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Motivation: function estimation
Consider a continuous function f : [0; 1]! R.
We have measurements

yi = f (ti ) + wi ; for 1 � i � n :

Estimate ff (ti )gni=1 under linear inequality constraints:

x = (f (t1); � � � ; f (tn))

Ax � b

I Lipschitz constraint:

jxi+1 � xi j � Ljti+1 � ti j for 1 � i � n � 1:

I General convex constraints

What is a good estimator?
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General problem

y = x + w ;

x 2 X � Rn ; w � N(0; �2 In�n):

For any estimator M : Rn ! Rn , define

R(M ;X ; �) = max
x2X

Ey�x+w kx �M (y)k2:

Minimax risk of a set
R(X ; �) = minM R(M ;X ; �).
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Classes of estimators

I Nonlinear estimators:
The estimator M can be generally nonlinear. R(X ; �)
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When M is linear, we denote the minimax risk by RL(X ; �)

I Truncated series estimators:
Especial class of linear estimators given by orthogonal projections

M (y) = Py :

The minimax risk is denoted by RT (X ; �).

R(X ; �) � RL(X ; �) � RT (X ; �).

X � Y ) R(X ; �) � R(Y ; �).
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Challenges

I How to compute the minimax risk for arbitrary convex bodies?
I How to design the minimax optimal estimator?
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Related work

I Minimax bounds have been developed for various families:
� Orthosymmetric and quadratically convex objects:
Hypercubes, ellipsoids, `p balls for p � 2.

[Donoho, Liu, MacGibbon’90]

� Class of Hölder balls, Sobolev balls, and Besov balls
(continuity and energy conditions)

[Tsybakov’09]

I Techniques for bounding the minimax risk
[Donoho’90, Nemirovski’99, Yang, Barron’99]
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Our main contributions

I A lower bound for minimax risk
� based on a geometric quantity of the set
(approximation radius)
� depends on the volume of the set
(intuitive and strong bounds)

I Optimality of truncated estimators over symmetric polytopes

information theory tools ! geometrical understanding of minimax risks
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Main result
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Notation

For p > 0 and m ;n � 1, let

Fm ;n
p = fX : X = fx : kAxkp � 1g; for A 2 Rm�ng

F
m ;n
1 : Family of symmetric polytopes defined by m hyperplanes

Definition

�(X ) = max
�>0

RT (X ; �)

R(X ; �)
; �m ;n

p = max
X2Fm;n

p

�(X ):
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Optimality of truncated estimators

Theorem (Javanmard, Zhang ’11)
If n = 
(logm), for some universal constant C we have

�m ;n
1 � C logm :

Furthermore, �m ;n
1 = 
(

p
logm= log logm).

[Recall:
a = 
(b) if a is bounded below by b (up to a constant factor) asymptotically]
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An application
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Function estimation
Consider a univariate Lipschitz function f : [0; 1]! R.
We have measurements

yi = f (ti ) + wi ; for 1 � i � n :

Goal: estimate ff (ti )gni=1 from measurements fyig
n
i=1.

Lipschitz condition (with constant L):

jf (ti+1)� f (ti )j � Ljti+1 � ti j; for 1 � i � n � 1:

Previous work shows near-optimality of truncated estimators for
uniform sampling.

[Nemirovski, Tsybakov’09]
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Function estimation
Consider a univariate Lipschitz function f : [0; 1]! R.
We have measurements

yi = f (ti ) + wi ; for 1 � i � n :

Goal: estimate ff (ti )gni=1 from measurements fyig
n
i=1.

Lipschitz condition (with constant L):

jf (ti+1)� f (ti )j � Ljti+1 � ti j; for 1 � i � n � 1:

Corollary of our theorem
The truncated series estimator is nearly optimal (within O(logn)) for
estimating Lipschitz function at arbitrary sample set.

Javanmard, Zhang Minimax risk of truncated estimators July 4, 2012 13 / 27



Proof techniques
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high-level idea

I We choose a family of obstruction objects for which we know tight
lower bound of minimax risk.

I For X 2 F
m ;n
1 ,we show that if X does not have a good truncated

estimator, then it will have a “large” obstruction. Hence, no
estimator can do well on X .

The difficulty is in choosing the right obstruction for the desired result.
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Natural obstructions

Euclidean balls Hyper-rectangles
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Natural obstructions

Euclidean balls Hyper-rectangles

Not suitable for skewed polytopes!
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A remedy : notion of approximation radius

Obstructions: Family of objects which contain a “non-negligible”
fraction of a “large” ball.

What does it mean formally?

For any r > 0, the volume ratio vr(X ; r) is defined as

vr(X ; r) =
�
vol(X \Bn

2 (r))
vol(Bn

2 (r))

�1=n

:

k -volume ratio vrk (X ; r):

vrk (X ; r) = max
H2Hk

n

vr(X \H ; r):
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Approximation radius and a lower bound

Definition (Approximation radius)
For 0 � c � 1, and integer 1 � k � n , the (c; k)-approximation radius
of X , denoted by zc;k (X ) is defined as

zc;k = supfr : vrk (X ; r) � cg:

Theorem (Javanmard, Zhang ’11)
For any convex set X , and any 0 < c� � 1,

R(X ; �) � Cc2
� max

0�k�n
minfzc�;k (X )2; k�2g:

Here, C is a universal constant.

Proof:
Fano’s inequality and a lower bound established by Yang, Barron ’99.
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Kolmogorov widths and truncated estimators

y = x + w ; M (y) = Py :

Let P 2 Pk (the set of k -dimensional projections), then

E kx �M (y)k2 = E(kx � P(x )k2 + kP(w)k2)

= kx � P(x )k2 + k�2:

k� Kolmogorov width:

dk (X ) = min
P2Pk

max
x2X

kx � Pxk = min
P2Pk

max
x2X

kP?xk:

k� Kolmogorov widths characterize the risk!

RT (X ; �) = min
k

(dk (X )2 + k�2):
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Schematic
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A duality relationship

Lemma (Javanmard, Zhang ’11)
For any convex symmetric X � Rn and any 0 � k � n and 0 < � < 1,

dk (X )dn�(1��)k (X �) � c1

s
k
�
;

where c1 > 0 is a universal constant.

X contains a k -dimensional ball with radius 1=dn�k (X �).

dk (X ) � c1

s
k
�

1
dn�(1��)k (X �)

=) gives a fairly weak bound on RT (X ; �) :(
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... and relation to the approximation radius
Suppose X 2 F

m ;n
1 .

Bk (1 / dn−k (X
))
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... and relation to the approximation radius

Bk (1 / dn−k (X
))

Bk ( k / logm ⋅1/ dn−k (X
))

Larger ball still has non-negligible fraction of its volume inside X .
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Final step

Lemma (Javanmard, Zhang ’11)

For any X 2 F
m ;n
1 , 0 < c� � 0:2, and 0 < k � n ,

zc�;k (X ) � c2

s
k

logm
�

1
dn�k (X �)

;

where c2 is a universal constant.

Combining the lemmas,

dk (X ) � c1

s
k
�
�

1
dn�(1��)k (X �)

� c1c2

s
logm
�

zc�;k (X ):

Skinny objects always have a small shadow!
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Further comments
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What about �m ;n
p ?

[Recall:

�m ;n
p = max

X2Fm;n
p

max
�>0

RT (X ; �)

R(X ; �)
;

Fm ;n
p = fX : X = fx : kAxkp � 1g; for A 2 Rm�ng: ]

Corollary

For p � 2, �m ;n
p = O(min(n1�2=p ;m2=p logm)).

Conjecture: For any p � 2, there exists a constant C = C (p), such
that �m ;n

p � C logm .
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Design problem

How to design optimal truncated series estimators for symmetric
polytopes?

I NP-hard in general ! SDP formulations to solve a relaxation

Thanks!

Javanmard, Zhang Minimax risk of truncated estimators July 4, 2012 27 / 27



Design problem

How to design optimal truncated series estimators for symmetric
polytopes?

I NP-hard in general ! SDP formulations to solve a relaxation

Thanks!

Javanmard, Zhang Minimax risk of truncated estimators July 4, 2012 27 / 27


	Main result
	An application
	Proof techniques
	Further comments

