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Most affine models of the term structure with stochastic volatility predict that the

variance of the short rate should play a ‘dual role’ in that it should also equal a linear

combination of yields. However, we find that estimation of a standard affine three-factor

model results in a variance state variable that, while instrumental in explaining the

shape of the yield curve, is essentially unrelated to GARCH estimates of the quadratic

variation of the spot rate process or to implied variances from options. We then

investigate four-factor affine models. Of the models tested, only the model that exhibits

‘unspanned stochastic volatility’ (USV) generates both realistic short rate volatility

estimates and a good cross-sectional fit. Our findings suggest that short rate volatility

cannot be extracted from the cross-section of bond prices. In particular, short rate

volatility and convexity are only weakly correlated.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

This paper investigates the relation between interest
rate volatility and the cross section of bond yields. It is
well-established that at least three factors are needed to
capture bond yield dynamics: Litterman and Scheinkman
(1991) interpret them as level, slope, and curvature. It is
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also well-established that interest rate volatility is
stochastic.1 As such, this paper focuses on those three-
and four-factor models of the term structure that capture
stochastic volatility.

By imposing only the condition of no-arbitrage, it can
be shown that state variables that drive changes in
interest rate volatility generally play a ‘dual role’ in that
they also drive changes in bond yields.2 For example,
theoretical considerations generally imply a strong link
between changes in short-rate volatility and changes in
curvature. Not surprisingly, this prediction is manifest
in the specific models proposed in the literature. For
example, affine models of the term structure predict that
state variables driving interest rate volatility are also
1 See, for example, Fama (1976), Engle, Lilien, and Robins (1987),

Brenner, Harjes, and Kroner (1996), and Han (2007).
2 See, for example, Litterman, Scheinkman, and Weiss (1991), and

Collin-Dufresne, Goldstein, and Jones (CGJ, 2008, p. 785), and Eq. (11)

below.

www.elsevier.com/locate/jfec
www.elsevier.com/locate/jfec
dx.doi.org/10.1016/j.jfineco.2008.06.007
mailto:christopher.jones@marshall.usc.edu


ARTICLE IN PRESS

P. Collin-Dufresne et al. / Journal of Financial Economics 94 (2009) 47–6648
linear combinations of yields. As a special case, the
‘preferred’ A1ð3Þ model of Dai and Singleton (DS, 2000)
predicts that the variance of the spot rate is also a linear
combination of the level, slope, and curvature of the yield
curve.

The first goal of this paper is to investigate whether the
variance state variable in the preferred A1ð3Þ model can
simultaneously satisfy its dual roles as the source of time-
varying yield volatility and a factor in the yield curve.
We choose this model because Duffee (2002) concludes
that it offers the best forecasting performance among
three-factor models with stochastic volatility, while
DS find that it offers the best characterization of
unconditional yield volatilities and a sufficiently flexible
correlation structure.3

On the other hand, there is evidence that the A1ð3Þ
model is misspecified.4 Therefore, a more general goal of
the paper is to investigate the joint dynamics of level,
slope, curvature, and volatility factors within a more
flexible four-factor affine framework that does not impose
at the outset a deterministic link between them.

We also investigate a subset of the affine class that
displays ‘unspanned stochastic volatility’ (USV). These
models impose strong parameter constraints in order to
generate bond yields that are independent of some of the
variables driving volatility. As such, these ‘unspanned’
variables do not play a dual role and thus are free to more
accurately capture the time-series properties of interest
rate volatility. This potential benefit is not without costs,
however. First, the large number of parameter constraints
may prove to be overly restrictive. For example, the A1ð4Þ
USV model has only 11 risk-neutral parameters that affect
bond yields, compared to 22 for its unrestricted counter-
part. Second, limiting a variance state variable to have
only a time-series role means that such a model will be
less able to explain cross-sectional yield patterns. For
example, the A1ð4Þ USV model has only three factors to
capture the cross section of yields.

Prior empirical work on USV has focused almost
exclusively on the spanning relation between interest
3 We note that recent empirical literature has reported that the

affine class has trouble simultaneously fitting certain cross-sectional and

time-series properties of the yield curve (Duffee, 2002; Dai and

Singleton, 2002; Duarte, 2004). Indeed, these papers suggest that a

more flexible risk premium structure is used to reconcile the time-

variation in conditional variances and the forecasting power of the slope

of the term structure. Further, Cochrane and Piazzesi (2005) find a state

variable that drives risk premia but that is separate from the three

factors affecting yield curve shape. The tradeoff we uncover here

involves second-order moments, and thus is independent of the risk

premia structure. Note that since the volatility structure is invariant

under transformation from the historical measure to the risk-neutral

measure, proposing a more general risk premia specification will not

overcome this problem as it did in Duffee (2002).
4 For example, Collin-Dufresne, Goldstein, and Jones (2008) propose

a representation of affine models in terms of economically meaningful

state variables (such as level, slope, and curvature) that can be estimated

model-independently. They argue that if a model is well-specified, then

state variables ‘inverted’ from prices using standard econometric

techniques should be closely related to the model-independent esti-

mates. They find for the A1ð3Þmodel that there are substantial deviations

between the two when volatility is used as an observable state variable.
rate derivatives and bond prices. For example, Collin-
Dufresne and Goldstein (CDG, 2002) find changes in swap
rates are only weakly correlated with returns on at-the-
money cap straddles, while Heidari and Wu (2003) obtain
similar results using implied volatilities from swaptions.
Li and Zhao (2006) investigate quadratic models of the
term structure and find them incapable of explaining the
returns on caps of various maturities and strike prices.
In contrast, Fan, Gupta, and Ritchken (2003) report that
swaption returns are in fact well-spanned by yield
changes, while both Bikbov and Chernov (2009) and Joslin
(2007) report that the USV restrictions are strongly
rejected when bond and option data are used.

Our paper differs from the previous work by focusing
on the ability of USV models to explain bond
prices themselves. Specifically, we are interested in
determining whether USV models are able to simulta-
neously match both the cross-sectional and time-series
properties of bond yields. While it seems clear that the
USV model will match some aspects of the time series of
volatility (i.e., conditional second moments of yields)
relatively well, it is unclear how the restrictions imposed
to generate USV will affect the model’s ability to capture
the cross section and time series of yields (i.e., conditional
first moments).

We note that many standard econometric methods
used to estimate affine models are unsuitable for
investigating models exhibiting USV. Indeed, a conse-
quence of imposing USV restrictions is that the one-to-one
mapping assumed by Duffie and Kan (DK, 1996) between
yields and factors does not hold. This implies that
standard estimation techniques that rely on the ‘invert-
ibility’ of the term structure (e.g., Chen and Scott, 1993;
Pearson and Sun, 1994) with respect to the latent factors
cannot be implemented. The Kalman filter-based ap-
proaches of Duan and Simonato (1999) and de Jong
(2000) are also unsuitable for our purposes because USV
restrictions make it impossible for a linear filter to
properly update the distribution of the unknown volatility
state variable. We therefore write term structure dy-
namics in a nonlinear state space form and estimate the
parameters of the models using Bayesian Markov chain
Monte Carlo (MCMC).

The results from estimating the unrestricted essen-
tially affine three-factor model are striking. Most sig-
nificantly, we obtain the ‘self-inconsistent’ result that the
volatility factor extracted from this model (i.e., the ‘term
structure-implied volatility’) is basically unrelated to
volatilities estimated using rolling windows, GARCH
volatilities, or implied volatilities from options. Further-
more, the strong in-sample fit of that model breaks down
following the end of the estimation period, suggesting
deep misspecification.

We interpret these findings as evidence that three-
factor models cannot simultaneously describe the yield
curve’s level, slope, curvature, and volatility. That is,
volatility is unable to play the dual role that such a model
predicts it does. The estimation of such a model therefore
presents a tradeoff between choosing volatility dynamics
that are more consistent with one role or the other.
For the data set we investigate, and with no parameter
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restrictions imposed, that tradeoff is heavily tilted toward
explaining the cross section.5

Both the A1ð3Þ and A1ð4Þ models exhibiting USV imply
realistic behavior for the dynamics of short rate volatility,
but the A1ð3Þ USV model fails on (at least) two dimen-
sions. First, with just two factors affecting the cross
section of yields, it cannot provide the same accuracy in
fitting the cross section as does the unrestricted three-
factor model or the four-factor USV model. Second, the
unconditional yield volatilities implied by the model are
inconsistent with the data, as they fail to reproduce the
‘hump shape’ relation between unconditional volatility
and maturity found in the data. Therefore, in this paper,
we report only the results for the A1ð4Þ USV model and
compare them to the results for the unrestricted A1ð3Þ and
A1ð4Þ models.6

Of the models investigated, only the A1ð4Þ USV model is
able to generate both good cross-sectional and time-series
fits of yields. Since it has three factors that affect yields,
the model’s in-sample fit is very tight. Furthermore, in
contrast to the unconstrained A1ð3Þ model, this model is
just as accurate (if not more so) in our three-year ‘hold-
out’ sample. The model is able to simultaneously forecast
volatilities of yields at all maturities, both in- and out-of-
sample, and it generates the correct hump shape in the
term structure of unconditional volatilities. Given our use
of a relatively short sample period, we were unable to
gauge the model’s yield forecasting performance with
much accuracy, but we note that the model has at least as
much flexibility in its risk premia as the most general
models considered by Duffee (2002).

While the unconstrained A1ð4Þ model performs better
than the unconstrained A1ð3Þ model in that its predicted
volatility is at least positively correlated with volatility
estimates such as GARCH, it is still grossly inadequate at
capturing the volatility of short rates. In particular, for
short maturity yields, the USV model outperforms the
unconstrained A1ð4Þ model both in- and out-of-sample
when it comes to volatility forecasts. Further, the USV
model, fitted to weekly data, delivers forecasts that are
equal to or better than GARCH forecasts based on daily
data. However, for longer maturities, the USV and non-
USV models seem to perform similarly with respect to
volatility predictions, and both are inferior to GARCH.
These results indicate that within the unconstrained four-
factor model there is a tension between capturing the
unconditional distribution of yields and the short rate
volatility dynamics. These results also suggest that a
better model would allow for different drivers for the
volatilities of short and long maturity yields. An important
5 Rather than imposing USV parameter constraints, an alternative

method to ‘tilt’ the estimation procedure toward capturing volatility

dynamics is to include data on derivative prices, which tend to be more

sensitive to volatility dynamics (e.g., Jagannathan, Kaplin, and Sun, 2003;

Bikbov and Chernov, 2009; Almeida, Graveline, and Joslin, 2006). We

suspect that, when both options and yield data are used, the variance

state variable will be more closely related to interest rate variance and

less related to the shape of the yield curve. That does not, however, affect

our findings that interest rate volatility is weakly correlated with the

level, slope, and curvature of the yield curve.
6 Results for the A1ð3Þ USV model are available upon request.
implication of our findings is that any strategy that
attempts to hedge the volatility risk inherent in fixed
income derivatives (if feasible at all) must be substantially
more complex than the convexity-based ‘butterfly’ posi-
tions discussed by Litterman, Scheinkman, and Weiss
(1991) and implied in Brown and Schaefer (1994a, b).
Indeed, our results suggest that implied spot rate volatility
measures extracted from the cross section of the yield
curve are likely to be bad estimates of actual volatility.

The rest of the paper is as follows. In Section 2, we
characterize maximal three- and four-factor models
exhibiting USV. In Section 3, we describe an estimation
methodology that remains valid under USV, while Section
4 includes all empirical results. We conclude in Section 5.
2. Stochastic volatility affine models of the term
structure

Mostly following the notation of DK and DS, the risk-
neutral dynamics of a Markov N-dimensional state vector
X within an affine framework can be specified as

dXt ¼KQ
ðYQ
� XtÞdt þ S

ffiffiffiffi
St

p
dZQ

t , (1)

where ZQ is a vector of M (MXN)7 independent Brownian
Motions, KQ is an N � N matrix, S is N �M, and S is a
diagonal M �M matrix with components

Sii;t ¼ ai þ b>i Xt . (2)

The spot rate is an affine function of X:

rt ¼ d0 þ d>x Xt , (3)

where dx is an N-dimensional vector. The affine class
generalizes specifications proposed by Vasicek (1977),
Cox, Ingersoll, and Ross (1981, 1985), as well as many
others.

Assuming the system is ‘admissible,’8 zero-coupon
bond prices take the form:

PtðtÞ ¼ eAðtÞ�BðtÞ>Xt , (4)

where t � ðT � tÞ and where AðtÞ and BðtÞ satisfy the
ODEs:

dAðtÞ
dt ¼ �Y

Q>KQ> BðtÞ þ 1

2

XM
i¼1

½S>BðtÞ�2i ai � d0,

dBðtÞ
dt ¼ �K

Q> BðtÞ � 1

2

XM
i¼1

½S>BðtÞ�2i bi þ dx,

and the initial conditions:

Að0Þ ¼ 0; Bð0Þ ¼ 0.
7 Collin-Dufresne, Goldstein, and Jones (2008) show that if one

assumes state vector dynamics as in Eq. (1), then for some cases it is

necessary to specify the model with more Brownian motions ðMÞ than

state variables ðNÞ to avoid ruling out some identifiable specifications.
8 That is, assuming that the stochastic differential equation admits a

unique strong solution. Sufficient conditions are given in Duffie and Kan

(1996).
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Defining bond yields YtðtÞ via PtðtÞ ¼ e�tYt ðtÞ, we see from
Eq. (4) that yields are affine in the state variables:

YtðtÞ ¼ �
AðtÞ
t
þ

BðtÞ>

t
Xt . (5)

All models we investigate below are special cases of this
general affine model. Specifically, using the DS classifica-
tion scheme, we focus on the A1ð3Þ and A1ð4Þ models.
These are models with N ¼ 3 and 4 state variables,
respectively, only one of which drives stochastic volatility.

As is well-known, there are several equivalent ways to
represent a given model.9 Following Collin-Dufresne,
Goldstein, and Jones (2008), we choose a representation
for the state vector X in which each state variable has a
clear economic interpretation. Specifically, we use X ¼

½r;mQ ;V � as the state vector for three-factor models and
X ¼ ½r;mQ ; yQ ;V � as the state vector for four-factor models,
where the state variables are defined as follows:

rt ¼ Ytð0Þ, (6)

mQ
t ¼ 2

@YtðtÞ
@t

����
t¼0

, (7)

yQ
t ¼ 3

@2YtðtÞ
@t2

�����
t¼0

, (8)

Vt ¼
1

dt

� �
dr2

t . (9)

In other words, r is the level, mQ is two times the slope,
and yQ is three times the curvature of the yield curve at
short maturities. Finally, V is the variance of the short rate.
CGJ discuss some of the advantages of this representation
and show that10

mQ
t ¼ EQ

t ½drt �=dt, (10)

yQ
t ¼ EQ

t ½dm
Q
t �=dt � Vt . (11)

Note that Eq. (11) predicts that the short rate variance is
intimately linked to curvature. We emphasize that this
result assumes only the condition of no-arbitrage.

An interesting feature of this representation is that,
since the state variables possess economic interpretations
irrespective of the model, their implied time series can be
directly compared across models (unlike latent variables).
Further, this representation makes it easier to identify the
restrictions on parameters necessary to obtain USV. We
present these restrictions below.
2.1. The A1ð3Þ model

Following CGJ, we present the A1ð3Þ model in terms of
the instantaneous risk-neutral means and covariances of
9 See, for example, the DS discussion of these ‘invariant transforma-

tions.’
10 This can also be verified by direct calculation on the bond price

formula presented below.
the state vector X ¼ ½r;mQ ;V �> as

1

dt
EQ
½dXt� ¼

mQ
t

m0 þmrrt þmmmQ
t þmV Vt

gV � kV Vt

2
664

3
775 (12)

and

1

dt
CovðdXt ; dX>t Þ � Ot ¼ O0 þOV ðVt � VÞ, (13)

where the parameter V sets the lower bound of the Vt

process and where

O0 ¼

V crm 0

crm sm 0

0 0 0

2
64

3
75 and OV ¼

1 crm crV

crm sm cmV

crV cmV sV

2
64

3
75.

(14)

As shown in DS and CGJ, this model is Q-maximal in that
it has the largest number of parameters that can be
identified from the cross section of fixed income secu-
rities. For admissibility, we require that the matrix O0 be
positive semidefinite and OV positive definite.
2.2. The A1ð4Þ model

As discussed above, we specify the A1ð4Þ model by
adding an additional state variable to the model. This
variable, yQ , measures the curvature of the yield curve at
short maturities. We present the risk-neutral dynamics of
the new state vector X ¼ ½r;mQ ; yQ ;V �> in terms of its
instantaneous drift and covariance matrix as

1

dt
EQ dXt

� �
¼

mQ
t

yQ
t þ Vt

a0 þ arrt þ ammQ
t þ ayy

Q
t þ aV Vt

gV � kV Vt

2
666664

3
777775 (15)

and

1

dt
CovðdXt ; dX>t Þ � Ot ¼ O0 þOV ðVt � VÞ, (16)

where

O0 ¼

V crm cry 0

crm sm cmy 0

cry cmy sy 0

0 0 0 0

2
666664

3
777775 and

OV ¼

1 crm cry crV

crm sm cmy cmV

cry cmy sy cyV

crV cmV cyV sV

2
666664

3
777775. (17)

This is the maximal A1ð4Þ model, with a total of 22 free
risk-neutral parameters. Similarly to the A1ð3Þ model, we
require for admissibility that the matrix O0 be positive
semidefinite and OV positive definite.
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so that the risk-neutral parameters (gV ;kV ) are distinct from their

physical-measure counterparts.
12 The only condition is that the volatility process be sufficiently

regular for the discounted price process to be a martingale.
13 See Harrison and Kreps (1979) and Harrison and Pliska (1981).
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2.3. The A1ð4Þ USV model

Following the approach of CDG, we find that the A1ð4Þ
model exhibits USV if the following restrictions are
imposed:

ar ¼ �2c2
rmð3crm � ayÞ,

am ¼ 7c2
rm � 3crmay,

aV ¼ 3crm,

sm ¼ c2
rm,

sy ¼ c4
rm,

cry ¼ c2
rm,

cmy ¼ c3
rm.

Substituting in the constraints on the risk-neutral drift
and OV , we obtain

1

dt
EQ
½dyQ

t � ¼ ða0 þ�2c2
rmð3crm � ayÞrt þ ð7c2

rm � 3crmayÞmQ
t

þ ayy
Q
t þ 3crmVtÞ (18)

and

OV ¼

1 crm c2
rm crV

crm c2
rm c3

rm cmV

c2
rm c3

rm c4
rm cyV

crV cmV cyV sV

2
666664

3
777775. (19)

To ensure that OV is positive semidefinite, we must
impose the following constraints on the parameters:

cmV ¼ crV crm, (20)

cyV ¼ crV c2
rm. (21)

Thus, the A1ð4Þ model that exhibits USV has a total of 13
risk-neutral parameters, the result of imposing nine
restrictions on the 22 parameters of the unrestricted
model. The following proposition verifies that the pro-
posed model exhibits USV and provides the closed-form
solution for bond prices.

Proposition 1. If the short rate process follows a four-factor

Markov process given by Eqs. (15) and (16) where the

parameters satisfy the admissibility conditions (18)–(21),
then zero-coupon bond prices are given by

PtðtÞ ¼ expðAðtÞ � BrðtÞrt � BmðtÞmQ
t � ByðtÞy

Q
t Þ, (22)

where the deterministic functions AðtÞ, BrðtÞ, BmðtÞ, and ByðtÞ
are given in Appendix B.

Proof. See Appendix B.

Clearly, the model displays USV in that a change in
volatility does not affect the shape of the yield curve.
Interestingly, despite the fact that the short rate has
stochastic volatility, the expression obtained for the term
structure displays strong similarities to that of a three-
factor Gaussian model, as the Bð�Þ functions are linear
combinations of exponentially decaying functions of
maturity.
From the expression for bond prices in Appendix B, it is
clear that only a strict subset of the 13 risk-neutral
parameters can be identified from bond prices alone.
Time-series information is thus necessary to identify all of
the parameters. However, even using both cross-sectional
and time-series data on bond prices, we cannot determine
the risk-neutral drift parameters (gV ; kV ) of V since these
parameters affect neither the prices of bonds nor their
physical dynamics.11 Rather, prices of other fixed income
derivatives (e.g., caps) must be used to infer these risk-
neutral parameters.

Note that bond prices would retain their exponential-
affine form in the above model for any specification of the
process for Vt. Indeed, the proof of Proposition 1 does not
depend on the specific process followed by the variance
of the short rate.12 In other words, bond prices can be
exponential-affine even if state vector dynamics are not!
This could prove helpful in estimating more general
models for the volatility dynamics while retaining the
analytical tractability of affine models for bond prices.
3. Empirical approach

The primary focus of this paper is to investigate
whether standard affine models can simultaneously
explain both the cross-sectional and time-series proper-
ties of bond prices. In this section, we use data on
U.S. Dollar swap and LIBOR rates to estimate the maximal
three- and four-factor affine models specified above. We
begin by discussing the specification of risk premia and
the implied dynamics under the historical measure. We
then discuss the data and empirical methodology. Finally,
the results are presented.
3.1. Risk premia

In Section 2, we presented the risk-neutral, or Q

dynamics for the three- and four-factor models. To
complete the model we also need to specify the historical,
or P measure dynamics for the state vector. In order to rule
out arbitrage opportunities, the two measures must be
‘equivalent’ in that they must agree on zero-probability
events. One implication is that the risk premia specifica-
tion will change only the drift of the process.13 For the
A1ð3Þ model, we specify the P drift for the state vector
to be

1

dt
EP
½dX� ¼

lr0 þ lrrrt þ ð1þ lrmÞmQ
t þ lrV Vt

ðm0 þ lm0Þ þ ðmr þ lmrÞrt þ ðmm þ lmmÞmQ
t

þðmV þ lmV ÞVt

ðgV þ lV0Þ � ðkV � lVV ÞVt

2
66664

3
77775.

(23)
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Analogously, for the A1ð4Þmodel, we specify the P drift for
the state vector to be

1

dt
EP
½dXt� ¼

lr0 þ lrrrt þ ð1þ lrmÞmQ
t þ lryy

Q
t þ lrV Vt

lm0 þ lmrrt þ lmmmQ
t þ ð1þ lmyÞy

Q
t

þð1þ lmV ÞVt

ða0 þ ly0Þ þ ðar þ lyrÞrt þ ðam þ lymÞmQ
t

þðay þ lyyÞy
Q
t þ ðaV þ lyV ÞVt

ðgV þ lV0Þ � ðkV � lVV ÞVt

2
66666666664

3
77777777775

.

(24)

These ‘essentially affine’ risk premia structures are the
most general structures that maintain admissibility and
the affine structure under both the P and Q measures. In
order to ensure that the two measures are equivalent, it is
sufficient to specify that Vt cannot reach its lower bound
V under both measures.14 We therefore impose the Feller
condition for both processes as a constraint in our
analysis.15

With this specification, the unrestricted A1ð3Þ model
has a total of 24 parameters (14 risk-neutral and 10 risk
premium parameters). The unrestricted A1ð4Þ model has a
total of 39 parameters (22 risk-neutral and 17 risk
premium parameters). The A1ð4Þ USV model contains 17
risk premia and 13 risk-neutral parameters, but only 11 of
the latter are identified from bond prices. For the USV
model we can therefore only report the P measure
volatility drift parameters, which are each the sum of a
risk-neutral drift parameter and the corresponding risk
premia.
3.2. Data

We use weekly LIBOR and swap rate data from
Datastream from January 6, 1988, to December 29, 2005.
On each day in the sample, zero-coupon yield curves are
bootstrapped from all available swap rates and the six-
month LIBOR rate. For dates before January 1997, when
the one-year swap rate first became available, we also use
the one-year LIBOR rate. We adjust observed LIBOR quotes
to account for the fact that they are recorded approxi-
mately six and a half hours prior to the time at which
swap rates are quoted. Details of this adjustment are
provided by Jones (2003a). Finally, we convert all yields to
zero-coupon rates assuming that swaps can be valued as
par bond rates.16 Following Bliss (1997), we use the
extended Nelson-Siegel method for bootstrapping.
14 See, for example, Theorem 7.19 in Liptser and Shiryayev (1974,

p. 294), and Cheridito, Filipovic, and Kimmel (2007).
15 The Feller condition for the risk-neutral measure parameters of

the process ðV � VÞ is 2ðgV � kV VÞ4sV . A similar condition applies for

the P measure parameters.
16 If swaps were free of default risk, this would directly follow from

absence of arbitrage. In the presence of credit-risk, this assumption is

warranted if there is homogeneous credit quality across swap and LIBOR

markets. In that case, the zero-coupon curve corresponds to a risk-

adjusted corporate curve for issuers with refreshed AA credit quality (see

Duffie and Singleton, 1997; Collin-Dufresne and Solnik, 2001; Johannes

and Sundaresan, 2006).
From the bootstrapped yield curves we extract yields
with maturities of 0.5, 1, 2, 3, 4, 5, 7, and 10 years. We
choose these eight maturities because on each day in the
sample there is some underlying yield quote for each one.
We therefore expect the bootstrapped yields to be
particularly accurate for these maturities.
3.3. Posterior sampler

We estimate all models using a Bayesian approach that
combines elements of Polson, Stroud, and Müller (2001),
Lamoureux and Witte (2002), Jones (2003b), Sanford and
Martin (2003), and Bester (2004). In each of these papers,
data augmentation and a Gibbs-like posterior sampler are
used to simplify the computation of posterior distribu-
tions of the model parameters. As is common in
continuous time finance models, likelihood-based infer-
ence is difficult because of imperfectly observed state
variables and the fact that transition densities are not
known in closed form.

Bayesian data augmentation is attractive because it
solves both of these problems. As in Elerian, Chib, and
Shephard (2001), Eraker (2001), and Jones (2003b),
augmenting with unobservable high frequency data
increases the accuracy of the Euler approximation,
providing a Gaussian transition density that is easier to
work with. Data augmentation also allows us to augment
the observed yield data with the term structure factors
(i.e., the X’s) themselves. While the latter use of data
augmentation is critical for our analysis, augmenting with
high frequency data turns out to be inconsequential, as a
simple Euler approximation applied directly to our weekly
data does not appear to inject bias into our results.
Nevertheless, our ability to implement more accurate
likelihood approximations is still valuable in that it
enables us to assess the validity of a simpler approach.

As in Pennacchi (1991), Brandt and He (2006), and
Bester (2004), we assume that all data are observed with
error. Unlike these papers, we fit our models to the
principal components of yields rather than the yields
themselves. We do so because cross-sectional correlations
between model errors in principal components are close
to zero, while correlations between yield errors are often
above 0.9. This makes our use of a diagonal covariance
matrix for the observation errors much more reasonable.17

The principal component loadings and percentages of
variance explained appear in Table 1. As in Litterman and
Scheinkman (1991), the first three principal components
explain most variation in yields and can roughly be
interpreted as level, slope, and curvature.

While the posterior simulator is described in much
more detail in Appendix C, we briefly outline our approach
here. Letting P ¼ fP1;P2; . . . ;PTg denote the time series
of principal component vectors and f the vector of model
parameters, we seek to compute pðfjPÞ / pðPjfÞpðfÞ,
where the first term on the right is the likelihood and the
17 An appealing alternative approach used by Brandt and He (2006)

is to parameterize the covariances as parsimonious functions of bond

maturities and a few free parameters.
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Table 1
Principal component loadings.

The table contains the eigenvectors corresponding to the eigenvalues

of the covariance matrix of changes in bootstrapped zero-coupon yields

from January 1988 to December 2002. They represent the loadings on

yields of different maturities used to construct the principal compo-

nents. The table also reports the percent of the total variance explained

by each of the principal components.

Principal Component

1 2 3 4 5 6

6-month 0.08 2.27 1.98 14.63 14.67 103.62

1-year 0.11 1.85 0.07 �17.54 �34.76 �339.62

2-year 0.14 0.95 �1.23 �11.78 18.22 590.44

3-year 0.14 0.19 �1.15 4.07 21.33 �173.48

4-year 0.14 �0.38 �0.73 12.14 1.91 �410.20

5-year 0.14 �0.81 �0.23 13.19 �16.60 �133.93

7-year 0.13 �1.36 0.68 3.98 �26.17 617.28

10-year 0.12 �1.72 1.60 �17.70 22.40 �253.12

% explained 64.82 17.79 7.98 5.32 2.75 1.07

Total % explained by first six principal components: 99.73
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second is the prior. Following earlier approaches, we
augment the observable data P with the term structure
factor data X ¼ fX1;X2; . . . ;XTg. We then integrate out the
X’s using a Gibbs-like posterior simulator that alternates
between performing draws from pðfjP;XÞ and pðXjP;fÞ.
Under very weak conditions, the resulting sequence of
draws of f converges in distribution to our target, the
posterior distribution pðfjPÞ.

We approximate the true dynamics using the Euler
scheme

ðXtþh � XtÞ�Nðhðaþ bXtÞ;hOtÞ, (25)

where Ot is the instantaneous covariance matrix. In
particular, we do not use the true noncentral chi-squared
distribution for the square root factors, as in Lamoureux
and Witte (2002) and Bester (2004), but instead choose h

to be small enough to approximate that distribution.18 The
likelihood function is completed by specifying the relation
between the data and the state vector. Given the linearity
of bond yields in state variables (5) and the linear relation
between principal components and yields,

Pt ¼ PC loadings� Yt ,

it is easy to see that there is a linear relation between
principal components and state variables. Adding a
Gaussian error vector et�Nð0;LÞ results in

Pt ¼ K þ LXt þ et , (26)

which is our ‘measurement equation.’
Similar to Bester (2004), we find it efficient to further

break up the parameter vector into three components, fQ ,
fl, and fL, where fQ contains all parameters that affect
the dynamics of the state vector under the risk-neutral
measure. Risk premia parameters comprise fl, while fL

includes the measurement error standard deviations. Both
18 Note that the transition density is only known in closed form for

one (i.e., volatility) of the three state variables.
of the latter draws are made from closed form densities,
with the distribution of fl following directly from the
linear Gaussian structure of the Euler approximation.

Building on Polson, Stroud, and Müller (2001), we
decompose the state vector as

Xt ¼
Xo

t

Vt

" #
, (27)

where Xo includes all state variables other than V (i.e., r,
mQ , and, if applicable, yQ ). The reason for doing so is that
only Vt affects the factor covariance matrix. As such, once
we condition on the entire path of V, we can then write
the dynamics of Xo

t and Pt in linear Gaussian state space
form. This enables us to draw the entire multivariate time
series Xo at once in closed form using the simulation
smoother of de Jong and Shephard (1995). This means that
only the draws of V must be made using a relatively
inefficient approach involving a separate Metropolis-
Hastings draw for each t.

Our use of the Kalman filter is significantly different
from that of other studies. Pennacchi (1991), Duan and
Simonato (1999), and de Jong (2000) apply the Kalman
filter to affine models in a more straightforward manner
by including all term structure factors in the state
equation, including those that follow square root pro-
cesses and that impact conditional volatilities. While the
Kalman filter is very naturally applied in homoskedastic
Gaussian models (e.g., as in Pennacchi, 1991), its validity is
not as straightforward when covariances are state-
dependent. In short, the problem with conventional linear
filters is that filtered estimates of the state variables are
simple projections on the observed yields and do not take
into account, for example, the quadratic variation in those
yields. Thus, when the state vector includes variables that
drive yield volatility, a substantial amount of the relevant
information in the data is ignored. The result, as Lund
(1997) and de Jong (2000) argue, is an incorrect
specification of conditional variances, which in turn leads
to inconsistent estimates.

Interestingly, however, these studies, as well as that of
Duffee and Stanton (2002), have found that methods
based on the Kalman filter perform well in simulated
samples, with minimal biases and relatively high accu-
racy. A natural explanation for this result is that the
models that they consider are all models with spanned

stochastic volatility. In that case, the levels of yields may
be sufficient to infer all state variables with high accuracy,
including those that drive conditional volatilities, and
ignoring information in quadratic variation (as well as
other nonlinearities) is therefore likely to be innocuous.

In the USV case, however, this result cannot hold since
the levels of yields carry no information whatsoever about
the volatility state variable, making the inconsistency
identified by Lund (1997) and de Jong (2000) particularly
severe. Our approach, like that of Polson, Stroud, and
Müller (2001), is immune to this criticism because the
Kalman filter is only applied as a computational device to
evaluate the likelihood conditional on a given path of V.
This means that the only state variable uncertainty is
among ‘Gaussian’ elements of the state vector (the Xo

t ),
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Table 2A
Posterior distributions of model parameters.

This table contains parameter point estimates and confidence intervals

for three models fitted to weekly bootstrapped yields from January 1988

to December 2002. All parameter values are reported on an annualized

basis. Both free parameters and restricted parameters are included,

where restricted parameters are functions of the free parameters and are

displayed in italics. For free parameters, the point estimates displayed
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which do not impact covariances. This avoids the source of
inconsistency for linear filters.

Lastly, we must specify prior distributions. For all cases
considered, we specify the priors as either completely flat
or exactly proportional to a constant, with three excep-
tions. First, the prior density for each measurement error
standard deviation

ffiffiffiffiffiffiffi
Li;i

p
is proportional to 1=

ffiffiffiffiffiffiffi
Li;i

p
, as is

standard. Second, all regions of the parameter space in
which the model is nonstationary, inadmissible, or in
violation of the Feller condition are assumed to have zero
prior probability. This means that any parameter draw
that violates any of these conditions is immediately
rejected. Finally, all parameter draws that generate
covariance degeneracies are assumed to have zero prob-
ability. This means, for instance, that the Ot matrix must
have full rank for all Vt4V and that each Li;i is positive.
are multivariate posterior medians. Point estimates for restricted

parameters are computed as functions of the free parameter point

estimates. Confidence interval bounds, in parentheses, are equal to the

2.5 and 97.5 percentiles of the posterior distribution.

A1ð3Þ A1ð4Þ USV A1ð4Þ

a0 � 102 or m0
0.211 0.140 5.957

(0.188, 0.238) (0.118, 0.163) (5.284, 8.400)

ar or mr �1.238 �0.015 �0.009

(�1.348, �1.131) (�0.019, �0.013) (�0.012, �0.001)

am or mm �2.804 �0.282 �0.661

(�2.959, �2.597) (�0.324, �0.252) (�0.758, �0.587)

ay �1.287 �3.020

(�1.425, �1.194) (�3.244, �2.917)

aV or mV �923.1 �0.260 �809.5

(�1003.1, �811.2) (�0.272, �0.248) (�1104.9, �738.1)

gP
V � 104 0.568 0.803 0.733

(0.126, 1.018) (0.469, 1.147) (0.330, 1.547)

kP
V

0.441 1.014 �0.926

(0.756, 0.056) (2.116, 0.412) (�1.933, �0.406)

V �104 0.111 0.003 0.245

(0.046, 0.298) (0.000, 0.011) (0.124, 0.440)

sm � 104 5.809 3.448 10.31

(3.208, 11.349) (2.675, 3.999) (1.91, 23.29)

sy � 104 5.306 82.4

(3.711, 7.412) (16.0, 212.8)

crm � 104 0.708 �0.102 �0.765

(0.187, 0.926) (�0.197, �0.014) (�2.333, 0.226)

cry � 104 0.132 2.205

(0.016, 0.260) (�0.750, 6.949)

cmy � 104 �4.230 �29.12

(�5.379, �3.112) (�70.36, �5.56)

sm 17.660 0.008 35.37

(11.327, 24.871) (0.007, 0.008) (23.05, 50.80)

sy � 102 0.0056 39009

(0.0047, 0.0068) (28037, 57807)
3.4. Point estimates and confidence intervals

For each parameter, we report point estimates along
with 95% confidence intervals computed from the 2.5 and
97.5 percentiles of the MCMC draws from the posterior
distribution. Let fi denote the ith MCMC draw of the
parameter vector from its posterior distribution and f̃i be
the same vector normalized by the posterior standard
deviations. We then find the draw i that minimizes the
average value of jf̃j � f̃ij over all jai. The resulting fi is
the L1 center of the normalized posterior distribution, a
version of the multivariate posterior median, and is taken
as our vector of point estimates. Raftery (1996) reports
that the unnormalized version often provides an accurate
approximation of the posterior mode. Because of the
vastly different scales of some of the model parameters,
we felt that normalization would be more natural. Using
multivariate rather than univariate medians or means
is appropriate because univariate medians or means are
not necessarily located in regions of high posterior
probability.

From MCMC output, it is possible to compute poster-
iors of functions of parameters in addition to the
parameters themselves. We therefore report posterior
statistics on restricted parameters, such as the parameter
aV in the A1ð4Þ USV model, which is restricted to equal
3crm. As before, confidence intervals are calculated from
the 2.5 and 97.5 percentiles of the posterior draws, while
the restricted point estimates are computed directly from
the point estimates of the unrestricted parameters.
sV � 104 0.025 1.221 0.065

(0.022, 0.030) (0.811, 1.968) (0.044, 0.088)

crm �3.617 �0.087 �4.055

(�4.526, �2.893) (�0.091, �0.083) (�5.714, �2.502)

cry � 102 0.751 1255

(0.682, 0.825) (820, 1834)

crV � 103 �0.376 2.685 0.805

(�0.504, �0.209) (0.152, 4.457) (0.489, 1.346)

cmy � 10 �0.0065 �1165

(�0.0075, �0.0056) (�1695, �801)

cmV �1.327 �0.233 �0.010

(�2.148, �0.806) (�0.388, �0.013) (�0.014, �0.007)

cyV � 103 0.020 36.87

(0.001, 0.034) (28.16, 50.83)
4. Empirical results

We present and compare the results of estimation for
the unconstrained A1ð3Þ and A1ð4Þ as well as the A1ð4Þ USV
model. The latter is really a three-factor model of the cross
section of bond prices that allows for independent
variation in short rate (and therefore bond price)
volatility. We focus in turn on parameter estimates, in-
and out-of-sample yield curve fit, implied time series of
the state variables, in- and out-of-sample volatility fit, and
volatility forecasting regressions.
4.1. Posterior summaries for parameter estimates

Tables 2A and B report posterior distributions for the
parameters of the three models we estimate. All models
are estimated using weekly data from January 1988 to
December 2002, whereas data from 2003–2005 is saved
for out-of-sample analysis. We compute posteriors by
setting the discretization parameter h equal to 1 because
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Table 2B
Posterior distributions of risk premia parameters.

This table contains parameter point estimates and confidence intervals

for three models fitted to weekly bootstrapped yields from January 1988

to December 2002. All parameter values are reported on an annualized

basis. Point estimates displayed are multivariate posterior medians.

Confidence interval bounds, in parentheses, are equal to the 2.5 and 97.5

percentiles of the posterior distribution.

A1ð3Þ A1ð4Þ USV A1ð4Þ

lr0 �0.002 �0.021 0.075

(�0.060, 0.053) (�0.048, �0.005) (�0.010, 0.194)

lrr �0.043 0.334 0.115

(�0.323, 0.355) (0.037, 0.717) (�0.173, 0.570)

lrm �0.408 0.211 1.914

(�0.601, �0.138) (�1.367, 1.622) (�0.290, 4.779)

lry 0.332 0.765

(�1.165, 1.308) (0.000, 1.722)

lrV �46.3 �190.4 �1433.3

(�388.5, 279.3) (�277.7, �68.2) (�3280.1, �53.0)

lm0 �0.136 0.088 0.053

(�0.377, 0.113) (0.021, 0.152) (�0.502, 0.551)

lmr 0.329 �1.537 �0.682

(�0.890, 1.960) (�2.396, �0.441) (�2.558, 1.226)

lmm 0.727 �2.889 0.030

(�0.198, 1.891) (�8.153, 1.418) (�14.792, 11.514)

lmy �1.691 �0.482

(�5.885, 2.007) (�5.293, 3.606)

lmV 1017.8 345.8 �43.8

(�769.8, 2193.8) (78.5, 603.5) (�8030.1, 8745.3)

ly0 �0.084 �0.341

(�0.166, 0.000) (�1.771, 1.401)

lyr 1.548 1.725

(0.145, 2.631) (�4.036, 7.235)

lym 1.915 �5.367

(�3.572, 8.438) (�38.655, 39.566)

lyy 0.724 �0.443

(�4.001, 5.786) (�12.211, 14.138)

lyV �333.7 3349.5

(�649.0, 17.0) (�24021.7, 26484.3)

lV0 � 104 �0.544 0.306

(�0.994, �0.102) (�0.113, 1.102)

lVV 0.475 �0.338

(0.090, 0.790) (�1.325, 0.203)

19 In a few places, such as Table 3, where it is feasible to compute

results both by integrating over the posterior and by conditioning on the

multivariate medians, we find extremely minor differences.
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posteriors computed by setting h ¼ 0:2 (summarized in
Appendix C) resulted in no substantive differences for the
A1ð3Þ USV model but required considerably greater
computational effort.

We report parameters for the risk-neutral process in
addition to those of the risk premia, so P measure drift
parameters are implied. The exceptions are the risk-
neutral parameters gV and kV , which are not reported
since they are not identifiable under USV. Instead, we
report their P measure counterparts gP

V � gV þ lV0 and
kP

V � kV � lVV .
We draw two interesting observations from Tables 2A

and B. First, the parameters of the volatility process are
dramatically different for the USV model than for both
unrestricted three- and four-factor models. Further, the
USV restrictions appear to be clearly rejected by the
unrestricted A1ð4Þ model. These results suggest very
different volatility dynamics implied by USV vs. non-
USV models. These results also suggest that the USV
restrictions may prevent the model from fitting the same
moments that the unconstrained model likelihood em-
phasizes. We will present clear evidence of this tradeoff
between fitting volatility vs. fitting cross section of yields
below.

Second, many of the risk premia parameters seem to be
imprecisely estimated. Their estimates, magnitudes, and
signs seem to vary dramatically between USV and non-
USV specifications. Furthermore, most of the additional
risk premia parameters introduced in the four-factor
model are indistinguishable from zero, indicating that
the generalized essentially affine risk premia are likely
overparameterized for this model. We present further
evidence of this when looking at out-of-sample fits below.

4.2. In- and out-of-sample yield fit

Table 3 reports the models’ in- and out-of-sample fits
of the yield curve in terms of bias and root mean squared
errors (RMSE) for each maturity. We first describe the
methodology used to obtain these results and then
discuss the findings.

4.2.1. Methodology

Throughout the rest of the paper, we evaluate model
performance using the point estimates from Tables 2A and
B. While it would be preferable to integrate over the entire
posterior distribution, this turns out to be very computa-
tionally demanding for most of the analysis we perform.
For computing fitted yields, we therefore rerun our
posterior sampler only where the state variables are
sampled and the parameter values are held fixed.19

We report the average error and RMSE of each model
for each maturity, where errors are defined as actual
yields minus fitted yields and fitted yields are computed
via Eq. (5). We also compare the RMSEs of the A1ð4Þ USV
model to those of the two unrestricted three- and four-
factor models using the method of Diebold and Mariano
(1995). For each model, we compute forecast errors, say
ê1;t and ê2;t , and calculate t-statistics for the difference in
squared forecast errors

ê
2
1;t � ê

2
2;t . (28)

In this case, a significantly positive mean would indicate
the superiority of model 2 over model 1.

For all statistics, standard errors are calculated using
the method of Newey and West (1987). For ease of
comparison, all standard errors in a given panel are
calculated using the same lag length. These lag lengths
were chosen by calculating the optimal lag length for each
series individually using the method of Newey and West
(1994) and then averaging those optimal lags across
series. The same procedure is used throughout the paper.
If two RMSEs are significantly different, they are separated
by an inequality sign signifying the direction of the
rejection of the null, along with either one (for 5%) or
two (for 1%) stars signifying the level of significance.
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Table 3
In-sample and out-of-sample yield fits.

This table contains statistics for both the in-sample and out-of-sample

fits of zero-coupon yields (Y). For each model, fitted yields (Ŷ t) are

calculated for 0.5, 1, 2, 3, 4, 5, 7, and 10-year maturities. The table

examines the bias and root mean squared errors in êt ¼ Yt � Ŷ t , where Ŷt

denotes the model fitted value. � and �� denote statistical significance at

the 5% and 1% levels, respectively, where standard errors are calculated

using the method of Newey and West (1987) with 21 lags for the first

two panels, 9 for the third panel, and 8 for the bottom panel. For biases,

statistical significance relates to the null hypothesis that the bias is zero.

For RMSE, the statistical significance of the pairwise comparison of two

models is reported, along with an inequality sign that reflects the

direction of the rejection. The sample size is 782 weeks for in-sample

results and 156 weeks for out-of-sample results.

A1ð3Þ A1ð4Þ USV A1ð4Þ

In-sample mean ê (basis points)

6-month �0.11 0.69 �0.21*

1-year 0.14 �0.70 0.29

2-year 0.06 �0.79 0.10

3-year �0.03 0.08 �0.09

4-year �0.08 0.69 �0.16**

5-year �0.08 0.86 �0.13

7-year �0.04 0.26 0.00

10-year 0.13 �1.04 0.18

In-sample RMSE (basis points)

6-month 3.39 o�� 4.85 4�� 0.94

1-year 4.48 o�� 6.05 4�� 1.94

2-year 2.52 o�� 3.81 4�� 1.13

3-year 1.42 o� 1.63 4�� 1.08

4-year 2.56 o�� 3.86 4�� 0.54

5-year 2.86 o�� 4.34 4�� 0.95

7-year 1.57 o�� 1.97 4�� 1.31

10-year 3.95 o�� 5.92 4�� 1.23

Out-of-sample mean ê (basis points)

6-month �4:13�� �0.04 �0.12

1-year 4:73�� 0.40 0.11

2-year 3:74�� �0.40 0.23

3-year �0:93�� �0.58*
�0.06

4-year �3:63�� �0.07 �0.23**

5-year �4:15�� 0.62 �0.19*

7-year �1:31�� 1.23�� 0.18

10-year 5:41�� �1.16 0.07

Out-of-sample RMSE (basis points)

6-month 5.13 4�� 2.99 4�� 0.52

1-year 5.77 4� 3.98 4�� 0.86

2-year 4.98 4�� 1.90 4� 0.69

3-year 1.12 1.27 4�� 0.39

4-year 4.61 4�� 2.23 4�� 0.48

5-year 5.44 4�� 2.28 4�� 0.57

7-year 1.97 4� 1.36 4�� 0.49

10-year 7.09 4�� 3.20 4�� 0.65

21 In unreported results, available upon request, we also estimated

an unrestricted two-factor model and a three-factor USV model. The
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4.2.2. Results

The top panel of Table 3 shows that all models imply
reasonably unbiased in-sample fits of individual yields,
with no rejections of zero mean errors. However, not
reported in the table is the fact that the errors from all
three models are highly autocorrelated, often with first-
order autocorrelations above 0.8, an indication that all the
models are misspecified.20
20 These results are available upon request.
Given that it nests the other two models, it is not
surprising that the root mean squared error criterion
favors the unrestricted A1ð4Þ model. Interestingly, be-
tween the unrestricted A1ð3Þ and the A1ð4Þ USV model,
both with three factors explaining the cross section of
bond prices, the former offers modest but significant
reductions in RMSE in sample.

However, the situation reverses for out-of-sample yield
fits using data from January 2003 to December 2005.
While both of the A1ð3Þ and A1ð4Þ USV models display
significant biases, as seen in the third panel, they are
extremely large for the A1ð3Þ specification. In addition, the
errors are much larger in terms of RMSE for A1ð3Þ than
they are for A1ð4Þ USV. Overall, the dramatic out-of-
sample breakdown of the unrestricted A1ð3Þ model is the
most notable feature of Table 3. It is suggestive of some
type of serious misspecification, the form of which we
identify below.21

4.3. Properties of model-implied time series

We now examine some properties of the model-
implied state variables that are estimated by running
the posterior sampler with parameters held fixed at the
point estimates from Tables 2A and B. The resulting draws
of the state variables are then averaged to get smoothed
estimates.

Table 4 reports a variety of correlations between
observed time series and related model-implied variables.
Using data from the estimation sample (1988–2002),
we see that every model matches both the average
yield (defined as the average of the 0.5, 1, 2, 5, 7, and
10-year yields), the slope of the yield curve (defined as
Y10y � Y6m), and curvature (defined as Y10y � 2Y3y þ Y6m).
The correlation between model-implied and observed
state variables is greater than 0.997 for all models. This is
not surprising since all models have at least three
variables entering the cross section of bond prices,
and level, slope, and curvature are known to be the
foremost variables explaining the shape of the yield curve.
What is more surprising is the tremendous disparity in
the time series of volatility implied by the three models.
Only for the USV model do we see a large positive
correlation (0.78) between model-implied volatilities and
model-free volatilities computed using a 30-day rolling
window estimator applied to daily changes in the six-
month yield. In contrast, the unrestricted models display
either low correlation (0.15) for the A1ð4Þ or even negative
ð�0:60!Þ correlation for the A1ð3Þmodel. Very similar results
are obtained when we use Bollerslev’s (1986) GARCH(1,1)
model instead of the rolling window estimator.

The panels on the left-hand-side of Fig. 1 illustrate the
inability of the unrestricted three- and four-factor models
to capture short rate volatility. In particular, they show the
results clearly showed that at least three factors driving the cross section

of yields are necessary to obtain a decent in- and out-of-sample yield fit.

This is not surprising given the principal component analysis of

Litterman and Scheinkman (1991).
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Table 4
Correlations of observed and model-implied time series.

This table reports correlations between actual and model-implied series computed over the 1988–2002 sample period. Average yield is simply the

average of the 0.5, 1, 2, 3, 4, 5, 7, and 10-year zero yields. Slope is defined as the 10-year yield minus the 6-month yield. Curvature is defined using the 3-

year yield in addition. Rolling 30-day window and GARCH(1,1) volatilities are calculated from demeaned daily changes in the 6-month rate. The implied

volatility series is obtained from short-term Eurodollar futures options. These data are only available starting in 1991, so correlations involving implied

volatilities are calculated over the 1991–2002 sample period.

A1ð3Þ A1ð4Þ A1ð4Þ Daily Eurodollar

USV GARCH implied vol

Actual vs. model average yield 1.000 1.000 1.000

Actual vs. model slope 0.998 0.998 1.000

Actual vs. model curvature 0.998 0.997 1.000

Rolling vs. model volatility �0.600 0.783 0.156 0.957 0.676

GARCH vs. model volatility �0.587 0.786 0.140 1.000 0.693

Eurodollar implied vs. model volatility �0.498 0.605 0.377 0.693 1.000

Actual curvature vs. model volatility 0.275 �0.087 �0.065 �0.052 �0.103

Actual curvature vs. model variance 0.285 �0.072 �0.073 �0.020 �0.124

22 Note that the sign of this correlation contradicts the theoretical

predictions of Litterman, Scheinkman, and Weiss (1991) and Brown and

Schaefer (1994a, b). However, as can be seen from Eq. (11), this

correlation should depend on how the risk-neutral expected change in

slope is correlated with volatility.
23 This is equivalent to saying that three state variables cannot

simultaneously capture volatilities and Q measure drifts. Our result

therefore contrasts with Duarte (2004), who finds that three-factor

models are unable to simultaneously capture term structure volatilities

and P measure drifts (or, equivalently, risk premia).
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resulting time series of E½
ffiffiffiffiffi
Vt

p
jP; f̂� for each specification

along with the same 30-day trailing-window volatilities
used above. A vertical dotted line denotes the end of the
estimation period. For the USV model, implied and
trailing-window volatilities track each other closely. In
contrast, both unrestricted A1ð3Þ and A1ð4Þ models imply
very little variation in short rate volatility. Indeed, the
standard deviations of the time series of short rate
volatilities for the (i) rolling window volatilities, (ii)
A1ð4Þ USV model, (iii) A1ð3Þ model, and (iv) unrestricted
A1ð4Þ model are 0.36%, 0.32%, 0.04%, and 0.05%, respec-
tively. Moreover, the variation that does exist in the
unconstrained models appears to be mostly unrelated to
the variation in the rolling window volatilities.

We also investigate volatilities for the 10-year yields.
Unfortunately, all models do rather poorly. Below, we
provide additional evidence suggesting that more than
one state variable driving volatility is probably necessary
in order to capture the term structure of volatilities. In
particular, we find that the standard deviations of the time
series of volatilities for the (i) rolling window volatilities,
(ii) A1ð4Þ USV model, (iii) A1ð3Þ model, and (iv) unrest-
ricted A1ð4Þ model are 0.30%, 0.12%, 0.10%, and 0.02%,
respectively. Note in particular that the unrestricted A1ð4Þ
model predicts 10-year yield volatilities that are 18 times
less volatile than the rolling window volatility estimates!

As a robustness check with respect to our estimates of
‘realized’ volatility, we also report in Table 4 the correla-
tions of model volatilities with implied volatilities from
short-maturity Eurodollar futures options. The Eurodollar
series was constructed from CBOE data beginning in 1991.
Note that implied volatilities are quoted using the model
of Black (1976), implying that they should be interpreted
as the volatility of proportional changes in (or logarithms
of) Eurodollar futures prices. As such, we report correla-
tions with the product of Eurodollar implied volatility
with the Eurodollar futures price. Under reasonable
assumptions, this should approximate the level of short-
term interest rate volatility, making it comparable to the
other volatility proxies we consider.

We find that the USV model-implied volatility series is
highly positively correlated (0.6) with our implied
volatility measure. (We also find that the implied
volatilities are closely related to the trailing window and
GARCH series.) On the other hand, Table 4 shows that, for
the non-USV models, these correlations are significantly
lower (0.38 for A1ð4Þ) or even negative (�0:5 for A1ð3Þ).

Table 4 also reports correlations between various
(model-implied and realized) volatility measures and the
actual curvature in yields. In general, curvature is weakly
related to volatility estimates in both A1ð4Þ models,
GARCH, and implied volatilities. In contrast, curvature is
much more strongly related to volatility estimates in the
A1ð3Þ model.22

These results highlight the tension between the dual
roles that volatility plays in an unrestricted affine model,
as it affects both the cross section of bond prices as well as
the time-series properties of the short rate. The estima-
tion of such a model therefore presents a tradeoff between
choosing volatility dynamics that are more consistent
with either role, and in the present data set it seems that
the tradeoff is heavily tilted toward explaining the cross
section. The result is that volatilities imputed from the
unrestricted A1ð3Þ models are essentially nonsensical,
being unrelated to all other volatility proxies. Instead,
the model appears to use the variance process to provide a
better fit of the cross section, as evidenced by a relation
between Vt and curvature that holds only for this model.
Instead, the A1ð4Þ USV model has enough flexibility to
both fit the yield curve and generate realistic volatility
dynamics.

We interpret these findings as evidence that three state
variables cannot simultaneously describe yield curve
level, slope, curvature, and volatility.23 That is, volatility
is unable to play the dual role that the unrestricted A1ð3Þ
model predicts that it does. Less formally, volatility cannot
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Fig. 1. In the panels on the left-hand side of the figure, the black line depicts the fitted path of the volatility of the six-month yield that constructed from

rolling 30-day windows. The gray lines correspond to smoothed estimates of instantaneous volatility implied by each of the affine specifications

considered. The vertical dotted lines denote the end of the estimation period. In the panels on the right-hand side of the figure, the thick gray line depicts

the sample standard deviation of monthly changes in yields as a function of maturity computed over the 1988–2005 sample period. Distributions of

model-implied sample standard deviations were calculated by simulation under the parameter values given in Tables 2A and B. The means and 95%

confidence intervals of these distributions are depicted by solid and dashed black lines, respectively.

P. Collin-Dufresne et al. / Journal of Financial Economics 94 (2009) 47–6658
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Table 5
In-sample and out-of-sample volatility forecasts.

This table contains statistics on in-sample one-week forecasts of two

different volatility proxies. For each model, expected absolute yield

changes (E½jDY j�) and expected ‘realized volatility’ (E½ŝ�) are calculated

for 0.5, 1, 2, 3, 4, 5, 7, and 10-year maturities. Realized volatility is defined

by ŝ2
t;t ¼

P5
i¼1 DYðt; i; tÞ2 and is calculated using daily data. The table

examines the forecast bias (actual minus forecast) and root mean

squared error of jDY j and ŝ, where all yields are expressed in basis

points. � and �� denote statistical significance at the 5% and 1% levels,

where standard errors are calculated using the method of Newey and

West (1987) with 12, 17, 6, and 7 lags, respectively, for the four panels of

the table. For biases, statistical significance relates to the null hypothesis

that the bias is zero. For RMSE, the statistical significance of the pairwise

comparison of two models is reported, along with an inequality sign that

reflects the direction of the rejection. Forecasts begin in January 1990,

allowing for a sample size of 677 weeks for in-sample results and 156

weeks for out-of-sample results.

A1ð3Þ A1ð4Þ USV A1ð4Þ

In-sample RMSE of weekly jDYj

6-month 8.82 4�� 7.88 o�� 8.47

1-year 9.23 4�� 8.71 o�� 9.04

2-year 9.76 4�� 9.45 9.57

3-year 9.71 9.57 9.55

4-year 9.61 9.59 9.49

5-year 9.52 9.55 9.42

7-year 9.38 9.41 9.29

10-year 9.15 9.11 9.06

In-sample RMSE of ŝ
6-month 6.95 4�� 5.26 o�� 6.29

1-year 6.79 4�� 5.87 o�� 6.54

2-year 7.19 6.87 6.97

3-year 7.03 7.09 6.86

4-year 6.79 7.05 6.68

5-year 6.60 6.91 6.51

7-year 6.34 6.54 6.24

10-year 6.17 6.12 6.04

Out-of-sample RMSE of weekly jDYj

6-month 7.17 4�� 4.23 o�� 5.87

1-year 7.11 4�� 5.22 o�� 6.37

2-year 8.00 4�� 7.18 o� 7.40

3-year 8.45 4�� 8.07 8.00

4-year 8.71 4� 8.48 4�� 8.37

5-year 8.86 8.67 4� 8.57

7-year 8.88 8.67 8.62

10-year 8.71 8.42 8.42

Out-of-sample RMSE of ŝ
6-month 8.66 4�� 4.69 o�� 6.95

1-year 7.40 4�� 4.54 o�� 6.35

2-year 7.01 4�� 5.64 o�� 6.00

3-year 6.97 4�� 6.27 6.18

4-year 7.00 4�� 6.53 4�� 6.37

5-year 7.02 4�� 6.62 4� 6.48

7-year 6.92 4� 6.50 6.42

10-year 6.60 4� 6.08 6.05
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reasonably be ‘inverted’ from the yield curve, at least for
the models we consider. Conversely, our results suggest
that the dynamics of stochastic volatility, as proxied, say,
by a GARCH estimate using the implied short rate series,
are not able to capture adequately movements in the third
principal component of yields.

Interestingly, the unrestricted A1ð4Þ model, which has
enough degrees of freedom to fit the three main principal
components as well as volatility, does not perform well at
capturing volatility. We interpret this finding as implying
that the parameters that match the fourth principal
component of yields results in higher values of the
likelihood function relative to those that match short rate
volatility.

4.4. In- and out-of-sample volatility forecasts

Here we investigate the volatility forecasting perfor-
mance of the different models. Table 5 reports the models’
in- and out-of-sample volatility forecasts. We first discuss
methodology, then the results.

4.4.1. Methodology

Because our sample size is relatively short, we focus on
short horizon (one-week) forecasts of two different
volatility proxies. All forecasts are constructed using the
parameter estimates reported in Tables 2A and B, so the
bulk of our forecasts are in-sample. After using two years
of data to initialize the forecasts, we are left with a 677-
week in-sample period. With our hold-out sample from
2003 and 2005, we perform a 156-week out-of-sample
validation of those results.

To construct a forecast, we first estimate the value of
the current state variables. These are computed identically
to the previous section, except that only data observed up
until time t are used to infer state variables at t (though
for in-sample forecasting the parameter estimates are
based on data subsequent to t as well). Given estimates of
the current values of the state variables, we simulate
10,000 paths of the model and form a forecast distribution
of the state variables one week ahead (time tþ1), from
which we then compute a distribution for each yield.24

For volatility forecasting, we consider two alternative
proxies for realized volatility. The first proxy is the
absolute one-week change in the yield of each maturity.
The second proxy is a volatility measure constructed using
daily data, which we note were not used for estimation.
For a given week with N days (typically, N ¼ 5), this is
defined as

ŝt;t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

DYðt; i; tÞ2
vuut , (29)

where Yðt; i; tÞ is the t-maturity yield observed on the ith
day following observation t. The forecast of each volatility
24 Perhaps because of our short sample, results for forecasting

changes in yields were not informative about the relative performance of

the three- and four-factor models. In sample, there were no significant

differences between models in terms of bias and RMSE across maturities.

Therefore, we do not report these results.
proxy is constructed simply by averaging over the Monte
Carlo simulations of that proxy. Thus, under the null
hypothesis that the model and parameter values are
correct, every forecast should be unbiased.

4.4.2. Results

In-sample results on forecasted volatility are reported
in Table 5. The results show that the A1ð4Þ USV model
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outperforms the unrestricted A1ð3Þ model in terms of
RMSE both in- and out-of-sample. The comparison of the
USV model with the unrestricted A1ð4Þ model is more
interesting. It shows that the USV model generally
performs better at the short-end (both in- and especially
out-of-sample), but at the longer end (for maturities
greater than four years) the unrestricted model seems to
have a comparable or even superior performance than the
USV model. So the unambiguously better fit of short rate
volatility dynamics in the USV model does not necessarily
translate into better volatility forecasting ability at longer
maturities.

Moreover, the unrestricted models do a better job
matching unconditional volatilities than does the A1ð4Þ
USV model. The panels on the right-hand side of Fig. 1
display the relation between maturity and the uncondi-
tional volatility of four-week yield changes. Results from
actual data over the 1988–2005 sample are displayed as a
thick gray line. Means and 95% confidence intervals of
model-implied sampling distributions are depicted by
solid and dashed black lines, respectively. As discussed by
Dai and Singleton (2003), the hump-shaped plot of the
unconditional volatility as a function of maturity is an
empirical regularity that many affine models have
difficulty matching. This figure shows that both the
unrestricted A1ð3Þ and A1ð4Þ models match the uncondi-
tional maturity-volatility relation better than the model
with USV.25 The A1ð4Þ USV model generates a clear hump,
but it produces volatilities that are too high for maturities
above two years.26 This indicates that a good fit ofthe
short-maturity volatility (which only the USV model
provides) is not necessary for obtaining a good uncondi-
tional volatility structure.
4.5. Volatility forecasting regressions

To better understand the role of term structure factors
and volatility in the various models, we perform an
additional forecasting experiment. In particular, we run
regressions where we forecast future realized daily
volatilities of six-month and ten-year yields. As indepen-
dent variables we use one of the model forecasts (GARCH,
A1ð3Þ, A1ð4Þ, or A1ð4Þ USV) and three term structure factors
(the first three principal components, representing level,
slope, and curvature) that capture the shape of the yield
25 In fact, the good fit of the A1ð3Þmodel was pointed out by Dai and

Singleton (2000) as one reason they advocated this model.
26 The upward bias in long-maturity volatilities for the A1ð4Þ USV

model seems to be related to our requirement that the Feller condition

hold, which we ensured by rejecting all parameter draws that did not

satisfy gV4kV V þsV=2. Thus, imposing this condition clearly increases

prior weight on larger values of gV , which has the effect of raising the

long-run mean of the variance process, thereby raising unconditional

volatilities of every maturity. We note that the Feller condition can be

relaxed if more restrictive risk premia are assumed for the V process.

Furthermore, because the parameters of the risk premia of V are not

identifiable from bond prices under USV, more restrictive risk premia

would not affect the ability of the two USV specifications to fit bond

prices. When we eliminate the requirement that the Feller condition

must hold, the A1ð4Þ USV model produces a volatility hump with

confidence intervals that include the observed curve.
curve. The GARCH forecasts of six-month yield volatility is
identical to those used in Table 4, while the GARCH
forecasts of ten-year yield volatility are based on the
identical model fitted to demeaned daily changes in the
ten-year yield.

Examining the incremental explanatory power of each
model’s volatility forecast over that of the term structure
shape factors provides a direct test as to whether
yield volatility is spanned by those factors, as common
models imply. More generally, these regressions
should reveal whether it is information from the cross
section or the time series that is more useful in predicting
volatility.

Table 6 for contains the results of these various
forecasting regressions. We note several interesting
results:
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Term structure factors (slope and curvature) have some
predictive power for future volatility, but more so at
the short end (R2 of 0.15 in regression 1 vs. 0.03 in
regression 10). However, the GARCH(1,1) estimate
drives out most of the economic significance of these
factors even though slope and curvature remain
statistically significant at the short end.

	
 Of the three models we investigate, only the A1ð4Þ USV

matches the GARCH(1,1) performance at the short end.
This is actually quite striking given that the A1ð4Þ USV
model was estimated and its forecasts constructed
from weekly data, while the GARCH model has the
advantage of being fitted from daily data. Furthermore,
the incremental information contained in the cross
section of the yield curve, i.e., in the three principal
components, is lowest for the A1ð4Þ USV model
(measured by how much the R2 increases upon
including the term structure factors). On the other
hand, even for this model the slope coefficient in the
predictive regression is just 0.7 and significantly
different from one, which indicates that the forecast
is not unbiased.27
	
 For longer maturity yield volatilities, the performance
of all the forecasts worsens, with the best-performing
forecast (GARCH) having an R2 of only 0.09. Of all the
term structure factors, only the slope seems to affect
long yield volatilities, but this effect is driven out by
including the GARCH or any other forecast.

	
 For longer maturities, A1ð4Þ USV is the only affine

model whose forecast is reliably positively related to
future realized volatility. However, with an R2 of 0.01, it
appears clearly dominated by the GARCH forecast.

	
 For both long and short maturity volatility forecasts,

the unconstrained A1ð4Þ and A1ð3Þ volatility forecasts
27 We note that there are at least two possibilities for this. First, as

wn in Ahn et al. (2003) multiple volatility factors might actually be

essary for explaining different dynamics in short and long maturity

ld volatilities. Second, the forecasts from the A1ð4Þ USV model were

structed somewhat sub-optimally. Specifically, we constructed

casts by conditioning on the point estimates in Tables 2A and B

er than integrating across the entire posterior distribution. Unfortu-

ely, the alternative is computationally unfeasible, and we see no way

easure the potential impact of this simplification.
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Table 6
Short and long maturity volatility forecast regressions.

This table contains coefficients and standard errors from regressions of daily realized volatilities (ŝ), as defined in Table 5, on different forecasting

variables. Newey-West standard errors are calculated using 12 lags. GARCH volatilities in the top panel are the same fitted values used in Table 4, while

the bottom panel uses a GARCH(1,1) fitted to demeaned daily 10-year yield changes. Other model forecasts are the same as those used in Table 5, and

principal components are identical to those computed in Table 1. Regressions are estimated using data from 1990 to 2002, allowing for a sample size of

677 weeks.

Specification Model Intercept* Model 1st 2nd 3rd Adjusted

number Name Volatility PC* PC* PC* R-squared

6-month yield volatilities

1 �0.054 0.839 �0.437 1.228 0.155

(0.022) (0.512) (0.077) (0.545)

2 GARCH(1,1) 0.000 0.697 0.246

(0.000) (0.077)

3 GARCH(1,1) �0.036 0.565 0.227 �0.175 0.770 0.268

(0.012) (0.084) (0.327) (0.065) (0.308)

4 A1ð3Þ 0.007 �5.046 0.135

(0.001) (0.897)

5 A1ð3Þ 7.695 �53.503 �14.607 2.986 �4.242 0.157

(6.413) (44.276) (12.814) (2.849) (4.540)

6 A1ð4Þ USV 0.000 0.698 0.238

(0.000) (0.073)

7 A1ð4Þ USV �0.007 0.672 �0.525 �0.032 0.809 0.245

(0.016) (0.103) (0.466) (0.094) (0.391)

8 A1ð4Þ �0.002 2.472 0.089

(0.001) (0.538)

9 A1ð4Þ �0.218 1.695 0.491 �0.204 1.149 0.164

(0.110) (1.123) (0.699) (0.187) (0.531)

10-year yield volatilities

10 0.128 �0.208 �0.215 0.225 0.031

(0.020) (0.444) (0.086) (0.411)

20 GARCH(1,1) 0.000 0.777 0.090

(0.000) (0.088)

30 GARCH(1,1) 0.023 0.707 �0.317 �0.088 0.397 0.093

(0.018) (0.089) (0.298) (0.058) (0.272)

40 A1ð3Þ 0.001 �0.057 �0.001

(0.000) (0.323)

50 A1ð3Þ 0.606 �2.332 �1.943 0.172 �0.420 0.030

(1.793) (8.733) (6.544) (1.459) (2.486)

60 A1ð4Þ USV 0.001 0.473 0.010

(0.000) (0.246)

70 A1ð4Þ USV 0.074 0.667 �0.697 �0.075 0.071 0.040

(0.028) (0.347) (0.491) (0.112) (0.407)

80 A1ð4Þ �0.003 3.155 0.013

(0.002) (1.631)

90 A1ð4Þ 0.401 �2.038 �0.060 �0.313 0.255 0.032

(0.454) (3.454) (0.508) (0.193) (0.434)

*denotes a coefficient that has been multiplied by 100
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are driven out by the slope and curvature factors. In
other words, we cannot reject that the volatility
forecasts of these unconstrained models are spanned
by yield curve factors. Further, their forecasts are
generally less accurate than those based on the GARCH
or A1ð4Þ USV models, both of which have volatilities
that are not spanned by the term structure factors.
28 We note that if we include six principal components instead of

three, or use raw yields instead of PCs, the same result obtains.
In conclusion, these results show that while cross-
sectional term structure factors have some explanatory
power for forecasting future yield volatility, the bulk of
the explanatory power is provided by time-series fore-
casts. The latter is not subsumed by the cross-sectional
factors.28 Lastly, long and short end volatilities seem to
behave quite differently.

4.6. Some robustness results

4.6.1. Risk premia

As we discussed previously, a number of the risk
premia parameters are not significant. Because of con-
cerns about overparameterization, we repeated some of
our in/out-of-sample yield fit and volatility forecasting
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exercises after re-estimating the models with all risk
premium coefficients set to zero. The results show that
the particular specification of risk premium structure is of
second-order importance when it comes to the perfor-
mance of the model at fitting yields or forecasting
volatility. If anything, the out-of-sample performance of
the models is slightly enhanced when the risk premia are
more parsimonious, though these differences are too
small to be driving any of our conclusions.

This result seems to arise from the relative invariance
of the parameters that affect the risk-neutral distribution
to the specification of risk premia. Since these parameters
are almost solely responsible for determining yield curve
fit, those results are unaffected by changing risk premia.
Our volatility forecasts are unaffected, for the most part,
because they are short-term in nature, and are therefore
driven more by the ability of the model to fit current
volatilities rather than predict whether these volatilities
will drift up or down over time. Of course, none of this
suggests that the specification of risk premia is not
important, and with a longer sample we would expect
differences in specification to be of primary importance
for forecasting yield levels or changes, particularly over
longer horizons, as argued by Duffee (2002).

4.6.2. Curvature-volatility relation for Treasury yields

Given our use of swap and LIBOR rates throughout the
paper, it is possible that the small but significant level of
default risk that is priced into those rates might be driving
these results. Alternatively, these results might be attrib-
uted to our bootstrapping method or a sample size that is
not as long (1988–2002) as some used elsewhere in the
literature. To alleviate these concerns, we replicate some
of the results (available upon request) with two alter-
native data sets constructed from Treasury yields. The first
is constructed from all available Treasury bills and strips.
These data are available daily from 1990–2002, and we
form constant maturity yields by linear interpolation of all
available yields. On each day we compute yields with
maturities identical to those used previously, except that
we replace the six-month rate with a three-month rate
because of better data availability. The second data set
results from merging the monthly Fama-Bliss data, with
evenly-spaced maturities between one and five years,
with a daily three-month Treasury bill rate from the
Federal Reserve. We collect these data for the 1960–2002
period.

In general, the patterns that emerge from these results
are the same as those observed for our LIBOR/swap
sample. One exception is that over the 1960–2002 sample
the first principal component appears to have a very
significant role in predicting future volatility. This appears
to be mostly due to the inclusion of the 1979–1982 period,
which some authors consider a period of structural
change in monetary policy (e.g., Huizinga and Mishkin,
1984; Campbell, 1987). It is well-known from Chan et al.
(1992) that this period included historical highs in both
the level of nominal yields and their volatility, and it is for
this reason we find the first principal component to be a
useful predictor of volatility. Noticeably, the curvature of
the yield curve, which both Litterman, Scheinkman, and
Weiss (1991) and Brown and Schaefer (1994a, b) argue
should be most related to volatility, does not seem
important at all during this period. Nevertheless, the
more important result from these data is that volatility
continues to be much more accurately predicted by the
GARCH measure. Controlling for the shape of the yield
curve, the incremental benefit of adding GARCH volati-
lities is large and highly significant. The effect of adding
PCs to a regression that already includes a GARCH
volatility is, on the other hand, very minor.

These results confirm that time series-based volatility
proxies contain the vast majority of information relevant
for predicting future volatilities and that the information
contained in the yield curve alone is insufficient for
producing accurate forecasts. Since this result obtains
across sample periods and several data sets, it seems
therefore unambiguous that short rate volatility is not
‘spanned’ by the yield curve.
5. Conclusion

We investigate several affine models of the term
structure that generate stochastic volatility in yields. We
find that the unrestricted A1ð3Þ model implies a volatility
time series that is essentially unrelated to the actual
volatility of the short rate process. This surprising result is
a consequence of the dual role played by the volatility
state variable in the unrestricted affine model: it is both a
linear combination of yields (i.e., it affects the cross
section of the term structure) and the quadratic variation
of the short rate (i.e., it impacts the time series of the term
structure). Bayesian estimation results in more weight
being placed on the first role at the expense of the second.
While the in-sample fit of yields is excellent, a clear out-
of-sample breakdown casts doubt on the model’s ade-
quacy in this role as well.

We then investigate an A1ð4Þ model exhibiting USV.
The USV specification allows the model to fit level, slope,
and curvature while simultaneously producing a volatility
process that is highly correlated with both GARCH and
option-implied volatility series. It does so by explicitly
introducing variation in curvature that is unrelated to
volatility, a straightforward generalization within the
representations introduced by CGJ. This model is also
(mostly) successful in replicating the ‘hump shape’ in
term structure volatility, and it performs as well out-of-
sample as it does in-sample.

We also consider an unrestricted A1ð4Þ model. In
principle, this model could fit level, slope, curvature, as
well as volatility perfectly. However, results indicate that
the likelihood criterion is strongly tilted toward fitting the
cross section of yields at the expense of the predicted
volatility series, which, even in this unconstrained four-
factor model, bears little resemblance to actual volatility
time series estimated via GARCH or from implied option
volatilities. However, the model performs well in fitting
the unconditional volatility structure and longer-maturity
yield conditional volatilities. We conclude that fitting
short maturity volatilities is not necessary to obtain a
good fit of yields and longer maturity conditional
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volatilities, as short- and long-dated volatilities appear to
be driven by different components.

While our results confirm the findings of Litterman and
Scheinkman (1991) that at least three factors are needed
to explain the cross sectional features of the yield curve, it
further demonstrates that these factors are an inadequate
description of the state space, as they are incapable of
replicating observed patterns of conditional volatility.
Appendix A. SDE representations

There are several ways to obtain an SDE representation
of the form (1)–(3) from the mean/covariance forms used
in the paper. For the risk-neutral drift, if

1

dt
EQ
½dXt� ¼ aQ þ bQ Xt , (A.1)

then simply set

KQ
¼ �bQ and YQ

¼ �ðbQ
Þ
�1aQ . (A.2)

Define the P drift parameters similarly.
Given a covariance matrix of the form

1

dt
CovðdXt ; dX>t Þ ¼ O0 þOV ðVt � VÞ (A.3)

that is at least positive semidefinite for every V, it is

always possible to find matrices O1=2
0 and O1=2

V such that

O1=2
0 O1=2

0

>

¼ O0 and O1=2
V O1=2

V

>

¼ OV . When OV is positive

definite, O1=2
V can be chosen to be its Cholesky decom-

position.
Now assume that Vt is the last element of Xt and let N

denote the total number of state variables that comprise X.
Then define

S ¼
O1=2

0

O1=2
V

2
4

3
5; a ¼

1N

0N � V

" #
; and b ¼

0N 0N 0N

0N 0N 1N

" #
,

(A.4)

where 1N is a N � 1 vector of ones and 0N is a vector of
zeros. It is easy to verify that these choices, within the
specification (1)–(3), imply the same covariance matrix
as (A.3).

These manipulations put the model into standard
affine form, but since S has 2N rows the model is written
with twice as many Brownian motions as state variables.
To write the model with as many Brownian motions as
state variables, it is always possible to write the model in
SDE form as

dXt ¼KQ
ðYQ
� XtÞdt þO1=2

t dZQ
t , (A.5)

where O1=2
t is some matrix (e.g., the Cholesky decomposi-

tion) such that O1=2
t O1=2

t

>

¼ Ot . However, as CGJ demon-

strate, it is not always the case that a formulation of this
type is of the standard affine form given in (1)–(3). Thus,
it is only guaranteed that a fully general N-factor model
may be written in standard affine form if we allow the
number of Brownian motions to exceed the number of
state variables.
Appendix B. Proof of Proposition 1

We claim that bond prices are of the form (22), with
coefficients given by

BrðtÞ ¼
ecrmtð6crm � 2ayÞ

4c2
rm � crmay

þ
e2crmtð3crm � ayÞ

�10c2
rm þ 2crmay

þ
7crm � 3ay
�6c2

rm þ 2crmay
�

2c2
rmeð�3crmþayÞt

G
,

BmðtÞ ¼
ay

2c2
rmð�3crm þ ayÞ

þ
e2crmtð2crm � ayÞ

10c3
rm � 2c2

rmay

þ
ecrmtðcrm � ayÞ

�4c3
rm þ c2

rmay
þ

3crmeð�3crmþayÞt

G
,

ByðtÞ ¼
ecrmt

c2
rmð�4crm þ ayÞ

þ
1

6c3
rm � 2c2

rmay
þ

e2crmt

10c3
rm � 2c2

rmay

�
eð�3crmþayÞt

G

AðtÞ ¼
Z t

0

1

2
B2
mðsm � sm VÞ þ

1

2
B2
yðsy � sy VÞ þ BrBmðcrm � crm VÞ

�

þBrByðcry � cry VÞ þ BmByðcmy � cmy VÞ � a0By

i
,

(B.1)

where

G ¼ ð3crm � ayÞð4crm � ayÞð5crm � ayÞ. (B.2)

We note that the integral in (B.1) has an analytic
expression, but to simplify notation we leave it in integral
form.

To prove this claim it is sufficient to show that

e�
R t

0
rs dsPðt; TÞ is a Q-martingale for P as defined in

Eq. (22). Indeed, in that case we have e�
R t

0
rsdsPðt; TÞ ¼

EQ
t ½e
�
R T

0
rsdsPðT; TÞ�, which implies

Pðt; TÞ ¼ EQ
t ½e
�
R T

0
rs ds
�,

since Eq. (22)–(B.1) imply PðT; TÞ ¼ 1. To show that

e�
R t

0
rs dsPðt; TÞ is a Q-martingale, we apply Itô’s lemma to

Eq. (22). Using the fact that the functions Að�Þ, Brð�Þ, and
Bmð�Þ satisfy the system of ODE:

B0r ¼ arBy þ 1, (B.3)

B0m ¼ Br þ amBy, (B.4)

B0y ¼ Bm þ ayBy, (B.5)

A0 ¼ 1
2B2

mðsm � sm VÞ þ 1
2B2

yðsy � sy VÞ þ BrBmðcrm � crm VÞ

þ BrByðcry � cry VÞ þ BmByðcmy � cmy VÞ � a0By (B.6)

0 ¼ � 3crmBy þ
1
2B2

r þ
1
2B2

mc2
rm þ

1
2B2

yc4
rm þ BrBmcrm

þ BrByc2
rm þ BmByc3

rm, (B.7)
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and that, in particular, because of the following restric-
tions on ar and am:

ar ¼ �2c2
rmð3crm � ayÞ,

am ¼ 7c2
rm � 3crmay,

we have

Br ¼ �crmðBm þ crmByÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bm þ 6crmBy

q
. (B.8)

We therefore find that

EQ
½dPðt; TÞ � rtPðt; TÞ� ¼ 0. (B.9)

It then follows straightforwardly that e�
R t

0
rs dsPðt; TÞ is

indeed a Q-martingale.

Appendix C. Details of the MCMC procedure

Our MCMC algorithm alternates between drawing
different blocks of unobservable state variables and model
parameters. To do so, it is convenient to define
Ut ¼ Vt � V , which is the deviation of Vt from its lower
bound. In addition, we parameterize the O0 and OV

matrices in terms of their lower diagonal decompositions
O1=2

0 and O1=2
V , though we report the parameters of the

original matrices. In most cases, these matrices are not full
rank, but the decompositions are easily derived, often as
the Cholesky decompositions of the nonzero part of the
matrix.

We decompose the parameter vector into three blocks,
fl, fL, and fQ , where fl includes all risk premia
parameters, fL includes measurement error standard
deviations, and fQ includes all parameters that drive
factor dynamics under the Q measure. The block for fQ

will also include the draw of Xo, the state variables other
than U. Finally, the draws of Ut are performed, as in Jones
(2003b) or Jacquier, Polson, and Rossi (1994), separately
for each t 2 f1;1þ h;1þ 2h; . . . ; Tg, a set of ðT � 1Þ=hþ 1
blocks. Thus, there are a total of ðT � 1Þ=hþ 4 separate
blocks:
	
 pðUtjP;U1; . . . ;Ut�h;Utþh; . . . ;UT ;X
o;fÞ for each

t 2 f1;1þ h;1þ 2h; . . . ; Tg.

	
 pðfL

jP;U;Xo;fl;fQ
Þ.
	
 pðfl
jP;U;Xo;fL;fQ

Þ.

	
 pðfQ ;Xo

jP;U;fL;fl
Þ.
Draws are rejected if they violate stationarity, admissi-
bility, or Feller conditions, or if they imply near-degen-
erate covariance matrices. This involves restrictions on
parameters that keep variances bounded away from zero.
In practice, none of these restrictions (except for the Feller
condition) appears to bind, but they nevertheless serve to
eliminate the possibility of improper posteriors, discussed
by Hobert and Casella (1996) and Johannes and Polson
(2009).

C.1. The linear state space representation

In all of the A1ðNÞ the models we consider, only Ut (or
Vt) enters the conditional variance of the state vector Xtþh.
Conditional on the entire path of U, the remaining state
variables Xo

tþh have a mean that is linear in Xo
t and a

variance that does not depend on Xo
t . At the same time, the

observed data also have a mean that is linear in the
unobserved vector Xo

t , with a covariance matrix L that we
have assumed constant. We can obtain this relation by
rewriting (26) as

Pt � Lv
ðUt þ VÞ ¼ K þ LoXo

t þ et , (C.1)

where Lv denotes the last column of L and Lo the
remaining columns.

Thus, conditional on the path of U, we have state and
measurement equations that are Gaussian and linear in
the state variable Xo

t . This enables the use of the standard
Kalman filter to compute pðPjf;UÞ. One small complica-
tion is that our state equation defines transitions over a
unit of time of length h, while the measurement equation
is only applicable for observation times t 2 f1;2; . . . ; Tg. To
resolve this asymmetry, consider the equivalent situation
where yields were instead observed at every length-h

interval, but that the measurement error variance for non-
integer t was infinitely large. For non-integer t, the Kalman
‘gain’ matrix is then zero, meaning that the observed data
have no effect on the conditional distribution of the state
vector. Thus, we can apply the Kalman filter in its textbook
form simply by zeroing out the Kalman gain matrix when
tef1;2; . . . ; Tg.
C.2. Drawing Ut

For t 2 f1;2; . . . ; Tg, the target density can be decom-
posed using the model’s Markov structure as

pðUtjP;U1; . . . ;Ut�h;Utþh; . . . ;UT ;X
o;fÞ

/ pðUtþh;X
o
tþhjUt ;X

o
t ;fÞpðUtjPt ;Ut�h;X

o
t�h;X

o
t ;fÞ,

which follows from the Markov property and Bayes rule.
Note that pðUtjPt ;Ut�h;X

o
t�h;X

o
t ;fÞ is a Gaussian density

for Ut. This is because it is a conditional density derived
from the multivariate Gaussian density of fUt ;X

o
t ;Ptg

given fUt�h;X
o
t�hg. We use this density as the candidate

generator for a Metropolis-Hastings draw, forming the
acceptance factor from the omitted component of the
target density. We therefore replace the current draw Ut

with the candidate U�t with probability

min
pðUtþh;X

o
tþhjU

�
t ;X

o
t ;fÞ

pðUtþh;X
o
tþhjUt ;X

o
t ;fÞ

;1

( )
,

also rejecting all draws of negative Ut .
For tef1;2; . . . ; Tg, the draw is similar, with the target

density instead proportional to

pðUtþh;X
o
tþhjUt ;X

o
t ;fÞpðUtjUt�h;X

o
t�h;X

o
t ;fÞ.

The second component is a slightly different Gaussian
candidate generating density for Ut, and the Metropolis-
Hastings acceptance probability is unchanged from
before.
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C.3. Drawing fL

Given fQ , Xo, and U, we may compute fitted principal
components as K þ LXt and construct a time series of
measurement errors et ¼ Pt � K � LXt , where it was
assumed that et�Nð0;LÞ. Since L was assumed diagonal
(measurement errors are cross-sectionally uncorrelated),
we may consider the error for each principal component
separately. With a flat prior on each measurement error

standard deviation (i.e., pð
ffiffiffiffiffiffiffi
Li;i

p
Þ / 1=

ffiffiffiffiffiffiffi
Li;i

p
), we have the

standard result that
ffiffiffiffiffiffiffi
Li;i

p
has an inverted gamma

distribution with T degrees of freedom and a location
parameter equal to the root mean squared measurement

error of the ith principal component.

C.4. Drawing fl

To draw fl we write the Euler approximation (25) as

Xtþh � Xt ¼ hðaþ bXtÞ þ
ffiffiffi
h
p

O1=2
t �tþh.

Since the drift is linear and the residual covariance matrix
is known (as a function of U and fQ ), we can directly apply
the seeming unrelated regression approach of Chib and
Greenberg (1996) to draw the a vector and the b matrix.
Since we are using the ‘generalized essentially affine’ risk
premia of Cheridito, Filipovic, and Kimmel (2007), each
nonzero element of a and b is effectively a free parameter
(subject to stationarity and admissibility conditions).
Thus, no linkage between the P and Q drift parameters
need be imposed and we can simply back out risk premia
according to

l0 þ lXXt ¼ aþ bXt � aQ � bQ Xt ,

where aQ and bQ are Q measure parameters analogous to a

and b.

C.5. Drawing fQ and Xo

In this block we seek a draw from pðfQ ;Xo
jP;U;

fL;fl
Þ, which we decompose as

pðfQ
jP;U;fL;fl

ÞpðXo
jP;U;fQ ;fL;fl

Þ.

Because our prior on fQ is completely flat and indepen-
dent of fL and fl, we have

pðfQ
jP;U;fL;fl

Þ / pðP;UjfQ ;fL;fl
Þ

/ pðPjU;fQ ;fL;fl
ÞpðUjfQ ;fL;fl

Þ.

The second term, pðUjfQ ;fL;fl
Þ, is easily evaluated

because U is a univariate Markov process whose dynamics
are fully described by the Euler approximation. The first
term, pðPjU;fQ ;fL;fl

Þ, is evaluated using the Kalman
filter. As noted above, once we condition on the entire
path of U, we may write the dynamics of Xo

t and Pt in
linear Gaussian state space form.

We use a random walk Metropolis chain to draw a
candidate value fQ� for replacing the current value fQ .
The acceptance factor, in this case, is just the ratio of
the target densities, so that we accept fQ� over fQ
with probability

min
pðPjU;fQ�;fL;fl

ÞpðUjfQ�;fL;fl
Þ

pðPjU;fQ ;fL;fl
ÞpðUjfQ ;fL;fl

Þ
;1

( )
,

which we are now able to compute. Given the resulting
draw of fQ , we may invoke the simulation smoother of de
Jong and Shephard (1995) to draw the entire multivariate
time series Xo all at once from the density pðXo

jP;U;fÞ.
Following Bester (2004), we alternate between usually

drawing the entire fQ vector at once using a multivariate
candidate generator and occasionally (once every 10
iterations) drawing each element of fQ individually. The
covariance matrix of the candidate generator is chosen
by running a long preliminary chain and computing the
sample covariance matrix of the draws of fQ from the
chain. A second chain is run in which a scaling parameter
is chosen adaptively to set the Metropolis acceptance rate
approximately equal to 0.4. A final third chain is run to
generate the posteriors reported.

C.6. Sensitivity to the choice of h

The results of Jones (2003b) and Eraker (2001) suggest
that even nonlinear term structure models do not suffer
from appreciable discretization bias when the discretiza-
tion interval is set equal to one day. Given our use of
weekly data, this suggests that at a minimum we should
investigate values of h as small as 0:2 (one fifth of the
weekly observation interval). In this section we compare
some results presented in the paper, which were com-
puted using h ¼ 1, to the case in which h ¼ 0:2. To reduce
computation time, we calculated results only for the A1ð3Þ
USV model.

Parameter posterior distributions from the two cases
turn out to be extremely similar, with differences only
noticeable for the parameters that drive the V process (gP

V ,
kP

V , and sV ). Even these differences are still small relative
to the posterior standard deviations. Furthermore, these
differences are not large enough to generate any obser-
vable differences in the estimated r and mQ state variables,
and only extremely minor differences are observed for
estimated short rate variances. Overall, differences are
very small and appear clearly insufficient to change any of
the conclusions of the paper.
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