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An example

Kaggle challenge: Identify patients diagnosed with type-2 diabetes
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Statistical model

Data (Y1,X1), . . . ,(Yn,Xn):

Yi = Patient i gets type-2 diabetes ∈ {0,1}
Xi = Features of patient i ∈ Rp

Yi ∼ fθ0( · |Xi) θ0 ∈ Rp

θ0,j = contribution of feature j
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Regularized estimator

θ̂ ≡ argmin
θ∈Rp

(
L (θ)︸ ︷︷ ︸

logistic loss

+λ ‖θ‖1︸︷︷︸
regularizer

)
.

Convex optimization

Variable selection
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Practice fusion data set (Kaggle)

Database

n = 500: patients

p = 805: medical information
(meds, lab results, diagnosis, . . . )
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Regularized logreg selects 62 features
(λ chosen via cross validation resulting AUC = 0.75)

Shall we trust our findings?
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In summary

Will focus on linear model and Lasso

Compute confidence intervals/p-values
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Outline

1 Problem definition

2 Debiasing approach

3 Hypothesis testing under nearly optimal sample size
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Problem definition
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Linear model

We focus on linear models:

Y = Xθ0 +W

Y ∈ Rn (response), X ∈ Rn×p (design matrix), θ0 ∈ Rp (parameters)

Noise vector has independent entries with

E(Wi) = 0, E(W2
i ) = σ

2 ,

E(|Wi|2+κ)< ∞ , for some κ > 0 .
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Problem

Confidence intervals: For each i ∈ {1, . . . ,p}, θ i,θ i ∈ R such that

P
(

θ0,i ∈ [θ i,θ i]
)
≥ 1−α

We would like |θ i−θ i| as small as possible.

Hypothesis testing:

H0,i : θ0,i = 0 , HA,i : θ0,i 6= 0
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LASSO

θ̂ ≡ argmin
θ∈Rp

{ 1
2n
‖y−Xθ‖2

2 +λ‖θ‖1

}
.

[Tibshirani 1996, Chen, Donoho 1996]

Distribution of θ̂?

Debiasing approach:
(LASSO is biased towards small `1 norm.)

θ̂

debiasing
−−−−−−−−−→ θ̂

d

We characterize distribution of θ̂ d.

Adel Javanmard (USC ) Hypothesis Testing October 2015 12 / 39



LASSO

θ̂ ≡ argmin
θ∈Rp

{ 1
2n
‖y−Xθ‖2

2 +λ‖θ‖1

}
.

[Tibshirani 1996, Chen, Donoho 1996]

Distribution of θ̂?

Debiasing approach:
(LASSO is biased towards small `1 norm.)

θ̂

debiasing
−−−−−−−−−→ θ̂

d

We characterize distribution of θ̂ d.

Adel Javanmard (USC ) Hypothesis Testing October 2015 12 / 39



LASSO

θ̂ ≡ argmin
θ∈Rp

{ 1
2n
‖y−Xθ‖2

2 +λ‖θ‖1

}
.

[Tibshirani 1996, Chen, Donoho 1996]

Distribution of θ̂?

Debiasing approach:
(LASSO is biased towards small `1 norm.)

θ̂

debiasing
−−−−−−−−−→ θ̂

d

We characterize distribution of θ̂ d.

Adel Javanmard (USC ) Hypothesis Testing October 2015 12 / 39



Debiasing approach
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Classical setting (n� p)

We know everything about the least-square estimator:

θ̂
LS =

1
n

Σ̂
−1XTY ,

where Σ̂≡ (XTX)/n is empirical covariance.

• Confidence intervals:

[θ i,θ i] = [θ̂ LS
i − cα∆i, θ̂

LS
i + cα∆i] , ∆i ≡ σ

√
(Σ̂−1)ii

n
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High-dimensional setting (n < p)

θ̂
LS =

1
n

Σ̂
−1XTY

Problem in high dimension:

Σ̂ is not invertible!

Take your favorite M ∈ Rp×p:

θ̂
∗ =

1
n

MXTY

=
1
n

MXTXθ0 +
1
n

MXTW

= θ0 +(MΣ̂− I)θ0︸ ︷︷ ︸
bias

+
1
n

MXTW︸ ︷︷ ︸
Gaussian error
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Debiased estimator

θ̂
∗ = θ0 +(MΣ̂− I)θ0︸ ︷︷ ︸

bias

+
1
n

MXTW︸ ︷︷ ︸
Gaussian error

Let us (try to) subtract the bias

θ̂
d = θ̂

∗− (MΣ̂− I)θ̂ Lasso

Debiased estimator (θ̂ = θ̂ Lasso)

θ̂
d ≡ θ̂ +

1
n

MXT(Y−Xθ̂)
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Debiased estimator: Choosing M?

θ̂
d ≡ θ̂ +

1
n

MXT(y−Xθ̂)

Gaussian design (xi ∼ N(0,Σ))
� Assume known Σ (relevant in semi-supervised learning)
� M = Σ−1

[Javanmard, Montanari 2012]
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θ̂
d ≡ θ̂ +

1
n

MXT(y−Xθ̂)

Gaussian design (xi ∼ N(0,Σ))
� Assume known Σ (relevant in semi-supervised learning)
� M = Σ−1

[Javanmard, Montanari 2012]

Does this remind you anything?

θ̂
d ≡ θ̂ +Σ

−1 1
n

XT(y−Xθ̂)

(pseudo-) Newton method
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Debiased estimator: Choosing M?

θ̂
d ≡ θ̂ +

1
n

MXT(y−Xθ̂)

Gaussian design (xi ∼ N(0,Σ))
� Assume known Σ (relevant in semi-supervised learning)
� M = Σ−1

[Javanmard, Montanari 2012]

Approximate inverse of Σ̂: nodewise LASSO on X
(under row-sparsity assumption on Σ−1)

[S. van de Geer, P. Bühlmann, Y. Ritov, R. Dezeure 2014]
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Debiased estimator: Choosing M?

Our approach:

Optimizing two objectives (bias and variance of θ̂ d)
[A. Javanmard, A. Montanari 2014]

√
n(θ̂ d−θ0) =

√
n(MΣ̂− I)(θ0− θ̂)︸ ︷︷ ︸

bias↓

+Z

Z|X∼ N(0, σ
2MΣ̂MT︸ ︷︷ ︸
noise

covariance

y) , Σ̂ =
1
n

XXT

Our approach:

Find M by solving an optimization problem:
[A. Javanmard, A. Montanari]

minimize
M

max
1≤i≤p

(MΣ̂MT)i,i

subject to |MΣ̂− I|∞ ≤ ξ

Our approach:

Find M by solving an optimization problem:
[A. Javanmard, A. Montanari]

minimize
mi

mT
i Σ̂mi

subject to ‖Σ̂mi− ei‖∞ ≤ ξ

The optimization can be decoupled and solved in parallel.
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What does it look like?
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‘Ground truth’ from ntot = 10,000 records.
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Confidence intervals

Neglecting the bias (σ̂ estimator of σ )

θ̂
d
i ≈ N(θ0,i,∆

2
i ) , ∆

2
i ≡

σ̂2

n
(MΣ̂MT)ii

[θ i,θ i] = [θ̂ d
i − cα∆i, θ̂

d
i + cα∆i]
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What does it look like?
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UCI crime dataset
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n = 84, p = 102, ntot = 1994.

Adel Javanmard (USC ) Hypothesis Testing October 2015 22 / 39



A theorem

Theorem [Javanmard, Montanari 2013] (Deterministic designs)
Let X be any deterministic design that satisfies compatibility condition. Define
the coherence parameter

µ∗ ≡ min
M∈Rp×p

|MΣ̂− I|∞ .

Let s0 = |supp(θ0)|. Then

√
n(θ̂ d−θ0) = Z︸︷︷︸

Gaussian

+ ∆︸︷︷︸
Bias

‖∆‖∞ ≤ cµ∗σs0
√

logp , w.h.p.

Remark:

µ∗ ≤
1
n

max
i 6=j
|〈Xei,Xej〉| .
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A theorem

Theorem [Javanmard, Montanari 2013] (Random designs)
Consider population covariance Σ with bounded eigenvalues and assume
assume XΣ−1 has independent subgaussian rows. Then

√
n(θ̂ d−θ0) = Z︸︷︷︸

Gaussian

+ ∆︸︷︷︸
Bias

‖∆‖∞ ≤ cσ
s0 logp√

n
, w.h.p.

Remark on sample size:

If
n

(s0 logp)2 → ∞ then ‖∆‖∞ = op(1).
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Consequences

Confidence intervals for single parameters:

lim
n→∞

P
(

θ0,i ∈ [θ i,θ i]
)
≥ 1−α

|θ i−θ i| ≤ 2cα

√
σ2

n
(Σ−1)ii

(n<p)

|θ i−θ i| ≤ 2cα

√
σ2

n
(Σ̂−1)ii

Least square (n>p)
Remark:
No need for irrepresentability / θmin condition
(common assumptions for support recovery)
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Hypothesis testing (based on de-biased estimator)

Null/alternative hypothesis:

H0,i : θ0,i = 0 , HA,i : θ0,i 6= 0 .

Two-sided p-values:

Pi = 2
(

1−Φ(
|θ̂ d

i |
τ

)
)
.

with Φ(·) cdf of standard normal.

We provide precise characterization of type I and type II error.

Test (using de-biased estimator) has minimax optimal statistical power.
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Related work on bias-correction

Ridge projection and bias correction [P. Bühlmann]

� (Remaining) bias is not negligible.
� Conservative tests

Low dimensional projection estimator (LDPE) [C-H. Zhang, S. S. Zhang]

� Initial projection based on nodewise LASSO on X.
� Bias correction via LASSO.
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Further related work

Debiasing:
Group sparsity [R. Mitra & C.H.Zhang 2014]

Confidence interval for inverse covariance estimation
[J. Jankova, S.v.d. Geer 2015]

Genomics [Q.Zhao et. al. 2015, B. Rakitsch 2015]

Econometrics [A. Belloni & V. Chernozhukov 2014, D. Kozbur 2015]

Other methods for uncertainty assessment
Uncertainty quantification under group sparsity [Q.Zhou 2015]

Post double selection [Belloni et. al. 2014]
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Hypothesis testing under nearly optimal sample size
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Smaller sample size

Estimation, prediction: n & s0 logp.
[Candés, Tao 2007, Bickel et al. 2009]

Hypothesis testing, confidence intervals: n & (s0 logp)2.
[This talk]

� Bias corrected ridge regression [P. Bühlmann]
� LDPE [C-H. Zhang, S. S. Zhang]
� Desparsified LASSO [S. van de Geer et. al.]

Can we match the optimal sample size, n & s0 logp ?
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Where is the bottleneck?

The bias is given by

∆ =
√

n(ΩΣ̂− I)(θ0− θ̂
Lasso) .

Earlier work bound bias a simple `1− `∞ inequality:

‖∆‖∞ ≤
√

n|MΣ̂− I|∞‖θ ∗− θ̂
Lasso‖1

≤
√

n×C

√
logp

n
×Cs0σ

√
logp

n

≤ C2
σ

s0 logp√
n

.
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Plan for this part

Focus on Gaussian design: xi ∼ N(0,Σ)

Assume that Σ is known. (See paper for unknown covariance. )

We show that the required sample rate is indeed artifact of the argument!

De-biased estimator is asymptotically Gaussian under condition n & s0(logp)2.
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‘Leave-one-out’ technique

Fix coordinate i.

Define

θ̂
p ≡ argmin

θ

1
2n
‖y−Xθ‖2 +λ‖θ‖1

subject to θ̂
p
i = θ0,i

We then have

y−Xθ̂
p = w+���

���XXXXXXx̃i(θ0,i− θ̂
p
i )+X∼i(θ0,∼i− θ̂

p
∼i)

θ̂ p is the Lasso estimator when x̃i is left out!
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‘Leave-one-out’ technique

Let v be the ith column of XΣ−1.
The bias is given by

∆i = R1 +R2 +R3
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Summary

Combining the bounds on R1,R2,R3, we obtain

‖∆‖∞ ≤ C
√

s0

n
logp , w.h.p

Therefore,
‖∆‖∞→ 0 provided that n≥ s0(logp)2 .
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Numerical illustration
Fix p = 3000
Design matrix X with rows i.i.d. from N(0,Σ)
Σij = 0.8|i−j|

Define δ = n/p (undersampling rate) and ε = s0/p (sparsity proportion)
δc: Critical value above which the de-biased estimator is Gaussian.
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How to define δc?

• Fix ε and change δ = n/p.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8−1
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8
m(γδ)± SE(γδ)
m(γδ)

δ = n/p

(ε = 0.2)

δc = 0.57

Empirical kurtosis
(100 realizations)
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Conclusion

De-biasing regularized estimators

Compute confidence intervals/p-values for high dimensional models

Optimal sample size for Gaussian designs
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Thanks!
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