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Abstract
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deep out-of-the-money call options on stocks is negative and economically significant
at -73 basis points per day. After adjusting for microstructure biases, a Fama-MacBeth
regression indicates that the volatility risk premium in individual equity options is
about the same as the premium in S&P 500 Index call options. Our results highlight
the importance of addressing microstructure biases when estimating expected returns
and the risk premia of options.
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Determining whether volatility is priced has important consequences for option pricing,

interpreting implied volatilities, and understanding the purpose of equity option markets.

Stochastic volatility models are the norm in the option pricing literature, and numerous

papers have demonstrated that a nonzero price of volatility risk can improve model fit sub-

stantially. A volatility risk premium also means that implied volatilities, whether they are

from the Black and Scholes (1973) model or the model-free approach of Britten-Jones and

Neuberger (2000), cannot be interpreted as unbiased forecasts of future realized volatility.

Finally, knowing whether a volatility risk premium exists has important implications for

understanding the purpose of options markets, namely the extent to which these can be seen

as markets for volatility risk.

Though understanding whether volatility is priced is a central issue in the option litera-

ture, the evidence is somewhat mixed. While both Coval and Shumway (2001) and Bakshi

and Kapadia (2003a) find evidence consistent with volatility being negatively priced in index

equity options, such evidence for individual stock options is weak or non-existent (e.g. Bak-

shi and Kapadia (2003b) and Driessen, Maenhout, and Vilkov (2009)). This latter finding

is puzzling because the volatilities of individual stocks are positively correlated with index

volatility. Therefore, standard economic theory implies that individual equity options are,

to some extent, substitutes for options written on the index.

We address this puzzle in this paper. Specifically, we explore two implications of a no-

arbitrage stochastic volatility model to examine the volatility risk premium implied in equity

and index options. First, a nonmonotonic relation between expected returns of calls and their

moneyness is possible in a stochastic volatility model with a negative volatility risk premium.

This differs from the Black and Scholes model, in which the expected returns of call options

on stocks are positive and increasing with moneyness. In contrast, in a stochastic volatility

model, option expected returns are driven by both the expected return of the underlying

asset and the volatility risk premium. The balance between these two effects may result

in a nonmonotonic relation between expected call returns and their moneyness or even in

negative expected returns for deep out-of-the-money (OTM) call options. We examine this

implication with portfolios of call options sorted by their moneyness. Second, a negative

volatility risk premium implies that the expected return of delta-hedged options decreases
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with the sensitivity to underlying volatility (βσ). We examine this implication using Fama

and MacBeth (1973) (FM) regressions of delta-hedged option returns on βσ.

Most importantly, we examine these standard implications of stochastic volatility mod-

els while systematically accounting for the biases that measurement errors in prices can

cause in the estimation of volatility risk premia. Asset pricing researchers have long noted

that measurement errors in prices can result in biased estimates of expected returns and

risk premia (Blume and Stambaugh (1983), Fama (1984), Stambaugh (1988), Asparouhova,

Bessembinder, and Kalcheva (2010, 2013)). These biases lead to practices that are now

commonplace in the estimation of expected returns and risk premia in equity markets. For

instance, it is now common in the asset pricing literature to use value weighting in addition

to equal weighting because value-weighted mean returns result in unbiased estimates of ex-

pected returns (see Blume and Stambaugh (1983)). The literature on options, on the other

hand, has not adopted these common practices. Instead, researchers typically attempt to

address these potential biases by discarding a large portion of the data (e.g., call options

with ∆ < 0.15) or focusing on only a small subset of data, such as at-the-money (ATM)

options. Discarding a large part of the data for empirical studies is problematic, not only

because it violates one of statistics’ first principles — “Thou shall not throw data away”

(Zhang, Mykland, and Aït-Sahalia (2005)) — but also because leads to conclusions that

may be applicable only to a subset of the data.

Instead of discarding data, we adapt the bias-correction practices used in the equity

literature to options. Our prescription is based on practices in Blume and Stambaugh

(1983), Fama (1984), Stambaugh (1988), and Asparouhova, Bessembinder, and Kalcheva

(2010, 2013). The bias-adjustment prescription can be easily implemented and comprises

three simple procedures: First, estimate expected returns of options and delta-hedged op-

tions using weighted averages, where weights are proportional to one-day-lagged gross op-

tion returns. For instance, estimate the expected return of a portfolio with N calls as∑N
i=1wC,i,t−1RC,i,t/

∑N
j=1wC,i,t−1, where RC,i,t is the return of the ith call at time t and wi,t−1

is the gross return of call i at time t−1 (Ci,t−1/Ci,t−2). Second, estimate FM regressions with

weighted least squares (WLS) instead of ordinary least squares (OLS) using one-day-lagged

gross option returns as weights. Third, skip a day between signals and returns. That is, use
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doubly lagged variables (e.g., βσ,t−2 or moneyness) in portfolio sorts, FM regressions, and

sample selection.1

We find strong evidence that volatility is priced at the individual equity option level.

Specifically, we strongly reject the assumption that call option returns monotonically increase

with option moneyness. In fact, contrary to the assumption that call option returns are

driven only by the expected return of the underlying asset, we find that the bias-adjusted

mean return of heavily traded deep OTM call options is negative, at around -73 bps per

day.2 Moreover, our FM results indicate that the volatility risk premium in individual

equity options is remarkably consistent with that in S&P 500 Index call options. Indeed,

we find a volatility risk premium of about -5 bps per day for high-open-interest call and put

options written on the stocks in the S&P 500 and for call options written on the S&P 500

Index.3 Importantly, we find qualitatively different results for options on individual equity

if we do not correct for microstructure biases. Specifically, without bias corrections, the FM

regressions indicate that volatility is not negatively priced in individual equity options.

We use simulations to gauge the size of microstructure biases in the estimation of the

volatility risk premium and to examine our proposed bias-adjustment method. Our sim-

ulations indicate that the biases in FM regressions estimating the volatility risk premium

can completely change the conclusion regarding volatility being priced in individual equity

options. More importantly, the simulation results indicate that the bias-adjusted method

substantially reduces or completely eliminates biases due to measurement errors in prices.

Specifically, an FM regression without (with) bias adjustment estimated with simulated

data from a model with a volatility risk premium of -5.5 bps per day results in a estimated

volatility risk premium of zero (-5.4 bps per day).
1The simplicity of the prescription above does not come without a cost. Errors in stock and option

prices not only lead to direct biases in returns, but also to indirect biases because hedge ratios (deltas) are
calculated with stock and option prices, which are plagued with measurement errors. Although this indirect
bias is small in the case of delta-hedged option mean returns, it is relatively large in some other cases such as
straddles and cannot be avoided by simple applications of the methods described in the equity literature. In
the appendix, we describe procedures that are appropriate for straddles, βS-adjusted returns (Constantinides,
Jackwerth, and Savov (2013)), and leverage-adjusted returns (Fournier, Jacobs, and Orlowski (2021)).

2Individual equity option trading is highly concentrated, with 20% accounting for about 90% of the dollar
open interest. Because more actively traded options may have return patterns different from those of thinly
traded options, we report results both unweighted and weighted by dollar open interest.

3The volatility risk premium is about -11 basis points per day on put options written on the index.
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We contribute to the literature by showing that volatility is, in fact, priced at the indi-

vidual stock level once we address the biases in the estimation of the volatility risk premium.

The negative average returns of deep OTM call options we find are consistent with those

found by Ni (2008) using monthly call option returns. We extend Ni (2008) by attributing

these negative average returns to a negative volatility risk premium. Driessen, Maenhout,

and Vilkov (2009) is the most comprehensive study of the pricing of volatility in individual

equity options.4 They examine the difference between the realized variance (RV ) and the

model-free implied variance (MFIV ) derived from options prices. A negative volatility risk

premium implies that the RV of the underlying asset is smaller than the MFIV on average.

Using options on stocks in the S&P 100 Index, they show that the average across stocks of

the difference between the RV and the MFIV is not different from zero, indicating that

volatility is not priced in individual equity options. We show that the average difference be-

tween the MFIV and the RV is severely affected by the choice of Driessen, Maenhout, and

Vilkov (2009) to only focus on options that are close to ATM. The most prominent empirical

characteristic of equity options is the implied volatility smile. That is, the implied volatility

of OTM options is larger than the implied volatility of ATM options. Hence, excluding OTM

options from theMFIV calculation can result in low estimates of theMFIV , which in turn

results in unreliable estimates of the difference between MFIV and RV .5

We also extend the literature that analyzes microstructure biases in the estimation of

expected returns. Specifically, our study is the first to document that these biases are

large and important for option portfolios. Moreover, we show that the usual procedure

in the options literature of deleting a large part of the options data may not address the

microstructure biases and instead may result in estimates that are applicable to only a

subset of the data. Our approach builds on Blume and Stambaugh (1983) and Asparouhova,
4Other studies examining this issue do not use a sample as large as the one in Driessen, Maenhout, and

Vilkov (2009). For instance, Bakshi and Kapadia (2003b) examine a sample of options written on 25 stocks.
5Carr andWu (2009) estimate the difference betweenMFIV and RV for a sample of 35 stocks. Differently

from Driessen, Maenhout, and Vilkov (2009), they do not restrict their sample to close-to-ATM options, and
they do not compute the average difference between the MFIV and the RV across all stocks, focusing
instead on stock-by-stock differences. Carr and Wu (2009) point out that the variance risk premium is very
noisy at the individual stock level, resulting in only seven stocks in their sample with a statistically significant
negative variance risk premium. In contrast, the standard deviations on the log variance risk premium are
much smaller, which leads to a statistically significant negative log-variance risk premium for 23 out of the
35 stocks in their sample.
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Bessembinder, and Kalcheva (2010, 2013), who study the effect of microstructure noise in

stock prices. Dennis and Mayhew (2009) examine the effect of noisy option prices on the

estimation of option pricing models, while Hentschel (2003) studies the effect of noise on

the estimation of the implied volatility smile. Our study differs from these papers because

we focus on the effects of noisy prices on inferences about the expected returns and risk

premia of options. Moreover, two recent studies explore biases that are related to differences

between the closing and intraday option prices. Eraker and Osterrieder (2018) show that

the VIX is a biased estimate of implied volatility because the midpoint of the closing bid-ask

prices is biased due to order flow pressure, while Goyenko and Zhang (2019) document biases

on mean returns computed with closing prices due to differences between the closing and

intraday option prices. We differ from these studies because the biases we document are not

at all related to the differences between intraday and closing prices. In fact, the biases we

explore depend only on the assumption that the prices (intraday or closing) used to compute

returns are observed with zero-mean measurement errors.

Our results indicate that the option literature needs to adopt procedures to deal with bi-

ases due to measurement errors in prices in the same way that the empirical equity literature

has dealt with these biases at least since Blume and Stambaugh (1983) and Fama (1984).

Naturally, our bias estimates are based on simulations that rely on a series of assumptions.

For instance, we make assumptions about the distribution of the measurement errors. As a

result, our estimates of the size of the biases are solely indicative, and they are not intended

to be exact estimates. Despite this, our simulation results, together with the simple obser-

vation that option relative bid-ask spreads are enormous (on average about 12%), strongly

indicate that estimation biases due to measurement errors in prices are economically signifi-

cant when working with options. Our paper therefore contributes to the empirical literature

on options by proposing a method to deal with these biases in the estimation of expected

option returns and risk premia.

The remainder of the paper is as follows. Section 1 describes our data. Section 2 describes

our methodology, and Section 3 presents the empirical results. In Section 4, we use Monte

Carlo simulations to show that microstructure biases affect the estimation of volatility risk

premia and that these biases are addressed with our simple methodology. Section 5 concludes.
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1 Data and Data Filters

We focus on options written on the S&P 500 Index and on stocks that are in the S&P

500. Our sample period is from January 1996 to June 2019. Our primary data come

from the IvyDB dataset of OptionMetrics, which contains closing bid-ask quotes on options,

closing stock prices, stock returns, implied volatilities, option deltas (∆), vegas (ν), and open

interest.6 The ∆ and ν of a given option in IvyDB are calculated with that option’s own

implied volatility, which depends on the observed price of the option and on the underlying

asset. We compute option returns based on the midpoints of the option bid-ask quotes.

Excess returns are equal to returns minus the risk-free rate.7 As in Driessen, Maenhout,

and Vilkov (2009), we examine options with maturities from 14 to 60 calendar days (or 10

to 44 trading days).8 In addition to OptionMetrics, we use the volume-weighted effective

bid-ask spreads of stocks from WRDS Intraday Indicators. We calibrate the bid-ask spreads

of underlying stocks in our simulations to those observed in the data.

As is standard in the literature, we remove option prices that appear to be data errors.

Removing these prices has some potential to induce look-ahead bias. To understand why,

note that a trader cannot impose a filter based on the option price at time t since a trader

does not know at time of portfolio formation (t − 1) the option price at time t. Because

removing these observations may induce look-ahead bias, we remove them only as a last

resort. Deleting these prices is necessary, however, because they are clearly erroneous and

potentially very influential. For instance, we eliminate an observation with a call ask price

of $9,999 on a stock with a price of $40. These clearly erroneous observations are not used

in any of our empirical analyses, and they are only about 0.3% of the observations, a small

percentage of the sample. The appendix contains a detailed description of this procedure.

We then impose baseline filters on the sample. It is common in the literature to impose fil-
6Implied volatilities, deltas, and vegas are computed using the binomial tree approach of Cox and Ru-

binstein (1979), which accounts for dividends and for the potential early exercise of the American options
on individual equities. They are calculated with the Black and Scholes model in the case of the European
options on the S&P 500 Index.

7The risk-free rate is based on the shortest maturity yield in the IvyDB zero-coupon term structure file,
and accounts for the number of calendar days in the return holding period. As discussed by French (1983),
interest accrues on a calendar-time basis.

8Our results regarding volatility pricing are robust to extending maturities to 180 calendar days.
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ters based on bid-ask spread percentages, non-missing implied volatilities, option midpoints,

option open interest, and deltas.9 We impose these filters in our baseline sample to analyze

whether they may, in fact, create biases in the estimation of the volatility risk premium.

The standard practice in the literature, which we follow in our baseline sample, is to impose

filters like these at the start of the holding period (t−1). Doing so prevents look-ahead biases

since a trader can impose these filters at the beginning of the holding period (t − 1). This

standard practice, however, may result in sample selection biases when prices are observed

with error. We discuss these biases in detail in Section 2.

Table 1 presents the following summary statistics of our baseline sample: the mean, me-

dian, standard deviation, first and third quartiles (Q1 and Q3), first and 99th percentiles

(P1 and P99), and skewness of option returns, stock returns, spreads, moneyness, im-

plied volatilities, and dollar open interest ($OI). We define the moneyness of an option

as ln(e−rt(T−t)K/St)/(σt
√
T − t), where K is the option strike price, σt is the implied volatil-

ity of the option at time t, T − t is time-to-expiration in years, rt is the risk-free rate, and

St is the observed price of the stock at time t. Option spreads are expressed as percentages

relative to quote midpoints. The $OI of an option is its open interest multiplied by the

midpoint of its closing quote.

Table 1 indicates that the distribution of $OI is highly skewed. Indeed, Figure 1 shows

that the options in the top quintile of the $OI distribution account for around 90% of the

total $OI. This extreme skewness in $OI suggests that empirical results can be driven by a

majority of options that are very thinly traded. To address this possibility, we also present

results weighted by $OI.

Table 1 also shows differences between options written on individual stocks and on the

index. For call options written on individual stocks (Panel A), the median relative bid-ask

spread is about 8%, and for put options it is approximately 9% (Panel B). Median moneyness
9Specifically, as in Goyal and Saretto (2009), Cao and Wei (2010), Muravyev (2016), and Christoffersen,

Goyenko, Jacobs, and Karoui (2018), we require that the midpoint price must be at least $0.10 and that
the bid-ask spread percentage not exceed 50% of the midpoint (which rules out zero-bid prices). We also
eliminate options with zero-open interest. We require the absolute value of delta to be between 0.01 and 0.99.
Our constraints on delta are less severe than those of Driessen, Maenhout, and Vilkov (2009), who examine
puts (calls) with delta smaller (larger) than -0.05 (0.15). We discuss the consequences of this difference in
the constraints related to the deltas in Section 3. We also require that the option have a computed implied
volatility by IvyDB.
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is negative for call options, indicating more in-the-money call options in the sample, and it

is near zero for put options. The median implied volatility for options written on individual

stocks is about 31%. The mean return of calls (puts) is about 53 (-62) bps per day. Perhaps

the most interesting statistic about returns is not tabulated, which is that the average au-

tocovariance in daily call (put) returns is -12 (-13) bps. Similar values for stock returns in

our sample are economically negligible.10 These autocovariances, after multiplication by -1,

provide estimates of the variance in proportional measurement errors in prices (Roll (1984))

and the size of the MR bias (Blume and Stambaugh (1983)). The mean and the median

bid-ask spreads for options written on the index (Panels C and D) are substantially smaller

than those of options written on individual stocks. The median moneyness is negative for

put options written on the index, indicating more OTM index puts in the sample. For call

options written on the S&P 500 Index, the median relative bid-ask spread is about 3%, and

for put options it is approximately 6%. The median implied volatility for call (put) options

written on the index is about 14% (20%), which is substantially smaller than the median

implied volatility of options on individual stocks. The mean return of calls (puts) is about

84 (-221) bps per day. For index options, average daily autocovariances are about -9 bps for

both calls and puts. The fact that the absolute values of these autocovariances are smaller

than those in equity options indicates that the variance of proportional measurement errors

in index option prices is smaller than that in individual equity options, which is unsurprising

given the lower spreads of index options.

Our goal is to estimate the volatility risk premium taking into account measurement errors

in prices, not to estimate the transaction costs that investors face when trading options. As

it is traditional in the asset pricing literature, we consider transaction costs to be a separate

issue. To a large extent, this is because transaction costs are investor-specific, depending on

the investment strategy and the quality of investor’s trade execution (e.g. Muravyev and

Pearson (2020)). Nevertheless, Figure 2 plots the time series of the average closing bid-ask

spread for calls and puts written on individual stocks and on the S&P 500 Index. We show

these spreads because it is reasonable to assume that they are related to the variance of
10To compute average autocovariance, we calculate the cross-sectional covariance of option returns with

their own lag on each day of the sample and then average across days. Newey-West t-statistics are −11.0 for
calls and −8.6 for puts.
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the measurement errors that plague the estimation of risk premia.11 To the extent that

measurement error variance is related to the width of bid-ask spreads, the figure shows that

the biases we identify in this paper may still be strong even at the end of our sample.

Figure 3 displays average loadings (βs) as a function of moneyness in our sample. The

sensitivity of a call option return with respect to the return of the underlying asset (βCS ) is

∆C
t ×St/Ct, where ∆C

t and Ct are the delta of the call option and its price, respectively, both

from IvyDB. The sensitivity of a call option return with respect to the volatility change in

the underlying asset (βCσ ) is defined as νCt /Ct, where νCt is the vega of the call option, also

from IvyDB. The definitions of put option βs are similar. As we explain in Section 2, these

option loadings drive the expected returns of options in a stochastic volatility model.

2 Empirical Methodology

The instantaneous expected excess return of a derivative in a standard no-arbitrage stochastic

volatility diffusion model is expressed as

Et

[
df̃t

f̃t

]
− rdt = β̃fS,tEt

[
dS̃t

S̃t
+ (q − r)dt

]
+ β̃fσ,tλ̃σdt, (1)

where f̃t is the price of the derivative (a call or a put), r is the instantaneous risk-free

rate, q is the dividend yield, and dt is the instantaneous time change. The sensitivity of

the derivative’s return with respect to the return on the underlying asset is β̃fS, and the

sensitivity of the derivative’s return with respect to the volatility of the underlying asset is

β̃fσ . λ̃σ is the volatility risk premium.12

We start the empirical examination of a negative price of volatility risk in options by an-

alyzing whether the mean return of unhedged calls increases monotonically with moneyness.

Specifically, Equation 1 reveals that the expected returns of call options do not necessarily

monotonically increase with strike prices or moneyness when λ̃σ < 0. To see this, note that
11Consistent with the findings of Battalio, Hatch, and Jennings (2004), the top panels show a substantial

decrease in the closing bid-ask spreads of options on stocks in late 1999. However, closing bid-ask spreads
increased substantially in the 2013–2014 period and by the end of the sample period are close to their values
at the beginning of the sample.

12Specifically, λ̃σ is the difference between the drifts of the volatility diffusion under the physical and
risk-neutral probability measures. The appendix contains a proof of this equation, following the results in
Duarte and Jones (2010).
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both β̃CS and β̃Cσ are positive, increasing, and nonlinear functions of moneyness (see Figure

3). Moreover, the β̃σ of an in-the-money (ITM) call option is close to zero, while the β̃σ

of an OTM call option is of the same order of magnitude as its β̃S. That is, the expected

return of ITM calls is largely driven by the expected return of the underlying asset, which

is positive, while the expected return of OTM calls is driven by both the positive expected

return of the underlying asset and the negative volatility risk premium when λ̃σ < 0. As a

result, β̃fσ,tλ̃σ in Equation 1 is negative and may be the dominant term driving the expected

returns of OTM call options. In fact, the expected returns of deep OTM call options may be

negative when λ̃σ < 0. On the other hand, when λ̃σ = 0, the expected return of a call option

is driven only by its exposure to the underlying asset, and it increases with moneyness as

β̃CS does. We analyze the relation between call option expected returns and moneyness with

portfolios of call options sorted by moneyness.

Equation 1 also indicates that FM regressions of delta-hedged excess returns on an op-

tion’s β̃σ can be used to estimate λ̃σ. Indeed, Equation 1 implies that expected delta-hedged

excess returns are Et−1[R̃f,t] − β̃fS,t−1Et−1[R̃S,t] ≈ β̃fσ,t−1λ̃σ. Hence, we can estimate λ̃σ with

FM regressions of delta-hedged option returns on option volatility betas. The linear relation

in Equation 1 holds in continuous time, while the relation between options and underlying

excess returns is nonlinear for discrete holding periods. To alleviate possible problems due

to this nonlinearity, we estimate the FM regressions with high-frequency data (using daily

instead of monthly returns).

Naturally, the observed derivative and underlying asset prices, as well as the returns and

βs, contain measurement errors. Following Blume and Stambaugh (1983), we assume that

the observed price of a derivative is ft = f̃t(1 + εf,t), where f̃t represents the true price of the

derivative, and εf,t is the zero-mean derivative price error term. The measurement errors in

prices affect the observed returns. To see this, note that a Taylor expansion implies that(
ft
ft−1

− 1

)
≈

(
f̃t

f̃t−1
− 1

)
+

f̃t

f̃t−1
×εf,t−

f̃t

f̃t−1
×εf,t−1−

f̃t

f̃t−1
×εf,t×εf,t−1+

f̃t

f̃t−1
×ε2f,t−1. (2)

Analogously, measurement errors in the prices of the derivative and of the underlying asset

also infect the observed option βs because the βs of an option are calculated with that

option’s own implied volatility, which depends on the observed price of the option and of the
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underlying asset.

Because we do not observe true prices, our call portfolio sorts and FM regressions rely on

observed returns and βs, which have measurement errors. We use an upper tilde (˜) for the
variables without measurement errors, while the variables infected by measurement errors

in prices do not have an upper tilde. For example, the observed one-day excess return and

sensitivities of a derivative are represented as Rf,t, βfS, and β
f
σ , while the unobserved variables

without measurement errors are represented by R̃f,t, β̃fS and β̃fσ respectively.13 Hence, the

baseline FM regression suggested by Equation 1 is

Rf,i,t − βfS,i,t−1RS,t = λ0 + λσ × βfσ,i,t−1 + ηi,t. (3)

Measurement errors in prices lead to four types of bias in the estimated average return

of sorted option portfolios and in the volatility risk premia estimated with the baseline FM

regression in Equation 3:

First is the mean return (MR) bias, which affects portfolio sorts. To understand the MR

bias, note that Equation 2 leads to E[Rf,t − R̃f,t] ≈ E[f̃t/f̃t−1]E[ε2f,t−1].14 The MR bias was

first described by Blume and Stambaugh (1983) in the context of stocks. The variance of

the measurement error in option prices is likely to be much larger than that of stock prices

because the relative bid-ask spreads of options are much larger than those of stocks. Hence,

the MR bias in mean option returns is likely to be much larger than that in stock returns.

Second is the regression coefficient (RC) bias, which affects our FM regressions. To un-

derstand this bias, assume a simple model in which the true (unobserved) expected return

of a derivative satisfies the univariate relation, Et−1[R̃f,i,t] = λ̃β̃fi,t−1. For simplicity, assume

that we observe β̃fi,t−1 and we estimate the regression Et−1[Rf,i,t] = λ0 + λβ̃fi,t. Under some

simplifying assumptions, the OLS estimate of λ is approximately λ̃(1 + E[ε2f,t−1]).15 Intu-

13For a call option, its observed price is represented as Ct = C̃t(1 + εC,t). Put prices (Pt) and stock prices
(St) also contain measurement errors (εP,t and εS,t). The observed call, put, and underlying asset excess
returns are represented by RC , RP , and RS , respectively. In our empirical analysis, the observed call and
put prices are the closing midpoint of the bid and ask prices. Our analysis, however, is general, and the
observed price does not need to be the closing midpoint of the bid and ask prices.

14To arrive at this expression we use the standard assumption in this literature that measurement errors
have zero mean, are uncorrelated with the actual return (f̃t/f̃t−1), and are IID. Note we focus on a conditional
option pricing model in our empirical work. However, we follow the literature and define the bias as the
unconditional expectation of the difference between observed and actual returns (E[Rf,t − R̃f,t]).

15We obtain this expression by substituting the expression Et−1[R̃f,i,t] = λ̃β̃fi,t−1 in Equation 2 and using
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itively, the RC bias is a generalization of the MR bias to an FM regression setting. To see

this, note that the MR bias, E[f̃t/f̃t−1]E[ε2f,t−1], increases with the expected return of the

derivative. Hence, the MR bias changes with β̃fi,t−1 in our simple model for expected return

and λ is a biased estimate of λ̃.

The third is the sample selection (SS) bias, which potentially affects both portfolio

sorts and FM regressions. To understand this bias, assume that our intent is to esti-

mate the population expected return of a certain type of derivative (e.g., the uncondi-

tional expected return of call options, E[RC,i,t]) with a sample that is built with some

data filters (e.g., price at time t − 1 is above $0.10 or implied volatility is not missing

at time t − 1). Mathematically, the expected return of the derivatives in our sample is

E[Rf,i,t|1Sample(fi,t−1) = 1], where 1Sample(fi,t−1) is a function indicating whether the deriva-

tive i is within our sample at time t− 1. The measurement errors in fi,t−1 affect both Rf,i,t

and the indicator function 1Sample(fi,t−1), inducing a spurious covariance between Rf,i,t and

1Sample(fi,t−1) that, in turn, results in a bias. Specifically, E[Rf,i,t|1Sample(fi,t−1)]−E[Rf,i,t] =

Cov[Rf,i,t,1Sample(fi,t−1)]/E[1Sample(fi,t−1)].

An example of how the SS bias arises in our context is the common practice of discarding

options without implied volatility at time t − 1. To see how this bias works in this case,

note that negative values of εf,i,t−1 lead to low values of observed option prices (fi,t−1) that

tend to be reversed, resulting in high values of Rf,i,t. These negative measurement errors

may also result in observed midpoint option prices (fi,t−1) that are below lower-arbitrage

bounds and hence do not have a computed implied volatility. As a result, deleting these

observations from the sample results in Cov[Rf,i,t,1Sample,t−1] < 0, leading to a negative bias

in the estimated expected return.

Finally, the fourth bias is the correlated error in variables (CEIV) bias, which also poten-

tially affects both portfolio sorts and FM regressions. In the FM regression context, the CEIV

bias renders the estimated λσ in Equation 3 spurious because βfσ,i,t−1 and returns (Rf,i,t and

RS,t) are infected by the same measurement errors in option and underlying prices. In port-

folio sorts, the estimated expected return is E[Rf,i,t|1Portfolio(fi,t−1)], where 1Portfolio(fi,t−1)

the assumptions that the zero-mean measurement errors are independent and identically distributed across
securities. Asparouhova, Bessembinder, and Kalcheva (2010) describe the RC bias in more detail.
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is a function indicating whether the derivative is within the portfolio of derivatives satisfying

the target characteristic in time t − 1. The measurement errors in fi,t−1 affect both Rf,i,t

and the indicator function 1Portfolio(fi,t−1), inducing a spurious covariance between Rf,i,t and

1Portfolio(fi,t−1) that, in turn, creates a bias.

We address these biases with a bias-adjustment procedure based on the best practices

from the asset pricing literature. Our simulations in Section 4 show that the bias-adjustment

procedure described below addresses the MR, CEIV, RC, and SS biases in portfolio sorts

and FM regressions.

We dispense with SS bias by adjusting our sample selection to break its dependency on

the option prices used to estimate returns. Specifically, we use an adjusted option sample that

is built with the same type of filters as the baseline filters described in Section 1. However,

these filters are imposed on t− 2 prices in our adjusted sample instead of on t− 1 prices as

in our baseline sample. Moreover, when the option’s delta at time t − 1 is missing, which

occurs when implied volatility cannot be calculated, we use the option’s delta at time t−2 to

compute βfS,i,t−1 as ∆f
S,i,t−2×St−1/ft−1. This procedure addresses the deletion of observations

without implied volatility at time t− 1 from the sample. Also note that this procedure does

not imply that we are using prices that allow for arbitrage. This is because OptionMetrics

computes implied volatilities based on closing stock prices and option mid-quotes, which

results in missing implied volatilities when these prices do not satisfy no-arbitrage bounds.

However, these no-arbitrage filters are often incorrect, since an actual arbitrage opportunity

requires that the option’s ask price, rather than the mid-quote, be below the no-arbitrage

lower bound. Furthermore, the no-arbitrage bound depends on the stock’s end-of-day bid

or ask price instead of the stock closing price, which is almost always outside the bid-ask

spread (Bogousslavsky and Muravyev (2021)).

Analogously, we address the CEIV bias in our portfolio sorts by adjusting our portfolio-

creating criteria to break the dependency on option prices used to estimate returns. We sort

unhedged call options by moneyness at time t− 2, instead of using moneyness at time t− 1.

In the FM regressions, we avoid the CEIV bias by using independent variables that are not

calculated with the same prices as the dependent variables (e.g., Fama (1984) and Stambaugh

(1988)). Specifically, the independent variable in the bias-adjusted FM regression is lagged
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by one additional day:

Rf,i,t − βfS,i,t−1RS,t = λ0 + λσ × βfσ,i,t−2 + ηi,t. (4)

We address the MR bias by estimating expected returns with the weighted average —∑N
i=1wf,i,t−1Rf,i,t/

∑N
j=1wf,i,t−1 — where Rf,i,t is the return or delta-hedged return of the ith

derivative at time t and wi,t−1 is the gross return of the derivative i at time t−1 (fi,t−1/fi,t−2).

Analogously, we address the RC bias with FM regressions estimated with WLS using the

gross return of the derivative i at time t − 1 (fi,t−1/fi,t−2) as the weight.16 Asparouhova,

Bessembinder, and Kalcheva (2010, 2013) show that the MR and RC biases are reduced by

weighting observations proportionally by their lagged gross returns. Intuitively, the deriva-

tive prices with large εf,i,t−1 have larger weights (fi,t−1/fi,t−2) and smaller returns (Rf,i,t).

This negative covariance between weights and returns approximately offsets the MR and RC

biases, resulting in estimates that are near to unbiased. To wit, in the case that observed

prices were martingales, gross-weighted average returns would be similar to equal-weighted

average returns, making the Asparouhova, Bessembinder, and Kalcheva (2010) adjustment

unnecessary.17

3 Empirical Results

We present empirical results based on our bias-adjustment procedure described above. We

also show bias-unadjusted results, which are based on equal-weighted averages of returns

of options portfolios, and on OLS estimation of Regression 3. The bias-unadjusted results

are also based on our baseline sample described in Section 1. We present results of both

adjusted and unadjusted estimations to show the extent to which the MR, CEIV, RC, and
16Formally, assume we have a sample with N derivatives and define the 2× 1 vector βi,t−2 = [1, βfσ,i,t−2]’.

Define βt−2 = [β1,t−2, · · · ,βN,t−2] as a 2 × N matrix. Similarly, define the delta-hedged return Ri,t =

Rf,i,t−βfS,i,t−1RS,t andRt = [R1,t, · · · , RN,t]′, which is N×1 matrix. Following Asparouhova, Bessembinder,
and Kalcheva (2010), we estimate Regression 4 with the WLS estimator (βt−2Wt−1β

′
t−2)−1(βtWt−1Rt),

where Wt−1 is a diagonal matrix of weights (wi,t−1) given by the gross return of the derivative i at time
t − 1 (fi,t−1/fi,t−2). That is, the derivatives with large measurement errors, εf,t−1, have larger weights
(fi,t−1/fi,t−2) and smaller returns (Ri,t). We estimate our FM regressions with individual options. Gross
return weighting also addresses the RC bias when FM regressions are estimated with portfolios of options.
In this case, Ri,t is the return of the ith portfolio and its weight is wi,t−1 = Ri,t−1 + 1.

17Our method to address the MR, RC, CEIV and the SS biases relies on the assumption that price errors
are independent in time-series and independent among stocks, calls and puts. In addition, the price errors
are independent of true prices.
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SS biases affect inferences about the volatility risk premium in options written on individual

stocks and on the S&P 500 Index. In addition to showing adjusted and unadjusted results,

we also report results weighted by $OI to address the possibility that our results are driven

by a large number of thinly traded options.18

We start our empirical work by testing whether the expected return of call options in-

creases monotonically with moneyness. For this purpose, Panel A of Table 2 reports statistics

of portfolios of call options written on stocks in the S&P 500 Index sorted by moneyness.

The results in this panel reveal that the median βS of deep in-the-money (ITM) call options

is 4.97, which is about 33 times their median βσ (0.15). On the other hand, the median βS

of deep out-of-the-money (OTM) call options is 22.01, which is only about 1.5 times their

median βσ (13.17).19 Therefore, these factor sensitivities, along with Equation 1, indicate

that the expected returns of deep ITM calls are mostly driven by the expected returns on

the underlying asset, while the expected returns of deep OTM calls are driven by both the

expected returns on the underlying asset and the volatility risk premium. As a result, if λσ

is negative, the expected returns of calls can vary nonmonotonically with their moneyness.

Consistent with volatility being negatively priced in individual stock options, the results

in Panel A of Table 2 reveal that the average return of calls does not increase monotonically

with moneyness. The right column of the table displays the p-value of a Wolak (1989) test.

The null hypothesis in this test is that average return of calls increases monotonically with

moneyness. The p-values in Panel A indicate that, independently of the bias-adjustment,

this null hypothesis is rejected at the usual significance levels. Moreover, the $OI-weighted

results are somewhat stronger than the unweighted returns. Indeed, the bias-adjusted $OI-

weighted average return of OTM options is negative, at about -73 bps per day. A stochastic

volatility model in which volatility is not priced cannot explain this negative expected return.

As in the case of individual stock calls, the results in Panel B reveal that the average returns
18Specifically, we weight our means by $OIi,t−2 which is the dollar open interest of option i observed at

time t − 2. We use $OIi,t−2 instead of $OIi,t−1 to separate the effect of weighting by $OI from the effect
of weighting by lagged gross returns (fi,t−1/fi,t−2). This way, we assess the extent that our results are
affected by bias adjustment (weighting by fi,t−1/fi,t−2) or by focusing on options that are more heavily
traded (weighting by $OIi,t−2).

19It is important to note that the bias unadjusted method uses t − 1 sorting variables while the bias
adjusted method uses t−2 variables. The displayed median values of βσ, βS , relative spread, and moneyness
are based on t− 2 variables and they are qualitatively the same as the median values based on t− 1 values.
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of calls on the S&P 500 Index also vary nonmonotonically with moneyness.

The results in Table 2 give a first look at the biases in mean option returns. Under

the assumption that our bias correction method is accurate, the differences between the

unadjusted and adjusted estimates indicate that estimation biases are large and complex.20

To see this, note that the biases for individual equity calls change sign, with the bias in

ITM calls negative, at about -11 bps per day (1.39-12.96), positive for Portfolio 4, at 10

bps (83.50-73.64), and negative for deep-OTM calls, at about -53 bps (-14.70-38.77). In the

appendix, we isolate the MR bias from the total biases suggested by Table 2. The results

in the appendix show that the MR bias is likely very large for deep-OTM calls, at around

80 bps per day, but it is more than offset by negative CEIV and SS biases.21 Similarly,

the appendix shows that the MR bias for index options is also large, at around 66 bps for

deep-OTM calls, but it is again offset by the CEIV and SS biases. Naturally, the fact that

these biases compensate for each other may not occur in other instances. Therefore, the

large economic magnitude of the these biases indicates that, even for index options, bias

adjustment can result in economically significant differences.

We next examine the sign of the volatility risk premium (λσ) in FM Regressions 3 and

4. Table 3 shows the results of our FM regressions, which regress delta-hedged returns on

βσ. The coefficients indicate that volatility is negatively priced on options written on stocks

after adjusting for biases.22 Panel A shows the results of FM regressions estimated without

bias adjustments. The λσs in Panel A are consistent with the stylized fact in the options

literature that volatility is not negatively priced at the individual stock level. Specifically,

for call options, λσ is positive (1.74), though not significant, when estimated with OLS, and

it is negative (-3.25) when estimated with WLS using $OI as weights. For put options, the

estimated λσs are positive and insignificant. In contrast, the coefficients estimated with bias

adjustments show a different picture. Indeed, Panel B reports that λσs estimated with bias
20In Section 4, we show that our bias adjustment methodology addresses the bias well and we precisely

decompose the total bias in its components (MR, SS, and CEIV) with simulations. Our simulations show
that the MR, SS, and CEIV biases are often of different signs, which explains the complexity observed here.

21The positive MR bias is consistent with the theoretical result that the MR bias is approximately
E[f̃t/f̃t−1]E[ε2f,t−1], and it supports our maintained hypothesis that quote midpoints contain measurement
errors.

22The appendix shows the results for the first and second half of our sample are qualitatively similar to
those in Tables 2 and 3.
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adjustment are mostly around -5 bps and statistically significant.

The difference between the results with and without $OI weights indicates that the most

heavily traded call options on stocks have a negative volatility risk premium while thinly

traded call options do not. The size of the estimation biases does not vary much with $OI.

However, the volatility risk premium is apparently more significant in options with high $OI.

The bias-adjusted estimate of λσ is -0.32 and not significant for call options. In contrast,

the bias-adjusted FM regression using call options and $OI weights results in an estimated

λσ of -5.4. These findings highlight that $OI weights address systematic differences between

highly and thinly traded options. These systematic differences are not the same as the

microstructure biases that we address in our bias-adjusted procedure but are nevertheless

important.

As in the case of options written on individual stocks, the results in Table 3 indicate

that volatility is negatively priced on options written on the S&P 500 Index. The estimated

price of volatility risk with put options written on the S&P 500 Index is between -11 and -15,

which is economically much larger than that estimated with call options (between -5 and -7).

The larger price of volatility risk implied by put options on the index may be related to the

index OTM put puzzle (e.g., Constantinides, Jackwerth, and Savov (2013)). The volatility

risk premium in individual equity options is about the same as it is for S&P 500 Index call

options. Both the adjusted FM regressions with individual stock options and the ones with

S&P 500 Index call options result in estimates of a volatility risk premium close to -5.

In contrast to options written on individual stocks, the bias adjustment methodology is

not strikingly important for index options. For both the unadjusted and adjusted (Panels A

and B of Table 3 respectively) results, the estimated λσs are between -5 (-11) and -7 (-15)

for call (put) options in the S&P 500 Index.

To better understand the effect of bias adjustment on these FM regression results, Tables

4 and 5 show the mean returns of βσ-sorted portfolios of delta-hedged options on stocks and

on the S&P 500 Index, respectively. We find that the large biases in λσ estimated from

individual stock options result from biases in both ITM and OTM options. The results in

Table 4, both for calls (Panel A) and puts (Panel B), suggest that the bias on the equal-

weighted return of ITM options (low βσ) is negative. Under the assumption that our bias
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adjustment procedure corrects for all the estimation biases, we infer that this bias is close

to -29 bps (-30.96+2.30) for calls, and it is approximately -31 bps (-34.51+3.94) for puts. In

contrast, the bias on the equal-weighted return of OTM options (high βσ) is positive. For

calls, this bias is close to 11 bps (-0.10+10.65), and it is approximately 45 bps (-20.58+65.84)

for puts. The combination of a negative bias for options with low βσ and a positive bias for

options with high βσ results in the large positive bias on the coefficient on βσ estimated with

the FM regression on individual stock options.

Panels A and B of Table 5 display the results for delta-hedged call and put options on the

S&P 500 Index. The results in Table 5 clarify why the bias adjustment in the FM regressions

is much more important for options on stocks than for index options. Specifically, the results

for deep OTM index options are somewhat similar to those for stocks.23 In contrast, the

results for deep ITM options in this table paint a picture different from that of individual

stock options in Table 4. Specifically, the bias on the equal-weighted return of ITM index

options (low βσ) is positive, at about 14 bps (11.82+2.59) for calls and 7 bps (3.12+3.87) for

puts. These positive estimates contrast with the negative estimates for options on individual

stocks, which are about -30 bps. This difference stems from the fact that many ITM stock

options have missing implied volatility. In fact, about 23% of the deep ITM options on stocks

have missing implied volatility, while this is true for deep ITM index options for only 4%

of the sample. As it is common practice in the literature, our unadjusted sample does not

include ITM options with missing implied volatility at time t− 1 since it is not immediately

obvious how to compute a delta-hedged return for them. Not including these options results

in an economically large negative SS bias. Such a large negative SS bias reveals an important

issue with the standard practice of excluding from empirical work stock options for which

the midpoint price is in violation of an arbitrage bound.

Lastly, the column “All” in Tables 4 and 5 displays the mean delta-hedged return of

all puts and calls. Consistent with a negative volatility risk premium for equity and index

options, the displayed mean returns are in general negative. In addition, the economic

significance of the mean returns on index options is larger than of the mean returns on
23It is interesting that bias adjustment makes the estimate of expected return of OTM put options smaller,

which deepens the OTM index put puzzle (e.g. Constantinides, Jackwerth, and Savov (2013)).
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individual equity options. For instance, the bias-adjusted mean return of delta-hedged puts

on the index (stocks) is about -99 bps (-18 bps) per day. Note however that the values of

βσ for options on stocks are generally smaller than those of the options on the index. In

particular, Figure 3 shows that the βσs of options written on the index are about double the

βσ of the options written on individual stocks. The difference in βs arises because the median

implied volatility of the options on the index is about half of the implied volatility of the

options on individual stocks, and βσ decreases with volatility. This difference in βσs explains,

to a large extent, why the mean delta-hedged returns of index options are economically more

significant that those of the stocks options, while the estimated volatility risk premia (λσs)

in Table 3 are somewhat similar.

Overall, the results in Tables 2 to 5 indicate that the volatility risk premium in individual

stock options is not nearly as different from the volatility risk premium in S&P 500 Index

options as previously suggested in the literature. To reconcile our results with those in the

literature, we note that the methodologies we use in Tables 2 and 5 are different from those

usually employed in the literature. In fact, the most comprehensive study of the volatility

risk premium in individual stocks is Driessen, Maenhout, and Vilkov (2009), who use a

methodology different from ours to examine the price of volatility risk. Specifically, they

examine the volatility risk premium in stocks in the S&P 100 using the difference between

the mean realized variance (RV ) and the mean model-free implied variance (MFIV ) of the

stocks in their sample. The difference, RV −MFIV , is called the variance risk premium

(V RP ) and it is related to the volatility risk premium (λσ). Specifically, the instantaneous

V RP is by definition equal to the difference between the drifts of the variance process under

the physical and the risk neutral probability measures. We can show by Ito’s lemma that

the instantaneous V RP is 2σtλσdt.

Driessen, Maenhout, and Vilkov (2009) estimate RV from the daily returns over a one-

month window and the MFIV from one-month options. The MFIV for a given stock is

estimated by numerically solving the integral in the equation below:

MFIVi,t = 2

∫ ∞
0

Ci,t(K)−max(Si,t −K, 0)

K2
dK. (5)

Equation 5 is the main result of Britten-Jones and Neuberger (2000) and states that we can

19



derive the variance implied by prices of options (calls in the case above) written on stock i

by integrating the ratio of their time value to the square of their strike prices. Naturally,

some empirical choices are necessary to estimate the integral above. For instance, we do not

observe a continuum of strike prices from zero to infinity; hence, an empirical methodology

is necessary to deal with the fact that, for a given stock i on day t, we only observe data for

a few strike prices between the interval [Kmin,i,t, Kmax,i,t]. Driessen, Maenhout, and Vilkov

(2009) follow the methodology of Jiang and Tian (2005) by using both OTM puts and OTM

calls instead of just calls as in Equation 5, interpolating implied volatilities between the

observed strike prices, and assuming a constant volatility between zero and Kmin as well as

between Kmax and infinity.

To reconcile our results with respect to the pricing of volatility with those in Driessen,

Maenhout, and Vilkov (2009), we estimate the V RP for the stocks in our sample. Specifically,

on each standard expiration Friday, we compute theMFIV for stocks in our sample based on

options expiring in the following month. We follow Driessen, Maenhout, and Vilkov (2009)

and calculate MFIV only for those stocks that have at least three options with positive

open interest, where at least one has strike above the stock forward price and one has strike

below the forward price. RV is the annualized realized variance computed from all daily

returns up to the next expiration date. The results are in Table 6.

The first column of Table 6 displays the results when MFIV is computed using the

methodology of Driessen, Maenhout, and Vilkov (2009), which is based on a sample of OTM

calls with ∆C > 0.15 and OTM puts with ∆P < −0.05. That is, Kmin,i,t is the smallest

observed strike price for which ∆P
i,t < −0.05, and Kmax,i,t is the largest observed strike price

for which ∆C
i,t > 0.15. As in Driessen, Maenhout, and Vilkov (2009), the results using this

methodology suggest that volatility is not priced on options written on individual stocks.

Indeed, RV −MFIV is not statistically different from zero in the first column of Panel A.

The second column of Table 6 examines the average difference between RV and MFIV ,

estimating theMFIV with a sample of primarily OTM calls with ∆C > 0.01 and OTM puts

with ∆P < −0.01. In contrast to Driessen, Maenhout, and Vilkov (2009), the results using

this methodology suggest that volatility is indeed priced on options written on individual

stocks. The sample used to estimate results in Column (2) is the baseline sample described
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in Section 1, and it only includes options with open interest above zero. Hence, it does

not rely on options that are never traded. It differs from the first approach in that it uses

options that are deeper OTM. In addition, if an OTM call (put) is unavailable, it infers the

implied volatility of that strike price from the corresponding ITM put (call) with the same

strike. The purpose of both of these changes is to extend the range of strikes over which

Equation 5 is calculated. In fact, the extended range of ∆s in the estimation of MFIV

increases the average number of options per stock from 5.3 in Column (1) to 7.3 in Column

(2). Moreover, the number of stocks for which we calculateMFIV increases from about 254

per day to 352 per day in the extended sample, which occurs because an extended ∆ range

increases the number of stocks with at least three options with positive open interest on the

MFIV calculation day.24 The results using the extended sample indicate that volatility is

negatively priced in individual equity options. Indeed, RV −MFIV is about -1.6% in the

second column of Table 6, Panel A.

The third column in Panel A presents the results using the MFIV data from Rehman

and Vilkov (2012), which is based on the OptionMetrics Volatility Surface file.25 Similar to

our findings and in contrast to the findings of Driessen, Maenhout, and Vilkov (2009), the

results in Column (3) show a negative V RP of about -1.4%.26

Interestingly, the negative V RP s in Table 6 are somewhat consistent with the negative

values of λσ estimated in Table 3. Recall that the instantaneous V RP is 2σtλσdt. Replacing

σt with 35% (the average volatility of stocks from Table 1), λσ with -5 bps per day from

Panel B of Table 3, and dt with 30 days, we arrive at a monthly V RP of -1 percentage point,

which is reasonably close to the V RP s in Columns (2) and (3) of Table 6, Panel A.

The difference between the calculation of MFIV by Driessen, Maenhout, and Vilkov

(2009) and by the methodology used in Column (2) of Table 6 is represented in Figure
24The differences between Columns (1) and (2) almost entirely arise as the result of including additional

options for each firm and not from adding more firms to the sample. Applying the Column (2) approach to
the sample of firms analyzed in Column (1) results in almost the same average RV −MFIV reported in
Column (2).

25We are grateful to Greg Vilkov for providing this data. Because the Rehman and Vilkov (2012) data are
winsorized, we delete observations for which the MFIV is equal to the maximum or minimum value in the
cross-section.

26For completeness, Panel B of Table 6 presents the results for the S&P 500 Index options. In all three
cases, the results indicate that volatility is priced in these options.
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4. This figure displays the average of the implied volatilities of the OTM options used to

numerically calculate the integral in Equation 5 as a function of the strike-to-spot ratio.27

The continuous line in the figure shows that restricting the sample to OTM call (put) options

with ∆C > 0.15 (∆P < −0.05) results in the use of options with implied volatilities that

are on average lower than those observed in the extended sample, which in turn leads to a

smaller average MFIV and a V RP close to zero. In contrast, our sample includes a larger

range of strike prices, which results in larger MFIV and a V RP consistent with the values

of λσ estimated with the bias-adjusted FM regressions in Table 3.

4 Examining the Biases with Simulations

This section uses simulations to address two questions: First, of all the biases that we have

described (MR, RC, SS, and CEIV), which matter most for each particular group of options

and option strategy (e.g., hedged or unhedged options)? Second, the solutions we adopt to

address the biases in the estimation of volatility risk premia are direct applications of the

weighting scheme suggested by Asparouhova, Bessembinder, and Kalcheva (2010, 2013). It

is well known that the weighting schemes proposed in these papers work for stocks. How

well do these standard solutions work for options?

Theoretically, when we consider option strategies that are more complex than simple

unhedged positions (e.g., straddles and delta-hedged options), the sources of MR and RC

biases are not limited to those described in Asparouhova, Bessembinder, and Kalcheva (2010,

2013) and Blume and Stambaugh (1983); hence, it is not clear a priori that the weighting

scheme proposed in these papers will work for FM regressions and portfolio sorts of delta-

hedged options. Specifically, hedged option strategies have a type of MR bias that has not

been previously described in the literature, because the measurement errors in prices affect

the MR bias of hedged options both directly through prices and indirectly through the hedge
27For Figure 4 only, we restrict the sample to only include firms that have at least one call with delta

below 0.01 and one put with delta above -0.01. This is done in order to be able to plot implied volatilities
for deep OTM options.
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ratio. For instance, the MR bias in a delta-hedged derivative is approximately28

E[ε2f,t−1]− E[β̃fS,t−1]E[ε2S,t−1] + E[
∂β̃fS,t−1

∂S̃
S̃t−1]E[ε2S,t−1]. (6)

We refer to the first two terms in Equation (6) as the “direct” MR bias (DMR). These

terms represent the bias that would arise if β̃fS,t−1 were observed at time t− 1. To see this,

note that these terms are the direct result of Equation 2, along with the assumption that

measurement errors are IID mean-zero and that the definition of delta-hedged returns is

Et−1[R̃f,t] − β̃fS,t−1Et−1[R̃S,t]. In contrast, we refer to the last term in Equation (6) as the

“indirect” MR bias (IMR), which is not present in simple unhedged positions and has not

been previously described in the literature. The IMR bias stems from the fact that βfS,t−1 is

also affected by errors in underlying stock prices.29 Similarly, we can decompose the RC bias

into a direct RC bias (DRC) and an indirect RC bias (IRC). The RC bias is a generalization

of the MR bias to a regression framework; hence, as we do for the MR bias, we can decompose

the RC bias into two components: The DRC bias is due to the effect of measurement errors

on the returns of the securities in the strategy. The IRC bias results from the fact that the

hedge ratios in option strategies are calculated with prices that have measurement errors.

4.1 Simulation Procedure

We simulate true stock prices (S̃) and instantaneous variances (Ṽ ) as well as a stock index

and its variance using the model of Heston (1993). We provide full details on the simulated

Heston model in the appendix. To keep the simulations numerically feasible, stocks are iden-

tical in terms of all the model parameters and differ only with respect to the starting values

of the stock price and of the variance process and the amount of measurement error in the

observed stock and option prices. The parameters of the simulated models are chosen to ap-

proximately match the empirical properties of the option portfolios we analyze. Specifically,

the parameters we choose generate an 8% average stock return and approximately match the

average stock volatility. Parameters also reflect the average pairwise correlations between
28See the appendix for proofs.
29The IMR bias results from error-induced correlations between the stock price and βfS,t−1. To see this, note

that the proportional error εS,t−1 in S̃t−1 changes the observed−βfS,t−1 by approximately−∂β̃
f
S,t−1

∂S̃
S̃t−1εS,t−1.

The same error also affects the next-period observed stock return, changing it by approximately −εS,t−1.
The last term in Equation (6) is simply the expectation of the product of these two effects.
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different stocks’ returns, between different stocks’ implied volatility changes, and between

the same stock’s returns and implied volatility changes. Finally, the parameters approxi-

mately match the volatility risk premium that we estimate in our adjusted FM regressions

in Table 3.

We simulate 100 panels of stock and option prices, each with 500 stocks over 6,000 days.

We assume 12 calls and 12 puts per stock-day, which yields 6,000 calls and 6,000 puts per day

for a period of about 24 years (6,000/250), which approximately matches our actual sample.

For each panel, we perform portfolio sorts and cross-sectional regressions. For computational

efficiency, we assume that there is a continuum of expiration dates, and use options with one

or two months in our portfolios and FM regressions. To be exact, the options have 29 and

59 calendar days at portfolio formation (t− 1). For each maturity, there is a call and a put

for six different randomly chosen strike prices K.30 Strike prices are uniformly distributed

such that they are within two standard deviations of the current stock price, where the

standard deviation is the square root of the integral of expected Ṽi,t over the lifetime of the

option. We follow the common practice of using practitioner Black and Scholes hedge ratios

to select samples, form portfolios, and compute delta-hedged returns.31 In each of the tables

described below, the statistics reported are averages over the 100 panels.

We assume that all stock and option prices are observed with errors. Specifically, we

assume that we observe S = S̃(1 + εS), C = C̃(1 + εC), and P = P̃ (1 + εP ). S̃, C̃,

and P̃ are the true stock, call, and put prices, respectively, while S, C, and P are the

observed prices. All measurement errors are drawn from symmetric triangular distributions,

which are bounded distributions with probability density functions that are piecewise linear,

increasing below the median and decreasing above it, reaching zero at either bound. This

choice of density reflects the view that price errors are likely bounded by the size of the bid-

ask spread. By choosing lower and upper bounds equal to −1/2 or +1/2 times the relative

bid-ask spread, we ensure that the difference between observed prices and true prices is never

larger than the spread, with differences closer to zero more likely than those further away.
30For index options, there are 100 different strikes. Random strike prices allow for a more realistic assess-

ment of the CEIV bias associated with misclassification of options into portfolios.
31Hull and White (2017) define the practitioner Black and Scholes hedge ratios as the hedge ratios calcu-

lated with the Black and Scholes implied volatilities.
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The simulation of option price errors further requires a model of relative option bid-ask

spreads, which are chosen to match a number of patterns we observe in the data. Namely, we

see that option spreads are higher when the underlying stock has a higher spread, when the

option is further out of the money, and when the option has a shorter time until expiration.

Our bid-ask spread model is motivated by the findings in De Fontnouvelle, Fishe, and Harris

(2003). We provide full details on this model in the appendix.

We report simulation results for three scenarios. The first scenario uses simulated data

without any measurement errors, resulting in infeasible estimates that represent the target of

our bias adjustment method. The second uses simulated data with measurement errors and

does not attempt to adjust for those errors, inducing the MR, RC, CEIV, and SS biases. The

third scenario also uses data with errors, but it applies the methods we propose in Section

2 to reduce bias.

In addition to simulation results based on the three scenarios above, we also decompose

the total bias by making different assumptions about which variables are impacted by mea-

surement error. Specifically, we begin with a set of simulations in which only the direct

component of the MR and RC biases is present (DMR and DRC). We do so by using the

“true” simulated values of hedge ratios, sorting variables, and independent variables. More-

over, the sample is selected based on true prices. As a result, the indirect components of the

RC and MR biases (IRC and IMR) as well as the SS and CEIV biases are not present in

this first set of simulations.

We then allow for measurement errors in hedge ratios to see the incremental effect of

the indirect MR and RC biases (IMR and IRC). That is, the βS used to calculate each

delta-hedged return is constructed from simulated prices containing errors. In this second

set of simulations, we continue to use a sample whose selection is based on true simulated

prices (avoiding the SS bias), and we use the “true” simulated values of sorting variables and

independent variables (avoiding the CEIV bias).

Our third set of simulations allows us to gauge the size of the CEIV bias by introducing

errors into the prices used to calculate the sorting and independent variables (moneyness

and βσ). Lastly, in the final set of simulations, which matches the scenario in which all

biases are present, we make two additional changes that allow us to measure the SS bias.

25



First, we select the sample based on noisy prices rather than true prices. Second, we discard

observations for which the hedge ratio or sorting variable is missing.32 These two additional

changes induce a covariance between sample selection and option returns that results in the

SS selection bias.

4.2 Simulation Results

Table 7 presents average summary statistics for the simulations. In a number of aspects, the

simulated data replicate the actual sample, as reported in Table 1. Means, medians, and

standard deviations are similar, with a few exceptions. The extreme quantiles, however, are

quite different in the simulations, with most variables displaying much thinner tails than we

observe in the data. This difference is a natural consequence of our use of a single set of

parameters to drive the price and variance processes of all stocks, a simplification that is

necessary to make the simulation computationally feasible. Most importantly, the bid-ask

spreads approximately match those in the actual data. For instance, for call (put) options

written on individual stocks, the median relative bid-ask spread is about 9% (8%) in the

simulated data, which closely match the medians that we observe in the actual data. As in

the actual data, the mean and the median simulated bid-ask spreads for options written on

the index are substantially smaller than those of options written on individual stocks.

We first analyze unhedged call returns, essentially replicating the empirical analysis re-

ported in Table 2. Table 8 reports average coefficient estimates across the 100 simulated

panels, the average t-statistics corresponding to those estimates, and the decomposition of

the bias in the unadjusted estimates. The table shows that the returns on OTM calls cal-

culated with prices without measurement errors (true prices) are significantly lower than

returns on ITM calls. In fact, the average return of deep OTM calls is negative in the simu-

lated model. As we explain in Section 2, this is a consequence of the negative volatility risk

premium. This effect is present for both individual stocks and the stock index.

The bias decomposition reveals a complex interaction among the different biases. Panel

A of Table 8 shows that the DMR, CEIV, and SS biases can be very large for calls written
32As in the real data, in some cases the implied volatility and hedge ratios calculated with the simulated

prices with errors cannot be computed due to an apparent arbitrage violation resulting from mismeasurement.
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on individual stocks, but the three biases affect each portfolio quite differently and hence it

is difficult to pin down option characteristics that drive all the biases.33

The DMR bias is small for ITM options that trade with relatively small proportional

spreads. On the other hand, the much larger percentage spreads of the deep OTM calls

result in large MR biases. Deep OTM calls show the largest DMR bias, about 23 bps per

day. In all cases, the MR bias is positive. Because the options are unhedged, there is no

IMR bias.

The CEIV bias, on the other hand, varies in magnitude and sign from one portfolio to the

next. To understand why this occurs, consider the case of an ITM call option whose implied

volatility puts it close to the cutoff between the portfolio with low moneyness and Portfolio

2. If this option has a positive price error, its observed implied volatility increases, making

it more likely to be assigned to Portfolio 2. (Recall that moneyness is inversely related to

implied volatility.) The positive price error also means that the subsequent observed return

is likely to be low. If, instead, the error were negative, then the observed moneyness would be

reduced. The option would then be more likely to be placed in the low-moneyness portfolio,

where its negative price error would lead to a high observed return. The patterns in the

CEIV rows of the table reflect the effects of these misclassifications.

SS bias is generally negative, but the magnitude differs greatly across portfolios. For the

low-moneyness (deep ITM calls) portfolio, sample selection bias is strongly negative due to

the imposition of overly aggressive arbitrage filters. Standard practice is to exclude options

for which the midpoint price is in violation of an arbitrage bound. The midpoints of ITM

options are often below the immediate exercise value, preventing the calculation of an implied

volatility based on the midpoint price. This does not actually imply arbitrage, which requires

that the ask price be less than the exercise value. Discarding these observations leads to

a negative sample selection bias because it tends to retain options for which pricing errors

are positive. The SS bias is also quite economically significant for deep OTM options at

about -18 bps per day. The low price and high bid-ask spread of OTM options results in

option prices and bid-ask spreads that are often below our baseline minimum price filter and
33In untabulated results, we find that the biases in the FM coefficients decrease by excluding stock options

with bid-ask spreads larger than 50% and zero open interest from the sample.
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maximum bid-ask spreads. Consequently, price errors lead to a spurious covariance between

sample selection criteria and returns for deep OTM options, which generates a large SS bias.

For call options on the index, the DMR bias is the most relevant for deep OTM calls,

whereas the CEIV and SS biases are less relevant. These results are consistent with the fact

that the bid-ask spreads for the simulated options on the index are in general much smaller

than those of options on stocks.

Most importantly, the bias adjustment method that we propose addresses each of the

biases and significantly decreases the total bias. For instance, both the average adjusted

return and the true simulated return of deep OTM calls is about -38 bps per day.

The results in Table 8 indicate that a longer holding period is not necessary to address

biases in the estimation of option expected returns. The empirical literature on stocks

traditionally used monthly returns. The literature on options, on the other hand, tends to

use high-frequency returns because these studies often rely on delta-hedged returns. The

average returns in Table 8 are not based on hedged returns; hence, they could potentially be

estimated with monthly holding periods, as in Ni (2008). However, the effectiveness of the

bias adjustment method in Table 8 indicates that reliable average returns calculated at the

daily frequency are perfectly feasible.

Table 9 presents average results for estimated FM coefficients. The table shows that

biases in FM coefficients can be enormous. For put options on individual stocks, the strong

negative relation between delta-hedged returns and βσ that would be obtained without price

noise is completely absent, on average, when estimated from observed prices without bias

adjustment. For calls, the average slope coefficient is reduced by more than half. Biases in

index options, which trade with much smaller spreads, are lower but qualitatively consistent.

In all cases, price noise flattens the relationship between average returns and βσ.

Our bias adjustment procedure performs well. In every case, the average intercept or

slope coefficient is almost identical to the one obtained using true prices. Average t-statistics

are also very close, except for moderate differences for a few intercepts that are close to

zero on average. The table also shows that a number of different biases are present. The

DRC bias, which is the one analyzed by Asparouhova, Bessembinder, and Kalcheva (2010,

2013), is sizable in most cases, but the CEV and SS biases can be larger. Furthermore, in
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some cases, the various biases reinforce one another, while in other cases they are partially

offsetting.

One strong pattern shown in Table 9, as well as in the tables that follow, is the relatively

small size of the IRC (later IMR) bias. As Equation 6 suggests, this bias arises due to

measurement errors in the stock price, which are relatively small for liquid S&P 500 member

stocks. As a result, the IRC bias can safely be ignored in the setting that we focus on. It

is possible, of course, that options on a much less liquid underlying asset may be subject

to a larger IRC bias, but untabulated results suggest that the decrease in liquidity would

have to be very substantial. Moreover, we show in the appendix that the IMR bias is not

small in the case of straddles. In straddles, the IMR bias depends on the variances of the

measurement errors in calls and puts, which are much larger than those in stocks. As a

result, the simple bias adjustment procedure that we propose does not work for straddles.

Instead, a more elaborate scheme, which we describe in the appendix, is needed.

Our last observation regarding Table 9 is that the effect of bias adjustment in the sim-

ulation is quite similar to its effect in actual data, as reported in Table 3. In both cases,

unadjusted intercept coefficients can be very negative, with some implausibly low t-statistics,

and unadjusted slope coefficients are in many cases small, insignificant, or even positive. Bias

adjustment raises intercepts and lowers slopes, by similar amounts across the two tables.

Table 10 reports the results of portfolio sorts of delta-hedged options on individual equity

options. As in Table 8, the results in Table 10 show that DMR, CEIV, and SS biases can

be very large, but the three biases affect each quintile quite differently. As with the FM

coefficient estimates, the IMR bias is small enough to ignore.

As in the FM coefficients reported in Table 9, the total effect of these biases is a much

weaker relationship between βσ and average delta-hedged returns. The results of the portfolio

sorts in Table 9 help us gain more clarity about the reasons for this weakness. Specifically,

Low βσ options have lower returns, mostly as the result of SS bias, while high βσ options have

higher returns due to a combination of DMR and CEIV biases. The effects are particularly

strong for puts, for which the return on the high-minus-low portfolio is close to zero on

average without bias adjustment, even though the true prices imply a large negative mean.

Bias adjustment is successful in returning average estimates that are very close to the
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infeasible estimates computed using true prices. Average t-statistics are also very close for

most portfolios, though they are somewhat lower for low-βσ portfolios. In general, the

adjustments we propose are able to reduce the total bias by 90%, if not completely.

Table 11 repeats the same analysis but uses simulations of index options. Overall, the

patterns are similar but subdued, as biases are generally small, only approaching economic

significance for deep OTM options with high values of βσ. As before, the bias adjustment

procedure we propose is highly successful.

4.3 Model Dependence

An important question is how much the assumptions in our simulations affect our conclusion

that the MR, RC, CEIV, and SS biases are economically significant. Naturally, our simula-

tions are not meant to deliver exact estimates of the size of these biases. However, they do

show that they can be economically significant and that they need to be addressed.

Three assumptions are crucial in our simulations. We next discuss how appropriate

each of these assumptions is and how they affect our results with respect to the economic

significance of the biases.

Our simulations use practitioner Black and Scholes hedge ratios, which are based on the

Black and Scholes formula calculated with the volatility implied by the observed price of the

same option. Practitioner Black and Scholes hedge ratios are by far the most commonly used

hedge ratios in both industry (see Hull and White (2017)) and academia.34 Consequently,

these are the most appropriate hedge ratios to gauge the significance of the MR, RC, CEIV,

and SS biases present in work done by practitioners and academics.

Second, to make the simulation computationally feasible, we use a single set of parame-

ters to drive processes of all stocks in our simulations. However, our documented MR, RC,

CEIV, and SS biases are independent of the simulated pricing model. To see this, note the

following: First, the MR biases in delta-hedged and unhedged options depend only on the

variances of the measurement errors (E[ε2S,t−1], E[ε2f,t−1]) and on E[βfS,t−1] (see Equation 6).

The variances of the measurement errors are independent of the simulated pricing models,
34Coval and Shumway (2001), Bakshi and Kapadia (2003a,b), Santa-Clara and Saretto (2009), Cao and

Han (2013), Constantinides, Jackwerth, and Savov (2013), and Cao, Han, Tong, and Xintong (2017) are a
few examples of academic papers that use practitioner Black and Scholes hedge ratios.
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while βfS.t−1 are all calculated using the practitioner Black and Scholes approach, as is the

common practice. Second, the CEIV and SS biases result from the correlation between the

measurement errors in returns and the sorting variables (moneyness and βσ) or selection

variables (e.g., option prices). Again, the measurement errors are independent of the simu-

lated pricing model, and the use of practitioner Black Scholes betas and moneyness reflects

common practice rather than a modeling assumption. Applying the same type of argument,

we also conclude that our RC bias results are independent of the model used for simulation.

Third, we assume that measurement errors have a triangular distribution with support

within the bid-ask spread. Even though our simulation results are unaffected by the simu-

lated pricing model, they are affected by the assumed distribution of measurement errors,

because this distribution drives the variance of the measurement errors (E[ε2S,t−1], E[ε2C,t−1],

and E[ε2P,t−1]). As a result, one may question our estimates of the size of the simulated biases

since they rely on an unobserved distribution. We note, however, that our assumption of

triangular distribution is conservative. In fact, the biases are larger under the assumption

that measurement errors are uniformly distributed. Moreover, the variances of the mea-

surement errors are directly related to the support of the measurement error distribution,

which is ±1/2 times the relative bid-ask spread. Given that the option spreads in the data

are enormous, it seems unlikely that the variances of the simulated measurement errors are

much larger than the actual ones. Hence, our simulation results and the enormous option

relative bid-ask spreads in the data are strong indications that the MR, RC, CEIV, and SS

biases are in many cases highly economically significant and too large for empirical studies

to ignore.

5 Conclusion

We find that adjusting for microstructure biases in the estimation of expected returns is

consequential for one of the most well-known stylized facts in the empirical option literature.

Specifically, we show that the volatility risk premium on options written on stocks is not

as different from that of options written on the S&P 500 Index as prior research suggests.

Consistent with a negative volatility risk premium, we show that call option expected returns

do not increase monotonically with moneyness. In addition, bias-adjusted FM regressions
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indicate that the volatility risk premium in individual equity options is economically large

at about -5 bps per day. Finally, using a sample that includes a broad array of traded

options, we find that the variance risk premium (V RP ) is on average negative, at about -1.5

percentage points.

Our results indicate that the option literature needs to adopt procedures to deal with

microstructure biases in the same way that the empirical equity literature has adopted ap-

proaches to deal with these biases at least since Blume and Stambaugh (1983). Our results,

together with the large magnitude of the relative bid-ask spreads in options, constitute strong

evidence that the microstructure biases in options do matter. Our findings also suggest that

the current approach in the options literature of focusing only on close to ATM options can

lead to conclusions that are not robust. Indeed, both the V RP estimated only with options

close to ATM and the and bias-unadjusted FM regressions suggest that the volatility risk

premium in equity options is zero. However, a zero volatility risk premium cannot explain

the results in our entire sample. Overall, our findings therefore suggest that the option lit-

erature needs to move away from the approach of focusing only on a subset of the data to

a systematic approach that addresses the microstructure biases in the entire sample. The

bias-adjusted procedure that we propose is an initial contribution in this direction.

Our finding that volatility is priced in individual equity options is an important step

towards understanding the price of volatility risk in equity options. Our results show that

the price of volatility risk in equity options is negative and economically significant. There

is, however, much to be done on understanding how the volatility risk premium varies across

stocks and through time. These are topics for future research.
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Table 1: Summary statistics. This table presents the mean, standard deviation, median, first and
third quartiles (Q1 and Q3), and first and 99th percentiles (P1 and P99), as well as skewness of cur-
rent daily returns, relative spreads, moneyness, implied volatilities, and the dollar value of open interest.
The relative option spread is given by 2 × (ask − bid)/ (ask + bid), where ask and bid are the closing ask
and bid option prices from IvyDB. The moneyness of an option (with maturity at time T ) at time t is
ln(e−rt(T−t)K/St)/(σt

√
T − t), where St is the observed closing stock price on day t; K is the option strike

price; rt is the risk-free rate between t and the option expiration date T from IvyDB; and σt is the volatil-
ity implied by the closing option price from IvyDB. The dollar value of open interest ($OI) is the closing
mid-price of the option multiplied by its open interest from IvyDB. The relative bid-ask spread of a stock
for a given day is the volume weighted average of the relative effective bid-ask spread of all transactions
during the day. It is from WRDS Intraday Indicators. Return is displayed in basis points. Spreads and σ
are displayed in percentages. Our sample period is from January 1996 to June 2019.

A: Call options on S&P 500 stocks (Avg. number of options per day: 5,503)

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return 52.97 -129.45 3,268.91 -5,750.41 -1,333.37 991.91 9,582.72 35.94
Relative spread 11.92 8.00 10.96 0.83 4.08 15.89 48.65 1.53
Moneyness -0.20 -0.17 0.93 -2.06 -0.93 0.52 1.71 -0.05
σ 35.71 30.73 19.95 13.27 23.31 41.69 113.31 2.90
$OI 4,404.88 277.20 24,364.01 0.00 38.72 1,833.83 70,307.75 30.70

B: Put options on S&P 500 stocks (Avg. number of options per day: 5,427)

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return -62.56 -296.84 3,162.12 -5,531.25 -1,578.55 907.80 9,998.05 15.90
Relative spread 13.19 9.09 11.63 0.88 4.55 18.18 50.00 1.34
Moneyness -0.06 -0.13 0.95 -1.87 -0.77 0.64 1.95 -0.19
σ 35.95 31.09 19.79 13.41 23.74 41.89 112.37 2.99
$OI 2,823.42 178.20 27,144.64 0.00 26.33 1,105.50 43,907.85 35.65

C: Call options on S&P 500 Index (Avg. number of options per day: 190)

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return 82.84 -80.86 2,876.85 -5,720.24 -1,255.82 950.44 10,487.26 2.28
Relative spread 7.65 3.39 9.97 0.50 1.76 8.70 46.15 2.24
Moneyness -0.01 -0.11 1.11 -2.09 -0.92 0.87 2.16 0.16
σ 16.62 14.33 9.77 6.20 10.69 19.46 54.32 3.93
$OI 4,442.42 182.00 13,338.47 1.00 21.00 2,417.00 64,648.00 6.82

D: Put options on S&P 500 Index (Avg. number of options per day: 274)

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return -221.38 -689.99 3,597.74 -5,581.77 -2,044.84 697.55 12,470.84 6.37
Relative spread 9.27 5.97 9.19 0.95 3.25 11.43 44.44 2.04
Moneyness -0.84 -1.07 1.03 -2.24 -1.67 -0.20 1.90 0.81
σ 21.01 19.70 9.37 6.90 14.54 25.54 53.03 1.82
$OI 4,821.79 253.00 15,113.04 1.00 35.00 2,436.00 75,745.00 6.78

E: Stocks (Avg. number of stocks per day: 483)

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return 4.83 1.84 235.87 -636.33 -95.28 102.75 675.68 0.27
Effective spread 0.15 0.08 0.46 0.02 0.05 0.18 0.94 4.83
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Table 2: Mean returns of unhedged call options on S&P 500 stocks and on the S&P 500 Index.
Panels A and B present the average return of stock and index call options sorted by moneyness. The
moneyness of an option at time t is ln(e−rt(T−t)K/St)/(σt

√
T − t), where St is the observed closing stock

price on day t; K is the option strike price; rt is the risk-free rate between t and the option expiration date
T from IvyDB; and σt is the volatility implied by the closing option price from IvyDB. Moneyness groups
are defined as follows. Low: Moneyness < −1.25. Group 2: −1.25 ≤ Moneyness < −0.5. Group 3: −0.5 ≤
Moneyness < 0.5. Group 4: 0.5 ≤ Moneyness < 1.25. High: Moneyness ≥ 1.25. The return of call option
i is (Ci,t − Ci,t−1)/Ci,t−1. The bias-unadjusted results are calculated with the baseline sample, which is
constructed with selection criteria based on t− 1 variables. Moreover, in the bias-unadjusted method, calls
are sorted by their moneyness at the beginning of the holding period (t− 1). In contrast, the bias-adjusted
results are calculated with a sample constructed with selection criteria based on t − 2 variables, calls are
sorted by their moneyness one day before the beginning of the holding period (t−2), and returns are weighted
by one-day-lagged call option gross returns (Ci,t−1/Ci,t−2). Section 1 describes the sample selection criteria.
βS and βσ are the option sensitivities with respect to the underlying price and volatility. The median βS , βσ,
relative spread, and moneyness are the mean values across time of the median t−2 values of these variables.
Mean returns are displayed in basis points. Relative spreads are displayed in percentages. We also present
results weighted by the dollar value of open interest ($OIi,t−2). The p-values are for a Wolak (1989) test of
the null hypothesis that call option mean returns increase monotonically with moneyness. T-statistics are
shown in parentheses.

A: Stocks

Low 2 3 4 High H-L

Median βσ 0.15 0.80 3.24 8.31 13.17 13.03
Median βS 4.97 8.50 13.70 19.59 22.01 17.04
Median relative spread 4.02 5.78 8.22 18.89 31.35 27.33
Median moneyness -1.58 -0.86 0.00 0.81 1.43 3.01

Wolak
Average daily call option returns p-value

Bias-unadjusted
Equal weighted 1.39 0.03 51.59 83.50 -14.70 -15.93 0.00

(0.21) (0.00) (3.09) (3.75) (-0.55) (-0.70)
Weighted by $OIi,t−2 8.50 10.33 25.87 -8.26 -161.40 -169.75 0.00

(1.17) (0.91) (1.53) (-0.36) (-5.52) (-6.76)
Bias-adjusted
Weighted by Ci,t−1

Ci,t−2
12.96 22.05 47.99 73.64 38.77 25.85 0.03
(1.97) (2.07) (2.92) (3.37) (1.42) (1.12)

Weighted by Ci,t−1

Ci,t−2
× $OIi,t−2 15.99 19.56 32.99 24.84 -73.48 -89.39 0.00

(2.22) (1.75) (1.98) (1.09) (-2.46) (-3.46)

B: Index

Low 2 3 4 High H-L

Median βσ 0.32 1.48 6.47 20.65 39.36 39.04
Median βS 8.69 14.51 26.49 45.83 63.99 55.31
Median relative spread 1.66 2.71 5.56 13.04 28.45 26.79
Median moneyness -1.54 -0.86 -0.03 0.85 1.57 3.11

Wolak
Average daily call option returns p-value

Bias-unadjusted
Equal weighted 20.81 29.76 41.86 61.49 -59.29 -103.69 0.00

(2.02) (1.77) (1.43) (1.29) (-1.05) (-2.16)
Weighted by $OIi,t−2 21.60 27.67 39.01 58.61 -12.74 -59.60 0.00

(2.07) (1.60) (1.37) (1.27) (-0.22) (-1.21)
Bias-adjusted
Weighted by Ci,t−1

Ci,t−2
20.07 28.96 40.47 29.93 -52.11 -94.88 0.00
(1.96) (1.73) (1.38) (0.63) (-0.95) (-1.98)

Weighted by Ci,t−1

Ci,t−2
× $OIi,t−2 19.09 26.29 38.17 27.70 -41.03 -86.53 0.00

(1.86) (1.52) (1.34) (0.61) (-0.74) (-1.80)
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Table 3: FM regressions of returns of delta-hedged options on S&P 500 stocks and on the S&P
500 Index. This table displays the results of FM regressions: Rf,i,t−βfS,i,t−1RS,t = λ0 +λσ×βfσ,i,t−1 +ηi,t.
The dependent variable is delta-hedged option excess return, where Rf,i,t is the excess return of call or
put i between t − 1 and t; βfS,i,t−1 = St−1/ft−1 × ∆f

S,i,t−1 is the β of the call or put with respect to the
underlying asset; and RS,t is the excess return of the underlying stock or index between t− 1 and t. In the
bias-unadjusted method, the independent variable is the β of the option with respect to the volatility of the
underlying at time t− 1 (βfσ,i,t−1). Moreover, the sample used in the bias-unadjusted method is constructed
with selection criteria based on t−1 variables, including the requirement that the option’s delta (∆f

S,i,t−1) is
non-missing. In contrast, the sample used in the bias-adjusted method is constructed with selection criteria
based on t− 2 variables, with missing deltas replaced by their lagged values (∆f

S,i,t−2) when calculating the
delta-hedged return. In addition, in the bias-adjusted method, the independent variable is βfσ,i,t−2, and the
regressions are estimated with WLS using gross returns as weights (either Ci,t−1/Ci,t−2 or Pi,t−1/Pi,t−2).
Section 1 describes the sample selection criteria. We also present results of regressions estimated with WLS
using the dollar value of open interest ($OIi,t−2) as weights. The options are written on the S&P 500 Index
and individual stocks in the S&P 500 Index. T-statistics are shown in parentheses.

A: Bias-unadjusted

Stocks Index

λ0 λσ λ0 λσ

Calls
OLS -17.83 1.74 17.37 -6.70

(-11.34) (1.24) (3.92) (-4.73)
WLS, weighted by $OIi,t−2 -8.81 -3.25 4.79 -5.25

(-7.43) (-2.00) (1.56) (-3.77)
Puts
OLS -24.26 1.58 32.24 -12.89

(-13.22) (1.07) (2.35) (-5.34)
WLS, weighted by $OIi,t−2 -24.56 2.55 32.88 -11.80

(-13.66) (1.50) (4.10) (-6.13)

B: Bias-adjusted

Stocks Index

λ0 λσ λ0 λσ

Calls
WLS, weighted by Ci,t−1

Ci,t−2
-3.57 -0.32 8.06 -6.36
(-2.43) (-0.24) (1.85) (-4.26)

WLS, weighted by Ci,t−1

Ci,t−2
× $OIi,t−2 -0.67 -5.40 -2.00 -5.79

(-0.58) (-3.57) (-0.69) (-3.98)
Puts
WLS, weighted by Pi,t−1

Pi,t−2
-2.39 -5.04 32.24 -14.67
(-1.41) (-3.76) (1.72) (-6.77)

WLS, weighted by Pi,t−1

Pi,t−2
× $OIi,t−2 -6.98 -4.72 35.19 -13.10

(-5.16) (-3.01) (3.41) (-7.00)
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Table 4: Mean excess returns of delta-hedged calls and puts on individual stocks in the S&P
500 Index. This table presents average delta-hedged returns of calls and puts sorted by their β with respect
to the volatility of the underlying asset (βσ). Delta-hedged option excess returns are Rf,i,t − βfS,i,t−1RS,t,
where ft−1 is the price of the call or put i at time t− 1; Rf,i,t is its excess return between t− 1 and t; RS,t is
the excess return of the underlying stock; and βfS,i,t−1 = St−1/ft−1 ×∆f

S,i,t−1. The sample used in the bias-
unadjusted method is built with selection criteria based on t − 1 variables, including the requirement that
the option’s delta (∆f

S,i,t−1) is non-missing. The sorting variable is βfσ,i,t−1 in the bias-unadjusted method.
In contrast, the sample used in the bias-adjusted method is constructed with selection criteria based on t−2
variables, with missing deltas replaced by their lagged values (∆f

S,i,t−2) when calculating the delta-hedged
return. In addition, the bias-adjusted method uses βfσ,i,t−2 as the sorting variable, and average returns are
calculated with weighted averages using gross returns as weights. Section 1 describes the sample selection
criteria. The median βσ, relative spread, and moneyness are the mean values across time of the median
t− 2 values of these variables. Mean returns are displayed in basis points. Relative spreads are displayed in
percentages. We also present averages weighted by the dollar value of open interest ($OIi,t−2). T-statistics
are shown in parentheses.

A: Calls

Low βσ 2 3 4 High βσ H-L All

Median βσ 0.19 0.86 2.24 4.83 9.97 9.78 2.24
Median relative spread 4.25 5.54 6.92 10.79 22.00 17.75 7.60
Median moneyness -1.50 -0.84 -0.26 0.32 0.93 2.44 -0.26

Average daily delta-hedged returns

Bias-unadjusted
Equal weighted -30.96 -18.10 -1.65 -2.74 -0.10 30.86 -10.70

(-31.73) (-8.74) (-0.40) (-0.35) (-0.01) (2.21) (-1.89)
Weighted by $OIi,t−2 -15.97 -10.56 -10.72 -22.95 -40.92 -24.95 -19.09

(-20.02) (-4.93) (-2.47) (-2.94) (-2.96) (-1.86) (-5.33)
Bias-adjusted
Weighted by Ci,t−1

Ci,t−2
-2.30 -1.79 -1.68 -7.07 -10.65 -8.36 -3.73
(-3.36) (-0.90) (-0.41) (-0.92) (-0.75) (-0.61) (-0.68)

Weighted by Ci,t−1

Ci,t−2
× $OIi,t−2 -1.57 -3.95 -12.03 -25.08 -53.04 -51.46 -11.88

(-1.84) (-1.88) (-2.83) (-3.38) (-4.06) (-4.05) (-3.54)

B: Puts

Low βσ 2 3 4 High βσ H-L All

Median βσ 0.33 1.48 3.32 5.90 9.90 9.56 3.32
Median relative spread 4.80 6.04 8.19 13.24 23.75 18.96 8.80
Median moneyness 1.31 0.56 -0.05 -0.58 -1.11 -2.42 -0.04

Average daily delta-hedged returns

Bias-unadjusted
Equal weighted -34.51 -15.53 -12.51 -28.39 -20.58 13.93 -22.30

(-36.96) (-7.49) (-2.84) (-3.74) (-1.70) (1.17) (-4.36)
Weighted by $OIi,t−2 -23.99 -17.10 -19.46 -22.82 2.09 26.08 -22.86

(-28.76) (-6.84) (-3.94) (-2.85) (0.14) (1.81) (-6.96)
Bias-adjusted
Weighted by Pi,t−1

Pi,t−2
-3.94 -5.85 -18.19 -44.93 -65.84 -61.90 -25.35
(-5.07) (-2.72) (-4.07) (-5.97) (-5.69) (-5.54) (-4.98)

Weighted by Pi,t−1

Pi,t−2
× $OIi,t−2 -4.92 -12.95 -22.87 -38.53 -54.01 -49.09 -18.41

(-5.89) (-5.10) (-4.65) (-4.87) (-4.24) (-3.96) (-5.78)
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Table 5: Mean excess returns of delta-hedged calls and puts written on the S&P 500 Index. This
table presents average delta-hedged returns of calls and puts sorted by their β with respect to the volatility
of the underlying asset (βσ). Delta-hedged option excess returns are Rf,i,t − βfS,i,t−1RS,t, where ft−1 is the
price of the call or put i at time t − 1; Rf,i,t is its excess return between t − 1 and t; RS,t is the excess
return of the underlying stock; and βfS,i,t−1 = St−1/ft−1×∆f

S,i,t−1. The sample used in the bias-unadjusted
method is built with selection criteria based on t− 1 variables, including the requirement that the option’s
delta (∆f

S,i,t−1) is non-missing. The sorting variable is βfσ,i,t−1 in the bias-unadjusted method. In contrast,
the sample used in the bias-adjusted method is constructed with selection criteria based on t− 2 variables,
with missing deltas replaced by their lagged values (∆f

S,i,t−2) when calculating the delta-hedged return. In
addition, the bias-adjusted method uses βfσ,i,t−2 as the sorting variable, and average returns are calculated
with weighted averages using gross returns as weights. Section 1 describes the sample selection criteria. The
median βσ, relative spread, and moneyness are the mean values across time of the median t − 2 values of
these variables. Mean returns are displayed in basis points. Relative spreads are displayed in percentages.
We also present averages weighted by the dollar value of open interest ($OIi,t−2). T-statistics are shown in
parentheses.

A: Calls

Low βσ 2 3 4 High βσ H-L All

Median βσ 0.52 1.94 5.31 13.77 32.46 31.94 5.53
Median relative spread 1.82 2.99 4.93 9.07 21.84 20.02 5.08
Median moneyness -1.40 -0.77 -0.20 0.45 1.29 2.69 -0.17

Average daily delta-hedged returns

Bias-unadjusted
Equal weighted 11.82 5.82 -4.65 -27.72 -178.26 -189.37 -40.29

(5.34) (1.31) (-0.52) (-1.45) (-4.53) (-4.94) (-2.83)
Weighted by $OIi,t−2 13.33 4.90 -7.35 -26.09 -115.18 -127.81 -9.70

(6.13) (1.09) (-0.86) (-1.46) (-3.41) (-3.90) (-1.30)
Bias-adjusted
Weighted by Ci,t−1

Ci,t−2
-2.59 -7.98 -17.42 -48.71 -197.85 -195.27 -53.53
(-1.21) (-1.64) (-1.62) (-2.27) (-4.76) (-4.80) (-3.64)

Weighted by Ci,t−1

Ci,t−2
× $OIi,t−2 -3.01 -9.11 -21.65 -47.04 -159.22 -156.22 -17.67

(-1.41) (-1.91) (-2.10) (-2.37) (-4.47) (-4.50) (-2.47)

B: Puts

Low βσ 2 3 4 High βσ H-L All

Median βσ 3.13 7.96 12.36 16.21 19.76 16.62 12.58
Median relative spread 3.73 5.76 9.46 15.43 24.64 20.91 9.09
Median moneyness 0.72 -0.13 -0.76 -1.27 -1.73 -2.45 -0.77

Average daily delta-hedged returns

Bias-unadjusted
Equal weighted 3.12 -30.95 -76.66 -153.86 -216.37 -219.82 -97.33

(0.61) (-2.84) (-3.95) (-6.01) (-6.17) (-6.94) (-5.21)
Weighted by $OIi,t−2 4.83 -30.73 -75.84 -143.46 -182.22 -187.38 -55.27

(0.90) (-2.83) (-4.37) (-5.86) (-5.24) (-6.02) (-4.88)
Bias-adjusted
Weighted by Pi,t−1

Pi,t−2
-3.87 -33.07 -79.85 -149.52 -228.48 -224.94 -99.01
(-0.76) (-3.05) (-4.62) (-6.48) (-6.71) (-7.32) (-5.62)

Weighted by Pi,t−1

Pi,t−2
× $OIi,t−2 -5.44 -33.17 -78.09 -148.21 -229.13 -224.02 -60.54

(-1.00) (-3.02) (-4.55) (-6.14) (-6.60) (-7.20) (-5.38)
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Table 6: Averages of realized variance (RV ) and model-free implied variance (MFIV ) for stocks
in the S&P 500 and for the S&P 500 Index. RV is calculated from daily returns over a one-month
window, and MFIV is calculated from a cross-section of one-month options. Panel A presents the results
for stocks in the S&P 500. The first column of Panel A presents results using the method in Driessen,
Maenhout, and Vilkov (2009) to calculate MFIV . This method uses OTM calls and puts with ∆C > 0.15
and ∆P < −0.05. The second column presents results using our sample, which includes OTM options with
∆C > 0.01 and ∆P < −0.01. The third column presents results using the MFIV in Rehman and Vilkov
(2012). For options on stocks, MFIV (RV ) is the time series average of the equally weighted cross-sectional
averages of the MFIV (RV ) across all stocks. Panel B presents the results for the S&P 500 Index. The first
column of Panel B presents results using the sample selection criteria in Driessen, Maenhout, and Vilkov
(2009). The second column presents results using our sample selection criteria. The third column presents
results using the VIX as an estimate for theMFIV of the S&P 500 Index. For options on the index, MFIV
(RV ) is time series average of the index MFIV (RV ). T-statistics are shown in parentheses.

A: Stocks

OTM Only OTM Extended Rehman &
∆C > 0.15 ∆C > 0.01 Vilkov (2012)
∆P < −0.05 ∆P < −0.01

Average number of stocks per day 253.9 351.9 468.6
Average number of options per stock 5.3 7.3
MFIV 0.41362 0.41572 0.39992

RV 0.41762 0.39582 0.38162

RV −MFIV 0.0033 -0.0161 -0.0143
(0.47) (-2.52) (-2.41)

Tests of H0 : RV −MFIV = 0 for each stock

Number of stocks

t− statistic > 1.96 1 0 3
t− statistic < −1.96 67 334 379
|t− statistic| < 1.96 501 358 479

B: Index

OTM Only OTM Extended VIX
∆C > 0.15 ∆C > 0.01
∆P < −0.05 ∆P < −0.01

Average number of options per day 36.1 74.6
MFIV 0.21102 0.24212 0.21602

RV 0.19212 0.19212 0.19212

RV - MFIV -0.0076 -0.0217 -0.0098
(-2.66) (-6.36) (-3.39)
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Table 7: Summary statistics for simulated option data. This table presents mean, median, standard
deviation, first and third quartiles (Q1 and Q3), and first and 99th percentiles (P1 and P99), as well as
skewness of the simulated daily returns, relative spreads, moneyness, and implied volatilities. The moneyness
of an option (with maturity at time T ) at time t is ln(e−rt(T−t)K/St)/(σt

√
T − t), where St is the observed

closing stock price on day t; K is the option strike price; and rt is the risk-free rate, which we assume is zero
in the simulation. The stock and index returns as well as volatilities are simulated with the Heston (1993)
stochastic volatility model. The displayed statistics on returns, moneyness, and stochastic volatilities are
based on the simulated values without measurement errors. The simulated bid-ask spreads are based on an
empirical model of the bid-spreads motivated by the findings in De Fontnouvelle, Fishe, and Harris (2003).
Section 4.1 explains the simulation procedure. Return is displayed in basis points. Relative spread and σ
are displayed in percentages.

A: Call options on simulated stocks

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return 0.09 -127.86 2,389.05 -5,346.40 -1,316.94 1,081.60 7,627.67 1.13
Relative spread 12.51 8.74 10.99 0.77 4.31 17.35 46.68 1.34
Moneyness -0.05 -0.08 1.03 -1.96 -0.92 0.79 1.90 0.05
σ 39.31 38.73 7.39 24.71 34.21 43.73 59.68 0.69

B: Put options on simulated stocks

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return -38.74 -102.42 2,056.97 -5,008.89 -1,097.60 872.97 6,453.00 0.95
Relative spread 11.43 7.69 10.63 0.51 3.69 15.68 46.08 1.47
Moneyness 0.33 0.40 1.04 -1.71 -0.52 1.21 2.17 -0.17
σ 39.10 38.57 7.58 23.77 33.92 43.63 59.75 0.68

C: Call options on simulated index

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return 1.85 -65.85 2,220.96 -5,386.64 -991.76 812.73 7,433.94 1.53
Relative spread 8.13 3.54 10.42 0.08 1.17 10.91 45.21 1.86
Moneyness -0.22 -0.33 1.28 -2.24 -1.34 0.82 2.27 0.22
σ 16.48 16.22 3.55 9.51 13.93 18.74 25.76 0.45

D: Put options on simulated index

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return -99.72 -159.65 2,468.13 -5,861.15 -1,348.29 933.39 7,866.86 1.14
Relative spread 6.92 2.06 10.27 0.00 0.01 9.78 44.29 1.91
Moneyness -0.05 -0.12 1.32 -2.24 -1.19 1.08 2.30 0.11
σ 16.20 15.96 3.43 9.40 13.73 18.41 25.06 0.39

E: Simulated stocks

Mean Median Std Dev P1 Q1 Q3 P99 Skewness

Return 2.18 0.16 198.87 -474.37 -125.09 127.05 498.87 0.08
Relative spread 0.11 0.09 0.07 0.02 0.06 0.13 0.34 2.10
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Table 8: Mean returns of simulated call options sorted by moneyness. Panels A and B present
the average of simulated returns of stock and index call options sorted by moneyness. The moneyness of an
option (with maturity at time T ) at time t is ln(e−rt(T−t)K/St)/(σt

√
T − t), where St is the stock price; K

is the option strike price; rt is the risk-free, which is set equal to zero; and σt is the volatility implied by
the simulated option price. Moneyness groups are defined as follows. Low: Moneyness < −1.25. Group 2:
−1.25 ≤ Moneyness < −0.5. Group 3: −0.5 ≤ Moneyness < 0.5. Group 4: 0.5 ≤ Moneyness < 1.25. High:
Moneyness ≥ 1.25. βS and βσ are the options betas with respect to the underlying price and the volatility.
The return of call option i is (Ci,t − Ci,t−1)/Ci,t−1. “True prices” refer to results calculated with simulated
prices without measurement errors. The bias-unadjusted results are calculated with a simulated sample
constructed with selection criteria based on t − 1 variables that contain measurement errors. Moreover,
in the bias-unadjusted method, calls are sorted by their moneyness at the beginning of the holding period
(t−1). In contrast, the bias-adjusted results are calculated with a sample constructed with selection criteria
based on t−2 variables that contain measurement errors, calls are sorted by their moneyness one day before
the beginning of the holding period (t− 2), and returns are weighted by the one-day-lagged call option gross
return (Ci,t−1/Ci,t−2). The statistics on βS , βσ, relative spreads, and moneyness are the mean values across
time of the median t− 2 values of these variables. The total bias is decomposed into its different parts: the
direct mean return bias (DMR), indirect mean return bias (IMR), CEIV bias, and sample-selection bias (SS).
Section 4.1 describes the simulation procedure. The p-values shown are average values, across simulation
trials, of p-values of a Wolak (1989) test with the null hypothesis that call option mean returns increase
monotonically with moneyness. Relative spreads are displayed in percentages. Returns and biases are in
basis-points per day. Average t-statistics are shown in parentheses.

A: Stocks

Low 2 3 4 High H-L

Median βσ 0.20 0.69 2.60 6.90 12.28 12.09
Median βS 4.90 6.55 10.05 14.56 17.87 12.98
Median relative spread 3.97 6.03 10.02 15.40 17.29 13.33
Median moneyness -1.51 -0.89 -0.01 0.88 1.56 3.07

Wolak
Average daily call option returns p-value

True prices 9.06 9.73 5.05 -11.99 -37.95 -47.01 0.00
(1.49) (1.15) (0.40) (-0.66) (-1.67) (-2.73)

Bias-unadjusted 20.97 -12.58 5.05 4.12 -17.59 -38.55 0.00
(3.39) (-1.51) (0.40) (0.22) (-0.77) (-2.25)

Bias-adjusted 9.10 9.63 5.08 -11.55 -37.72 -46.82 0.00
(1.48) (1.16) (0.40) (-0.64) (-1.66) (-2.75)

Biases
DMR 2.97 4.95 11.65 20.03 22.88 19.92
IMR 0.00 0.00 0.00 0.00 0.00 0.00
CEIV 39.75 -20.59 -11.65 -2.81 15.65 -24.09
SS -30.80 -6.66 -0.01 -1.11 -18.16 12.64
Total 11.91 -22.30 0.00 16.11 20.37 8.46

B: Index

Low 2 3 4 High H-L

Median βσ 0.26 1.66 6.41 17.88 38.39 38.13
Median βS 9.26 15.10 24.33 37.58 53.26 44.01
Median relative spread 0.81 2.11 5.35 12.55 22.69 21.88
Median moneyness -1.79 -0.90 -0.02 0.87 1.74 3.53

Wolak
Average daily call option returns p-value

True prices 18.53 23.71 18.24 -13.76 -89.54 -108.07 0.00
(2.03) (1.64) (0.80) (-0.41) (-1.91) (-2.73)

Bias-unadjusted 18.82 22.51 18.55 -6.24 -59.18 -78.00 0.02
(2.07) (1.56) (0.81) (-0.19) (-1.26) (-1.96)

Bias-adjusted 18.37 23.70 18.42 -13.44 -86.82 -105.19 0.00
(2.03) (1.64) (0.81) (-0.40) (-1.85) (-2.64)

Biases
DMR 0.11 0.47 3.22 12.67 29.66 29.55
IMR 0.00 0.00 0.00 0.00 0.00 0.00
CEIV 1.88 -1.66 -2.90 -5.15 8.85 6.96
SS -1.70 -0.01 0.00 0.00 -8.14 -6.44
Total 0.29 -1.20 0.31 7.52 30.37 30.07
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Table 9: FM regressions of simulated delta-hedged option returns on their β with respect to
volatility (βσ). This table displays the results of FM regressions: Rf,i,t−βfS,i,t−1RS,t = λ0 +λσ×βfσ,i,t−1 +

ηi,t. The dependent variable is delta-hedged option excess return (Rf,i,t − βfS,i,t−1RS,t), where Rf,i,t is the
excess return of call or put i between t − 1 and t; βfS,i,t−1 = St−1/ft−1 × ∆f

S,i,t−1 is the β of the call or
put with respect to the underlying asset; and RS,t is the excess return of the underlying stock or index
between t − 1 and t. “True prices” refer to results calculated with simulated prices without measurement
errors. The bias unadjusted and adjusted results are based on simulated prices with added measurement
errors. In the bias-unadjusted method, the independent variable is the β of the option with respect to
the volatility of the underlying at time t − 1 (βfσ,i,t−1). Moreover, the sample used in the bias-unadjusted
method is constructed with selection criteria based on t − 1, including the requirement that the option’s
delta (∆f

S,i,t−1) is non-missing. In contrast, the sample used in the bias-adjusted method is constructed with
selection criteria based on t−2 variables, with missing deltas replaced by their lagged values (∆f

S,i,t−2) when
calculating the delta-hedged return. In addition, in the bias-adjusted method, the independent variable is
βfσ,i,t−2, and the regressions are estimated with WLS using gross returns as weights (either Ci,t−1/Ci,t−2
or Pi,t−1/Pi,t−2). The total bias is decomposed into its different parts: the direct and indirect regression
coefficient (DRC and IRC, respectively), CEIV bias, and sample-selection bias (SS). Section 4.1 describes
the simulation procedure. The regression coefficients and t-statistics (in parentheses) are averages across
simulation trials.

A: Calls

Stocks Index

λ0 λσ λ0 λσ

True prices -1.00 -5.96 0.93 -5.43
(-4.07) (-9.10) (1.04) (-7.17)

Bias-unadjusted -15.70 -1.71 -5.39 -4.32
(-52.89) (-2.60) (-5.21) (-5.67)

Bias-adjusted -0.95 -5.87 0.53 -5.38
(-3.10) (-9.05) (0.46) (-6.90)

Biases in unadjusted estimates of λ0 and λσ

DRC 5.38 1.61 -0.68 0.79
IRC 0.35 -0.04 -0.18 0.01
CEIV -9.30 2.37 -5.62 0.55
SS -11.13 0.30 0.15 -0.23
Total -14.70 4.25 -6.32 1.11

B: Puts

Stocks Index

λ0 λσ λ0 λσ

True prices -1.14 -5.51 -1.35 -4.62
(-7.18) (-9.23) (-1.67) (-7.02)

Bias-unadjusted -25.10 1.35 -8.93 -3.53
(-104.36) (2.25) (-9.60) (-5.31)

Bias-adjusted -1.13 -5.44 -1.53 -4.65
(-5.01) (-9.17) (-1.52) (-6.85)

Biases in unadjusted estimates of λ0 and λσ

DRC 4.33 2.05 -3.00 0.83
IRC -0.73 0.11 0.01 0.00
CEIV -7.15 2.55 -6.75 0.60
SS -20.41 2.15 2.17 -0.34
Total -23.96 6.86 -7.58 1.09
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Table 10: Mean excess returns of simulated delta-hedged calls and puts on individual stocks.
This table presents averages of simulated delta-hedged returns of calls and puts sorted by their βs with
respect to the volatility of the underlying asset (βσ). Delta-hedged option excess returns are calculated as
Rf,i,t−βfS,i,t−1RS,t, where ft−1 is the price of the call or put i at time t−1; Rf,i,t is its excess return between
t − 1 and t; RS,t is the excess return of the underlying stock; and βfS,i,t−1 = St−1/ft−1 × ∆f

S,i,t−1. “True
prices” refer to results calculated with simulated prices without measurement errors. The bias unadjusted and
adjusted results are based on simulated prices with added measurement errors. The sample used in the bias-
unadjusted method is constructed with selection criteria based on t− 1 variables, including the requirement
that the option’s delta (∆f

S,i,t−1) is non-missing. The sorting variable is βfσ,i,t−1 in the bias-unadjusted
method. In contrast, the sample used in the bias-adjusted method is constructed with selection criteria
based on t− 2 variables, with missing deltas replaced by their lagged values (∆f

S,i,t−2) when calculating the
delta-hedged return. In addition, the bias-adjusted method uses βfσ,i,t−2 as the sorting variable, and average
returns are calculated with weighted averages using gross returns as weights. The statistics on βσ, relative
spreads, and moneyness are the mean values across time of the median t− 2 values of these variables. The
total bias is decomposed into its different parts: the direct and indirect mean return biases (DMR and IMR,
respectively), CEIV bias, and sample-selection bias (SS). Section 4.1 describes the simulation procedure. The
reported means and t-statistics (in parentheses) are the averages across simulation trials. Relative spreads
are displayed in percentages. Returns and biases are in basis points per day.

A: Calls

Low βσ 2 3 4 High βσ H-L All

Median βσ 0.24 0.88 2.40 5.38 10.81 10.56 2.40
Median relative spread 4.33 6.34 9.61 14.12 16.98 12.65 9.08
Median moneyness -1.41 -0.74 -0.07 0.62 1.37 2.77 -0.07

Average daily delta-hedged returns

True prices -1.29 -5.03 -14.41 -33.63 -67.74 -66.44 -24.42
(-9.66) (-9.61) (-9.57) (-9.56) (-9.22) (-9.20) (-9.23)

Bias-unadjusted -16.98 -21.74 -16.80 -20.25 -37.77 -20.80 -22.71
(-80.35) (-36.01) (-10.47) (-5.57) (-5.09) (-2.86) (-9.01)

Bias-adjusted -1.45 -5.49 -15.12 -34.31 -67.73 -66.29 -24.69
(-7.56) (-9.16) (-9.38) (-9.46) (-9.17) (-9.15) (-9.11)

Biases in unadjusted means

DMR 3.04 5.15 10.30 17.66 22.31 19.27 11.69
IMR 0.89 0.07 0.02 0.03 0.03 -0.86 0.21
CEIV 20.86 -23.85 -12.92 -3.90 19.82 -1.04 0.00
SS -40.47 1.93 0.20 -0.41 -12.20 28.27 -10.19
Total -15.68 -16.70 -2.40 13.38 29.96 45.65 1.71

B: Puts

Low βσ 2 3 4 High βσ H-L All

Median βσ 0.16 0.54 1.57 3.83 8.42 8.26 1.57
Median relative spread 3.55 5.54 7.91 12.48 16.76 13.20 8.01
Median moneyness 1.65 1.05 0.39 -0.33 -1.16 -2.81 0.39

Average daily delta-hedged returns

True prices -0.73 -2.85 -8.78 -22.16 -48.43 -47.70 -16.59
(-9.39) (-9.35) (-9.40) (-9.47) (-9.30) (-9.29) (-10.40)

Bias-unadjusted -19.14 -36.91 -18.44 -15.09 -16.28 2.86 -21.17
(-113.84) (-80.74) (-17.10) (-6.00) (-3.05) (0.54) (-9.82)

Bias-adjusted -1.05 -3.47 -9.85 -23.53 -48.95 -47.91 -17.31
(-6.32) (-8.66) (-9.12) (-9.36) (-9.24) (-9.23) (-9.96)

Biases in unadjusted means

DMR 2.76 4.04 7.40 14.63 21.61 18.85 10.09
IMR -1.91 -0.33 0.06 0.06 0.06 1.97 -0.41
CEIV 51.07 -42.33 -18.77 -7.87 17.90 -33.17 0.00
SS -70.32 4.56 1.64 0.25 -7.41 62.90 -14.25
Total -18.40 -34.07 -9.66 7.07 32.15 50.55 -4.58

46



Table 11: Mean excess returns of simulated delta-hedged calls and puts on the index. This
table presents averages of simulated delta-hedged returns of calls and puts sorted by their β with respect
to the volatility of the underlying index (βσ). Delta-hedged option excess returns are calculated as Rf,i,t −
βfS,i,t−1RS,t, where ft−1 is the price of the call or put i at time t− 1; Rf,i,t is its excess return between t− 1

and t; RS,t is the excess return of the underlying index; and βfS,i,t−1 = St−1/ft−1 ×∆f
S,i,t−1. “True prices”

refer to results calculated with simulated prices without measurement errors. The bias unadjusted and
adjusted results are based on simulated prices with added measurement errors. The sample used in the bias-
unadjusted method is constructed with selection criteria based on t− 1 variables, including the requirement
that the option’s delta (∆f

S,i,t−1) is non-missing. The sorting variable is βfσ,i,t−1 in the bias-unadjusted
method. In contrast, the sample used in the bias-adjusted method is constructed with selection criteria
based on t− 2 variables, with missing deltas replaced by their lagged values (∆f

S,i,t−2) when calculating the
delta-hedged return. In addition, the bias-adjusted method uses βfσ,i,t−2 as the sorting variable, and average
returns are calculated with weighted averages using gross returns as weights. The statistics on βσ, relative
spreads, and moneyness are the mean values across time of the median t− 2 values of these variables. The
total bias is decomposed into its different parts: the direct and indirect mean return biases (DMR and IMR,
respectively), CEIV bias, and sample-selection bias (SS). The simulation parameters are calibrated to match
moments of the S&P 500 returns and bid-ask spreads. Section 4.1 describes the simulation procedure. The
reported means and t-statistics (in parentheses) are the averages across simulation trials. Relative spreads
are displayed in percentages. Returns and biases are in basis points per day.

A: Calls

Low βσ 2 3 4 High βσ H-L All

Median βσ 0.20 1.04 4.19 13.23 34.59 34.39 4.19
Median relative spread 0.68 1.61 3.77 9.33 20.99 20.30 3.82
Median moneyness -1.88 -1.14 -0.32 0.57 1.59 3.47 -0.32

Average daily delta-hedged returns

True prices -0.93 -5.14 -21.39 -68.78 -184.13 -183.20 -56.07
(-6.81) (-6.73) (-6.82) (-6.85) (-6.91) (-6.90) (-6.73)

Bias-unadjusted -3.52 -7.43 -23.35 -68.93 -153.97 -150.46 -51.43
(-19.99) (-9.19) (-7.25) (-6.77) (-5.73) (-5.62) (-6.67)

Bias-adjusted -0.91 -5.25 -21.74 -69.91 -183.55 -182.63 -54.95
(-5.04) (-6.36) (-6.62) (-6.74) (-6.74) (-6.73) (-6.84)

Biases in unadjusted means

DMR 0.69 0.28 1.47 7.66 26.90 26.20 7.40
IMR -0.55 -0.02 0.01 0.01 0.01 0.56 -0.11
CEIV 2.49 -1.95 -3.12 -7.35 9.93 7.44 0.00
SS -5.22 -0.60 -0.33 -0.47 -6.68 -1.46 -2.66
Total -2.58 -2.29 -1.97 -0.15 30.15 32.74 4.63

B: Puts

Low βσ 2 3 4 High βσ H-L All

Median βσ 0.32 2.24 7.72 17.18 30.52 30.20 7.72
Median relative spread 0.00 0.14 2.16 8.30 19.98 19.98 2.31
Median Moneyness 1.83 0.82 -0.12 -0.98 -1.79 -3.62 -0.12

Average daily delta-hedged returns

True prices -1.89 -11.47 -36.00 -76.54 -135.70 -133.82 -52.32
(-6.58) (-6.56) (-6.68) (-6.84) (-6.89) (-6.88) (-6.64)

Bias-unadjusted -1.86 -11.87 -36.83 -81.53 -106.11 -104.25 -47.64
(-6.10) (-6.75) (-6.83) (-7.27) (-5.33) (-5.30) (-6.62)

Bias-adjusted -1.87 -11.60 -36.50 -77.46 -135.44 -133.57 -51.28
(-5.73) (-6.40) (-6.61) (-6.75) (-6.70) (-6.69) (-6.74)

Biases in unadjusted means

DMR 0.01 0.20 0.70 6.15 24.65 24.64 6.34
IMR 0.02 0.01 0.00 0.00 -0.01 -0.02 0.00
CEIV 0.30 -0.48 -1.60 -11.21 12.99 12.69 0.00
SS -0.30 -0.13 0.07 0.07 -8.05 -7.74 -1.67
Total 0.02 -0.40 -0.83 -5.00 29.59 29.57 4.68
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Figure 1: Cumulative distribution of dollar open interest. Dollar open interest ($OI) is the closing
open interest of an option multiplied by its closing quote midpoint. For every day in our sample, we sort
options according to their $OI percentile and compute the $OI accumulated up to that percentile divided
by the total $OI on that day. The graph shows the averages of these cumulative distributions across all days
in the sample. The figure shows that the options on the top quintile of $OI account for approximately 90%
of the total $OI.
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Figure 2: Average closing bid-ask spreads of options. Panels A and B show the average across options
of the closing relative bid-ask spreads of options written on stocks in the S&P 500. Panels C and D show
the average across options of the closing relative bid-ask spreads of options written on the S&P 500 Index.
Panels A and C show the results for the baseline sample while panels B and D show the results for ATM
options with 21 to 23 trading days to maturity. We classify all options with moneyness between -0.5 and
0.5 as ATM options. Both equal-weighted and dollar open-interest ($OI) weighted averages are presented.
Option spreads are in percentage terms relative to quote midpoints.
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Figure 3: Option βS and βσ as a function of moneyness. The graphs below display the averages in our
sample of the option βs with respect to the underlying (βS) and with respect to volatility (βσ) as a function of
moneyness. The moneyness of an option (with maturity at time T ) at time t is ln(e−rt(T−t)K/St)/(σt

√
T − t),

where St is the stock price; K is the option strike price; rt is the risk-free rate; and σt is the volatility implied
by the simulated option price. The option βs are calculated with the option ∆s and νs in IvyDB. The β of
an option with respect to the underlying (βfS) is ∆f

t × St/ft, where ∆f
t and ft are the delta of the option

and its price, respectively, both given by IvyDB. The β of an option with respect to the volatility of the
underlying (βfσ) is defined as νft /ft, where ν

f
t is the vega of the option, also given by IvyDB.
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Figure 4: Average volatility smile used to estimate the model-free implied variance (MFIV ).
The graph shows the averages in our sample of the implied volatilities of out-of-the-money options used to
estimate the MFIV s in Table 6. The circles (squares) are average implied volatilities of out-of-the-money
puts (calls) from IvyDB. The lines are the average interpolated implied volatilities used to numerically
calculate the MFIV by an integral of a function of option prices on strike prices. The continuous line
represents the volatilities used in Driessen, Maenhout, and Vilkov (2009). This line keeps implied volatility
constant for OTM put options with ∆P > −0.05 and OTM calls with ∆C < 0.15. The dotted line represents
the implied volatilities used to estimate the MFIV in the Extended OTM method in Table 6. The implied
volatilities are plotted as a function of the ratio of strike-to-spot price (K/S).
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