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Motivation: function estimation
Consider a continuous function f : [0; 1]! R.
We have measurements

yi = f (ti ) + wi ; for 1 � i � n :

Estimate ff (ti )gni=1 under linear inequality constraints:

x = (f (t1); � � � ; f (tn))

Ax � b

I Lipschitz constraint:

jxi+1 � xi j � Ljti+1 � ti j for 1 � i � n � 1:

I General convex constraints

What is a good estimator?
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General problem

y = x + w ;

x 2 X � Rn ; w � N(0; �2 In�n):

For any estimator M : Rn ! Rn , define

R(M ;X ; �) = max
x2X

Ey�x+w kx �M (y)k2:

Minimax risk of a set
R(X ; �) = minM R(M ;X ; �).
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Classes of estimators

I Nonlinear estimators:
The estimator M can be generally nonlinear. R(X ; �)
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When M is linear, we denote the minimax risk by RL(X ; �)

I Truncated series estimators:
Especial class of linear estimators given by orthogonal projections

M (y) = Py :

The minimax risk is denoted by RT (X ; �).

R(X ; �) � RL(X ; �) � RT (X ; �).

X � Y ) R(X ; �) � R(Y ; �).
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Challenges

I How to compute the minimax risk for arbitrary convex bodies?
I How to design the minimax optimal estimator?
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Related work

I Minimax bounds have been developed for various families:
� Orthosymmetric and quadratically convex objects:
Hypercubes, ellipsoids, `p balls for p � 2.

[Donoho, Liu, MacGibbon’90]

� Class of Hölder balls, Sobolev balls, and Besov balls
(continuity and energy conditions)

[Tsybakov’09]

I Techniques for bounding the minimax risk
[Donoho’90, Nemirovski’99, Yang, Barron’99]
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Our main contributions

I A lower bound for minimax risk
� based on a geometric quantity of the set
(approximation radius)
� depends on the volume of the set
(intuitive and strong bounds)

I Optimality of truncated estimators over symmetric polytopes

information theory tools ! geometrical understanding of minimax risks
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Main result
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Notation

For p > 0 and m ;n � 1, let

Fm ;n
p = fX : X = fx : kAxkp � 1g; for A 2 Rm�ng

F
m ;n
1 : Family of symmetric polytopes defined by m hyperplanes

Definition

�(X ) = max
�>0

RT (X ; �)

R(X ; �)
; �m ;n

p = max
X2Fm;n

p

�(X ):
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Optimality of truncated estimators

Theorem (Javanmard, Zhang ’11)
If n = 
(logm), for some universal constant C we have

�m ;n
1 � C logm :

Furthermore, �m ;n
1 = 
(

p
logm= log logm).

[Recall:
a = 
(b) if a is bounded below by b (up to a constant factor) asymptotically]
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An application
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Function estimation
Consider a univariate Lipschitz function f : [0; 1]! R.
We have measurements

yi = f (ti ) + wi ; for 1 � i � n :

Goal: estimate ff (ti )gni=1 from measurements fyig
n
i=1.

Lipschitz condition (with constant L):

jf (ti+1)� f (ti )j � Ljti+1 � ti j; for 1 � i � n � 1:

Previous work shows near-optimality of truncated estimators for
uniform sampling.

[Nemirovski, Tsybakov’09]
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Function estimation
Consider a univariate Lipschitz function f : [0; 1]! R.
We have measurements

yi = f (ti ) + wi ; for 1 � i � n :

Goal: estimate ff (ti )gni=1 from measurements fyig
n
i=1.

Lipschitz condition (with constant L):

jf (ti+1)� f (ti )j � Ljti+1 � ti j; for 1 � i � n � 1:

Corollary of our theorem
The truncated series estimator is nearly optimal (within O(logn)) for
estimating Lipschitz function at arbitrary sample set.
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Proof techniques
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high-level idea

I We choose a family of obstruction objects for which we know tight
lower bound of minimax risk.

I For X 2 F
m ;n
1 ,we show that if X does not have a good truncated

estimator, then it will have a “large” obstruction. Hence, no
estimator can do well on X .

The difficulty is in choosing the right obstruction for the desired result.
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Natural obstructions

Euclidean balls Hyper-rectangles
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Natural obstructions

Euclidean balls Hyper-rectangles

Not suitable for skewed polytopes!
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A remedy : notion of approximation radius

Obstructions: Family of objects which contain a “non-negligible”
fraction of a “large” ball.

What does it mean formally?

For any r > 0, the volume ratio vr(X ; r) is defined as

vr(X ; r) =
�
vol(X \Bn

2 (r))
vol(Bn

2 (r))

�1=n

:

k -volume ratio vrk (X ; r):

vrk (X ; r) = max
H2Hk

n

vr(X \H ; r):
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Approximation radius and a lower bound

Definition (Approximation radius)
For 0 � c � 1, and integer 1 � k � n , the (c; k)-approximation radius
of X , denoted by zc;k (X ) is defined as

zc;k = supfr : vrk (X ; r) � cg:

Theorem (Javanmard, Zhang ’11)
For any convex set X , and any 0 < c� � 1,

R(X ; �) � Cc2
� max

0�k�n
minfzc�;k (X )2; k�2g:

Here, C is a universal constant.

Proof:
Fano’s inequality and a lower bound established by Yang, Barron ’99.
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Kolmogorov widths and truncated estimators

y = x + w ; M (y) = Py :

Let P 2 Pk (the set of k -dimensional projections), then

E kx �M (y)k2 = E(kx � P(x )k2 + kP(w)k2)

= kx � P(x )k2 + k�2:

k� Kolmogorov width:

dk (X ) = min
P2Pk

max
x2X

kx � Pxk = min
P2Pk

max
x2X

kP?xk:

k� Kolmogorov widths characterize the risk!

RT (X ; �) = min
k

(dk (X )2 + k�2):
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Schematic

Minimax	  risk	  of	  	  	  
general	  es0mators	  

zc,k (X)

	  	  	  	  	  	  Minimax	  risk	  of	  
truncated	  es0mators	  

dk (X)
?	  
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Schematic

	  	  	  	  	  	  Minimax	  risk	  of	  
truncated	  es2mators	  

dk (X)

Minimax	  risk	  of	  	  	  
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A duality relationship

Lemma (Javanmard, Zhang ’11)
For any convex symmetric X � Rn and any 0 � k � n and 0 < � < 1,

dk (X )dn�(1��)k (X �) � c1

s
k
�
;

where c1 > 0 is a universal constant.

X contains a k -dimensional ball with radius 1=dn�k (X �).

dk (X ) � c1

s
k
�

1
dn�(1��)k (X �)

=) gives a fairly weak bound on RT (X ; �) :(
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... and relation to the approximation radius
Suppose X 2 F

m ;n
1 .

Bk (1 / dn−k (X
))
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... and relation to the approximation radius

Bk (1 / dn−k (X
))

Bk ( k / logm ⋅1/ dn−k (X
))

Larger ball still has non-negligible fraction of its volume inside X .
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Final step

Lemma (Javanmard, Zhang ’11)

For any X 2 F
m ;n
1 , 0 < c� � 0:2, and 0 < k � n ,

zc�;k (X ) � c2

s
k

logm
�

1
dn�k (X �)

;

where c2 is a universal constant.

Combining the lemmas,

dk (X ) � c1

s
k
�
�

1
dn�(1��)k (X �)

� c1c2

s
logm
�

zc�;k (X ):

Skinny objects always have a small shadow!
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Further comments
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What about �m ;n
p ?

[Recall:

�m ;n
p = max

X2Fm;n
p

max
�>0

RT (X ; �)

R(X ; �)
;

Fm ;n
p = fX : X = fx : kAxkp � 1g; for A 2 Rm�ng: ]

Corollary

For p � 2, �m ;n
p = O(min(n1�2=p ;m2=p logm)).

Conjecture: For any p � 2, there exists a constant C = C (p), such
that �m ;n

p � C logm .
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Design problem

How to design optimal truncated series estimators for symmetric
polytopes?

I NP-hard in general ! SDP formulations to solve a relaxation

Thanks!
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