Lecture 4: Optimization

- · Maximizing or Minimizing a Function of a Single Variable
- Maximizing or Minimizing a Function of Many Variables
- Constrained Optimization

Maximizing a function of a single variable

- Given a real valued function, y = f(x) we will be concerned with the existence of extreme values of the dependent variable y and the values of x which generate these extrema. (maxima or minima)
- The function f(x) is called the *objective* function and the independent variable x is called the *choice variable*

1

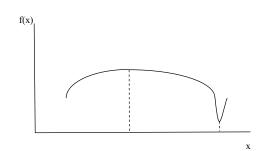
Max single variable

- The problem of finding the value or the set of values of the choice variable which yield extrema of the objective function is called optimization.
- In order to avoid boundary optima, we will assume that f : X → R, where X is an open interval of R. All of the optima characterized will be termed interior optima.

3

Definition of max or min

 Definition. f has a local maximum (minimum) at a point x', if for all x in an open interval (x' - μ, x' + μ), we have that f(x') > (<) f(x).



Key result

Proposition 1. Let f be twice differentiable. Let there exists an $x^o \in X$ such that f '(x^o) = 0.

- (i) If f "(x°) < 0, then f has a local maximum at x°.
 If, in addition, f " < 0 for all x or if f is strictly concave, then the local maximum is a unique global maximum.
- (ii) If f "(x°) > 0, then f has a local minimum at x°.
 If, in addition, f " > 0 for all x or if f is strictly convex, then the local minimum is a unique global minimum.

5

Terminology

- The zero derivative condition is called the *first order condition*
- The second derivative condition is called the second order condition.

Examples

#1 Let $f = ax - bx^2$, a, b > 0 and x > 0. Find a maximum.

Here, f = 0 implies x' = a/2b. Moreover, f' = -2b < 0, for all x. Thus, we have a global maximum.

#2 Let $f = x + x^{-1}$, where x > 0. Find a minimum.

Here, f' = 0 implies that $x^{-2} = 1$, so that x' = 1. In this case, $f'' = 2x^{-3} > 0$. Thus, we have a global minimum.

7

Maximizing or Minimizing a Function of Many Variables

- We consider a differentiable function of many variables y = f(x₁,...,x_n).
- This function has a local maximum (minimum) at a point x' = (x₁,...,x_n), if the values of the function are greater than (less than) image values of the function in a neighborhood of x'.
- The domain of f is thought of as a subset X of Rⁿ, where each point of X has a neighborhood of points surrounding it which belongs to X. (Interior optima)

8

Key Result

- Proposition 2. If a differentiable function f has a maximum or a minimum at $x^{\circ} \in X$, then $f_i(x^{\circ}) = 0$, for all i.
- This condition states that at a maximum or a minimum, all partial derivatives are zero. This depicts the top of a hill or a bottom of a valley.
- Operationally, the n partial derivative functions set equal to zero give us n equations in n unknowns to be solved for the extreme point x^o. These conditions are called the first order conditions (FOC).

9

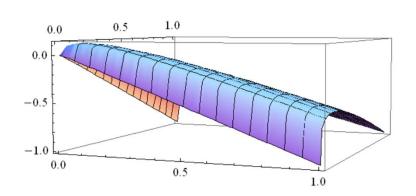
Example

Find the maximum of $(x_1x_2)^{1/4}$ - x_1 - x_2 . Computing, we have

 $.25(x_1)^{-.75}(x_2)^{.25} - 1 = 0$

 $.25(x_2)^{-.75}(x_1)^{.25} - 1 = 0$

These imply that $x_i = x$ and that $x_i = 1/16$. At optimum, we have that y = .125.



Illustration

11

Example

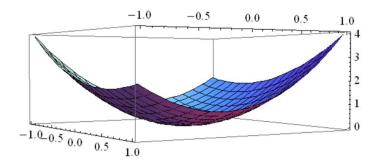
Find the minimum of $z = x^2 + xy + 2y^2$. The FOC are

 $2\mathbf{x} + \mathbf{y} = \mathbf{0},$

x + 4y = 0.

Solving for the critical values x = 0 and y = 0.

Illustration



13

Constrained Optimization

- One of the most common problems in economics involves maximizing or minimizing a function subject to a constraint.
- We are again interested in characterizing interior or non-boundary constrained optima.
- The cost minimization problem subject to an output constraint is an example (Lecture 2).
- The basic problem is to maximize (minimize) a function of at least two independent variables subject to a constraint. We write the objective function as $f(x_1,...,x_n)$ and the constraint as $g(x_1,...,x_n) = 0$.

Constrained Optimization

- The constraint set is written as C = { x | g(x₁,...,x_n) = 0}.
- · We write the problem as

 $\underset{\{x_{1},...,x_{n}\}}{\text{Max}} f(x_{1},...,x_{n}) \text{ subject to } g(x_{1},...,x_{n}) = 0.$

• For minimization, replace Max with Min.

15

Key Result

Proposition 3. Let f be a differentiable function whose n independent variables are restricted by the differentiable constraint g(x) = 0. Form the function $L(\lambda,x) \equiv f(x) + \lambda g(x)$, where λ is an undetermined multiplier. If x° is an interior maximizer or minimizer of f subject to g(x)= 0, then there is a λ° such that (1) $\partial L(\lambda^{\circ}, x^{\circ})/\partial x_{i} = 0$, for all i, and (2) $\partial L(\lambda^{\circ}, x^{\circ})/\partial \lambda = 0$.

Discussion

- L is the Lagrangian function and λ is the Lagrangian multiplier.
- Conditions (1) and (2) are again called the FOC. They constitute n + 1 equations in n + 1 unknowns.

17

Example

• Min $(p_1x_1 + p_2x_2)$ subject to $q^t = f(x_1, x_2)$. $\{x_1, x_2\}$

Forming the Lagrangian, we have L = (p₁x₁ + p₂x₂) + λ[q^t - f(x₁,x₂)].
FOC

(1) L_λ = q^t - f(x₁,x₂) = 0,
(2) L₁ = p₁ - λf₁ = 0,
(3) L₂ = p₂ - λf₂ = 0.

Example

- Condition (1) just says that the firm must obey its output constraint
- Conditions (2) (3) say that

$$\frac{p_1}{p_2} = \frac{f_1}{f_2}.$$

• That is, the MRS should equal the price ratio.

19

Numerical Example

- Let $f = x_1x_2$ and let $p_1 = 2$ and $p_2 = 2$. Solve the cost minimization problem with a target output of 16.
- The Lagrangian is
- $L = 2x_1 + 2x_2 + \lambda(16 x_1x_2).$
- FOC
- (1) $x_1 x_2 16 = 0$,
- (2) 2 $\lambda x_2 = 0$,
- (3) 2 $\lambda x_1 = 0$.

Numerical Example

 Clearly x_i = x, so that using (1), x² =16 and x_i = 4.

21