is known! Non-universal!

$$egin{array}{rcl} x&=&(x_1,\ldots,x_n), \quad x_i\sim_{ ext{i.i.d.}}p_X\,,\ y&=&Ax\,,\quad y\in\mathbb{R}^m\,, \end{array}$$

$p_X = 0.2 \,\delta_0 + 0.3 \,\delta_1 + 0.2 \,\delta_{-1} + 0.2 \,\delta_3 + 0.1 \,\mathrm{Uniform}(-2,2).$

 p_X is known! Non-universal!

$$egin{array}{rcl} x & = & (x_1, \dots, x_n), & x_i \sim_{ ext{i.i.d.}} p_X\,, \ y & = & Ax\,, & y \in \mathbb{R}^m\,, \end{array}$$

$p_X = 0.2 \,\delta_0 + 0.3 \,\delta_1 + 0.2 \,\delta_{-1} + 0.2 \,\delta_3 + 0.1 \,\mathrm{Uniform}(-2,2).$

p_X is known! Non-universal!

How many measurements are needed?

$p_X = 0.2 \,\delta_0 + 0.3 \,\delta_1 + 0.2 \,\delta_{-1} + 0.2 \,\delta_3 + 0.1 \,\mathrm{Uniform}(-2,2).$

- Classical compressed sensing: m = 0.97 n + o(n)
 (Donoho 2006, universal, Donoho-Maleki-M. 2011 uniformly robust)
- This talk: m = 0.1 n + o(n) (non-universal, robust)

How many measurements are needed?

$p_X = 0.2 \,\delta_0 + 0.3 \,\delta_1 + 0.2 \,\delta_{-1} + 0.2 \,\delta_3 + 0.1 \,\mathrm{Uniform}(-2,2).$

- Classical compressed sensing: m = 0.97 n + o(n)
 (Donoho 2006, universal, Donoho-Maleki-M. 2011 uniformly robust)
- This talk: m = 0.1 n + o(n) (non-universal, robust)

How many measurements are needed?

$$p_X = 0.2 \,\delta_0 + 0.3 \,\delta_1 + 0.2 \,\delta_{-1} + 0.2 \,\delta_3 + 0.1 \,\mathrm{Uniform}(-2,2).$$

- Classical compressed sensing: m = 0.97 n + o(n)
 (Donoho 2006, universal, Donoho-Maleki-M. 2011 uniformly robust)
- This talk: m = 0.1 n + o(n) (non-universal, robust)

What is 0.1 here?

Definition (Renyi's Information Dimension) For $X \sim p_X$, let $\langle X \rangle_m = \lfloor 2^m X \rfloor / 2^m$ be an *m*-digits rounding of X $\overline{d}(X) \equiv \limsup_{m \to \infty} \frac{H(\langle X \rangle_m)}{m}$.

Alternative characterization: • If

 $p_X = (1 - \varepsilon) \cdot ext{discrete} + \varepsilon \cdot ext{abs. continuous},$

then $\overline{d}(X) = \varepsilon$.

What is 0.1 here?

Definition (Renyi's Information Dimension) For $X \sim p_X$, let $\langle X \rangle_m = \lfloor 2^m X \rfloor / 2^m$ be an *m*-digits rounding of X $\overline{d}(X) \equiv \limsup_{m \to \infty} \frac{H(\langle X \rangle_m)}{m}$.

Alternative characterization: • If

$$p_X = (1 - arepsilon) \cdot ext{discrete} + arepsilon \cdot ext{abs. continuous,}$$

then $\overline{d}(X) = \varepsilon$.

Why is this important?

Theorem (Verdú, Wu, 2010)

Under mild regularity hypotheses, non-adaptive compressed sensing is possible if and only if

$$m > \overline{d}(X) n + o(n)$$
.

(equivalently, $\delta > \overline{d}(X) + o(1)).$

Shannon-theoretic argument. Exhaustive-search reconstruction :-(

Results

Two tricks

- 'Spatially coupled' sensing matrix. [Kudekar, Pfister, 2010]
 [cf. also Felstrom, Zigangirov, 1999; Kudekar, Richardson, Urbanke 2009-2011]
- AMP reconstruction, Posterior-expectation denoiser [Donoho, Maleki, Montanari 2009]
- Spatial coupling + MP reconstruction [Krzakala, Mézard, Sausset, Sun, Zdeborova, 2011] [no proof :-(]

Two tricks

- 'Spatially coupled' sensing matrix. [Kudekar, Pfister, 2010]
 [cf. also Felstrom, Zigangirov, 1999; Kudekar, Richardson, Urbanke 2009-2011]
- AMP reconstruction, Posterior-expectation denoiser [Donoho, Maleki, Montanari 2009]
- Spatial coupling + MP reconstruction [Krzakala, Mézard, Sausset, Sun, Zdeborova, 2011] [no proof :-(]

Our contributions

- Construction
- A rigorous proof
- Beyond random signals
- Robustness

Spatially coupled sensing matrix

- \blacktriangleright ~ independent entries
- \blacktriangleright ~ band diagonal

• $m, n, \ell \to \infty$, with $m/n \to \delta \in (0, 1), \ell/n \to 0$

Coordinates of x

Coordinates of y

Bayes-optimal AMP

$$egin{array}{rl} x^{t+1} &=& \eta_t(x^t+(Q_t\odot A)^*r^t)\,, \ r^t &=& y-Ax^t+{
m b}_t\odot r^{t-1}\,. \end{array}$$

 Q_t , b_t explicitly given normalizations

 $\eta_t(y) \equiv \mathbb{E}\{X|X + \tau_t Z = y\}$

(reduces to simple expression in most cases)

Bayes-optimal AMP

$$egin{array}{rl} x^{t+1} &=& \eta_t(x^t+(Q_t\odot A)^*r^t)\,, \ r^t &=& y-Ax^t+{
m b}_t\odot r^{t-1}\,. \end{array}$$

 Q_t , b_t explicitly given normalizations

$$\eta_t(y) \equiv \mathbb{E}\{X|X+ au_t Z=y\}$$

(reduces to simple expression in most cases)

Theorem (Donoho, Javanmard, Montanari, 2011)

Let $\{(x(n), y(n))\}_{n\geq 0}$ be a sequence of instances and assume the empirical distributions converge $p_{x(n)} o p_X$.

Using Gaussian spatially-coupled matrices, Bayes-optimal AMP recovers x(n) with high probability from

 $m > \overline{d}(X) n + o(n)$

noiseless measurements.

Further, if $m > \overline{D}(X)n + o(n)$, and measurements are noisy

 $\mathrm{MSE} \leq C(p_X)\sigma^2$.

 ${}^a\overline{D}(X)=\overline{d}(X) ext{ in most cases}.$

Theorem (Donoho, Javanmard, Montanari, 2011)

Let $\{(x(n), y(n))\}_{n\geq 0}$ be a sequence of instances and assume the empirical distributions converge $p_{x(n)} \rightarrow p_X$.

Using Gaussian spatially-coupled matrices, Bayes-optimal AMP recovers x(n) with high probability from

 $m > \overline{d}(X) n + o(n)$

noiseless measurements.

Further, if $m > \overline{D}(X)n + o(n)$, and measurements are noisy

 $\mathrm{MSE} \leq C(p_X)\sigma^2$.

 ${}^a\overline{D}(X)=\overline{d}(X) ext{ in most cases}.$

Theorem (Donoho, Javanmard, Montanari, 2011)

Let $\{(x(n), y(n))\}_{n\geq 0}$ be a sequence of instances and assume the empirical distributions converge $p_{x(n)} \rightarrow p_X$.

Using Gaussian spatially-coupled matrices, Bayes-optimal AMP recovers x(n) with high probability from

 $m > \overline{d}(X) n + o(n),$

noiseless measurements.

Further, if $m > \overline{D}(X)n + o(n)$, and measurements are noisy

 $\mathrm{MSE} \leq C(p_X)\sigma^2$.

 ${}^{a}\overline{D}(X) = \overline{d}(X)$ in most cases

Theorem (Donoho, Javanmard, Montanari, 2011)

Let $\{(x(n), y(n))\}_{n\geq 0}$ be a sequence of instances and assume the empirical distributions converge $p_{x(n)} \rightarrow p_X$.

Using Gaussian spatially-coupled matrices, Bayes-optimal AMP recovers x(n) with high probability from

 $m > \overline{d}(X) n + o(n),$

noiseless measurements.

Further, if $m > \overline{D}(X)n + o(n)$, and measurements are noisy

 $ext{MSE} \leq C(p_X)\sigma^2$.

 ${}^{a}\overline{D}(X) = \overline{d}(X)$ in most cases.

Proof technique

State evolution

A block Gaussian sensing matrix

$$\mathsf{MSE}^{(t)} \in \mathbb{R}^k, \qquad \mathsf{MSE}^{(t)}(i) = \lim_{n o \infty} rac{n}{k} \|x_{B_i}^t - x_{B_i}\|^2.$$

We show a state evolution recursion:

$$\mathsf{MSE}^{(t+1)} = \mathcal{F}(\mathsf{MSE}^{(t)}; p_X)$$

24 / 28

State evolution

A block Gaussian sensing matrix

$$\mathsf{MSE}^{(t)} \in \mathbb{R}^k, \qquad \mathsf{MSE}^{(t)}(i) = \lim_{n o \infty} rac{n}{k} \|x_{B_i}^t - x_{B_i}\|^2.$$

We show a state evolution recursion:

$$\mathsf{MSE}^{(t+1)} = \mathcal{F}(\mathsf{MSE}^{(t)}; p_X)$$

An illustration

Steps of the proof

- Analysis of the state evolution
- Continuum state evolution
- An energy functional $\mathcal{E}(\cdot)$
 - Fixed point of the state evolution $\Phi_\infty o
 abla \mathcal{E}(\Phi_\infty) = 0$

Supercooling

Does the spatial coupling phenomenon survive for physically constrained sensing matrices?

I will discuss it in my talk on Thursday!

Thanks!

Does the spatial coupling phenomenon survive for physically constrained sensing matrices?

I will discuss it in my talk on Thursday!

Thanks!

Does the spatial coupling phenomenon survive for physically constrained sensing matrices?

I will discuss it in my talk on Thursday!

Thanks!