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ABSTRACT

Building on Duffie and Kan (1996), we propose a new representation of affine models
in which the state vector comprises infinitesimal maturity yields and their quadratic
covariations. Because these variables possess unambiguous economic interpretations,
they generate a representation that is globally identifiable. Further, this representa-
tion has more identifiable parameters than the “maximal” model of Dai and Singleton
(2000). We implement this new representation for select three-factor models and find
that model-independent estimates for the state vector can be estimated directly from
yield curve data, which present advantages for the estimation and interpretation of
multifactor models.

THE AFFINE CLASS OF TERM STRUCTURE MODELS as characterized by Duffie and Kan
(DK, 1996) owes much of its popularity to its analytic tractability.1 In particular,
the affine class possesses closed-form solutions for bond and bond option pricing
(Duffie, Pan, and Singleton (2000)), efficient approximation methods for swap-
tion pricing (Collin-Dufresne and Goldstein (2002b), Singleton and Umantsev
(2002)), and closed-form moment conditions for empirical analysis (Singleton
(2001), Pan (2002)). As such, it has generated much attention both theoretically
and empirically.2

Typically, affine term structure models are written in terms of a Markov
system of latent state variables X = {X1, . . . , Xn} that describe the entire state of
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1 The affine class essentially includes all multifactor extensions of the models of Vasicek (1977)
and Cox, Ingersoll, and Ross (1985).

2 See the recent survey by Dai and Singleton (2003) and the references therein.
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the term structure (see, for example, Piazzesi (2006) for a survey). One problem
with these latent factor models is that the parameter vector used to define the
dynamics of the state vector might not be identifiable even if a panel data
set of all possible fixed income securities, observed continuously, was available
to the researcher. Accordingly, much effort has gone into identifying the most
flexible model (i.e., the model with the greatest number of free parameters)
that is identifiable. To date, the literature offers two approaches to deal with
identification.

One approach, introduced by Dai and Singleton (DS (2000)), consists of per-
forming a set of “invariant transformations” that leave security prices un-
changed but that reduce the number of free parameters to a set that is identi-
fiable.3 Unfortunately, since these representations are expressed in terms of a
latent state vector, they possess the undesirable feature that neither the state
variables nor the model parameters have any particular economic meaning.
Hence, a rotation to a more meaningful state vector is eventually necessary in
order to interpret the results of the model (beyond just goodness-of-fit). More-
over, these representations suffer from the problem that latent state variables
often lead to models that are locally but not globally identifiable. That is, there
exist multiple combinations of state vectors and parameter vectors that are
observationally equivalent.4 This means that two researchers with the same
data could obtain different estimates for the state and parameter vectors even
though both had successfully maximized the same likelihood function.5 In addi-
tion, as DS point out,6 these representations provide only sufficient conditions
for identification. Thus, there may be more general models, not nested by their
representation, that are identifiable.

The second approach, introduced by DK, is to obtain an identifiable model by
rotating from a set of latent state variables to a set of observable zero coupon
yields (with distinct finite maturities). As we discuss below, while the use of
observable state variables circumvents all of the problems associated with la-
tent variables, this approach is often difficult to implement and therefore has
not been widely used. Further, the DK framework cannot incorporate those
models that exhibit unspanned stochastic volatility (USV, Collin-Dufresne and
Goldstein (2002a)).

Below, we combine insights from both DS and DK to identify an invariant
transformation of latent variable affine models in which the resulting repre-
sentation is both tractable and specified in terms of economically meaningful
state variables. Specifically, we rotate the state vector so that it consists of

3 DS identify three such types of invariant transformations: (i) rotation of the state vector TA,
(ii) diffusion rescaling TD, and (iii) Brownian motion rotation TO.

4 A model is locally identifiable if the likelihood function possesses only a countable number of
maxima, whereas a model is globally identifiable if the likelihood function has a unique global
maximum.

5 In pre-publication drafts it is apparent that DS realized the need for such inequality constraints.
However, they did not identify these constraints for the general Am(N) model. Joslin (2007) takes
this approach.

6 See footnote 6 of DS.
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two types of variables: (i) the first few terms in the Taylor series expansion of
the yield curve around a maturity of zero (terms that have intuitive economic
interpretations such as level, slope, and curvature) and (ii) their quadratic co-
variations. The resulting representation has several advantages over latent
variable representations.

� First, because the state vector has a unique economic interpretation, both
the state vector and the parameters are globally identifiable.

� Second, our representation naturally leads to specifications that are more
flexible than the canonical model identified by DS. That is, we show that
in some cases the maximal Am(N) model has more identifiable parameters
than that reported by DS.

� Third, while latent variables can only be extracted from observed prices
conditional on both a particular model and a particular choice of parameter
vector, our state vector is “observable” in that model-independent estimates
for it are readily obtainable. As we discuss below, this presents several
advantages for estimation of large-scale models.

� Fourth, in our representation the state vector and the parameter vector
values can be meaningfully compared across different countries, differ-
ent sample periods, or even different models because the state variables
have unique economic interpretations that are model- and parameter-
independent. In contrast, the parameters and state variables obtained from
a latent factor representation cannot be compared until a rotation to an
economically meaningful representation is performed.7

Our representation also has several advantages over the approach of DK.
First, it is easy to implement. As we discuss below, DK’s yield factor represen-
tation requires imposing constraints on systems of nonlinear equations that
are often not solvable in closed form. Second, our representation works for
USV models, for which there does not exist a one-to-one mapping between
state variables and yields. Without such a mapping, the DK approach is not
implementable. We acknowledge that DK’s state vector, which consists of finite
maturity yields, also possesses a clear economic interpretation. Furthermore,
observing their state vector only requires a relatively straightforward interpo-
lation from whatever yields are available in the data. In contrast, observing
our state variables (without first specifying and estimating a model) requires
extrapolation of the yield curve down to very short maturities, which may be
less accurate. However, we demonstrate using both simulated and actual data
that it is possible to obtain accurate model-independent estimates of our state
variables even in the presence of substantial measurement error.

7 It is often the case that state variables are highly correlated with one or more principal com-
ponents, and thus researchers interpret the state variables as such. However, such interpretations
are approximate at best. Furthermore, as shown by Duffee (1996) and Tang and Xia (2005), the
weights of such principal components change over time and across countries. Hence, attempting
to compare models and/or parameters through their implied principal component dynamics is at
best suggestive and likely somewhat misleading.
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Our empirical results show that our observable representation also has some
practical advantages. First, since we can estimate a time series for the state
vector before attempting to identify parameter estimates, we can use simple
econometric methods (e.g., OLS) to come up with a first guess for the parameter
vector, simplifying the search over what is often a large dimensional parameter
space. Second, we find that when the model-independent estimates for the state
vector differ significantly from those obtained by a full-f ledged econometric
analysis, the model may be badly misspecified. For example, we find remarkable
similarity between model-free and model-implied state variables for a Gaussian
three-factor model. In contrast, the relation between the model-free and model-
implied state variables depends on the way in which a model with stochastic
volatility is estimated. Specifically, estimating the model using yield data only
results in a close match to the model-independent state variables. In contrast,
forcing the model to fit a proxy for the short-rate volatility process causes model-
implied and model-independent state variables to differ sharply. These results
point to model misspecification, which we interpret as suggesting that three-
factor affine models cannot simultaneously fit the time series properties of
the quadratic variation of the short rate and the dynamics of the third (i.e.,
curvature) factor. A companion paper, Collin-Dufresne, Goldstein, and Jones
(2007), provides further evidence on this issue.

The rest of the paper is organized as follows. In Section I we begin by defining
a few important terms and showing that latent state variables lead to models
that are only locally identifiable. In Section II we propose a canonical represen-
tation for the Am(N) class in terms of m latent square root processes and (N −
m) Gaussian processes, identifying a larger parameter vector than that iden-
tified by the canonical representation of DS. We then show that the Gaussian
variables possess simple, unambiguous economic interpretations such as the
level, slope, and curvature of the yield curve, and that the covariances among
these Gaussian variables are observable. As such, we show that we can rotate
from the original m latent square root processes to processes that are econom-
ically meaningful. In Section III we provide some examples. We describe the
data in Section IV, while in Section V we discuss the construction and prop-
erties of model-free estimates of the state vector. Section VI presents the esti-
mation methods, and in Section VII we report the empirical results for several
specifications written in terms of observable state variables. We conclude in
Section VIII.

I. Background

Throughout this paper, we use terms that have different meanings in the
applied and theoretical econometrics literatures. For clarity, we define our use
of these terms here.

Identified, identifiable, and maximal models

A given model is said to be identified if the state vector and parameter vector
can be inferred from a particular data set. In contrast, we say that a model
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is identifiable if the state vector and parameter vector can be inferred from
observing all fixed income security prices (i.e., all conceivable securities) as
frequently as necessary; that is, the term identifiable is defined as a theoretical
construct. For concreteness, we assume that all fixed income securities are
claims on cash flows occurring at finite maturities that depend only on the spot
rate process r(·). Hence, their prices are solutions to

P (t) = EQ
t

[
e−β

∫ T1
t r(s) ds CF {r(u), u}∣∣u∈(t,T2)

]
. (1)

The case β = 1 corresponds to standard risk-neutral discounting of the cash
flows CF, which may depend on the entire path of the spot rate r(u)|u∈(t,T2). The
case β = 0 applies to futures prices.8

A special case of an identifiable model is a maximal model, which, as defined
by DS, is the most general admissible model that is identifiable given suffi-
ciently informative data. That is, a maximal model is an identifiable model that
has the largest number of free parameters (within a particular class). Note that
maximality is also a theoretical concept. Indeed, DS determine maximality by
considering a series of invariant rotations of the fundamental PDE (satisfied
by path-independent European contingent claims) that leave all security prices
unchanged. As such, it is defined without ever making reference to what par-
ticular securities are actually available to the econometrician. Moreover, the
concept of maximality is independent of whether the data are assumed to be
measured with or without error. Below, we follow DS and interpret both maxi-
mality and identifiability as theoretical constructs, recognizing the possibility
that a particular data set might be insufficient for all parameters of the model
to be inferred.

In their definition of maximality, DS focus on identifying parameters used to
specify state vector dynamics under both the historical (P-) measure and risk-
neutral (Q-) measure. However, below we provide examples in which a model is
not identifiable even with the most restrictive risk premium structure, namely,
when the risk premia are set to zero, so that the P- and Q-dynamics are equiv-
alent. Clearly, assuming more general risk premia structures in these cases
cannot solve this problem. We therefore need to first understand what models
are identifiable under the assumption that risk premia are equal to zero. In the
spirit of DS, we refer to a model as being Q-maximal if it is the most general
model (within a particular class) that is identifiable given all conceivable se-
curity data expressed in equation (1) when all risk premia are assumed to be
zero. Given a Q-maximal model, it turns out to be a trivial matter to determine
whether or not the risk premia are identifiable. This is because Q-maximality
implies that the state variables can be observed or estimated on each date.9

As such, parameters capturing the risk premia can be identified from the time

8 The fact that the cash flow can depend upon the entire path of interest rates implies that
Asian-type options are also permitted. Note that the prices of such securities are solutions to a
PDE that is more general than that investigated by DS.

9 Here, we do not consider the possibility that there are state variables that drive P-measure
dynamics but not Q-measure dynamics. We thank Greg Duffee for pointing out this possibility.
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series of these variables. Furthermore, because the concept of Q-maximality ap-
plies only to the risk-neutral dynamics, our approach remains valid even when
risk premia do not preserve affine dynamics under the historical measure (e.g.,
Duarte 2004).

As we mention above, identification can be either local or global. The latter
implies the existence of a single parameter vector that provides the best fit of
the data; the former implies that there are a finite number of such parameter
vectors that are observationally equivalent. While DS implicitly focus on local
identification, here we seek representations that are globally identifiable, mo-
tivated by the fact that only these specifications lead to parameters and state
variables to which meaningful interpretation can be attributed. We discuss this
subject in detail below.

Observed, observable, and latent variables

A state variable is said to be observed from a particular data set if its value can
be readily determined without reference to any particular model. In contrast,
we define a state variable to be observable if, given the availability of all fixed
income securities prices (as defined in equation (1) above) observed as frequently
as desired, its value can be measured without reference to any particular model.
Note that the term observable is also a theoretical construct.

Two important examples of variables that are observable according to this
definition are the spot rate and its volatility. The former is the very short end
of the continuously compounded term structure and the latter is its quadratic
variation, which as Merton (1980) points out can be estimated perfectly with
any finite span of data in continuous time. Note that observable variables
are economically meaningful variables in that they have unambiguous defini-
tions independent of any model, and in turn are independent of any model’s
parameter values. Indeed, throughout the paper, we use these two terms
interchangeably.10

On the other hand, we refer to variables that are not observable as latent. The
important distinction is that latent variables can only be measured conditional
on choosing a model and estimating its parameters. Therefore, the values that
latent variables take are inherently tied to a particular theory and a specific
set of parameter values. In contrast, an observable state variable has an un-
ambiguous economic interpretation that is independent of the particular model
being considered. This implies that observable state variables can be estimated
without knowledge of the correct model or its parameter vector. Moreover, this
implies that observable variables can be compared across models, countries,
data sets, etc., whereas latent variables cannot.

10 However, not all economically meaningful state variables are observable. For example, if there
were a state variable that drove expected changes in the spot rate but did not show up in risk-
neutral dynamics, it would be economically meaningful but not observable.
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A. Properties of Observable State Variables

We note that observable state variables have the following properties:

(P1) If X(t) is an observable state variable that follows an Itô process, then
its risk-neutral drift µQ (t) ≡ lim�→0

1
�

EQ
t [X (t + �) − X (t)] is also ob-

servable.11

(P2) If X(t) is an observable state variable, then its quadratic variation V(t) =
〈X, X〉(t) is observable.

(P3) If X(t) and Y(t) are two observable state variables, then their quadratic
covariation process VXY (t) = 〈X, Y〉(t) is observable.

Properties P2 and P3 follow directly from the definition of quadratic variation
(e.g., Shreve 2004) and the assumption that we observe data continuously (recall
that “observable” as defined above is a theoretical concept). We note that the
observability of the instantaneous variance of a price series is not an original
argument, being explicit in the theoretical work of Black (1976) and Merton
(1980).

Property P1 is perhaps the most surprising given the well-known difficulty of
measuring drifts empirically. We emphasize, however, that it is not the actual
drift but rather the risk-neutral drift that is observable. This follows from the
fact that since X(t) is observable, one can write a futures contract on its value
at some future date (t + �). By absence of arbitrage (Duffie 2006, ch. 8-D), the
corresponding futures price is

F (t, �) = EQ
t [X (t + �)].

Therefore, given the entire term structure (as a function of the maturity) of
such futures prices, we can measure the instantaneous slope

lim
�→0

1
�

(F (t, �) − X (t)) = lim
�→0

1
�

EQ
t [X (t + �) − X (t)] ≡ µQ (t).

It follows that µQ(t) denotes the drift of the Itô process followed by X(t) under
the risk-neutral measure, that is

dX(t) = µQ (t) dt + dM(t),

where M(t) is some continuous Q-martingale.
We claim these properties imply that if one specifies affine term structure

dynamics using observable state variables, then all parameters that show up
in the risk-neutral dynamics are identifiable. Indeed, assume that some N-
dimensional state vector {Xi} is observable. Since we are assuming that the
model is affine under the Q-measure, the risk-neutral drift of each variable

11 We assume that a risk-neutral measure exists; see Harrison and Pliska (1981).
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must be of the form

µ
Q
i (t) ≡ δi,0 +

N∑
j=1

δi, j X j (t). (2)

Note that P1 implies that µ
Q
i (t) is observable. By observing its value, along with

the values of the state vector X(t), equation (2) provides us with one equation
for the (N + 1) unknowns {δi}. Thus, by observing data on (N + 1) different
dates, we obtain (N + 1) equations that are linear in the (N + 1) unknowns
{δi}, implying that we will be able to identify their values. Analogously, since
covariances are also observable and affine in the state vector, a similar argu-
ment can be made to prove the identification of the parameters that show up
in the covariance matrix.12

Below, we show that in addition to being observable, in many cases these
risk-neutral drifts have clear economic interpretations. For example, the risk-
neutral drift of the spot rate is intimately related to the slope of the yield curve
at short maturities. Furthermore, in practice it is not necessary to have prices
of exotic securities to identify the model. Indeed, for those models that do not
exhibit USV, bond prices alone are sufficient for identifying all risk-neutral
parameters since they are all easily extracted from appropriate regressions.
We discuss this point further below.

B. Latent Variables and Model Identification

It is well known from many branches of econometrics and statistics that la-
tent variable models often suffer from problems of identification. Affine term
structure models with latent factors are no exception, and it is straightforward
to write down a model in which some model parameters are not identifiable re-
gardless of how many securities are available and how often they are observed.
To address this issue, DS propose a set of invariant rotations in an attempt
to eliminate the unidentified parameters. The resulting model is identified if
all possible rotations have been performed. However, it is not clear that this
approach delivers the most general identifiable model.13

Further, neither the model parameters nor the latent state variables of their
representations have any particular economic meaning. Indeed, there are sev-
eral examples in the literature where researchers have attempted to attribute
an economic interpretation to latent variables when, in fact, they have none. A
very elegant example illustrating this concern comes from Babbs and Nowman

12 Of course, models that are written with obviously redundant parameters cannot be identified.
For example, one cannot separately identify δ0 and δ′

0 in µQ (t) ≡ (δ0 + δ′
0) + ∑N

i=1 δi X i(t). Fortu-
nately, specifications like this are easily avoided and are ruled out by our canonical form.

13 It might be difficult to prove that all possible rotations have been performed. Further, as DS
point out in their footnote 6, they cannot rule out that their representation might be nested in a
more general model. We confirm this below.
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(BN, 1999). Consider the two-factor Gaussian (maximal A0(2)) model:

dr(t) = κr (θ (t) − r(t)) dt + σr dzr(t) (3)

dθ (t) = κθ (θ − θ (t)) dt + σθ dzθ(t), (4)

with dzr dzθ = ρ dt. BN show that one can find an invariant transformation of
the model by defining another latent variable θ∗ (t) by

θ∗(t) =
(

1 − κr

κθ

)
r(t) + κr

κθ

θ (t) (5)

so that the dynamics of the system become

dr(t) = κθ (θ∗(t) − r(t)) dt + σr dzr(t) (6)

dθ∗(t) = κr (θ − θ∗(t)) dt + σθ∗ dzθ∗(t). (7)

Note that the system of equations (3) and (4) is identical to the system of equa-
tions (6) and (7). Hence, even though the model is maximal in the sense of DS,
two researchers could obtain different estimates for the state and parameter
vectors even though both had successfully maximized the same likelihood func-
tion. In particular, the prices of all fixed income securities are identical whether
one uses the values [{θ (t)}, κr, κθ ] or [{θ∗ (t)}, κθ , κr]. This duplicity is especially
problematic when one wants to give economic meaning to θ . For example, this
variable has been previously interpreted as a long-run target rate set by the
central bank (e.g., Jegadeesh and Pennacchi (1996), Balduzzi, Das, and Foresi
(1996)). The implication is that in their model there are two sets of solutions
leading to two different time series for the state vector θ , both of which gener-
ate identical prices for all securities. Hence, the time series of θ by itself has no
economic meaning!

In the parlance of system identification (e.g., Ljung (1999, ch. 4)), maximal
latent variable models are only locally and not globally identifiable. We em-
phasize that the insights of BN are relevant not just for Gaussian models. For
example, the same transformation can be applied to the maximal A1(3) model
of DS (2000) in its Ar representation (equation (23), p. 1951) to show that the
“central tendency” defined by DS is not uniquely determined, and the same
issue arises for the canonical AY representation of DS (p. 1948).14

The example above is particularly salient because it emphasizes the differ-
ence between latent and observable state variables. In particular, the state

14 The AY canonical A0(2) model of DS is given by:

r(t) = r + σ1 X 1(t) + σ2 X 2(t)dX1(t) = −κ11 X 1(t) dt + dz1(t)dX2(t)
= −(κ21 X 1(t) + κ22 X 2)dt + dz2(t).

It is straightforward to show that the BN model given in equations (1) and (2) is an invariant
transformation of the canonical AY model above, where, in particular, we have the relation κ11 =
κr and κ22 = κθ . Yet, following the argument leading to the equivalent representation in (6) and
(7), there is an equivalent AY representation with κ22 = κr and κ11 = κθ . This shows that the AY
canonical representation is not globally identifiable.
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variable r is by definition the short end of the term structure, and is therefore
observable (or, equivalently, economically meaningful) in that its value cannot
be changed without necessarily changing the prices of some fixed income secu-
rities (in particular, those with very short, but finite, maturities). In contrast,
because θ is latent, its value can be replaced by θ∗ and, provided the parameters
are adjusted appropriately (i.e., κθ ←→ κr), the prices and price dynamics of all
fixed income securities remain unchanged.15

C. Advantages of Observable State Variables

Here we illustrate the advantages of rotating from latent to observable state
variables in a simple two-factor Gaussian case. We use the original approach
of DK (1996), who propose rotating a latent state vector to an observable state
vector defined in terms of yields of finite maturities.

Consider the following risk-neutral dynamics of a two-factor Gaussian model
written in terms of the short rate r and a latent variable s

dr(t) = (αr + βrr r(t) + βrs s(t)) dt + σr dZQ
r (t) (8)

ds(t) = (αs + βsr r(t) + βss s(t)) dt + σs dZQ
s (t), (9)

where dZQ
r (t) dZQ

s (t) = ρrsdt. This model has a total of nine risk-neutral param-
eters.

DK show that yields of all maturities τ are affine in r and s

Y (t, τ ) = − A(τ )
τ

+ Br (τ )
τ

r(t) + Bs(τ )
τ

s(t).

As such, we can rotate from the latent state vector (r(t), s(t)) to the observable
state vector (r(t), Y (t, τ̂ )) for some specific choice of τ̂ > 0. As DK demonstrate,
the dynamics of this state vector are jointly Markov and affine,

dr(t) = (α̂r + β̂rr r(t) + β̂r y Y (t, τ̂ )) dt + σr dZQ
r,t (10)

dY(t, τ̂ ) = (α̂ y + β̂ yr r(t) + β̂ y y Y (t, τ̂ )) dt + σ y dZQ
y ,t , (11)

and the yields are still affine in the state variables,

∀τ Y (t, τ ) = − Â(τ )
τ

+ B̂r (τ )
τ

r(t) + B̂y (τ )
τ

Y (t, τ̂ ). (12)

15 One could solve the identification problem for this model by imposing an additional constraint
on the parameters, for example κθ > κr. However, similar restrictions have not been identified
by DS for the general Am(N) model. Further, this approach still leaves unaddressed the problem
that neither the state variables nor the parameters have any intrinsic economic meaning. Finally,
imposing such arbitrary restrictions only makes it more likely that investigators impute economic
meaning to such variables (e.g., “central tendency”), when in fact they have none.
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In particular, this equation must hold for the special case τ = τ̂ , which intro-
duces three additional constraints, namely,

Â(τ̂ ) = 0, B̂r (τ̂ ) = 0, and B̂y (τ̂ ) = τ̂ . (13)

Although these constraints are nonlinear, one would (correctly) suspect that
they will lead to three restrictions on the parameters in equations (10) and
(11). Hence, while the latent state vector representation (equations (8) and (9))
seems to suggest that there are nine free risk-neutral parameters, in fact, there
are only six—a fact that becomes obvious when we rotate to an observable state
vector.

In summary, this discussion illustrates several key points.
� When writing down a model with latent variables as in equations (8) and

(9), there is a risk of including more risk-neutral parameters than it is pos-
sible to identify. This arises independently of how the risk premia structure
is specified, and even if we assume all conceivable fixed income data are
available to the researcher.

� Rotating to observables as in equations (10) and (11) is a straightforward
way to eliminate extra parameters if the latent factor model is not identifi-
able. Doing so also solves the local versus global identification issue, since
observable state variables have a model-independent economic interpreta-
tion.

� For general affine models, in practice it may be difficult to rotate from
a latent state vector to yields of finite maturities, since the constraints
(equation (13)) are often written in terms of functions that do not have
analytic solutions.

In the next section, we propose a representation that is similar in spirit to
the original idea of DK (1996) of rotating to observable state variables but
that avoids some of the shortcomings of that approach. First, for the subset
of models exhibiting unspanned stochastic volatility, the rotation proposed by
DK fails since not all state variables can be written as a linear combination of
yields. Second, even for non-USV models, for which the rotation is in principle
possible, our approach avoids the difficulties inherent in rotating to a vector of
yields of finite maturities. Finally, we identify a Q-maximal model that is more
flexible than that identified by DS.

II. Q-Maximal Affine Models with Observable State Variables

In the previous section we discussed some problems associated with latent
variables. In this section we propose a canonical representation of affine models
that is Q-maximal and that nests the canonical representation of DS (2000).16

We show that our canonical representation leads to a fully observable represen-
tation in terms of the state variables {µj} and their quadratic covariates {Vj j ′ }

16 A further technical advantage of our representation is that its admissibility (i.e., mathematical
soundness) is easily verified.
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that can be estimated independent of a model given a sufficiently rich panel of
term structure data.

We proceed in several steps. First, we propose a canonical representation
written in terms of Gaussian variables17 {µj} and latent square root variables
{xi}. Second, we show that the {µj} variables are observable. From P3, it follows
that the instantaneous covariances among the {µj} variables, which we refer
to as {Vj j ′ } variables, are also observable. We can therefore rotate from the {xi}
variables to the {Vj j ′ } variables to obtain a framework written completely in
terms of observable variables. Finally, we show that the size of the parameter
vector does not change due to this rotation, and that the parameter vector is in
fact identifiable.

A. A Canonical Representation for Affine Term Structure Models

Following the nomenclature of DS, an Am(N) affine model has m square root
state variables that show up in the covariance matrix and (N − m) Gaussian
variables that do not. Here, we propose a canonical representation that, as we
show below, has the maximal number of risk-neutral parameters for a given
Am(N) class of models.

Following DS, we first specify the dynamics of m latent square root processes
{xi}|i∈(1,m) as jointly Markov

dxi(t) =
(

κi0 +
m∑

i′=1

κii′ xi′ (t)

)
dt + √

xi dzQ
i (t), dzQ

i (t) dzQ
i′ (t) = 1{i=i′} dt.

(14)

In order to guarantee that the {xi} remain positive, that is, in order to guarantee
admissibility, we restrict the (m + 1) risk-neutral drift coefficients κii′ to be
nonnegative for all i′ �= i. Note that equation (14) specifies that there is a total
of m(m + 1) risk-neutral parameters in the specification of all m square root
processes.18

With the square root processes specified, we now turn to the (N − m) Gaussian
state variables in an Am(N) model. Note that for the case N = m, there are no
Gaussian state variables, implying that the spot rate is an affine function of
the x processes,

r(t) = δ0 +
m∑

i=1

δixi(t), (15)

and that the model is fully specified.

17 We use the term Gaussian to indicate that, conditional upon the values of the square-root
variables, these variables have Gaussian dynamics. As such, they can take on all real values. In
contrast, square root variables are associated with a lower bound.

18 We note that our specification rules out the special case of the Wishart Quadratic-affine term
structure models identified by Gourieroux and Sufana (2003).
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In contrast, when N > m, there are (N − m) Gaussian variables to be specified.
Here, we show that these can be chosen to be the spot rate r, its risk-neutral drift
µ1 ≡ 1

dt E
Q [dr], its risk-neutral drift µ2 ≡ 1

dt E
Q [µ1], and so on, up to µN−m−1 ≡

1
dt E

Q [µN−m−2]. The proof follows from induction. Indeed, for a given set of m
square root processes {xi}, either the spot rate is an affine function of these
{xi} or it is not. If it is, then the model falls into the Am(m) category, contrary
to the assumption that we have an Am(N) model with N > m. Thus, r must be
linearly independent of the square root processes. Therefore, we can choose it
as the first of the Gaussian state variables.

Analogously, we now show that µ1 can also be chosen as a Gaussian state
variable if N > (m + 1). Recall that by assumption, only the x processes show up
in the covariance matrix. Hence, the spot rate variance, and all of its covariances
with the x variables, are affine functions of the x variables. Thus, the only
available channel for increasing the state space of the risk-neutral dynamics of
r (and hence, of the entire system, since the {x} are jointly Markov) is through
its drift µ1. Now, either µ1 is an affine function of {r, {x}} or it is not. If it is,
then the model falls into the Am(m + 1) category, contrary to the assumption
that we have an Am(N) model and that N > (m + 1). Thus, µ1 must be linearly
independent of {r, {x}}.

This argument is repeated until we have (N − m) state variables, each of
which is the risk-neutral drift of the previously introduced state variable. Thus,
we have specified the drifts of all the state variables except for the drift of
rN−m−1, which we specify here as generally as possible,

1
dt

EQ [
dµN−m−1(t)

] = γ +
N−m−1∑

j=0

κ j µ j (t) +
m∑

i=1

κN−m+i xi(t). (16)

For tractability purposes, we define r(t) ≡ µ0(t) in this equation and in many
equations below so that {µ} denotes the entire set of Gaussian variables. Note
that equation (16) specifies (N + 1) risk-neutral drift parameters.

Equations (14) to (16) (along with the definitions of {µj}) identify the drifts of
all state variables as well as the covariance matrix among the x variables. This
leaves only the covariance matrix among the µ variables and the covariance
matrix between µ and x variables for the model to be completely specified.
Following DS, we specify the covariance between variables µj and xi as

1
dt

dµ j (t) dxi(t) = ρij xi(t). (17)

Further, we specify the covariance between µj and µ j ′ as an affine function of
the m square root processes:

1
dt

dµ j (t) dµ j ′ (t) ≡ Vjj ′ (x(t)) = ω0
jj ′ +

m∑
i=1

ωi
jj ′ xi(t).

We emphasize that these choices are not arbitrary. Rather, they are the
most general that are simultaneously identifiable and consistent with the
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admissibility of the process. Indeed, any further generalization would either
introduce unidentifiable parameters into the model or imply a negative defi-
nite covariance matrix for some values of xi.

Below, we show that the {µj} variables are observable because they can be
inferred from the shape of the yield curve at short maturities (e.g., slope and
curvature). Thus, from P3, the quadratic covariates {Vjj ′(x)} are also observable.
As such, we will eventually find it convenient to rotate from the latent square
root processes {x} to some subset of the {Vjj ′(x)}. For now, however, we specify
our state vector in terms of the m variables of {x} and the (N − m) variables of
{µ}.

B. Maximal Parameter Vector

Note that equations (14) to (18) uniquely specify the risk-neutral dynamics of
the N-dimensional Markov system. We refer to this system of equations as our
canonical representation. For m < N, the number of risk-neutral parameters
is

(1) m(m + 1) drift parameters for the square root processes (equation (14))
(2) (N + 1) drift parameters for the last Gaussian variable (equation (16))
(3) m(N − m) covariance parameters ρij between the square root and Gaus-

sian processes (equation (17))
(4) 1

2 (N − m)(N − m + 1)(m + 1) covariance parameters ωi
jj ′ between the

Gaussian processes (equation (18)).

When m = N, the number of risk-neutral parameters is

(1) m(m + 1) drift parameters for the square root processes (equation (14))
(2) (m + 1) parameters of δ0 and {δi} (equation (15)).

In both cases, the total number of risk-neutral parameters (#CGJ) is

#CG J = m(m + 1) + (N + 1) + m(N − m) + 1
2

(N − m)(N − m + 1)(m + 1).

(18)

This contrasts with DS, who find

#DS =
{

N 2 + N + m + 1 m �= 0
1
2 (N + 1)(N + 2) m = 0.

Note that the two formulas are in agreement in several cases (m = 0, m =
1, m = (N − 1), m = N) but in general differ for the non-Gaussian cases when
N > 3.19 For example, we find that the A2(4) model has 24 risk-neutral pa-
rameters, while DS find there are only 23. For the A2(5) model, we find 36

19 The fact that models agree when N ≤ 3 is also related to a mathematical result derived in
independent work by Cheridito, Filipovic, and Kimmel (2005), who note that the form of diffusion
matrix chosen by DS for their canonical representation only spans the entire space when N ≤ 3.
However, these authors do not identify the maximal model for N > 3.
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risk-neutral parameters, while DS find only 33. As N and m get larger, so does
the discrepancy.

The source of this discrepancy can be traced back to the number of parameters
that appear in the covariances between Gaussian state variables. In particular,
DS assume that any N-factor affine process can be written as

dX(t) = (aQ + bQ X (t)) dt + �
√

S(t) dZQ (t), (19)

where S(t) is a diagonal matrix with components Sii(t) = αi + β�
i X(t), and

dZQ (t) is N-dimensional. It turns out, however, that the most general iden-
tifiable model cannot always be written in this form, which we demonstrate
below for the A2(4) model. Instead, we argue that in order to identify the max-
imal model, one must specify the model in one of three ways: (i) with more
Brownian motions than state variables, (ii) using a more general form than
�

√
S (t) for the diffusion matrix, (iii) in terms of a covariance matrix, as we

have done in equations (17) to (18), rather than a system of SDEs. We note
that specifying the stochastic components of the model in terms of a covariance
matrix rather than as Itô diffusions has the advantage of introducing parame-
ters that have clear economic interpretations.20 It is also these parameters that
show up in the fundamental partial differential equation that security prices
satisfy.

C. Proof that the {µj} Variables Are Observable

In this subsection we show that the {µj} variables can be measured directly
from the short end of the yield curve. Hence, they are observable in the sense
defined in Section I. In the empirical sections below, we demonstrate that model-
independent estimates for these variables are readily obtainable.

As we note in Section I.C, the risk-neutral drift of any observable state vari-
able is itself observable, as one can design a futures contract with an associated
arbitrage-free futures price equal to the risk-neutral drift. Therefore, since µj+1
is by definition the risk-neutral drift of µj, all we have to show is that r (≡ µ0) is
observable. But note that r is defined as the shortest maturity bond yield. Thus,
it is directly observable from the short end of the yield curve, with an economic
meaning that is independent of any parameter vector and independent of any
model. By induction, the observability of r implies that for all j > 0, all µj are
also (theoretically) observable. In practice, we show below that the first few
{µj} can be estimated accurately using empirical data.

Admittedly, the futures contracts used in our argument in Section I.C do
not exist in practice. However, we can show that the µj have simple economic
interpretations as they are directly tied to the shape of the yield curve. To do so,
it is convenient to express the yield curve in terms of its Taylor series expansion

20 While all three strategies are mathematically equivalent, we view the third approach as more
convenient in practice.
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with respect to time-to-maturity τ

Y (τ, t) = Y 0(t) + τY 1(t) + 1
2

τ 2Y 2(t) + . . . , (20)

where Y n ≡ ∂nY (τ )
∂τn |τ=0. We emphasize that since the entire yield curve is observ-

able, it follows that the Taylor series components Y 0 (t), Y1 (t), and Y 2 (t) are
also observable and have the interpretation of the level, slope, and curvature
of the yield curve at very short maturities (τ ≈ 0). In the Appendix we show
that the {µj} can be recursively obtained from the derivatives (e.g., slope and
curvature) of the yield curve {Yj} and their quadratic covariations, with the
first few terms given by 21

Y 0(t) = r(t) (21)

Y 1(t) = 1
2

µ1(t) (22)

Y 2(t) = 1
3

[
µ2(t) − V00(t)

]
(23)

Y 3(t) = 1
4

[
µ3(t) − 1

dt
EQ

t [d V00(t)] − 3V01(t)
]

. (24)

Here, V00(t) is the spot rate variance and V01(t) = 1
dt dr(t) dµ1(t). Thus, r is the

level of the yield curve at short maturities, µ1 is twice the slope of the yield
curve at short maturities, and µ2 is equal to three times the curvature at short
maturities minus the short rate variance.

D. Proof that the Canonical Representation Is Maximal

In Section II.A we wrote the canonical representation in terms of latent vari-
ables x. Thus, as we noted in Section I.C, there is a concern that only a smaller
parameter vector will survive when the risk-neutral dynamics are specified in
terms of an observable state vector. Here, we show that this is not the case, and
that the size of the parameter vector is as given in equation (18).

To demonstrate this, first note (from P3) that the covariance terms from
equation (18),

Vjj ′ (x(t)) ≡ ω0
jj ′ +

m∑
i=1

ωi
jj ′ xi(t), (25)

are observable. As such, we can obtain a (continuous) time series of this variable,
which for convenience we define as V (0)(x(t)). With this time series, we can (from

21 We give the general relation in the Appendix.
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P2) observe its variance

V (1)(x(t)) ≡ 1
dt

(
d V (0)(x(t))

)2

=
m∑

i=1

1
dt

(ωi
jj ′dxi(t))2

=
m∑

i=1

(
ωi

jj ′
)2xi(t).

(26)

Here, we use the conditional independence of the x processes and the fact that
dx2

i = xi dt from equation (14). Equation (26) provides one equation for the m +
1 unknown parameters {ωi

jj ′ } and the m unknown state variables {xi(t)}. Note,

however, that since V (1)(x(t)) is observable, we can obtain a (continuous) time
series of it. Therefore, from P3 we can also estimate the covariance

V (2)(x(t)) ≡ 1
dt

d V (0)(x(t)) d V (1)(x(t))

=
m∑

i=1

(
ωi

jj ′
)3xi(t).

(27)

Note that no new unknowns appear in going from equation (26) to equation
(27). As such, by continuing this argument recursively, we can obtain as many
equations as we like with which to infer the 2m + 1 unknowns {ωi

jj ′ , xi}. The
implication is that both the parameters {ωi

jj ′ } and the state variables {xi}, are
identifiable. Once the {xi} have been identified, P1 to P3 guarantee that all of
the other risk-neutral parameters specified in the canonical representation are
identifiable.

It is worth noting that if one were to apply this argument to the more general
square root process

dxi(t) =
(

κi0 +
m∑

i′=1

κii′ xi′ (t)

)
dt +

√
ai + bixi dzQ

i (t), dzQ
i (t) dzQ

i′ (t) = 1{i=i′} dt,

rather than to equation (14), the state vector would not be identifiable. This
follows from the fact that for all n > 0, the V (n) can be written as

V (n) =
m∑

i=1

(
ωi

jj ′bi

)n+1 (
ai + bixi(t)

)
b−2

i ,

which for all n > 0 is a function of the quantities ωi
jj ′bi and (ai + bixi(t)) b−2

i .
Thus, while these quantities can be identified, the values of ωi

jj ′ , ai, bi, and
xi can never be identified separately. Therefore, without loss of generality, we
assume (as do DS) that ai = 0 and bi = 1 in equation (14).
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E. Rotation from Latent {x} Variables to Observables

While our canonical representation in terms of {µj, xi} is maximal, it is not
fully observable since the x variables are latent. Fortunately, a variety of alter-
natives exist for rotating {xi} to observable variables. We note that the extant
literature identifies some of the simplest alternatives. For example, a one-factor
A1(1) model can be re-expressed as a translated Cox et al. (1985) process for the
short rate. As another example, the two-factor A2(2) model can be rotated to the
short rate and its variance following the approach of Longstaff and Schwartz
(1992).

For models with a mixture of Gaussian and square root processes, it is often
more straightforward to rotate from {µj, xi} to {µ j , Vjj ′ }, where the new state
variables,

Vjj ′ (x) = 1
dt

EQ [dµ j dµ j ′ ], (28)

represent quadratic covariation processes and are therefore observable by prop-
erties P2 and P3 in Section I.A. In several examples below, we find these ro-
tations to be particularly tractable. A second alternative is to choose the new
state variable to be the risk-neutral drift of µN−m−1 from equation (16). Finally,
one could also choose the drifts of Vjj ′ (x) as some of the state variables, where
the observability of these variables follows property P1.

Thus, there are many possible rotations from our canonical representation to
replace the latent {xi} vector with observable state variables. Which choice is
preferable depends on the particular model and estimation strategy to be em-
ployed. The important point is that all these distinct representations in terms
of observables are equivalent in that they are all both maximal and globally
identifiable. This follows from the fact that they are all invariant transforma-
tions of our canonical representation, which we have proved to be maximal
and identifiable. The rotation to observable state variables simply guarantees
global identification.22,23

III. Examples

In this section, we consider some examples to provide some intuition as to why
specifying a model in terms of economically meaningful variables guarantees
that both the state vector and the parameter vector are globally identifiable.

A. The A0(3) Model

We investigate the A0(3) model because it is a widely used benchmark that
yields closed-form solutions for bond prices. Further, it allows us to demonstrate

22 We note that our canonical representation is trivially only locally identified since the xi vari-
ables are perfectly symmetric and therefore interchangeable.

23 For the knife-edge case that some parameter values are exactly zero, not all rotations are
possible.
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in a transparent manner that the risk-neutral parameters of our canonical
representation are identifiable from bond prices alone. That is, the prices of
exotic securities are unnecessary for identification purposes.

Since the A0(3) model is, by definition, a three-factor model with no square
root processes, the entire state vector comes from the {r, µ} variables. There
are 10 risk-neutral parameters in the drift and covariance matrix:




dr
dµ1

dµ2


 ∼ N







µ1

µ2

γ + κ0r + κ1µ1 + κ2µ2


 dt,




V00 V01 V02

V01 V11 V12

V02 V12 V22


 dt


 . (29)

Any additional parameter in the mean or the covariance matrix would either
make the model unidentifiable or inconsistent with the definitions of µ1 and
µ2.

To see how the model is identifiable from a panel of bond prices, note that the
observability of the yield curve means that all of its Taylor series components
are also observable. Thus, by observing Y0 (t) and Y1 (t), equations (21) and
(22) imply that we also observe r(t) and µ1(t). By observing a time series of r(t),
we observe its variance V00. Given V00, and by observing Y2 (t), equation (23)
implies that we observe µ2(t) as well. Thus, all of the state variables in the
model are observable from bond data only.

To show that the parameters of the risk-neutral drift are identifiable from
bond data alone, first note that equation (24), together with the form of the
risk-neutral drift of µ2, implies that

Y 3(t) = 1
4

(
γ − 3V01 + κ0 r(t) + κ1 µ1(t) + κ2 µ2(t)

)
. (30)

Since Y3(t) is observable from the term structure and V01 from the quadratic
variation of r(t) and µ1(t), all time-series variables in this equation are observed.
The implication is that if we observe yield curves on four different dates, we will
have four equations for the four unknown parameters {γ , κ0, κ1, κ2}, implying
that the parameters that make up the risk-neutral drift of µ2(t) are identifiable
from bond prices alone. Since the state variables are observable, all covariance
matrix parameters are identifiable using time-series information. Finally, given
the time series of the state vector, all parameters that show up in the risk
premia (with the qualification given in footnote 12) are also identifiable, even
if the implied historical dynamics of the state vector fall outside of the affine
framework.

B. The A1(3) Model

The A1(3) model is a popular model for describing three-factor dynamics in a
way that allows for the presence of stochastic volatility in interest rates. In our
canonical form, the model is written in terms of the state vector S = [x r µ1]�,
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where we drop the subscript on x1. Equations (14) and (16) imply that


dx
dr
dµ1


 ∼ N







aQ
1 + bQ

11x
µ1

aQ
3 + bQ

31x + bQ
32r + bQ

33µ1


 dt, [�0 + �1x] dt


 , (31)

where

�0 =




0 0 0

0 ω0
22 ω0

23

0 ω0
23 ω0

33


 and �1 =




1 ω1
12 ω1

13

ω1
12 ω1

22 ω1
23

ω1
13 ω1

23 ω1
33


 . (32)

The restrictions on the �0 and �1 matrices follow directly from our canonical
representation (equations (14), (17), and (18)) above and the requirement that
�t = �0 + �1xt be a valid (i.e., positive definite) covariance matrix.

The A1(3) model is more easily interpreted by rotating to a system in which
the three state variables are the short rate, the risk-neutral drift of the short
rate, and variance of the short rate (denoted V instead of V00 for brevity).
The observable state vector is therefore defined as X = [V r µ1]�, where by
definition 24

V (t) = ω0
22 + ω1

22x(t).

Deriving the dynamics of the new rotation is straightforward.25 We find


d V

dr
dµ1


 ∼ N







aQ
V + bQ

VV V
µ1

aQ
µ + bQ

µV V + bQ
µrr + bQ

µµµ1


 dt,

[
�0 + �V (V − V )

]
dt


 ,

(33)

where

�0 =




0 0 0

0 V c0
rµ

0 c0
rµ σ 0

µ


 and �V =




σ V
V cV

Vr cV
V µ

cV
Vr 1 cV

rµ

cV
V µ

cV
rµ σ V

µ


 . (34)

24 Clearly, in the degenerate case where ω1
22 = 0, one cannot rotate to this state variable. Instead,

a different alternative, such as the quadratic variation of µ1, must be chosen.
25 At first glance, it appears that we lose the two parameters ω0

22 and ω1
22 under this rotation, as

they are subsumed into the definition of V. We emphasize that this cannot actually be the case,
since we have already shown in Section II.D that the canonical rotation is identifiable. Indeed,
simple calculations show that the quadratic variation of V is 1

dt Var(d V ) = ω1
22(V (t) − ω0

22). Since
this replaces the quadratic variation of x, which has no unknown parameters, the rotation from
the canonical form to the observable state vectors does not result in any gain or loss in the total
number of parameters. We confirm this result below.
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The form of the matrices �0 and �V is easily understood. First, all covariances
are affine in V because it is the only state variable that affects covariances in the
A1(3) model. Second, the variance V must have a lower bound V that is positive.
When V approaches its lower bound, its variance and covariances with other
variables must vanish, though the volatilities of the other two state variables
need not. Finally, since V is the variance of the short rate, the variance of dr
must have a unit loading on V and no intercept. The most general covariance
matrix with all of these properties is �t.

We note that the model has a total of 14 risk-neutral parameters (six in the
drift and eight in the covariance matrix), which agrees with the prediction of
equation (18).

Using equations (21)–(24), we can show that in most cases this model can be
fully identified from bond prices alone. Given the specification of the A1(3) risk-
neutral drift, equation (23) implies that the second-order Taylor series term is
equal to

Y 2(t) = 1
3

[
µ2(t) − V (t)

] = 1
3

[
aQ

µ + bQ
µV V (t) + bQ

µrr(t) + bQ
µµµ1(t) − V (t)

]
.

Because Y2, V, r, and µ1 can be observed from short-maturity yields and their
quadratic variations, all four parameters in the risk-neutral drift of dµ1 can be
identified given at least four independent observations.

To identify aQ
V and bQ

VV from the risk-neutral drift of V, note that the form of

µ3 ≡ 1
dt

EQ [
dµ2

] = 1
dt

EQ
[
bQ

µV dV(t) + bQ
µrdr(t) + bQ

µµdµ1(t)
]

combined with equation (24) implies that

Y 3(t) − 1
4

(
bQ

µrµ1(t) + bQ
µµµ2(t) − 3V01(t)

)
= 1

4

(
bQ

µV − 1
) (

aQ
V + bQ

VV V (t)
)
.

Since all time-series variables are again observable and all parameters except
aQ

V and bQ
VV were identified already, we need just two observations to identify the

two unknown parameters. Parameters associated with the historical measure
can then be identified using time-series information.

Unfortunately, this scheme fails when bQ
µV = 1, which turns out to be one

of the conditions that is required for the A1(3) model to display unspanned
stochastic volatility. If all USV conditions hold, then it is not possible to infer
aQ

V and bQ
VV from bond prices alone. This illustrates the impossibility of prov-

ing generally that models that are identifiable given all possible fixed income
derivatives data are identifiable given bond data alone.

C. The A2(4) Model

In addition to providing a tangible example of a model with complex mean and
covariance dynamics, we investigate the A2(4) model because it is an example of
a model whose Q-maximal representation is more general than that obtained
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by DS. In particular, we find 24 risk-neutral parameters rather than the 23
predicted by DS. To demonstrate, we start with latent square root processes
and then show that rotation to an observable state vector does not affect the
number of identifiable risk-neutral parameters.

Since the A2(4) model by definition has two Gaussian variables and two
square root variables, our canonical state vector is S = [x1 x2 r µ]�, where we
now drop the subscript on µ1. Following equations (14) and (16), the risk-neutral
dynamics are




dx1

dx2

dr
dµ


 ∼ N







aQ
1 + bQ

11x1 + bQ
12x2

aQ
2 + bQ

21x1 + bQ
22x2

µ

aQ
4 + bQ

41x1 + bQ
42x2 + bQ

43r + bQ
44µ


 dt, [�0 + �1x1 + �2x2] dt


 ,

(35)

where �0, �1, and �2 are given by




0 0 0 0
0 0 0 0

0 0 ω0
33 ω0

34

0 0 ω0
34 ω0

44


 ,




1 0 ω1
13 ω1

14

0 0 0 0

ω1
13 0 ω1

33 ω1
34

ω1
14 0 ω1

34 ω1
44


 , and




0 0 0 0

0 1 ω2
23 ω2

24

0 ω2
23 ω2

33 ω2
34

0 ω2
24 ω2

34 ω2
44


 ,

respectively.26

Consistent with our general result above, the total number of parameters is
24, which is one more than obtained by DS. The source of this discrepancy is
related to the way the affine class of models is described, specifically, whether
it is in the mean-covariance form used above or the traditional stochastic dif-
ferential equation (SDE) form (19).

We note that the dynamics of the model expressed in equations (35) can be
written as a system of SDEs. However, they cannot be written in the tradi-
tional affine form (19), that is, with diffusion coefficients linear in square root
terms, using only four Brownian motions. Because DS restrict themselves to
writing Am(N) using only N Brownian motions to represent their N state vari-
ables’ diffusion matrix in traditional affine form (19), they obtain a less general
characterization than we do for certain N-factor models.

For the case of the maximal A2(4) model, somewhat tedious calculations show
that the model can be written in a form consistent with (19) using five Brownian

26 As before, ones on the diagonals of �1 and �2 follow from our standardization of the square
root variables. Zeros on the diagonals of all three matrices ensure that the variances of x1 and x2

approach zero as the processes themselves approach zero, while off-diagonal zeros are required for
positive definiteness of �t.



Identification of Maximal Affine Term Structure Models 765

motions (i.e, one more than the number of state variables) as

dx1 = (κ10 + κ11x1 + κ12x2) dt + √
x1dzQ

1

dx2 = (κ20 + κ21x1 + κ22x2) dt + √
x2dzQ

2

dr = µdt + νr1
√

x1 dz Q
1 + νr2

√
x2 dz Q

2

+√
a1 + b1x1 + b2x2dzQ

3 + √
c1 + d1x1 + d2x2dzQ

4

dµ = (
κµ0 + κµrr + κµµµ + κµ1x1 + κµ2x2

)
dt + νµ1

√
x1 dz Q

1 + νµ2
√

x2 dz Q
2

+√
a1 + b1x1 + b2x2dzQ

3 + √
e1 + f1x1 + f2x2dzQ

5 .

There are multiple ways to rewrite (35) in terms of four Brownian motions.
For example, a simple formulation in terms of four Brownian motions is

dx1 = (κ10 + κ11x1 + κ12x2) dt + √
x1dwQ

1

dx2 = (κ20 + κ21x1 + κ22x2) dt + √
x2dwQ

2

dr = µ dt + νr1
√

x1 dwQ
1 + νr2

√
x2 dwQ

2
+

√
a1 + c1 + (b1 + d1)x1 + (b2 + d2)x2dwQ

3

dµ = (
κµ0 + κµrr + κµµµ + κµ1x1 + κµ2x2

)
dt + νµ1

√
x1 dwQ

1 + νµ2
√

x2 dwQ
2

+ a1 + b1x1 + b2x2√
a1 + c1 + (b1 + d1)x1 + (b2 + d2)x2

dwQ
3

+
√

a1 + e1 + (b1 + f1)x1 + (b2 + f2)x2 − (a1 + b1x1 + b2x2)2

a1 + c1 + (b1 + d1)x1 + (b2 + d2)x2
dwQ

4 .

Clearly, this is not of the form (19) that was assumed by DS, but it nevertheless
implies instantaneous means and covariances that are affine in S. The variance
of dµ, for instance, is easily shown to equal

a1 + e1 +
(
ν2

µ1 + b1 + f1

)
x1 +

(
ν2

µ2 + b2 + f2

)
x2.

While all of these representations have 24 parameters, they are expressed
in terms of the latent state variables x1 and x2. As we note in Section II.E,
the square root processes can be rotated to a number of different observables.
One possibility is to rotate x1 and x2 to the variance of dr and the risk-neutral
drift of that variance. However, given that we have two Gaussian processes
and two square root processes, arguably a more natural choice is to rotate to
V, the instantaneous variance of dr (previously defined as V00), and U, the
instantaneous variance of dµ (previously defined as V11). Let X = [V U r µ]�

denote the state vector under this new rotation. Note that from equation (35)
we have

V = ω0
33 + ω1

33x1 + ω2
33x2 (36)



766 The Journal of Finance

U = ω0
44 + ω1

44x1 + ω2
44x2. (37)

Since all of these coefficients need to be positive to guarantee admissibility, and
since both x1 and x2 have minimum values of zero, ω0

33 ≡ V is the lowest value
that V can take. Similarly, ω0

44 ≡ U is the lowest value that U can take. As such,
it is convenient to write[

V − V

U − U

]
=

[
ω1

33 ω2
33

ω1
44 ω2

44

] [
x1

x2

]
. (38)

This matrix form can be inverted to write the {xi} in terms of {V, U}, allowing
for a simple rotation to observables that preserves the same form for the drift
(though with different parameter values) and that allows the covariance matrix
to be written as

1
dt

Cov(dX, dX�) = �0 + �V (V − V ) + �U (U − U ),

where �0 is unchanged from above. Unfortunately, while they are easily de-
rived, the restrictions on �V and �U are somewhat messy, and we do not report
them here. Nevertheless, a rotation to this form may be desirable given that the
observability of r, µ1, V, and U makes all the parameters in this representation
globally identifiable.

IV. Data

So far, our discussion has been mostly theoretical. In the next few sections,
we demonstrate that our representations have practical advantages as well.

Our data set is derived from weekly observations of all maturities of LIBOR
and swap contracts that were available over the entire 1988 to 2005 sample
period. These consisted of LIBOR rates with maturities of 1, 3, 6, 9, and 12
months and swap rates with maturities of 2, 3, 4, 5, 7, and 10 years. Swap rates,
which are recorded in London at 5:30 pm, are Wednesday values. LIBOR rates,
meanwhile, are fixed at 11:00 am in London, and it turns out that Thursday
morning LIBOR rates are most highly correlated with Wednesday evening swap
rates. We therefore build our term structures using Wednesday swap rates and
Thursday LIBOR rates.27

Swap rates are converted to zero coupon rates assuming that they can be val-
ued as par bond yields.28 In order to minimize concerns about pre-smoothing the

27 In other work, we also use a simple model to impute approximate LIBOR values at the close.
Doing so does not have any material effect on our results.

28 If swaps were free of default risk, this would directly follow from absence of arbitrage. In the
presence of credit risk, this assumption is warranted if credit quality is homogeneous across swap
and LIBOR markets. In that case, the zero coupon curve corresponds to a risk-adjusted corporate
curve for issuers with refreshed AA credit quality (see Duffie and Singleton (1997), Collin-Dufresne
and Solnik (2001), and Johannes and Sundaresan (2007)).
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data, we employ the Unsmoothed Fama-Bliss method (Fama and Bliss 1987),
which assumes a piecewise constant forward rate curve. From the bootstrapped
yield curves, we extract the zero coupon yields with the same maturities as the
LIBOR and swap rate inputs. This results in zero yields up to 1 year that are
unchanged from observed LIBOR values and estimated for maturities of 2, 3,
4, 5, 7, and 10 years, a total of 11 yields.

We note that both the bootstrapped zero coupon yields we use and the re-
sults of our model estimations are essentially unchanged when we instead
use the extended Nelson–Siegel method of Bliss (1997). This is likely due
to the fact that differences between bootstrapping methods are most pro-
nounced for maturities that do not correspond to any observed yield. Since
both swap and LIBOR rates are quoted on a constant maturity basis, we
are able to construct a panel of constant maturity zeros with maturities that
are always the same as some underlying instrument. We believe that this
aspect of LIBOR and swap markets is an additional advantage over using
Treasuries.

In some of our analysis, we also employ a measure of implied volatility from
the Eurodollar futures options market. Since the Eurodollar futures price is
equal to 100 − F, where F is the annualized futures rate, an option is consid-
ered at the money (ATM) when the strike price is equal to 100 − F. From closing
prices on each Wednesday in our sample, we find the shortest maturity call op-
tions (excluding options within a week to expiration) with strike prices that are
within $1 of ATM and that can be matched with a put of the same strike and
maturity. To reduce measurement problems arising from asynchronous record-
ing of futures and options prices, we back out the implied futures price from
each pair of options using put-call parity. We use the Black (1976) formula to
impute a single measure of volatility for each pair. Finally, to ascribe a single
ATM implied volatility to each day, we fit a quadratic polynomial to these im-
plied volatilities as a function of the strike prices (again, all of which are within
$1 of ATM). This procedure results in an estimate of the proportional volatility
of 100 − F. We take this value and multiply by 1 − F/100 to obtain an estimate
of the level of yield volatility.

It is known (see Ledoit, Santa-Clara, and Yan 2002) that even when the
Black (1976) model is misspecified, ATM-implied volatilities from that model
often converge to true volatilities as both the option and underlying maturities
approach zero. However, since the options we use have on average 7 weeks
until expiration, and because the underlying futures are themselves 3-month
contracts, we do not consider this theoretical result as being obtained in our
sample. Rather, we view our implied volatility series as simply a reasonable
approximation of current yield volatility. We will see below that this series
appears to have good empirical properties, at least for the period after 1990;
prior to 1990, most likely due to the newness of the market, the series contained
a much higher level of volatility that appeared to be mostly measurement error.
We therefore restrict our use of these data to the 1991 to 2005 subsample.
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V. Model-Free Estimates of Gaussian State Variables

When a model is specified in terms of latent state variables, estimates of
the state vector depend on the assumed values of the parameters, which are
not initially available. In contrast, as demonstrated above, the Gaussian state
variables (r, µ1, µ2) in our representation are proportional to the level, slope,
and (to a close approximation) curvature of the term structure at zero. In theory,
this suggests that it should be possible to obtain model-independent estimates
of these state variables simply by observing the yield curve. Such estimates can
be quite valuable. For example, they can be used to obtain reasonable estimates
of the parameters, which in turn can be used as first guesses for a full-f ledged
estimation. This should be especially useful for multifactor models, for which
estimation can be computationally burdensome.

In practice, however, we do not observe the entire (continuous) term structure
of zero coupon yields. Rather, we observe only discrete points along the curve,
and these may be contaminated by noise resulting from bid-ask spreads or
inexact bootstrapping procedures, for example. In fact, prior work (e.g., Duffee
(1996) and Dai and Singleton (2002)) indicates that the shortest maturity yields,
which are in theory the ones most directly related to our state variables, appear
especially contaminated by idiosyncratic noise. Thus, any attempt to directly
measure the level, slope, and curvature of the term structure at zero, say by fit-
ting a spline to the yield curve and extrapolating down to near-zero maturities,
is likely to result in large errors.

We propose an alternative approach to estimating the first three {µ} vari-
ables that dramatically reduces estimation error by imposing some paramet-
ric yet still model-free structure. Our approach is based on Litterman and
Scheinkman’s (1991) finding that three principal components can explain the
vast majority of the variation in bond yields. For our analysis, we use all but 3
of the 11 zero coupon yields in the sample to extract principal components. The
other three yields, with 9-month, 4-year, and 10-year maturities, are reserved
for use elsewhere in an effort to avoid utilizing the same data more than once.
Over our sample period, for the eight yields that are analyzed, the first three
principal components explain 98.8% of the variation in yield levels. Thus, if Y(t,
τ ) denotes the time-t value of the τ -year zero rate and Pk(t) the contemporane-
ous realization of the kth principal component, then the approximation

Y (t, τ ) ≈
3∑

k=1

fk(τ )Pk(t) (39)

holds with great accuracy.
The result above is useful because all yield curve derivatives (e.g., slope and

curvature) can be written as sums of the derivatives of the f k(τ ) “loading” func-
tions

∂nY (t, τ )
∂τn ≈

3∑
k=1

∂n fk(τ )
∂τn Pk(t), (40)
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given estimates of those derivatives. This means that the level, slope, and cur-
vature of the yield curve at zero maturity in every period can now be obtained
by extrapolating just three functions down to zero. This need be done only
once for the entire sample; that is, we do not need to extrapolate one yield
curve for each day. Furthermore, since these three functions are estimated
using the entire sample, they are likely to be estimated with relatively little
error.

While principal component (PC) analysis results in estimates of the f k(τ ) for
a discrete set of τ > 0, we are interested in the local behavior of the f k(τ ) around
τ = 0. We extrapolate each of the f k(τ ) down to zero using low-order polynomi-
als. Since a global approximation is unnecessary, we fit these curves only out
to 1 year using the yields with maturities of 1, 3, 6, and 12 months. Polynomial
orders were initially chosen subjectively, but a simple cross-validation exercise
confirmed these choices under both mean squared and mean absolute error cri-
teria.29 This results in a linear polynomial being used to approximate f 1(τ ), a
quadratic for f 2(τ ), and a cubic for f 3(τ ).

Given these fitted polynomials, we can calculate the values in (39) and deriva-
tives in (40) for τ = 0 for each day in the sample. From our results above, the
three state variables r, µ1, and µ2 are equal to, respectively, the level of the
yield curve at zero, twice the first derivative at zero, and three times the sec-
ond derivative at zero plus the variance of the short rate. Since both the level
and variation of the short-rate variance are extremely small relative to the
variance in the second derivative, a precise accounting of short-rate variance
is unimportant. Thus, we simply assume that it is constant and equal to the
annualized sample variance of changes in the 1-month yield.30

Figure 1 illustrates our approach. The top panel contains results for f 1(τ ),
the loadings on the first principal component. Each circle represents a value of
f 1(τ ) corresponding to one of the maturities used in the PC analysis. The line
denotes the best-fit linear polynomial to the maturities out to 1 year. With all
loadings having similar values, the standard interpretation of the first princi-
pal component as a level factor is clear. The next two columns contain results
for the second and third principal components, which also have their usual
interpretations as slope and curvature factors.

29 To select the polynomial order used to approximate f k(τ ), we use a separate “leave-one-out”
cross-validation for each k. This entails a series of regressions of f k(τ i) on a constant and the
first P powers of τ i, where τi = {1, 3, 6, 9, 12} months. In each regression, a different observation is
held out and then used to compute an error. Squared or absolute values of these errors are then
summed across maturities, and the polynomial order P with the smallest sum is then returned as
the preferred value. In our data, both criteria agree for each k. Note that to choose the polynomial
order we include the 9-month yield in the PC analysis. This is because we need at least five
different maturities to estimate the cubic polynomial given that one of the five will be left out
of each regression. Once the polynomial order is chosen, we repeat the PC analysis without the
9-month rate.

30 The unconditional standard deviation of three times the second derivative is approximately
0.045. The variance of the short rate is something close to 0.0001, possibly taking values three to
four times as large in the most volatile periods in our sample. This degree of variation is completely
dominated by the movements in curvature, and it is without consequence to ignore it here.
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Figure 1. Principal component loadings. This figure displays a principal components analysis
of yield levels performed over the 1988 to 2005 sample period. Circles denote the loadings (f k(τ ))
of each included maturity on the first three principal components. Smooth lines are the result of
a polynomial approximation procedure designed to extrapolate each loading (and its derivatives)
down to a zero maturity.

All three curves are generally smooth and well behaved. As such, one would
anticipate that extrapolation down to zero generates reasonably accurate re-
sults. To verify this conjecture, we consider a brief Monte Carlo exercise de-
signed to replicate our procedure as closely as possible. We begin by simulating
zero coupon and par bond yields that are identical in maturity and length to
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Table I
Accuracy of Model-Free State Variable Estimation

This table reports Monte Carlo results based on simulated interest rates that are identical in
maturity and sample length to the full sample of data used in this paper. In addition to a zero
measurement error case, two levels of measurement errors (SDs of 0.5 b.p. and 2 b.p.) are considered.
The data construction procedure used in the empirical analysis is then repeated on each simulated
data set, leading to a set of model-free state variables. The table reports means and standard
deviations (in parentheses) of the coefficients and R-squares from regressions of the form

Actual State Variable(t) = α + β × Estimated State Variable(t) + ε(t).

Yields are simulated using Duffee’s (2002) preferred version of the A0(3) model, a three-factor
model with constant covariances, with parameter values from table III of his paper. The state
variables r and µ1 denote the short rate and its risk-neutral drift, respectively, while µ2 denotes
the risk-neutral drift of µ1.

State Variable = r State Variable = µ1 State Variable = µ2

Error 1000 × 1000 × 1000 ×
SD α̂ β̂ R2 α̂ β̂ R2 α̂ β̂ R2

0 −0.034 1.000 1.000 0.012 1.008 1.000 0.500 1.096 1.000
(0.017) (0.000) (0.000) (0.049) (0.001) (0.000) (0.225) (0.003) (0.000)

0.5 −0.034 1.000 1.000 0.011 1.008 1.000 0.499 1.097 0.999
(0.023) (0.000) (0.000) (0.118) (0.005) (0.000) (0.854) (0.023) (0.001)

2 −0.048 1.000 1.000 0.096 1.014 0.998 −0.334 1.131 0.987
(0.065) (0.001) (0.000) (0.493) (0.021) (0.001) (3.888) (0.128) (0.015)

the data in our sample. For this purpose we use Duffee’s (2002) preferred ver-
sion of the essentially affine A0(3) model, with parameter values taken from
table III of that paper.31 We then add independent and identically distributed
(i.i.d.) Gaussian measurement errors to the simulated zero coupon and par bond
yields. We consider a low-error case in which the errors have a standard devi-
ation of one-half of a basis point and a high-error case in which the standard
deviation is two basis points. The latter represents an extremely large value,
as i.i.d. errors of that magnitude generate negative serial correlation in daily
yield changes that are between −0.10 and −0.25, which are clearly at odds with
the near-zero autocorrelations observed in the data.

Every aspect of our bootstrapping, principal components, cross-validation,
and polynomial extrapolation procedure is repeated on each set of simulated
data. In the end, we are left with both actual and estimated values of the
three state variables r, µ1, and µ2. To assess the closeness between the actual
and estimated time series, we regress the former on the latter. Table I reports
the means and standard deviations of the estimated intercepts and slopes, as
well as the regression R-squares, from 1,000 Monte Carlo simulations. If the
model-independent estimates are unbiased and accurate, then we expect to find
intercepts close to zero, slopes close to one, and high R-squares.

31 We also use parameter values from column III of our own Table II, which generate essentially
the same results.
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The results reported in Table I are very encouraging. They show that the
estimate of r is unbiased and accurate even given a high level of noise, with
R-squares that on average are greater than 0.999 even for the highest level of
error. The results for µ1 are also extremely promising, with average R-squares
still no lower than 0.998 and essentially no bias. Only for µ2 do we see minor
evidence of bias, with the average slope being too high by 10% to 13%. Even
in this case, however, the average R-squares for the highest level of measure-
ment error are still at least 0.987. We demonstrate below that similar accuracy
obtains using actual data, since we find our model-independent estimates to
be extremely highly correlated with estimates from standard estimation proce-
dures, at least for models that are not clearly misspecified.

As illustrated most clearly in Section III. A, a major theoretical advantage
of our rotation is the ability to easily prove identifiability of the parameters of
the Q drift of the state vector. To see how this idea may be applied in practice,
consider a three-factor affine model written in terms of r, µ1, and µ2, whose
drift by definition must be of the form given in equation (29), even if the model
is outside the A0(3) class and the covariance matrix differs.

Using the procedure described above, we obtain model-free proxies of
r(t), µ1(t), µ2(t), and ∂3Y (t,τ )

∂τ 3 |τ=0 ≡ Y 3(t). Assuming the variance terms are small
enough to ignore (which is true in practice), we can then use equation (30) to ob-
tain rough estimates of the four unknown parameters of the risk-neutral drift
of µ2 simply by running an OLS regression.

In unreported simulation results, we find that this approach is reasonably
accurate when the degree of measurement error in yields is not too large. In
general, however, Y3(t) and higher order terms appear to be estimated with
successively lower accuracy, and this makes model-free estimates of Gaussian
state variables beyond r(t), µ1(t), and µ2(t) appear less reasonable. Neverthe-
less, below we use model-free estimates of Y3(t) to obtain starting values for
our estimations, and the result is a set of values that are surprisingly close to
our maximum-likelihood estimates.

VI. Models and Estimation Methods

We investigate the usefulness of our rotation and the observability of our
state vectors in two examples. We first consider the three-factor Gaussian A0(3)
model, which Duffee (2002) finds to be most accurate in forecasting future bond
yields. This model is estimated over the 1988 to 2005 sample period. Second, we
consider the A1(3) model, which also has three factors, one of which is a square
root process that can drive conditional volatilities. Since it is not our goal to
compare these specifications, we estimate the latter model over the 1991 to
2005 period, the subsample over which our implied volatility data appear to be
most reliable.

For both models, we compare alternative estimation approaches. The most
familiar is the now-standard inversion method in which a vector of three yields,
denoted Yo(t), is assumed to be observed without measurement error. The state



Identification of Maximal Affine Term Structure Models 773

vector, denoted X(t), is then obtained by inverting the relation

Yo(t) = H0 + H1 X (t), (41)

where H0 and H1 are implied by

Y (t, τ ) = − A(τ )
τ

+ B(τ )�

τ
X (t). (42)

In our analysis these yields are taken to be the 3-month, 2-year, and 10-year
maturities.

The vectors of remaining zero coupon yields, Ye(t), are assumed to be equal
to their model-implied values plus Gaussian measurement errors that are un-
correlated both cross-sectionally and over time. This results in a log-likelihood
function of the form

l
(
φ, D

) =
T∑

t=1

[− ln | det(H1)| + ln p
(
X (t)|X (t−1), φ

) + ln p
(
Ye(t)|X (t), D, φ

)]
,

(43)

where φ denotes the affine model parameters and D the diagonal covariance
matrix of measurement errors. The transition density of X(t) is a Gaussian ap-
proximation (exact in the case of the A0(3) model), where the true discrete-time
means and covariances are derived according to Fisher and Gilles (1996). The
mean and covariances of the stationary distribution of X(t) are used to compute
the likelihood of the initial observation. In sum, this approach is identical to
that of Duffee (2002) and others.

We compare this standard approach with several alternatives in which the
state vector is treated as observable and the Gaussian variables equal to the
model-free values computed in Section V. Recall that the Gaussian state vari-
ables are computed using a principal components analysis on all but 3 of the 11
zero coupon yields in our sample. To avoid using the same data twice, only those
three yields not used to compute principal components, namely the 9-month,
4-year, and 10-year yields, are directly included in the estimation. The details of
the estimation methods based on observed state variables are somewhat model
specific, so we describe them separately for each specification.

It is worth noting that merely rotating the state vector does not change the
likelihood of the data as long as that rotation is invariant. For example, param-
eterizing a model in terms of {r, µ1, V00} rather than {r, µ1, µ2} does not, by
itself, alter the ability of the model to explain the data. Different estimation
methods only result in different parameter estimates because they either com-
pute the likelihood differently (exactly or using an approximation) or because
they make different assumptions about what variables are observed with and
without error. Thus, while assuming that V00 is exactly observed instead of µ2
can have a major effect on our results, choosing to write the model in terms of
V00 rather than µ2 is done solely for reasons of convenience and taste.
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A. A0(3) Specification and Estimation

As Section III.A demonstrates, the A0(3) model is represented by a state
vector that consists of the three Gaussian state variables X = [r µ1 µ2]�, whose
dynamics are given in equation (29). For ease of interpretation, we write the
covariance matrix in terms of standard deviations and correlations as

1
dt

Cov
(
d X (t), d X (t)�

) =




σ 2
0 σ0σ1ρ01 σ0σ2ρ02

σ0σ1ρ01 σ 2
1 σ1σ2ρ12

σ0σ2ρ02 σ1σ2ρ12 σ 2
2


 . (44)

We assume Duffee’s (2002) essentially affine risk premia, which allows the
drift under the P-measure, written as a + b X(t), to be completely unrestricted,
so that

a =




a0

a1

a2


 and b =




b00 b01 b02

b10 b11 b12

b20 b21 b22


 . (45)

Note that a and b, which determine the drift of the process under the historical
measure, are not restricted by the definitions of µ1 and µ2, which are the drifts
of r and µ1, respectively, under the risk-neutral measure.

While standard estimation methods can be applied here without difficulty,
when the state variables X(t) are treated as observable it is natural to propose
an even simpler estimation approach that might also perform reasonably well.

Method I
The simplest approach consists of four steps.

1. Estimate X(t) using the model-free approach of Section V.
2. Estimate a and b, the parameters of the P drift of X(t), by running OLS

regressions of � X(t) on X(t − 1) and a constant, then annualizing.
3. Estimate Cov (dX(t), dX(t)�)/dt by annualizing the sample covariance ma-

trix of the residuals from these regressions.
4. Estimate the measurement error variances and the four parameters of

the risk-neutral drift of X(t) by maximizing

T∑
t=1

ln p(Ye(t) | X (t)), (46)

the likelihood of the yields observed with error, treating as given the ob-
served X(t) and the estimated values of the other parameters.

Several possible shortcomings of this approach are notable. First, the covari-
ance parameters affect bond prices, so estimating them using only time-series
information is inefficient. Second, the likelihood of the first observation, X(1), is
ignored in this approach. Third, discretization bias is ignored when estimating
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the P drift and covariance parameters. Finally, the values computed for the
state variables may be imperfect. While the inversion approach (i.e., Method
III below) addresses all four problems, it is possible to consider an intermediate
case (i.e., Method II below) in which the first three problems are dealt with but
the state variables are still fixed at their estimated values.

Method II
To do so, we consider an estimation approach based on the exact likelihood
function of the observed X(t). Following Fisher and Gilles (1996), we compute
the discrete-time means and covariances of X(t) given X(t − 1). The density of
the stationary distribution is used to compute the likelihood of X(1). With three
yields, Ye(t), observed with error, our log likelihood function is of the form

l
(
φ, D

) =
T∑

t=1

[
ln p

(
X (t) | X (t−1), φ

) + ln p
(
Ye(t) | X (t), D, φ

)]
, (47)

where φ again denotes the parameters of the affine process and D the diagonal
covariance matrix of measurement errors.

Method III
This method is the inversion-based approach described above.

B. A1(3) Specification and Estimation

Section III.B derives the rotation of the A1(3) model to the observable state
vector X = [V r µ1]�, where V denotes the instantaneous variance of dr.

The model is completed by the specification of the drift under the historical
measure. Risk premia are assumed to be of the “extended affine” form,32 so that
the P drift of X(t) is a + b X(t), where

a =




aV

ar

aµ


 and b =




bVV 0 0

brV brr brµ

bµV bµr bµµ


 . (48)

The zero restrictions here also keep V(t) from crossing its lower bound.
We impose several constraints on this system, all of which are designed to

impose admissibility and nondegeneracy. First, we require that �0 be positive
semidefinite and that �V be positive definite, where both matrices are described
in (32). This generates positive definite covariance matrices for all V (t) > V . In
addition, we require that aV > −bVV V , which is necessary to ensure V (t) > V .
The same inequality is required for the risk-neutral drift of V as well.

32 We use the risk premium specification introduced by Duffee (2002) and generalized by Cherid-
ito, Filipovic, and Kimmel (2006) based on theorem 7.19 in Liptser and Shiryaev (1974, p. 294),
which shows that if zero is not accessible by Vt − V under both measures, then the two measures
defined by the P- and Q-measure dynamics of the Markov process above are equivalent. Liptser
and Shiryaev’s result applies to any process of the diffusion type (see their definition 7, p. 118).
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Given the state dependence of the covariance matrix, even if X(t) were ob-
servable, this model is somewhat more complicated to estimate. In addition to
the standard inversion approach (Method III), we consider three estimation
methods that use observable state variables.

Method I
The simplest approach we consider is one in which we have observable proxies
for V(t), r(t), and µ1(t) and we estimate the parameters of a, b, �0, and �V by
assuming that

�X (t) ∼ N(�t(a + bX (t−1)), �t(�0 + �V (V (t−1) − V ))), (49)

where �t = 1/52 is the length of time between observations. As in the A0(3)
model, the parameters of the risk-neutral drift of X(t) are then estimated by
maximizing the likelihood of the yields measured with error (Ye(t)) given the
observed X(t) and the other model parameters.

This approach ignores nonnormality, discretization bias, the initial distribu-
tion of X(1), and the information in bond prices about the parameters of the
covariance matrix. To address all but the first of these problems, we propose a
second approach.

Method IIa
We next use a Quasi-maximum likelihood (QML) approach with the exact dis-
crete time means and covariances, where the first observation X(1) is assumed
to come from a Gaussian distribution with moments equal to the true moments
of the stationary distribution of X(t). With three yields again observed with er-
ror, we maximize the joint likelihood of all parameters simultaneously. This is
identical to the approach taken for the A0(3) model in maximizing the likelihood
in (47), except that now the Gaussian density is an approximation.

Method IIb
Related to the previous approach, we also consider a method that is appropri-
ate when we have observable proxies for r, µ1, and µ2, but not V. Given the
definition of µ2 as the risk-neutral drift of µ1, we note that there is a simple
transformation between the two rotations. Namely, if

X (t) =

 V (t)

r(t)
µ1(t)


 and X ∗(t) =


 r(t)

µ1(t)
µ2(t)


 , (50)

then (33) and the fact that µ2(t) ≡ E [dµ1(t)]/dt together imply that the trans-
formation from X(t) to X∗(t) is linear:

X ∗(t) = G0 + G1 X (t), (51)

where

G0 =

 0

0
aQ

µ


 and G1 =


 0 1 0

0 0 1
bQ

µV bQ
µr bQ

µµ


 . (52)
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Rather than writing a new parameterization of the A1(3) model in terms of
X∗(t), we instead choose to transform model-free observations of X∗(t) into X(t)
by inverting (51). Using the change of variables formula, the log likelihood can
now be written as

l (φ, D) =
T∑

t=1

[− ln | det(G1) | + ln p(X (t) | X (t−1), φ) + ln p(Ye(t) | X (t), D, φ)],

(53)

where φ again denotes the affine model parameters and D the covariance matrix
of yield errors. Maintaining the previous parameterization makes it straight-
forward to compare the resulting estimates with those from other approaches.

VII. Empirical Results

In trying to assess the practical usefulness of the methods developed ear-
lier in the paper, our empirical analysis primarily addresses three questions.
First, do simple estimation procedures based on model-free estimates of the
state variables provide reasonably good parameter estimates? Second, do state
variables extracted using the standard inversion method resemble their model-
independent estimates? Finally, to what extent are model deficiencies more
easily diagnosed in a system in which each state variable has a clear economic
interpretation?

A. A0(3) Results

As described above, we estimate the A0(3) model using three different tech-
niques. A problem with interpreting the resulting drift parameter estimates is
that r, µ1, and µ2 are highly collinear. In particular, the vast majority of the
variation in µ2 is explained by r and µ1. We therefore report parameter esti-
mates based on an orthogonalization of µ2. This is obtained by running the
regression

µ2(t) = α + β0r(t) + β1µ1(t) + e(t) (54)

for a given set of state variables. We then define µ∗
2(t) as the residual of that

regression or the component of µ2 that is orthogonal to the other state vari-
ables.33

Using this orthogonalization, the drift of µ2 (not µ∗
2) can be re-expressed as

γ ∗ + κ∗
0r(t) + κ∗

1µ1(t) + κ2µ
∗
2(t), (55)

where γ ∗ = γ + κ2α̂, κ∗
0 = κ0 + κ2β̂0, and κ∗

1 = κ1 + κ2β̂1. The P drifts of r, µ1,

33 An alternative would be to express the model in terms of r, µ1, and 2 µ1 + µ2. Clearly, this
state vector is also observable, and the degree of collinearity is much lower.
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and µ2 can be rewritten similarly, so that

E
[
dX(t)

]
/dt =


a∗

0
a∗

1
a∗

2


 +




b∗
00 b∗

01 b02

b∗
10 b∗

11 b12

b∗
20 b∗

21 b22







r(t)
µ1(t)
µ∗

2(t)


 . (56)

When the model is reasonably well specified, one of the main advantages of
our rotation is the ease with which we can compute reasonable starting values
for a full-blown likelihood maximization. Specifically, parameter values esti-
mated using model-free r, µ1, and µ2 may be used as starting values for the
inversion method. For the estimations using model-free r, µ1, and µ2, few start-
ing values are required, as most parameters can be estimated via regression.
The exceptions are the parameters of the risk-neutral drift of X(t). As we demon-
strate in Section V, however, rough estimates of these parameters may be ob-
tained by regressing a model-free measure of ∂3Y (t)(τ )

∂τ 3 |τ=0 on the three state vari-
ables. Doing so results in the values γ ∗ = −0.0598, κ∗

0 = 0.8085, κ∗
1 = 4.9132,

and κ2 = −1.7587. All of these are reasonably close to our final estimates.
Table II reports parameter estimates using this orthogonalization for the

three different estimation methods. The table also contains estimates obtained
by applying Method III to two halves of the sample separately, which we discuss
below. Standard errors for all columns except column I are computed using
the outer product of the gradients estimator. Standard errors for column I are
somewhat ad hoc, though they are generally similar to those in column II,
which are also based on model-free r, µ1, and µ2.34 In some cases, standard
errors are much smaller for the estimates based on model-free state variables.
This naturally reflects the (perceived) gain in information that results from
knowing the exact values of all state variables.

The overall similarity of the three sets of estimates in columns I to III is im-
mediately apparent. In particular, the parameters of the risk-neutral dynamics
are extremely close. While some P drift parameters are noticeably different, all
estimation methods result in the same sign for each parameter and with similar
magnitudes.

The fact that estimates based on model-free and inverted state variables are
generally close must indicate that the state variables are themselves similar.
Figure 2 confirms this conjecture for each state variable, including both µ2 and
µ∗

2. In each panel, we plot the model-free state variable along with the corre-
sponding inverted variable. The two are in all cases extremely similar, with
correlations of 0.95 and above. In particular, the two time series of instanta-
neous short rates agree nearly perfectly, with a correlation of 0.999.

34 Parameters of the P drift of X(t) are estimated via OLS regression, so OLS standard errors are
used for these parameters. The standard errors for each standard deviation parameter is approx-
imated by applying the chi-squared distribution to the inverse of the sum of squared errors. We
use Fisher’s z transformation to approximate standard errors for the three correlation coefficients.
Finally, standard errors of the risk-neutral drift parameters are computed using an outer product
of gradients estimator applied to (46).
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Figure 2. Model-free versus inverted state variables for the A0(3) model. Each panel
compares the time series of one model-free state variable with an alternative that has been inverted
from the 3-month, 2-year, and 10-year yields using the parameter values in column III of Table II.
Model-free state variables are gray lines, while inverted variables are black lines.

Given the arguably impressive performance of even the simplest estimation
method, a reasonable question to ask is whether there is any potential gain in
using the slightly more involved inversion approach. Table III, which reports
root mean squared errors (RMSE) for all yields, confirms that there is. For
columns I to III, which correspond to the same estimates in Table II, model-
implied zero coupon yields are calculated via (42). Consistent with the way they
are estimated, columns I and II use model-free values of the state vector X(t),
while column III inverts X(t) from the 3-month, 2-year, and 10-year yields.
Because we believe that inverted X(t) are, by construction, likely to be more
accurate in explaining longer-term yields, we also use parameters I and II,
which are estimated using model-free X(t), to invert X(t) for the purpose of
computing yield fits. These results are in the last two columns of the table.35

Finally, we report the results for all maturities, not only those used in the
estimation.

35 We also compute yield fits by combining the inversion-based parameters with model-free state
variables. These fits are the poorest of all.
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Table III
A0(3) Yield Errors

This table contains root mean squared errors computed from yields over the 1988 to 2005 sample
for the A0(3) model. For each of the three sets of parameters described in columns I to III of Table
II, model-implied yields are computed as

Y (t, τ ) = − A(τ )
τ

+ B(τ )
τ

X (t)

and errors are defined as actual minus model-implied yields. Consistent with the three estimation
methods, columns I and II use model-free estimates of the state vector X(t) while column III inverts
X(t) from the 3-month, 2-year, and 10-year yields. In addition, we report yield fits that combine
parameter estimates I and II with inverted X(t). These are reported in columns I∗ and II∗. Entries
with a dash denote maturities with errors that are zero by construction.

I II III I∗ II∗

1-month 6.10 6.10 14.16 17.65 17.64
3-month 5.43 5.43 – – –
6-month 5.26 5.26 6.72 10.39 10.37
9-month 5.40 5.40 9.78 17.56 17.53
1-year 5.26 5.26 10.94 19.22 19.19
2-year 23.91 23.85 – – –
3-year 33.69 33.57 3.89 12.68 12.61
4-year 37.14 36.96 5.41 20.24 20.11
5-year 36.38 36.15 6.22 23.55 23.37
7-year 26.80 26.55 4.78 20.28 20.05
10-year 9.24 9.24 – – –

The results are easily summarized. In comparing the RMSEs, it is clear that
inverted state variables are superior at explaining longer maturity yields, while
model-free state variables are best at explaining short maturity yields. This
result is not surprising given that the model-free variables are explicitly con-
structed to describe the shape of the term structure at near-zero maturities. In
contrast, the inverted state variables are computed to provide the best fit over
a much wider range of maturities, and this allows a much closer fit at the long
end of the yield curve, where the model-free state variables perform poorly.

Among fits based on inverted X(t) (in columns III, I∗, and II∗), it is also
clear (and unsurprising) that column III, which uses parameters estimated via
the inversion method, contains the best fit, with RMSEs between 4 and 14
basis points. In contrast, columns I∗ and II∗, which are based on parameters
estimated with model-free X(t), produce RMSEs between 10 and 24 basis points.

While it is clear that each set of state variables has difficulty in explaining
some range of maturities, it is important to realize that the errors analyzed in
Table III are in some respects quite small. For instance, regressions of actual
yields on model-implied yields result in slope coefficients that are in every case
between 0.98 and 1.03, and the R-squares of all these regressions are at least
0.995. Thus, while the errors implied by each set of estimates may be large
enough to motivate further improvements, all of the estimates are successful
in explaining the vast majority of the variation in yields.
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An additional benefit of using observable state variables is the stability of
the parameter estimates and inverted state variables. We illustrate this by re-
estimating the model using different sample periods. Inversion-based estimates
that use data from the first half of our sample (1988 to 1996) and estimates that
use data from the second half (1997 to 2005) appear in columns III-H1 and III-
H2 of Table II. Each of these sets of estimates is then used to invert time series
of r, µ1, and µ2 for the entire sample (1988 to 2005). Figure 3, which plots both
sets of time series in the three left-hand panels, shows that the state variables
are close to identical, a striking result given that they are based on parameters
estimated over completely nonoverlapping sample periods. The result is con-
sistent with the idea that our state variables, both in theory and in practice,
have interpretations that are essentially independent of the parameters of the
model.

When we look at Table II, it is clear that the full-sample and two half-sample
estimates are generally similar. While there are differences, these differences
reflect changing characteristics of the data rather than changing interpreta-
tions of the state variables. The state variable volatility parameters σ 0, σ 1, and
σ 2, for example, are all higher for the earlier sample than they are for the later
sample. This implies that yields were more volatile in the earlier period, which
in fact is true. Such a straightforward inference, we emphasize, is impossible
in a latent factor framework.

To understand why, we note that there are six sets of parameters under the
canonical rotation of Dai and Singleton (2000) that are each exactly equivalent
to the parameters in column III-H1 of Table II.36 Another six parameter vec-
tors are equivalent to column III-H2. Thus, if the researcher were to re-estimate
the model using different sample periods, it is entirely possible that the opti-
mization might result in a jump from one maximum of the likelihood function
to another. Such a jump would completely redefine the interpretation of each
state variable, making comparisons of the state variable volatility parameters
meaningless. We note that this problem is not merely confined to comparisons
across sample periods, but that it also affects samples that differ by country,
sampling frequency, bond maturities, or usage of derivatives.

As an example of this phenomenon, we invert state variables under the DS
rotation using one of the six sets of parameters that are equivalent to the esti-
mates in column III-H1 of Table II and another that is equivalent to the esti-
mates in column III-H2. A representative set of these results is plotted in the
right three panels of Figure III. It is clear from the figure that, in some cases,
the two sets of state variables bear little relation to one another (even though
they both generate identical likelihood and bond prices). Comparing parameter
values estimated from these two samples therefore makes little sense.

36 The DS rotation of the A0(3) model is written as dX = −KX (t) + dB(t), where K is lower
triangular with positive diagonal elements and B(t) is a vector of standard Brownian motions. The
short rate is then specified as r(t) = δ0 + δ�

X X(t), where δX has all positive elements. Since µ1 and
µ2 are also simple linear combinations of X(t), it is easy to deduce the implied dynamics of {r, µ1,
µ2} for a given combination of K, δ0, and δX .
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Figure 3. A0(3) state variables inverted using parameters from nonoverlapping sample
periods. Gray lines denote state variables that are inverted using parameter values that are
estimated using the 1988 to 1996 sample period. Black lines are constructed identically but use
parameters estimated over 1997 to 2005. The three panels on the left correspond to our canonical
rotation of the A0(3) model. Panels on the right correspond to state variables from the DS rotation.
Note that each set of DS state variables corresponds to a nonunique set of parameter estimates
and thus the results for DS are only representative.

Overall, we find a number of practical advantages in using state variables
that have a clear economic interpretation and that can be reliably inferred
from term structure data without the use of a particular model. Our model-free
state variables appear to be accurately estimated, and they produce excellent
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starting values for full-blown maximum likelihood estimation. While yield fits
using model-free state variables are more accurate for short maturities, they
are less so for longer maturities. Possible explanations of this result include
measurement errors in the model-free estimates and the existence of an id-
iosyncratic factor that only affects short-maturity LIBOR rates. Another possi-
bility is that the A0(3) model is somewhat misspecified, so that factors extracted
from the long and short ends of the term structure do not coincide. In this case,
the inversion method naturally fits the long end better since it matches, exactly
by construction, the 10-year yield.

B. A1(3) Results

Given that we have written the A1(3) model in terms of the short-rate vari-
ance V (in addition to the short rate r and its risk-neutral drift µ1), the simplest
estimation approaches involve using an observed proxy for V. Many possible
proxies might be entertained, including GARCH estimates from daily data,
so-called realized variances computed from high frequency intraday data, and
implied variances from options. None of these proxies is likely to be as accurate
as our model-free {µ} variables. GARCH variances, for instance, are filtered es-
timates that effectively smooth out squared innovations over many lags. Thus,
these estimates are unlikely to represent the instantaneous variance denoted
by V(t). Since realized variances are computed over much shorter intervals, they
avoid this issue to a great degree, but they can be sensitive to measurement
error and may tend to capture a transient component that is less important
for the pricing of most fixed income securities. For these reasons, we choose
to proxy for V using an implied variance from Eurodollar futures options. As
discussed previously in Section IV, the implied variance measure we are able
to construct is imperfect at best, mostly because there is often no option with
a sufficiently short time until expiration. As such, we view the results that are
based on this proxy as somewhat exploratory.37

Two of the four estimation methods we propose for this rotation in
Section VI.B assume observable r, µ1, and V. The first is an approximate two-
step method in which the P parameters are estimated using a discrete-time
heteroskedastic VAR and the risk-neutral drift parameters are estimated con-
ditional on the first step. The second is a standard QML approach given that the
state variables are assumed to be observed. A third estimation method treats
V as unobserved and computes it as a linear combination of model-free r, µ1,
and µ2. The last one is the standard inversion method.

Table IV reports the estimation results. In contrast to the A0(3) case, the four
different methods in some cases result in very different estimated parameters.
Columns I and IIa, which are both based on the implied variance proxy for V,
are in substantial agreement. Columns IIb and III, which do not use the implied
variance series, are also generally similar. Very large differences, however, are

37 Bikbov and Chernov (2005) provide an extensive study of the relation between volatility and
yields implied from Eurodollar futures option prices.



Identification of Maximal Affine Term Structure Models 785
T

ab
le

IV

A
1
(3

)
P

ar
am

et
er

E
st

im
at

es
T

h
is

ta
bl

e
co

n
ta

in
s

pa
ra

m
et

er
es

ti
m

at
es

an
d

as
ym

pt
ot

ic
st

an
da

rd
er

ro
rs

(i
n

pa
re

n
th

es
is

)
fr

om
th

e
19

91
to

20
05

sa
m

pl
e.

P
ar

am
et

er
va

lu
es

ar
e

de
fi

n
ed

in
(3

3)
,(

34
),

an
d

(4
8)

.T
h

e
va

ri
ab

le
V

de
n

ot
es

th
e

in
st

an
ta

n
eo

u
s

va
ri

an
ce

of
th

e
sh

or
t

ra
te

,w
h

il
e

ot
h

er
st

at
e

va
ri

ab
le

s
ar

e
de

fi
n

ed
in

T
ab

le
I.

T
h

re
e

se
ts

of
es

ti
m

at
es

ar
e

re
po

rt
ed

:
I

P
ar

am
et

er
s

es
ti

m
at

ed
u

si
n

g
n

ai
ve

di
sc

re
ti

za
ti

on
,t

re
at

in
g

im
pl

ie
d

V
an

d
m

od
el

-f
re

e
r

an
d

µ
1

as
ac

tu
al

.
II

a
P

ar
am

et
er

s
es

ti
m

at
ed

u
si

n
g

Q
M

L
,t

re
at

in
g

im
pl

ie
d

V
an

d
m

od
el

-f
re

e
r

an
d

µ
1

as
ac

tu
al

.
II

b
P

ar
am

et
er

s
es

ti
m

at
ed

u
si

n
g

Q
M

L
,t

re
at

in
g

m
od

el
-f

re
e

r,
µ

1
,a

n
d

µ
2

as
ac

tu
al

.
II

I
P

ar
am

et
er

s
es

ti
m

at
ed

u
si

n
g

Q
M

L
by

in
ve

rt
in

g
th

re
e

bo
ot

st
ra

pp
ed

ze
ro

co
u

po
n

yi
el

ds
(3

-m
on

th
,2

-y
ea

r,
an

d
10

-y
ea

r)
.

I
II

a
II

b
II

I
I

II
a

II
b

II
I

a
Q V

×
10

5
2.

14
5

2.
24

3
1.

83
3

1.
83

2
a V

×
10

4
2.

39
7

2.
08

9
0.

11
3

0.
12

0
(0

.1
80

)
(0

.1
95

)
(0

.0
63

)
(0

.0
74

)
(0

.3
61

)
(0

.4
10

)
(0

.1
07

)
(0

.1
09

)
bQ V

V
0.

00
0

0.
00

0
0.

36
0

0.
52

3
b V

V
0.

00
7

0.
00

7
0.

12
7

0.
03

6
(N

/A
)

(N
/A

)
(0

.0
02

)
(0

.0
06

)
(0

.0
05

)
(0

.0
05

)
(0

.0
38

)
(0

.0
17

)
a

Q µ
0.

03
9

0.
03

9
−0

.0
96

−0
.0

32
a r

0.
02

3
0.

02
0

−0
.1

22
−0

.0
28

(0
.0

01
)

(0
.0

01
)

(0
.0

20
)

(0
.0

05
)

(0
.0

19
)

(0
.0

19
)

(0
.1

35
)

(0
.0

54
)

bQ µ
V

18
0.

22
4

18
1.

34
6

19
74

.2
71

10
94

.6
26

b R
V

−5
.8

80
−4

.2
92

−0
.2

23
−0

.2
85

(5
.3

55
)

(6
.0

45
)

(3
83

.0
49

)
(1

16
.2

60
)

(1
.2

35
)

(1
.1

94
)

(0
.2

07
)

(0
.2

32
)

bQ µ
r

−0
.7

33
−0

.7
33

0.
04

2
−0

.0
64

b r
r

−1
94

.7
79

−2
09

.4
15

−1
87

2.
61

3
−5

37
.0

17
(0

.0
15

)
(0

.0
16

)
(0

.0
02

)
(0

.0
01

)
(6

5.
54

6)
(6

8.
31

0)
(6

13
.4

00
)

(2
21

.0
25

)
bQ µ

µ
−2

.5
44

−2
.5

44
−1

.9
93

−1
.7

32
b r

µ
−0

.0
91

−0
.0

81
−0

.7
34

−0
.3

29
(0

.0
23

)
(0

.0
24

)
(0

.0
03

)
(0

.0
22

)
(0

.0
89

)
(0

.0
88

)
(0

.1
95

)
(0

.1
65

)
V

×
10

5
0.

12
8

0.
12

8
2.

23
0

0.
44

0
a µ

0.
86

5
0.

84
1

0.
66

4
0.

67
4

(0
.0

56
)

(0
.1

08
)

(0
.7

90
)

(0
.7

40
)

(0
.0

86
)

(0
.0

85
)

(0
.1

13
)

(0
.0

98
)

σ
V V

×
10

4
3.

69
9

4.
07

5
0.

01
2

0.
03

7
b µ

V
25

5.
70

9
37

4.
60

2
19

66
.4

31
60

1.
66

1
(0

.1
15

)
(0

.2
48

)
(0

.0
03

)
(0

.0
06

)
(3

48
.8

41
)

(3
58

.2
06

)
(2

05
7.

55
9)

(7
97

.4
11

)
σ

0 µ
×

10
4

4.
44

0
4.

37
9

1.
47

2
1.

94
9

b µ
r

−0
.6

14
−0

.5
54

0.
65

4
0.

24
4

(0
.6

37
)

(0
.7

18
)

(1
.3

58
)

(1
.0

85
)

(0
.4

09
)

(0
.3

86
)

(0
.7

16
)

(0
.4

68
)

σ
µ V

16
.2

49
16

.5
63

32
.8

33
19

.4
69

b µ
µ

−1
.5

45
−1

.2
40

−1
.8

35
−1

.6
55

(2
.4

14
)

(2
.4

48
)

(7
.3

54
)

(3
.0

05
)

(0
.4

68
)

(0
.4

50
)

(0
.4

29
)

(0
.3

86
)

cV V
r

×
10

3
0.

62
6

1.
25

5
0.

24
9

0.
30

4
(0

.7
36

)
(0

.6
93

)
(0

.0
44

)
(0

.0
73

)
cV V

µ
×

10
3

2.
14

9
2.

03
2

−4
.7

54
−6

.4
53

(3
.5

58
)

(3
.3

55
)

(0
.7

25
)

(0
.9

81
)

c0 rµ
×

10
5

−2
.3

85
−2

.3
69

−5
.7

28
−2

.9
29

(4
.7

31
)

(5
.6

48
)

(3
.2

60
)

(2
.2

51
)

a
V rµ

−2
.0

40
−2

.1
50

−2
.2

96
−1

.7
90

(0
.2

24
)

(0
.2

27
)

(0
.9

06
)

(0
.4

25
)



786 The Journal of Finance

Table V
A1(3) Yield Errors

This table contains root mean squared errors computed from yields over the 1991 to 2005 sample
for the A1(3) model. For parameter vectors IIa, IIb, and III from Table IV, model-implied yields are
computed as

Y (t, τ ) = − A(τ )
τ

+ B(τ )
τ

X (t)

and errors are defined as actual minus model-implied yields. Consistent with the three estimation
methods, column IIa uses an implied variance proxy for V and model-free estimates of r and µ1.
Column IIb uses model-free estimates of r, µ1, and µ2, while column III inverts the state vector
X from the 3-month, 2-year, and 10-year yields. In addition, we report yield fits that combine
parameter estimates IIa and IIb with inverted X. These are reported in columns IIa∗ and IIb∗.
Entries with a dash denote maturities with errors that are zero by construction.

IIa IIb III IIa∗ IIb∗

1-month 6.04 6.02 13.74 17.51 16.96
3-month 5.37 5.40 – – –
6-month 5.25 5.35 6.67 12.33 10.10
9-month 6.21 5.19 9.13 20.51 16.32
1-year 7.76 5.07 9.53 23.64 17.22
2-year 29.07 22.96 – – –
3-year 42.30 32.27 3.73 27.87 12.13
4-year 50.46 35.35 5.09 31.89 19.20
5-year 56.39 34.77 5.64 35.38 22.54
7-year 63.72 24.73 4.73 41.98 18.65
10-year 72.17 8.85 – – –

observed between these two pairs of estimates, especially for the model-implied
variance dynamics. Surprisingly, under the risk-neutral measure, V has zero
mean reversion (bQ

VV ≈ 0) for estimates I and IIa but substantial mean reversion
for IIb and III.38 Through their higher values for bQ

µV , estimates IIb and III
also imply a term structure that is much more sensitive to changes in V, yet
these parameters also suggest (through small values of σV

V ) that V is itself not
very volatile. Many other differences are notable, but most of them reinforce
the idea that volatility dynamics look very different depending on whether or
not implied variance is used in the estimation.

To investigate this issue further, Figure 4 plots the time series of the square
root of V corresponding to each estimation method. Alongside each time series is
another model-free estimate of short-rate volatility, a simple standard deviation
calculated by applying a 30-day centered rolling window to daily changes in
3-month LIBOR rates.

The top panel plots the implied volatility from Eurodollar options used in es-
timates I and IIa against the rolling LIBOR volatility. The correlation between
the two time series is 0.65, and the two are also similar in terms of level and

38 Our estimates are constrained to be stationary under both measures, but the constraint binds
for estimates I and IIa. To compute standard errors for these estimates, we simply treat bQ

VV as
being fixed at zero.
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Figure 4. Estimated and implied short rate volatilities for the A1(3) model. Each panel
contains the measure of volatility assumed or implied by each estimation method (the black lines)
along with a rolling volatility estimate computed from daily 3-month LIBOR rates using a centered
30-day moving window (the gray lines). In the top panel, the black line denotes an implied volatility
from Eurodollar options. The black line in the middle panel denotes a volatility that is inferred
from model-free r, µ1, and µ2, while in the bottom panel it is a volatility measure inverted from the
3-month, 2-year, and 10-year yields.
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degree of variation. In the middle panel, we have the short-rate volatility that
is implied by model-free estimates of r, µ1, and µ2. What is most striking here
is the near constancy of the volatility process. Matters improve slightly for
the inversion approach, displayed in the bottom panel, but the volatility pro-
cess is still just barely fluctuating and only marginally related to our ex post
measure.

It is not clear, however, that using the implied volatility measure leads to
an overall improvement in fit. Table V contains root mean squared errors to
gauge the ability of each set of parameter estimates to fit the cross-section of
yields.39 As in Table III, we first compute model-implied yields in a manner
consistent with the estimation of each set of parameters, so that parameters
estimated using implied variance and model-free r and µ1, for example, use
those proxies in computing yields via (42). We then compute yield fits by using
parameters estimated from model-free proxies for X(t) to invert those state
variables instead and use the inverted values to compute model-implied yields.

In short, the results suggest that using an implied variance proxy for V(t)
does not lead to an adequate fit of the cross-section of yields. In column IIa
we see that implied volatility-based estimates generate the largest RMSEs. In
column IIa∗, we use the same parameters with inverted state variables and find
results that are only marginally improved. Thus, our results suggest that as
long as our implied variance measure at least roughly matches actual short-rate
variance, it is unlikely that a variance factor can help span the three factors
identified in most term structure analysis.

In comparing yield fits based on model-free r, µ1, and µ2 to those based on
inverted X(t), we find results very similar to those for the A0(3) model. Specifi-
cally, model-free state variables are best at explaining short-term yields, while
inverted state variables provide a better fit over the yield curve as a whole.
Here, however, we believe that there is much stronger evidence that the main
advantage of the inversion approach is its ability to compensate for clear model
misspecifications. In particular, the inversion method allows the state variable
V to adopt a dynamic that is inconsistent with its definition as the variance of
the short rate. While this inconsistency would be implicit in any representation
of the A1(3) model, in our rotation it is very hard to miss, which is a benefit of
our approach.

Finally, in an attempt to diagnose why our use of implied variance is so
ineffective in explaining yield curve variation, we return to analyzing the re-
lations between model-implied and model-free state variables. As we found
for the A0(3) model, inverted time series of r and µ1 match the model-free es-
timates precisely, with correlation coefficients of 0.96 or above, so we do not
examine them further. Instead, Figure 5 focuses on µ2 and µ∗

2, the latter of
which is orthogonalized to r and µ1 (but not V) using the regression approach of
Section VII.A.

The top panels of Figure 5 plot measures of µ2 and µ∗
2 that are implied by

model-free r and µ1 and the implied variance proxy for V. Since µ2 is, by

39 For brevity, we drop estimate I because it is very similar to IIa.
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Figure 5. Estimated versus model-free µ2 and µ∗
2 for the A1(3) model. Each panel displays

a time series of µ2 or µ∗
2 (the black lines) that is estimated using the A1(3) model against model-free

estimates (the gray lines) of the same series. The top two panels compare model-free estimates of
µ2 and µ∗

2 with series that are computed as linear combinations of model-free r and µ1 and the
implied variance proxy for V. The bottom panels compare model-free µ2 and µ∗

2 with series that
are inverted from, 3-month, 2-year, and 10-year yields using the parameter values in column III of
Table IV.

definition, the risk-neutral drift of µ1, it can be computed from these series
following (33) as

bQ
µrr(t) + bQ

µµµ1(t) + bQ
µV V (t).

The parameter values used are from column IIa of Table IV because these
estimates are obtained by treating the same series as observable. The bottom
panels of Figure 5 compute µ2 similarly, but there we use the inversion-based
parameters from column III of Table IV along with inverted values of r, µ1,
and V.
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Surprisingly, the top left panel suggests that observable proxies for r, µ1, and
V do an adequate job in fitting the time series of µ2. Unfortunately, the goodness
of this fit is illusory, as it merely reflects the high degree of correlation between
model-free µ1 and µ2. In the top right panel, which displays the orthogonalized
series µ∗

2, we find a much worse fit. Because models that fit µ∗
2 also fit yields

reasonably well, the poor fit reveals the source of the large RMSEs in Table V:
Implied volatilities cannot explain yields because they do not adequately ex-
plain independent variation in µ2.

In contrast, the bottom panels show that inversion-based time series of µ2 and
µ∗

2 match quite closely with model-free estimates. Given the poor performance
of inversion-based estimates in explaining volatility, their greater success in
matching µ2 is perhaps not surprising.

Although our results are based on a somewhat simplistic empirical approach,
the fact that they are so sensitive to the choice of µ1 versus V indicates that
the model is likely misspecified. A companion paper, Collin-Dufresne et al.
(2007), provides further evidence on this issue using a more robust econometric
approach.

VIII. Conclusion

Typically, affine models of the term structure are written in terms of a latent
state variable whose components have no economic meaning independent of the
model and the model’s parameters. Often, this leads to representations that are
not globally identifiable. Outside of the goodness-of-fit estimates, values for the
state vector and parameter vector, taken individually, are often meaningless.

To circumvent these concerns, we propose a representation in which the state
vector is written in terms of theoretically observable state variables that have
unambiguous economic interpretations. As such, global identification of the
model is guaranteed. Further, the representation naturally leads to a canonical
representation that is more flexible (in that there are more free parameters)
than that identified by Dai and Singleton (2000). In addition, we suspect that by
rotating to economically meaningful variables, the likelihood function becomes
“steeper,” since changes in parameter values can no longer be offset by changes
in the state variables, whose economic interpretations are now fixed. Thus,
we suspect that, starting at the same initial first guess, the search for the
maximal likelihood parameter vector will generally be faster for our proposed
specifications than for latent specifications.

We demonstrate using simulations and actual data that our state variables
can be estimated independent of the model extremely well. This provides a sim-
ple method for obtaining good first-guess values for the parameter vector of a
complex model, which is useful for the computationally burdensome estimation
methods often employed in this literature. Furthermore, being able to compute
model-free state variables allows for a comparison with the state variables ob-
tained from inverting yields, and our results suggest that deviations between
the two can be informative about the form of any model misspecification. We
study one Gaussian model and one stochastic volatility model. For the Gaussian
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model, we find that model-implied state variables and their model-free proxies
are close matches.40 For the stochastic volatility case, we find significant dis-
crepancies between model-implied and observable state variables, which sug-
gests to us a tension in fitting level, slope, curvature, and volatility within
affine three-factor models. We investigate this question further in a companion
paper (Collin-Dufresne et al. (2007)). Finally, we provide evidence that observ-
able state variables, even when estimated using the model- and parameter-
dependent inversion method, are often not very sensitive to the model or the
parameter vector. This facilitates the comparison of parameter values obtained
from different countries or sample periods, as they can be made directly without
having to correct for differing economic interpretations of the underlying state
variables.

Appendix: Proof of Generality of Equations (21)–(24)

Consider a Markov state vector {X(t)} of length N with general (i.e., non-
affine) risk-neutral dynamics

dXi = mQ
i

({X }) dt +
N∑

k=1

σik
({X }) dzQ

k . (A1)

Further, assume the spot rate is some arbitrary function of the state vector
r = r ({X}). Using the shorthand notations mQ

i = mQ
i ({X}) and σik = σik({X}), we

obtain from Ito’s lemma the dynamics for r(t):

dr =
N∑

i=1

∂r
∂ X i

[
mQ

i dt +
N∑

k=1

σik dzQ
k

]
+ 1

2

N∑
i, j ,k=1

∂2r
∂ X i∂ X j

σik σjk dt. (A2)

Note that this allows us to define the drift and the variance of the spot rate as

µ1(t) ≡ 1
dt

EQ
t

[
dr

]

≡
N∑

i=1

∂r
∂ X i

mQ
i + 1

2

N∑
i, j ,k=1

∂2r
∂ X i∂ X j

σik σjk

(A3)

V (t) ≡ 1
dt

VarQ
t

[
dr

]

≡
N∑

i, j ,k=1

∂r
∂ X i

∂r
∂ X j

σik σjk.

(A4)

40 In unreported results (available upon request), we find large discrepancies between model-
implied and observable state variables for the two-factor Gaussian model, suggesting that the
model is not well specified.
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Further, from Ito’s lemma we have

µ2(t) = 1
dt

EQ
t [dµ1(t)]

=
N∑

i=1

∂µ1

∂ X i
mQ

i + 1
2

N∑
i, j , k=1

∂2µ1

∂ X i∂ X j
σik σjk.

(A5)

If we define τ ≡ (T − t), then the date-t price PT (t, {Xt}) of a zero coupon
bond with maturity T can be written in terms of yield to maturity as

P T (t, {X t}) ≡ e−τ Y ({X t },τ ). (A6)

Using the notation Pτ ≡ ∂ P
∂τ

, Pi ≡ ∂ P
∂ X i

, etc., we have

Pτ = [−Y − τ Yτ ] P (A7)

Pi = −τ Yi P (A8)

Pij = [τ 2 Yi Y j − τ Yij] P . (A9)

Bond prices satisfy the PDE

rP = −Pτ +
N∑

i=1

Pi mQ
i + 1

2

N∑
ijk=1

Pijσikσjk. (A10)

Plugging in equations (A7) to (A9), we find

r(t) = [
Y + τ Yτ

] − τ

N∑
i=1

Yi mQ
i + 1

2

N∑
ijk=1

[
τ 2 Yi Y j − τ Yij

]
σik σjk. (A11)

Now we use a Taylor series expansion to write yields as

Y ({X t}, τ ) ≡ Y 0({X t}) + τ Y 1({X t}) + 1
2

τ 2 Y 2({X t}) + . . . . (A12)

Plugging this expansion into equation (A11) and collecting terms of different
orders of τ , we find that the general relation between {rj} and {Yh} is given by

Y 0 = r (A13)
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and for h > 0

Y h = h!
1 + h




N∑
i=1

Y h−1
i

(h − 1)!
mi + 1

2

N∑
ijk=1




Y h−1
ij

(h − 1)!
−

∑
(m, n) > 0

s.t.
m + n + 2 = h

Y m
i

m!

Y n
j

n!




σikσjk




rh(t) =
N∑

i=1

∂rh−1

∂ X i
mQ

i + 1
2

N∑
i, j , k=1

∂2rh−1

∂ X i∂ X j
σik σjk.

(A14)

For example, we obtain for the first few terms:

τ 0 : Y 0({X t}) = r({X t}) (A15)

τ 1 : Y 1({X t}) = 1
2

µ1({X t}) (A16)

τ 2 : Y 2({X t}) = 1
3

[
µ2(t) − V (t)

]
(A17)

τ 3 : Y 3(t) = 1
4

{
r3(t) − Et[d V00(t)]/dt − 3V01(t)

}
. (A18)

That is, the level, slope, and curvature of the yield curve at τ = 0 are intimately
related to r, µ1, µ2, and the variance of the spot rate (dr)2.
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