Minimax risk of truncated series estimators over symmetric convex polytopes

> Adel Javanmard (Stanford University) with Li Zhang (Microsoft Research)

> > July 4, 2012

Consider a continuous function $f:[0,1] \rightarrow \mathbb{R}$. We have measurements

$$y_i=f(t_i)+w_i, \quad ext{ for } 1\leq i\leq n.$$

Estimate ${f(t_i)}_{i=1}^n$ under linear inequality constraints:

$$x=(f(t_1),\cdots,f(t_n))$$

 $Ax \leq b$

Lipschitz constraint:

$$|x_{i+1}-x_i|\leq L|t_{i+1}-t_i| ext{ for }1\leq i\leq n-1.$$

General convex constraints

Consider a continuous function $f : [0, 1] \rightarrow \mathbb{R}$. We have measurements

$$y_i=f(t_i)+w_i, \quad ext{ for } 1\leq i\leq n.$$

Estimate ${f(t_i)}_{i=1}^n$ under linear inequality constraints:

$$x=(f(t_1),\cdots,f(t_n))$$

 $Ax \leq b$

Lipschitz constraint:

$$|x_{i+1}-x_i|\leq L|t_{i+1}-t_i| ext{ for }1\leq i\leq n-1.$$

General convex constraints

Consider a continuous function $f : [0, 1] \rightarrow \mathbb{R}$. We have measurements

$$y_i=f(t_i)+w_i, \quad ext{ for } 1\leq i\leq n.$$

Estimate ${f(t_i)}_{i=1}^n$ under linear inequality constraints:

$$x=(f(t_1),\cdots,f(t_n))$$

 $Ax \leq b$

▶ Lipschitz constraint:

$$|x_{i+1} - x_i| \le L |t_{i+1} - t_i| ext{ for } 1 \le i \le n-1.$$

General convex constraints

Consider a continuous function $f : [0, 1] \rightarrow \mathbb{R}$. We have measurements

$$y_i=f(t_i)+w_i, \quad ext{ for } 1\leq i\leq n.$$

Estimate ${f(t_i)}_{i=1}^n$ under linear inequality constraints:

$$x=(f(t_1),\cdots,f(t_n))$$

 $Ax \leq b$

▶ Lipschitz constraint:

$$|x_{i+1} - x_i| \le L |t_{i+1} - t_i| ext{ for } 1 \le i \le n-1.$$

General convex constraints

General problem

$$y = x + w$$
,

$$x \in X \subseteq \mathbb{R}^n, \qquad w \sim \mathsf{N}(0, \sigma^2 I_{n imes n}).$$

For any estimator $M : \mathbb{R}^n \to \mathbb{R}^n$, define

$$R(M,X,\sigma) = \max_{x\in X} \mathbb{E}_{y\sim x+w} \, \|x-M(y)\|^2.$$

Minimax risk of a set

 $R(X,\sigma) = \min_M R(M,X,\sigma).$

Javanmard, Zhang

General problem

$$y = x + w$$
,

$$x \in X \subseteq \mathbb{R}^n, \qquad w \sim \mathsf{N}(0, \sigma^2 I_{n imes n}).$$

For any estimator $M : \mathbb{R}^n \to \mathbb{R}^n$, define

$$R(M,X,\sigma) = \max_{x\in X} \mathbb{E}_{y\sim x+w} \, \|x-M(y)\|^2.$$

Minimax risk of a set

$$R(X,\sigma) = \min_M R(M,X,\sigma).$$

▶ Nonlinear estimators:

The estimator M can be generally nonlinear. $R(X, \sigma)$

▶ Nonlinear estimators:

The estimator M can be generally nonlinear. $R(X, \sigma)$

Linear estimators:

When M is linear, we denote the minimax risk by $R_L(X, \sigma)$

- ► Nonlinear estimators: The estimator M can be generally nonlinear. $R(X, \sigma)$
- Linear estimators: When M is linear, we denote the minimax risk by $R_L(X, \sigma)$
- ▶ Truncated series estimators:

Especial class of linear estimators given by orthogonal projections

$$M(y)=Py.$$

The minimax risk is denoted by $R_T(X, \sigma)$.

▶ Nonlinear estimators:

The estimator M can be generally nonlinear. $R(X, \sigma)$

▶ Linear estimators:

When M is linear, we denote the minimax risk by $R_L(X, \sigma)$

▶ Truncated series estimators:

Especial class of linear estimators given by orthogonal projections

$$M(y) = Py.$$

The minimax risk is denoted by $R_T(X, \sigma)$.

$$egin{aligned} R(X,\sigma) &\leq R_L(X,\sigma) \leq R_T(X,\sigma). \ X &\subseteq Y \Rightarrow R(X,\sigma) \leq R(Y,\sigma). \end{aligned}$$

Challenges

How to compute the minimax risk for arbitrary convex bodies?How to design the minimax optimal estimator?

Related work

- Minimax bounds have been developed for various families:
 - Orthosymmetric and quadratically convex objects: Hypercubes, ellipsoids, ℓ_p balls for p ≥ 2. [Donoho, Liu, MacGibbon'90]
 - Class of Hölder balls, Sobolev balls, and Besov balls (continuity and energy conditions)

[Tsybakov'09]

Techniques for bounding the minimax risk
 [Donoho'90, Nemirovski'99, Yang, Barron'99]

Our main contributions

▶ A lower bound for minimax risk

- based on a geometric quantity of the set (approximation radius)
- depends on the volume of the set (intuitive and strong bounds)

Optimality of truncated estimators over symmetric polytopes

information theory tools \rightarrow geometrical understanding of minimax risks

Our main contributions

▶ A lower bound for minimax risk

- based on a geometric quantity of the set (approximation radius)
- depends on the volume of the set (intuitive and strong bounds)

Optimality of truncated estimators over symmetric polytopes

information theory tools \rightarrow geometrical understanding of minimax risks

Our main contributions

▶ A lower bound for minimax risk

- based on a geometric quantity of the set (approximation radius)
- depends on the volume of the set (intuitive and strong bounds)

Optimality of truncated estimators over symmetric polytopes

information theory tools \rightarrow geometrical understanding of minimax risks

- 3 Proof techniques
- 4 Further comments

Main result

Notation

For p > 0 and $m, n \ge 1$, let

$${\mathcal F}_p^{m,n}=\{X:X=\{x:\|Ax\|_p\leq 1\},\,\, ext{for}\,\,A\in \mathbb{R}^{m imes n}\}$$

$\mathcal{F}^{m,n}_\infty$: Family of symmetric polytopes defined by m hyperplanes

Definition

$$\beta(X) = \max_{\sigma>0} \frac{R_T(X,\sigma)}{R(X,\sigma)}, \quad \beta_p^{m,n} = \max_{X \in \mathcal{F}_p^{m,n}} \beta(X).$$

Notation

For p > 0 and $m, n \ge 1$, let

$${\mathcal F}_p^{m,n}=\{X:X=\{x:\|Ax\|_p\leq 1\},\,\, ext{for}\,\,A\in \mathbb{R}^{m imes n}\}$$

$\mathcal{F}^{m,n}_{\infty}$: Family of symmetric polytopes defined by m hyperplanes

Definition

$$\beta(X) = \max_{\sigma>0} \frac{R_T(X,\sigma)}{R(X,\sigma)}, \quad \beta_p^{m,n} = \max_{X \in \mathcal{F}_p^{m,n}} \beta(X).$$

Notation

For p > 0 and $m, n \ge 1$, let

$${\mathcal F}_p^{m,n}=\{X:X=\{x:\|Ax\|_p\leq 1\}, ext{ for } A\in \mathbb{R}^{m imes n}\}$$

$\mathcal{F}^{m,n}_{\infty}$: Family of symmetric polytopes defined by m hyperplanes

Definition

$$eta(X) = \max_{\sigma>0} rac{R_T(X,\sigma)}{R(X,\sigma)}, \quad eta_p^{m,n} = \max_{X\in \mathcal{F}_p^{m,n}}eta(X).$$

Optimality of truncated estimators

Theorem (Javanmard, Zhang '11)

If $n = \Omega(\log m)$, for some universal constant C we have

 $eta_{\infty}^{m,n} \leq C \log m.$

Furthermore, $\beta_{\infty}^{m,n} = \Omega(\sqrt{\log m / \log \log m}).$

[Recall:

 $a = \Omega(b)$ if a is bounded below by b (up to a constant factor) asymptotically]

An application

Function estimation

Consider a univariate Lipschitz function $f : [0, 1] \rightarrow \mathbb{R}$. We have measurements

$$y_i=f(t_i)+w_i, \quad ext{ for } 1\leq i\leq n.$$

Goal: estimate $\{f(t_i)\}_{i=1}^n$ from measurements $\{y_i\}_{i=1}^n$.

Lipschitz condition (with constant L):

$$|f(t_{i+1})-f(t_i)| \leq L|t_{i+1}-t_i|, ext{ for } 1\leq i\leq n-1.$$

Previous work shows near-optimality of truncated estimators for uniform sampling.

[Nemirovski, Tsybakov'09]

Function estimation

Consider a univariate Lipschitz function $f : [0, 1] \rightarrow \mathbb{R}$. We have measurements

$$y_i=f(t_i)+w_i, \quad ext{ for } 1\leq i\leq n.$$

Goal: estimate $\{f(t_i)\}_{i=1}^n$ from measurements $\{y_i\}_{i=1}^n$.

Lipschitz condition (with constant L):

$$|f(t_{i+1}) - f(t_i)| \leq L |t_{i+1} - t_i|, ext{ for } 1 \leq i \leq n-1.$$

Corollary of our theorem

The truncated series estimator is nearly optimal (within $O(\log n)$) for estimating Lipschitz function at arbitrary sample set.

Javanmard, Zhang

Minimax risk of truncated estimators

Proof techniques

high-level idea

We choose a family of obstruction objects for which we know tight lower bound of minimax risk.

▶ For $X \in \mathcal{F}_{\infty}^{m,n}$, we show that if X does not have a good truncated estimator, then it will have a "large" obstruction. Hence, no estimator can do well on X.

The difficulty is in choosing the right obstruction for the desired result.

high-level idea

We choose a family of obstruction objects for which we know tight lower bound of minimax risk.

▶ For $X \in \mathcal{F}_{\infty}^{m,n}$, we show that if X does not have a good truncated estimator, then it will have a "large" obstruction. Hence, no estimator can do well on X.

The difficulty is in choosing the right obstruction for the desired result.

Natural obstructions

Euclidean balls

Hyper-rectangles

Natural obstructions

Euclidean balls

Hyper-rectangles

Not suitable for skewed polytopes!

Javanmard, Zhang

Minimax risk of truncated estimators

A remedy : notion of approximation radius

Obstructions: Family of objects which contain a "non-negligible" fraction of a "large" ball.

What does it mean formally?

For any r > 0, the volume ratio vr(X, r) is defined as

$$\operatorname{vr}(X,r) = \left(rac{\operatorname{vol}(X\cap B_2^n(r))}{\operatorname{vol}(B_2^n(r))}
ight)^{1/n}$$

k-volume ratio $vr_k(X, r)$:

$$\mathrm{vr}_k(X,r) = \max_{H\in\mathcal{H}_n^k}\mathrm{vr}(X\cap H,r).$$

A remedy : notion of approximation radius

Obstructions: Family of objects which contain a "non-negligible" fraction of a "large" ball.

What does it mean formally?

For any r > 0, the volume ratio vr(X, r) is defined as

$$\operatorname{vr}(X,r) = \left(rac{\operatorname{vol}(X\cap B_2^n(r))}{\operatorname{vol}(B_2^n(r))}
ight)^{1/n}$$

k-volume ratio $vr_k(X, r)$:

$$\mathrm{vr}_k(X,r) = \max_{H\in\mathcal{H}_n^k}\mathrm{vr}(X\cap H,r).$$

A remedy : notion of approximation radius

Obstructions: Family of objects which contain a "non-negligible" fraction of a "large" ball.

What does it mean formally?

For any r > 0, the volume ratio vr(X, r) is defined as

$$\operatorname{vr}(X,r) = \left(rac{\operatorname{vol}(X\cap B_2^n(r))}{\operatorname{vol}(B_2^n(r))}
ight)^{1/n}$$

k-volume ratio $vr_k(X, r)$:

$$\mathrm{vr}_k(X,r) = \max_{H\in\mathcal{H}_n^k} \mathrm{vr}(X\cap H,r).$$

Approximation radius and a lower bound

Definition (Approximation radius)

For $0 \le c \le 1$, and integer $1 \le k \le n$, the (c, k)-approximation radius of X, denoted by $z_{c,k}(X)$ is defined as

 $z_{c,k} = \sup\{r: \mathrm{vr}_k(X,r) \geq c\}.$

Theorem (Javanmard, Zhang '11)

For any convex set X, and any $0 < c_* \leq 1$,

$$R(X,\sigma)\geq Cc^2_*\max_{0\leq k\leq n}\min\{z_{c_*,k}(X)^2,k\sigma^2\}.$$

Here, C is a universal constant.

Proof:

Fano's inequality and a lower bound established by Yang, Barron '99.

Approximation radius and a lower bound

Definition (Approximation radius)

For $0 \le c \le 1$, and integer $1 \le k \le n$, the (c, k)-approximation radius of X, denoted by $z_{c,k}(X)$ is defined as

 $z_{c,k} = \sup\{r: \mathrm{vr}_k(X,r) \geq c\}.$

Theorem (Javanmard, Zhang '11)

For any convex set X, and any 0 < $c_{*} \leq 1$,

$$R(X,\sigma)\geq Cc_*^2\max_{0\leq k\leq n}\min\{z_{c_*,k}(X)^2,k\sigma^2\}.$$

Here, C is a universal constant.

Proof:

Fano's inequality and a lower bound established by Yang, Barron '99.

Javanmard, Zhang

Kolmogorov widths and truncated estimators

$$y = x + w,$$
 $M(y) = Py.$

Let $P \in \mathcal{P}_k$ (the set of k-dimensional projections), then

$$egin{aligned} \mathbb{E}\,\|x-M(y)\|^2 &= \mathbb{E}(\|x-P(x)\|^2+\|P(w)\|^2) \ &= \|x-P(x)\|^2+k\sigma^2. \end{aligned}$$

k- Kolmogorov width:

$$d_k(X) = \min_{P \in \mathcal{P}_k} \max_{x \in X} \|x - Px\| = \min_{P \in \mathcal{P}_k} \max_{x \in X} \|P^\perp x\|.$$

k- Kolmogorov widths characterize the risk!

$$R_T(X,\sigma) = \min_k (d_k(X)^2 + k\sigma^2).$$

Kolmogorov widths and truncated estimators

$$y = x + w,$$
 $M(y) = Py.$

Let $P \in \mathcal{P}_k$ (the set of k-dimensional projections), then

$$egin{aligned} \mathbb{E}\,\|x-M(y)\|^2 &= \mathbb{E}(\|x-P(x)\|^2+\|P(w)\|^2)\ &= \|x-P(x)\|^2+k\sigma^2. \end{aligned}$$

k- Kolmogorov width:

$$d_k(X) = \min_{P \in \mathcal{P}_k} \max_{x \in X} \|x - Px\| = \min_{P \in \mathcal{P}_k} \max_{x \in X} \|P^\perp x\|.$$

k- Kolmogorov widths characterize the risk!

$$R_T(X,\sigma) = \min_k (d_k(X)^2 + k\sigma^2).$$

Kolmogorov widths and truncated estimators

$$y = x + w,$$
 $M(y) = Py.$

Let $P \in \mathcal{P}_k$ (the set of k-dimensional projections), then

$$egin{aligned} \mathbb{E}\,\|x-M(y)\|^2 &= \mathbb{E}(\|x-P(x)\|^2+\|P(w)\|^2)\ &= \|x-P(x)\|^2+k\sigma^2. \end{aligned}$$

k- Kolmogorov width:

$$d_k(X) = \min_{P \in \mathcal{P}_k} \max_{x \in X} \|x - Px\| = \min_{P \in \mathcal{P}_k} \max_{x \in X} \|P^\perp x\|.$$

k- Kolmogorov widths characterize the risk!

$$R_T(X,\sigma) = \min_k (d_k(X)^2 + k\sigma^2).$$

Schematic

Schematic

A duality relationship

Lemma (Javanmard, Zhang '11)

For any convex symmetric $X \subset \mathbb{R}^n$ and any $0 \leq k \leq n$ and $0 < \epsilon < 1$,

$$d_k(X)d_{n-(1-\epsilon)k}(X^\circ) \leq c_1\sqrt{rac{k}{\epsilon}},$$

where $c_1 > 0$ is a universal constant.

X contains a k-dimensional ball with radius $1/d_{n-k}(X^\circ).$

$$d_k(X) \leq c_1 \sqrt{rac{k}{\epsilon}} rac{1}{d_{n-(1-\epsilon)k}(X^\circ)}$$

 \Longrightarrow gives a fairly weak bound on $R_T(X,\sigma)$:(

A duality relationship

Lemma (Javanmard, Zhang '11)

For any convex symmetric $X \subset \mathbb{R}^n$ and any $0 \leq k \leq n$ and $0 < \epsilon < 1$,

$$d_k(X)d_{n-(1-\epsilon)k}(X^\circ)\leq c_1\sqrt{rac{k}{\epsilon}},$$

where $c_1 > 0$ is a universal constant.

X contains a k-dimensional ball with radius $1/d_{n-k}(X^{\circ})$.

$$d_k(X) \leq c_1 \sqrt{rac{k}{\epsilon}} rac{1}{d_{n-(1-\epsilon)k}(X^\circ)}$$

 \Longrightarrow gives a fairly weak bound on $R_T(X,\sigma)$:(

A duality relationship

Lemma (Javanmard, Zhang '11)

For any convex symmetric $X \subset \mathbb{R}^n$ and any $0 \leq k \leq n$ and $0 < \epsilon < 1$,

$$d_k(X)d_{n-(1-\epsilon)k}(X^\circ)\leq c_1\sqrt{rac{k}{\epsilon}},$$

where $c_1 > 0$ is a universal constant.

X contains a k-dimensional ball with radius $1/d_{n-k}(X^{\circ})$.

$$d_k(X) \leq c_1 \sqrt{rac{k}{\epsilon}} rac{1}{d_{n-(1-\epsilon)k}(X^\circ)}$$

 \implies gives a fairly weak bound on $R_T(X, \sigma)$:(

... and relation to the approximation radius

Suppose $X \in \mathcal{F}_{\infty}^{m,n}$.

... and relation to the approximation radius

Larger ball still has non-negligible fraction of its volume inside X.

Final step

Lemma (Javanmard, Zhang '11)

For any $X \in \mathcal{F}^{m,n}_{\infty}$, $0 < c_* \leq 0.2$, and $0 < k \leq n$,

$$z_{c_*,k}(X) \geq c_2 \sqrt{rac{k}{\log m}} \cdot rac{1}{d_{n-k}(X^\circ)},$$

where c_2 is a universal constant.

Combining the lemmas,

$$d_k(X) \leq c_1 \sqrt{rac{k}{\epsilon}} \cdot rac{1}{d_{n-(1-\epsilon)k}(X^\circ)} \leq c_1 c_2 \sqrt{rac{\log m}{\epsilon}} z_{c_*,k}(X).$$

Skinny objects always have a small shadow!

Javanmard, Zhang

Final step

Lemma (Javanmard, Zhang '11)

For any $X \in \mathcal{F}^{m,n}_{\infty}$, $0 < c_* \leq 0.2$, and $0 < k \leq n$,

$$z_{c_*,k}(X) \geq c_2 \sqrt{rac{k}{\log m}} \cdot rac{1}{d_{n-k}(X^\circ)},$$

where c_2 is a universal constant.

Combining the lemmas,

$$d_k(X) \leq c_1 \sqrt{rac{k}{\epsilon}} \cdot rac{1}{d_{n-(1-\epsilon)k}(X^\circ)} \leq c_1 c_2 \sqrt{rac{\log m}{\epsilon}} z_{c_*,k}(X).$$

Skinny objects always have a small shadow!

Javanmard, Zhang

Further comments

What about $\beta_p^{m,n}$?

[Recall:

$$egin{aligned} eta_p^{m,n} &= \max_{X\in\mathcal{F}_p^{m,n}} \max_{\sigma>0} rac{R_T(X,\sigma)}{R(X,\sigma)}, \ \mathcal{F}_p^{m,n} &= \{X: X = \{x: \|Ax\|_p \leq 1\}, ext{ for } A\in\mathbb{R}^{m imes n}\}. \end{aligned}$$

Corollary

 $\text{For } p \geq 2, \, \beta_p^{m,n} = O(\min(n^{1-2/p},m^{2/p}\log m)).$

Conjecture: For any $p \ge 2$, there exists a constant C = C(p), such that $\beta_p^{m,n} \le C \log m$.

What about $\beta_p^{m,n}$?

[Recall:

$$egin{aligned} eta_p^{m,n} &= \max_{X\in\mathcal{F}_p^{m,n}} \max_{\sigma>0} rac{R_T(X,\sigma)}{R(X,\sigma)}, \ \mathcal{F}_p^{m,n} &= \{X: X = \{x: \|Ax\|_p \leq 1\}, ext{ for } A\in\mathbb{R}^{m imes n}\}. \end{aligned}$$

Corollary

$$\text{For } p \geq 2, \, \beta_p^{m,n} = O(\min(n^{1-2/p},m^{2/p}\log m)).$$

Conjecture: For any $p \ge 2$, there exists a constant C = C(p), such that $\beta_p^{m,n} \le C \log m$.

What about $\beta_p^{m,n}$?

[Recall:

$$egin{aligned} eta_p^{m,n} &= \max_{X\in\mathcal{F}_p^{m,n}} \max_{\sigma>0} rac{R_T(X,\sigma)}{R(X,\sigma)},\ \mathcal{F}_p^{m,n} &= \{X:X=\{x:\|Ax\|_p\leq 1\}, ext{ for } A\in\mathbb{R}^{m imes n}\}. \end{aligned}$$

Corollary

$$\text{For } p \geq 2, \, \beta_p^{m,n} = O(\min(n^{1-2/p},m^{2/p}\log m)).$$

Conjecture: For any $p \ge 2$, there exists a constant C = C(p), such that $\beta_p^{m,n} \le C \log m$.

Design problem

How to design optimal truncated series estimators for symmetric polytopes?

 \blacktriangleright NP-hard in general \rightarrow SDP formulations to solve a relaxation

Thanks!

Design problem

How to design optimal truncated series estimators for symmetric polytopes?

 \blacktriangleright NP-hard in general \rightarrow SDP formulations to solve a relaxation

Thanks!