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Abstract

A new Bayesian method is proposed for the analysis of discretely sampled diffusion pro-
cesses. The method, which is termed high frequency augmentation (HFA), is a simple nu-
merical method that is applicable to a wide variety of univariate or multivariate diffusion
and jump-diffusion processes. It is furthermore useful when observations are irregularly
observed, when one or more elements of the multivariate process are latent, or when mi-
crostructure effects add error to the observed data. The Markov chain-Monte Carlo-based
procedure can be used to attain the posterior distributions of the parameters of the drift
and diffusion functions as well as the posteriors of missing or latent data. Several exam-
ples are explored. First, posteriors of the parameters of a geometric Brownian motion are
attained using HFA and compared with those obtained using standard analytical methods
in a short Monte Carlo study. Second, a stochastic volatility model is estimated on a sam-
ple of S&P 500 returns, a problem for which posteriors are analytically intractable. Third,
it is shown how the method can be used to estimate an interest rate process using data
that suffer from severe rounding. Finally, extension of the method to jump-diffusions is
described and applied to the analysis of the U.S dollar/German mark exchange rate.

∗I thank Michael Brandt, Valentina Corradi, Frank Diebold, Bjorn Eraker, Eric Jacquier, Craig MacKinlay, Robert
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comments and help. All errors remain my responsibility.
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Bayesian Estimation of Continuous-Time Finance Models

1 Introduction

Stochastic differential equations have become indispensable tools of finance and economics

in the last twenty-five years. Advances in the theory of continuous time finance, for example,

have made the most complicated problems in derivative pricing relatively simple, causing the

usage of diffusion models to become widespread. While the theoretical developments gener-

ally presuppose knowledge of the parameters that underlie these diffusions, in reality these

parameters are unknown and must be estimated.

Many methods currently exist to estimate diffusion processes, although few can handle the

generality of processes considered in the theoretical literature. Multivariate models, especially

ones with latent variables such as stochastic volatility, are commonplace in finance, yet many

existing econometric methods are not capable of estimating such models (e.g Aït-Sahalia, 1996,

Pedersen, 1995, and Santa-Clara, 1995). Equally common is the requirement by many meth-

ods that the process under consideration be stationary (e.g. Hansen and Scheinkman, 1995),

an assumption that is certainly violated by many economic variables, most importantly stock

prices.

Another concern is that many methods do not make full use of the information contained

in the sample, either because they match only certain moments or even just stationary dis-

tributions (e.g. Aït-Sahalia, 1996). The heavier reliance on large-sample asymptotics that are

necessitated by such methods may make inferences unreliable in finite samples. Such issues

are critical when dealing with highly persistent data, such as interest rates, or the short sample

sizes available for recently introduced securities.

Themethod proposed in this paper is Bayesian and is applicable to a large class of discretely

observed multivariate diffusion and jump-diffusion processes, including those for which ob-

servations are irregularly spaced, those in which some elements of the process are latent (such

as stochastic volatility), and those in which the data are observed with error due to factors
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such as market microstructure. As the method is Bayesian, there is no need for large sample

approximations; inference will be exact in finite samples. Likewise, stationarity is not required,

although it may be imposed through the prior if desired.

There are practical reasons why these advantages may be important. Because diffusion-

based models are frequently used in derivatives pricing, an exact characterization of finite

sample uncertainty is critical for the risk management of firms that enter into derivative con-

tracts. The Bayesian framework is particularly useful because it can link uncertainty about

parameters and latent variables to the predictive uncertainty of the process. For example, in

a stochastic volatility model, it is this joint distribution of parameters and the current and fu-

ture values of volatility and stock prices which determines the predictive distribution of gains

and losses. The frequentist methods available are typically capable of making only a large

sample approximation of parameter uncertainty while providing little connection to predictive

uncertainty and uncertainty about unobserved variables.

Because the method is Bayesian, it enjoys several more advantages over frequentist meth-

ods. One is the ability to incorporate prior information, such as stationarity, if such information

is available. Also, the posteriors of arbitrary functions of the model parameters and latent vari-

ables can be computed, at least numerically, allowing us to analyze in a straightforwardmanner

the finite sample uncertainty in quantities such as equilibrium prices or optimal hedge ratios.

The method proposed in this paper employs two recent innovations in time series econo-

metrics. The computational framework is provided by Jacquier, Polson, and Rossi (1994, here-

after JPR), who apply the Bayesian technique of data augmentation to the study of stochastic

volatility models. Although the analysis of JPR deals with discrete time models, the computa-

tional backbone of their paper, which they term a cyclic Metropolis chain, is adopted here in

a somewhat different form. The convergence of the likelihood approximations used relies on

the results of Pedersen (1995) and Santa-Clara (1995).

Independently of this paper, Eraker (1998) and Elerian, Chib, and Shephard (1998) have

proposed methods similar to the one presented here for the Bayesian analysis of diffusion pro-

cesses. This paper differs from both in its consideration of jump-diffusions and measurement
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error. In addition, Elerian, Chib, and Shephard (1998) consider only univariate models, mak-

ing applications to many common finance models such as stochastic volatility impossible. The

method we propose is simpler, and it is this simplicity that makes the methodmore flexible and

easily generalized to more complex problems, such as the stochastic volatility/jump models of

Bakshi, Cao, and Chen (1998).

The paper will proceed as follows. Section two contains the intuition behind the HFA proce-

dure, while section three describes the method more formally and discusses the convergence

results relevant to it. Three examples are considered in section four: univariate geometric

Brownian motion, a stochastic volatility model, and an interest rate process with rounded data.

Section five extends the method to jump-diffusion processes, and section six concludes.

2 High frequency augmentation

The primary difficulty in estimating diffusion processes stems from the intractability of their

transition densities and hence likelihood functions.1 Because the Bayesian posterior distribu-

tion is typically attained as the normalized product of the prior distribution and the likelihood

function, the unknown form of the likelihood impedes Bayesian analysis as well.

Similar to the simulation-based frequentist literature, the solution of this paper is to work

with a high frequency discrete time model rather than the diffusion process itself. The par-

ticular discretization scheme chosen is the Euler approximation, which has the advantage that

its increments are conditionally Gaussian. Under regularity conditions, as the time interval of

the discretized process shrinks to zero the likelihood function of the Euler approximation will

converge to that of the diffusion.

In practice, it is sometimes assumed that the discrete time approximation is the true model

of prices. If the goal of the analysis is to obtain inferences about the parameters of the diffusion
1Aït-Sahalia (1998) has shown how to construct analytical approximations of the likelihood function of a

univariate diffusion process. Even in this univariate case, however, the likelihood function is of a nonstandard

form, making the derivation of marginal posteriors problematic when there are more than a few parameters.
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process, however, this approach will generally result in inconsistent estimates. It is impera-

tive, therefore, that any use of discrete approximations allows the discretization interval to be

arbitrarily small. In particular, the frequency of the discretized model must be allowed to be

arbitrarily higher than the frequency of the data.

To resolve this asymmetry between model and data frequencies, this paper proposes to

augment the observed data withmuch higher frequency data - for example augmentingmonthly

with daily data. Using the Euler approximation’s Gaussian likelihood function, distributions

for the model parameters conditional on the actual and augmented data may then be obtained,

often by using standard analytical methods. We then integrate out, using Markov chain Monte

Carlo, the uncertainty introduced by the introduction of unobserved data to get posteriors

conditional on only the observed data.

Specifically, a Markov chain similar to a Gibbs sampler is employed to alternatively aug-

ment the observed low frequency data with paths of high frequency data, and then use this

augmented sample to generate a conditional distribution of the parameters of the model. We

emphasize that by adding data we do not seek to decrease the variance of the posteriors, since

the effect of having a higher sample size will be offset by uncertainty about what unobserved

higher frequency data was actually realized. Rather, data augmentation merely makes the dis-

crete time approximation bias vanish, so that the posteriors being computed correspond to

those of the true diffusion.

It is worth noting the differences between the use of the Euler approximation in this paper

and its use in simulation-based classical methods. In Duffie and Singleton (1993), Gallant and

Tauchen (1996), and Gourieroux, Monfort, and Renault (1993), among others, the Euler approx-

imation is used to simulate long paths of data which are then used to numerically compute

moments. In the simulated maximum likelihood methods of Pedersen (1995) and Santa-Clara

(1995), the Euler approximation is used to simulate paths forward from one observation to the

next, with the terminal values of the simulations used to approximate the one-period transition

density.

Figure 1 illustrates these methods and shows that the simulations in this paper, in contrast,
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merely bridge the observed low frequency data with short paths of high frequency data. In

essence, data augmentation is nothing more than “filling in the gaps.” From the picture it is

clear that by pinning down both ends of the simulated paths, the variance of the latent high

frequency data can be reduced dramatically relative to methods that pin down one or no ends.

Since all these methods require some form of Monte Carlo integration, lower variance of the

augmented data should translate into in greater computational efficiency.

3 Formalization of HFA

3.1 The Euler approximation

Let Xt denote an L-dimensional diffusion process satisfying the stochastic differential equation

dXt = µ(Xt,φ)dt + σ(Xt,φ)dBt, (1)

where µ(x,φ) : �L × Φ → �L and σ(x,φ) : �L × Φ → �L ⊗�D satisfy growth and Lipschitz

conditions, Bt is a D-dimensional standard Brownian motion, and φ is a vector of parameters.

It is a well-known result of the theory of stochastic differential equations (see Kloeden and

Platen, 1992, p. 473) that under regularity conditions a variety of discretized approximations

converge weakly to Itô processes as the time discretization step goes to zero. One approxima-

tion that is frequently employed is the Euler approximation, which is given by

X̂(k+1)h = X̂kh + hµ(X̂kh,φ)+
√
hσ(X̂kh,φ)εk+1, (2)

where εk ∼ i.i.d. N(0, ID), ID is the D-dimensional identity matrix, and h is the discretiza-

tion interval length. For brevity, we will frequently write Xkh as Xk, making dependence on a

particular value of h implicit.

In addition to weak convergence, Pedersen (1995) shows that the likelihood function of the

Euler approximation converges to that of the diffusion as well. In particular, under Lipschitz

and growth conditions and the existence of continuous derivatives for µ and σ , the likelihood

of the Euler approximation converges in probability for all parameter values φ to that of the
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diffusion as the discretization interval h goes to zero. These conditions also guarantee the

existence of a weak solution to the stochastic differential equation (1).

3.2 Data augmentation

As stated in the previous section, the approach followed in this paper will be to estimate the

discretized Gaussian process (2), while allowing h to be arbitrarily small. The process being

estimated will therefore be at a higher frequency than that of the observed data. We will,

in effect, be estimating a Gaussian model with a large number of missing data points. The

Bayesian tool used to resolve this asymmetry is a version of the Metropolis-Hastings algorithm.

The particular variant used borrows the intuition of both the Gibbs sampler and and Tanner

and Wong’s (1987) data augmentation algorithm.

The motivation behind data augmentation is that many posterior distributions could be

calculated more easily if some extra set of data was available Although we do not observe this

extra “augmented” data, we may know (or be able to draw from) its distribution conditional

on the observed data and the unobserved model parameters. Treating the augmented data

as random variables equivalent to the model parameters, we form a Gibbs sampler or other

Markov chain that alternates between drawing from the conditional distribution of the model

parameters given both the observed and augmented data, and the conditional distribution of

the augmented data given the observed data and themodel parameters. In the current problem,

this augmented data set corresponds to the set of paths of unobserved data connecting the

observed data.

For the remainder of this section we ignore the distinction between diffusion and Euler

approximation and proceed as though the data are generated by the latter, relying on the fact

that the distribution of the two may be made arbitrarily close through the choice of h. We

define a time grid Th based on the choice of the Euler approximation’s discretization interval,

h, as

Th = {kh : k = 1,2, . . . , K} (3)

and assume that all realizations of the Euler process occur at times in Th.
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Suppose the vector Xk represents the time kh realization of the L-dimensional process

generated by the Euler approximation (2). In general, the majority of components of Xk for

a given k will be unobserved. This is primarily because the Euler approximation operates

at a higher frequency than the observed data, so that for many k the vector Xk is entirely

unobserved. It is also because some elements of the vector process X may never be observed,

a leading example being volatility in a stochastic volatility model. In some cases, one element

of X may be observed more frequently than another, or not over the same time interval.

We divide the L-dimensional vector Xk into subvectors, Xo
k and Xu

k , based on whether the

realization of the component of the process at that time is observed (Xo
k ) or unobserved (Xu

k ).

The lengths of these subvectors vary through time, with the length of Xo
k denoted bym and the

length of Xu
k denoted by n. (Note thatm and n are time-varying and that L is not, although this

is not made notationally explicit.) In all periods it is the case thatm+n = L and Xu
k ∪Xo

k = Xk.

Let Xo represent the union across time of the vectors Xo
k , and let Xu be the union of all

Xu
k . If it were possible, we would alternate between drawing from the following conditional

distributions:

p(φ|Xo,Xu) and p(Xu|φ,Xo),

Underweak conditions, thisMarkov chainwould converge to an invariant distributionp(φ,Xu|Xo),
whose marginal distribution onφ, p(φ|Xo), is frequently our object of interest. As we will see,
however, the draw of Xu is nontrivial and must be decomposed further.

3.3 Drawing the parameters/choice of prior

We first consider the draw from p(φ|Xo,Xu), the conditional distribution of the model param-

eters given the data, both actual and augmented. From Bayes rule,

p(φ|Xo,Xu)∝ L(φ;Xo,Xu)p(φ),

where L is the likelihood function and p(φ) is the prior. The advantage of the Euler approxima-

tion is that it allows us to compute L(φ;Xo,Xu) as the product of Gaussian transition densities.

It is therefore, at the very least, possible to compute the conditional distribution of φ up to a
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constant of proportionality. This fact alone makes it possible, in theory, to draw the parameter

vector φ using a numerical procedure such as the Metropolis-Hastings algorithm.

In a number of situations, however, including many of the popular diffusions used in fi-

nance, the Gaussian nature of the Euler likelihood function makes the draw from p(φ|Xo,Xu)
straightforward. If we partition the parameter vector as φ = (β,σ), then this will be the case

under flat (p(φ) ∝ 1/σ ) or normal/inverted Wishart priors when µ(X,β) is linear in β and

when σ(X,σ) = σg(X), where σ is a parameter and g is a function that does not depend on

φ.

In this case there exist functions fi(·) independent of φ such that the Euler approximation

may be written as

Xk+1 = Xk + h

 J∑
j=1

βjfi(Xk)

+ √hσg(Xk)εk+1,

which can be rearranged as

Xk+1 −Xk√
hg(Xk)

=
J∑

j=1
βj

√
hfi(Xk)
g(Xk)

+ σεk+1.

Rescaling by g(Xk) eliminates the heteroskedasticity of the disturbance term, putting the prob-

lem in a standard linear regression framework. It is well-known in this case (see Zellner, 1971,

p. 60-61) that the posterior for β is a multivariate student-t and that σ is distributed as an

inverted gamma. Standard methods for drawing from these distributions make more sophisti-

cated methods such as Metropolis-Hastings unnecessary. The examples of section four all fall

into this category.

In addition to simplifying the draws in this stage of the Markov chain, the availability of the

analytical conditional distributions also makes it possible to compute the marginal posterior

densities or moments using Rao-Blackwellization (see Tanner and Wong, 1987, or Gelfand and

Smith, 1990). This method for post-processing the output of the Markov chain can substantially

reduce the chain’s Monte Carlo integration error, as we will see in the numerical examples.

An easy way to approximate posteriormoments is simply to compute samplemoments from

the output draws of theMarkov chain. Posterior densities are often approximated by computing

a histogram of the same draws. Essentially, these basic methods use the parameter draws
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themselves but ignore the information in the full conditional distribution of the parameters

available at each iteration of the Markov chain.

The simplest version of Rao-Blackwellization computes the posterior mean as the average

of E[φ|Xo,Xu] rather than as the average of the draws of φ themselves. Not surprisingly, the

smoothing of the expectations operator generally causes a reduction in variance (see Liu, Wong,

and Kong, 1994). This expectation will be known, for example, in the linear case discussed

above. Posterior densities, too, can be computed by Rao-Blackwellization when the conditional

densities p(φ|Xo,Xu) are known in closed form. An approximation to p(φ|Xo) is computed

by averaging p(φ|Xo,Xu) across the draws of Xu generated by the Markov chain.

3.4 Drawing the augmented data

In general, the most challenging task in the implementation of HFA is to draw high frequency

data that is consistent with both the current draw of the parameters and the observed data

Xo. If it were possible, we would draw from the distribution p(Xu|φ,Xo) directly. It appears,

however, that in almost every situation this complicated multivariate distribution is unknown.

We therefore adopt a tool conceived by Jacquier, Polson, and Rossi (1994) for the analysis of a

discrete time stochastic volatility model.

3.4.1 The cyclic Metropolis chain

The tool, which JPR call a cyclic Metropolis chain, breaks down the draw of p(Xu|φ,Xo) into

a large number of univariate draws. These univariate draws are made for each element of Xu

conditional on φ, Xo, and all the other elements in Xu. By iterating over these conditional

draws, JPR forms a Markov chain chain that “cycles” through all the elements of Xu as well

as the parameter vector φ. Because even these univariate conditional densities are not of a

known form, JPR must make draws using the Metropolis-Hastings algorithm. (For a review of

the Metropolis-Hastings algorithm, see Chib and Greenberg, 1995.)

While JPR found it most convenient to break up the draw of p(Xu|φ,Xo) into a number of
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univariate draws, there is in general a variety of “blockings” that can be used to break up this

multivariate draw. The one considered here – breaking up Xu into its components Xu
k – is the

most convenient given the notation we have developed.

Let Xu−k denote the set of all unobserved realizations save Xu
k , the unobserved part of the

process realized at time kh. When all elements of Xk = (Xo
k,X

u
k ) are observed, then Xu

k is null

and no draw needs to be made. When Xk is not fully observed, then Xu
k contains at least one

element and our goal is to draw from its conditional distribution, p(Xu
k |Xu−k,Xo,φ). Because

the Euler approximation is a Markov process (reflecting our assumption about the underlying

diffusion), only the adjacent observations are relevant, meaning that

p(Xu
k |Xu−k,Xo,φ) = p(Xu

k |Xk−1, Xo
k ,Xk+1,φ).

Bayes rule can be applied to show that this density is proportional to

p(Xu
k ,X

o
k ,Xk+1|Xk−1,φ).

and again to show proportionality with

p(Xk+1|Xu
k ,X

o
k,Xk−1,φ)p(Xu

k |Xk−1, Xo
k ,φ).

The Markov property further implies that this product of densities simplifies to

p(Xk+1|Xu
k ,X

o
k,φ)p(Xu

k |Xk−1, Xo
k ,φ). (4)

This product of normal densities, which we denote in shorthand as π(Xu
k ), is easily com-

puted and is therefore amenable to the Metropolis-Hastings algorithm. Only occasionally is

this product itself proportional to a known standard density, making the Metropolis algorithm

unnecessary. One example of this is found in section 4.2.

Construction of a Metropolis chain requires the specification of a candidate-generating den-

sity q(x,x∗) governing the probability of x∗ being chosen as a candidate to replace the existing

draw x. Repeated draws from q(x,x∗) are accepted with probability

α(x,x∗) =min{π(x∗)q(x∗, x)
π(x)q(x,x∗)

,1}. (5)
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If x∗ is rejected, the current draw x is repeated. The Metropolis-Hastings result is that the

resulting Markov chain has an invariant distribution whose density is proportional to π(x).

There is a natural candidate generator that can be used to simplify the acceptance proba-

bility α(Xu
k ,X

u∗
k ) significantly. We saw previously that

p(Xu
k |Xu−k,Xo,φ)∝ p(Xk+1|Xu

k ,X
o
k,φ)p(Xu

k |Xo
k,Xk−1,φ).

The second density on the right hand side, taken in isolation, implies a Gaussian distribution

for Xu
k . We therefore define the candidate generating density as

q(Xu
k ,X

u∗
k ) = q(Xu∗

k ) = p(Xu∗
k |Xo

k,Xk−1,φ).

Note that the current value of the Markov chain, Xu
k , does non enter the candidate generator –

q generates a so-called independent Metropolis chain.

Of course, elements of the chain are not truly independent because they are linked by the

acceptance probability α. This probability is simplified greatly by this choice of q, since q

cancels out one of the two densities that make up π . We are left with

α(Xu
k ,X

u∗
k ) =min{p(Xk+1|Xu∗

k ,Xo
k ,φ)

p(Xk+1|Xu
k ,X

o
k,φ)

,1}. (6)

Essentially, we simulate the process forward from time (k − 1)h to time kh to generate the

candidate draw Xu∗
k , then accept Xu∗

k over the previous draw Xu
k depending on how likely each

one is to have preceded Xk+1. Typically, the acceptance rate for draws in the univariate case is

about .6, while for the bivariate case it is about .4.

The chief advantage of this forward simulation candidate generator is its simplicity. The

Metropolis chain constructed using the forward simulator requires a fraction of the calcula-

tions required to construct more complicated Metropolis chains, reducing computer run time

significantly.

3.4.2 Cycling versus simultaneous draws

Although it ismost intuitive to think of theMarkov chain as “cycling” through the elements ofXu

drawing each element Xu
k individually, this is not generally the most computationally efficient
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method. In computer languages that are optimized for matrix operations (such as Matlab) we

can increase speed by performingmultiple draws simultaneously. It is not problematic to adopt

this strategy here as long as some care is taken.

Divide the time grid

Th = {kh : k = 0,1,2, ..., K}

into two sets of non-adjacent times (assume K is even):

T 1
h = {kh : k = 0,2,4, ..., K} and T 2

h = {kh : k = 1,3,5, ..., K − 1}

As we have argued, because the process is Markovian only adjacent observations (k − 1 and

k+ 1) are relevant for each draw Xu
k . We can therefore draw all elements in T 1

h simultaneously

conditional on the observations at times in T 2
h , then draw observations in T 2

h conditioning on

those in T 1
h . By alternating between just two matrix draws rather than K individual draws we

can sometimes improve computational performance dramatically.

3.5 A review of the algorithm

(1) Choose some initial values for the parameters φ and the unobserved data Xu.

(2) Redraw the unobserved paths, or “bridges”, in between the observed data and fill in any

latent variables by cycling, point by point, through the elements of Xu.

(3) Draw new parameters conditional on the augmented data set.

(4) Go back to (2) or terminate the Markov chain if convergence has been determined.

4 Three applications

In this section we will try both to assess basic statistical properties of the method and to

demonstrate its usefulness in a variety of situations. We first perform a brief Monte Carlo

study to compare the method with a more standard approach. A stochastic volatility model is

then estimated using actual S&P 500 returns. Last, we consider a problem in which an interest

rate process is observed in an environment of microstructure-induced measurement error.
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4.1 Geometric Brownian motion

This section applies the algorithm described above to determine the posteriors of the param-

eters of a univariate geometric Brownian motion (GBM) process. GBM is examined because it

has the property of having normally-distributed log differences, making it possible to compute

analytically the posteriors for the model parameters without relying on data augmentation. A

brief Monte Carlo exercise is therefore able to check directly whether the posteriors generated

by this paper’s high frequency augmentation (HFA) procedure are the same as those of the

analytical method.

4.1.1 A standard approach

A geometric Brownian motion x is described by the stochastic differential equation

dx = µxdt + σxdB.

By Itô’s lemma the solution of this SDE can be written as

xt+1 = xt exp
(
µ − 1

2
σ2 + σ(Bt+1 − Bt)

)
, (7)

which implies the well-known result that continuously compounded returns are normally dis-

tributed, or

log(
xt+1
xt

) ∼ N(µ − 1
2
σ2, σ2).

Defining β = µ − 1
2σ

2, this can be rewritten as

log(
xt+1
xt

) ∼ N(β,σ2).

We place a standard diffuse prior, p(µ,σ) ∝ 1
σ , on µ and σ . Because the determinant of

the Jacobian of the transformation from (β,σ) to (µ,σ) is a constant, the same diffuse priors

are implied for β and σ , or p(β,σ)∝ 1
σ .

This case is particularly easy to analyze, since the posteriors of β and σ are known analyt-

ically. In particular, the following results are attained (see Zellner, 1971, p. 60-61):
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• Let σ̂2 be the sample variance of log(xt+1
xt

) and let T be the sample size. Then σ is

distributed as an inverted gamma with gamma parameter equal to 2
(T−2)σ̂2 and alpha

parameter equal to T−2
2 .

• Conditional on σ , β is normally distributed with mean equal to the sample mean of

log(xt+1
xt

) and variance equal to σ2

T−1 .

Numerical integration may be used to solve for the marginal density p(µ|x) given the bivariate

density p(β,σ |x). Alternatively, by repeatedly drawing values from the joint posterior dis-

tribution of β and σ and using the relation µ = β + 1
2σ

2, we can similarly approximate the

posterior of µ to any desired level of accuracy.

4.1.2 The HFA approach

The HFA procedure proposed in this paper does not make use of the exact Gaussian trans-

formation that GBM allows. Instead, we approximate geometric Brownian motion by its Euler

approximation,

xk+1 = xk + hµxk +
√
hσxkεk+1. (8)

As before, xk denotes the value of the Euler approximation at time kh. Rescaling to eliminate

heteroskedasticity, we have
xk+1 − xk√

hxk
=
√
hµ + σεk+1. (9)

The Euler approximation can therefore be interpreted as saying that over very small intervals,

simple returns are normally distributed, although with a different mean than for continuously

compounded returns.

To draw the augmented data in this section we follow the procedure outlined in section

three. The unobserved data, specifically the 1
h − 1 high frequency values of x that lie between

each two observations of the process, are individually drawn using Metropolis-Hastings. The

candidate generating distribution, p(xk|xk−1, µ, σ), is normal with mean (1 + hµ)xk−1 and

variance hσ2x2
k−1. The probability of accepting a new draw x∗k over the previous draw xk is
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equal to

min{xk
x∗k

exp

(
−1
2

(xk+1 − (1+ hµ)x∗k )
2

(σx∗k )2
+ 1
2
(xk+1 − (1+ hµ)xk)2

(σxk)2

)
, 1}.

We again use the standard diffuse priorp(µ,σ)∝ 1
σ in order tomake the results comparable

with those of the analytical method. Conditional on the augmented and actual data, we obtain

simple expressions for the distributions of µ and σ :

• Let σ̂2 be the sample variance of xk+1−xk√
hxk

and let K = T−1
h be the size of the augmented

sample. Then σ has an inverted gamma distribution with gamma parameter 2
(K−1)σ̂2 and

alpha parameter K−1
2 .

• Conditional onσ , µ is normally distributedwithmean equal to the samplemean of xk+1−xk√
hxk

and variance equal to σ2

Kh .

4.1.3 Monte Carlo results

In this section we conduct a modest Monte Carlo experiment to determine the properties of

the algorithm proposed. Because the log differences of geometric Brownian motion are inde-

pendent Gaussian random variables, the sampling distributions of the true posterior means

and variances in this case are well-known. Our focus will therefore be on the performance of

our numerical method relative to the analytical method. In essence, therefore, we are asking

whether relatively short chains with reasonably small values of h are sufficient to generate

accurate results.

One hundred paths of one hundred discrete time observations of geometric Brownian mo-

tion were simulated using the exact discretization (7) under the parameter values µ = .025 and

σ = .25, values that were deliberately chosen to magnify the impact of discretization bias.2 A

representative series is plotted in figure 2. Markov chains for the numerical method were then
2The valueσ = .25 represents a higher volatility than that apparent in annual S&P 500 returns, for example. The

value µ = .025, meanwhile, is relatively small, making the difference between the log difference mean α = µ− σ2

2

and the discretized mean µ large.
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run to 11000 iterations, with the first 1000 thrown out to negate the effects of initial conditions.

The discretization interval h is set to .1.

Posteriormeans for µ andσ were computed three different ways for each series of simulated

data. First, we compute them using the analytical posterior p(β,σ |xo), where the means of µ

were computed by numerical integration. For the numerical method, posterior means were

computed once by simply taking averages of the Markov chain parameter draws. They were

then computed using Rao-Blackwellization, in which the posterior mean is computed as the

average across draws

16



Table 1: Monte Carlo Results for Geometric Brownian Motion

Let µ̂a and σ̂a denote posterior means computed using the analytical method, µ̂mc and σ̂mc

the means computed by averaging the Markov chain draws, and µ̂rb and σ̂rb the means

computed by Rao-Blackwellization of those draws.

Panel A: analysis of posterior means

µ̂a µ̂mc µ̂rb σ̂a σ̂mc σ̂rb

True parameter 0.0250 0.0250 0.0250 0.2500 0.2500 0.2500

Average posterior mean 0.0231 0.0229 0.0229 0.2525 0.2513 0.2514

(Standard error) (0.0025) (0.0026) (0.0026) (0.0019) (0.0018) (0.0018)

Root mean squared error 0.0255 0.0256 0.0256 0.0189 0.0184 0.0184

Panel B: deviations from analytical method

µ̂mc − µ̂a µ̂rb − µ̂a σ̂mc − σ̂a σ̂rb − σ̂a

Average -0.0002 -0.0002 -0.0012 -0.0011

(Standard error) (0.0001) (0.0000) (0.0002) (0.0002)

Standard deviation 0.0005 0.0005 0.0020 0.0020

of the conditional means E[σ |xo,xu] and E[µ|xo,xu], which are both known in closed form as

the means of inverted gamma and student-t random variables, respectively.

The top panel of table 1 reports the average and root mean squared error of the posterior

means when computed by each of the three methods. In every case but one (σ̂a), the average

posterior mean is within one standard error of the true parameter value, providing no evidence

that any of the methods appears to generate significant bias. Rao-Blackwellization, a variance

reduction technique, not surprisingly does not affect these numbers. Comparing the root mean

squared errors across the three methods, we furthermore find no evidence that either Markov

chain-based method results in less precisely estimated posterior means.

It is perhaps more informative, however, to look at the deviations of the Markov chain

posterior means from the analytical means. The lower panel of table 1 shows that the average
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deviation, while statistically significant, is extremely small, in all cases less than one percent of

the true parameter value. The last row of the table measures the variability of this deviation.

For µ, this variation is minute. Furthermore, although too small to be visible in the table, Rao-

Blackwellization reduces this standard deviation by about ten percent. For σ , the variation of

the deviations from the analytical posterior means is somewhat larger, although still of little

economic importance. Nevertheless, if this error is considered nontrivial, then a longer chain

could be simulated with little additional difficulty.3

As an additional illustration, we consider one of the simulated paths of data (the same one

plotted in figure 2) in more detail. To assess more informally how different choices of h affect

the parameter posteriors, various degrees of data augmentation were considered, ranging from

h = 1 (no data augmentation) to h = .05. No data augmentation amounts to the estimation of

the Euler approximation (8) with h = 1, an approach which may perhaps be considered naive,

but is nevertheless used in some empirical literature. The choice h = .05 is within the typical

range used in the simulation-based classical literature.

Figures 3 and 4 plot the posterior densities of µ and σ attained using different levels of

discretization.4 Densities were computed using Rao-Blackwellization by averaging p(µ|xo,xu)
and p(σ |xo,xu) across draws of xu. From the top panels it is clear that most of the effect of

data augmentation occurs by adding just a single augmented data point between observations

(“h=.5”). Between h = .1 and h = .05, the posteriors appear to “settle down,” although a bit of

approximation error is clearly still evident.

The bottom panels compare the correct analytical posteriors to the most data-augmented

posteriors and the “naive” posteriors that use no data augmentation. For both µ andσ it is clear

that the naive method (“h=1”) yields faulty inference. While the other two posteriors (“h=.05”

and “analytical”) are not indistinguishable, they are, in comparison to the naive posteriors, very
3The total run time of this Monte Carlo experiment was four hours on a Pentium II 266. All computations were

performed in Matlab.
4For additional accuracy, the Markov chain was extended to 21000 iterations, instead of the 11000 used in the

Monte Carlo study.
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similar. We conclude that even with parameters designed to overstate the magnitude of the

discretization bias likely to be found in real data, a modestly small value of h is sufficient to

eliminate almost all of that bias.

4.2 Stochastic volatility

Amore challenging statistical problem is to infer the parameters of a process that is not directly

observable. In a typical stochastic volatility model, the price of an asset is assumed to follow

a generalized geometric Brownian motion in which the mean parameter is constant but the

variance parameter is itself a separate stochastic process. This second diffusion, which is

assumed to be unobservable, is driven by a Brownian motion that may or not be correlated

with that of the price process.

This section will examine an approximation of the model of Scott (1987), who models price

and volatility dynamics as the following bivariate diffusion process:

dSt = µStdt + eYtStdB
(1)
t

dYt = (α+ δYt)dt + σdB(2)
t

By Itô’s lemma, we may rewrite the price dynamics in terms of log prices as

d(log St) = (µ − 1
2
e2Yt )dt + eYtdB(1)

t . (10)

Following Duffie and Singleton (1988), we work with the simplification

d(log St) = µdt + eYtdB(1)
t .

Although not pursued here, estimation of the correct form (10) is not problematic, requiring a

slight adjustment to the calculations below.

The Euler approximation of this model may be written as

log Sk+1 = log Sk + hµ +
√
heYkε(1)k+1 (11)

Yk+1 = Yk + h(α+ δYk)+
√
hσε(2)k+1, (12)
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where ε(1)k+1 and ε(2)k+1 are standard normals.5

For simplicity, we assume independence of the Brownian motions B(1) and B(2). Then con-

ditional on the observation of the complete data set, which includes the high frequency values

of Sk and all values of Yk, the parameters of each equation may be estimated independently.

Consideration of correlated processes can be handled in the manner suggested by Jacquier,

Polson, and Rossi (1998) for discrete time models.

The log price equation in (11) has µ as its only parameter. Given the augmented data set,

we can rewrite the equation in standard regression form as

log Sk+1 − log Sk√
h exp(Yk)

=
√
h

exp(Yk)
µ + ε(1)k+1. (13)

Given the diffuse prior p(µ) ∝ 1, the conditional distribution of µ is normal with mean and

variance identical to those of the sampling distribution of the ordinary least squares estimator

of µ.

We can similarly rearrange the log volatility equation as

Yk+1 − Yk√
h

=
√
hα+

√
hYkδ+ σε(2)k+1. (14)

Standard diffuse priors p(α,δ,σ) ∝ 1
σ imply the following conditional distributions for α, δ,

and σ :

• Let α̂ and δ̂ denote the OLS slope coefficients of a regression of Yk+1−Yk√
h on

√
h and

√
hYk,

and let σ̂ be the standard error of that regression. Then σ has an inverted gamma poste-

rior with gamma parameter 2/
(
(K − 1)σ̂2

)
and alpha parameter K−1

2 , where K is the size

of the augmented sample.
5As Duffie and Singleton (1988) note, the process does not satisfy Lipschitz conditions due to the unbounded

derivative of eY as Y → ±∞. A standard sufficient condition for the weak convergence of the Euler approximation

is therefore not met. Our solution is similar to the one they propose: truncate the volatility term eY at high and

low values of Y, i.e., let the instantaneous standard deviation of d(log S) be equal to eY if Y ≤ Y , eY if Y < Y < Y ,

and eY if Y > Y . If Y and Y are chosen, respectively, low and high enough, then the truncation is irrelevant.
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• Conditional on σ , (α, δ) has a bivariate normal posterior with mean (α̂, δ̂) and covariance

equal to the standard OLS covariance matrix multiplied by σ2

σ̂2 .

Rather than using a bivariate candidate generating density to draw log Sk and Yk simulta-

neously, as suggested in section three, we further increase the blocking of the Markov chain

and draw log Sk and Yk separately for each k. This choice is motivated by the availability of an

analytic representation of the conditional distribution

p(log Sk| log Sk−1, log Sk+1, Yk−1, Yk, Yk+1,φ)

derived in appendix A, where φ = (µ,α, δ,σ).

For drawing elements of the path of the log volatility process Y , the Metropolis-Hastings

algorithm is still a necessity. We follow the previous sections in drawing a candidate Yk based

on the previous point Yk−1. For k = 1, however, we must draw from

p(Y1| log S1, log S2, Y2,φ) (15)

instead (since S1 should be observed), which is proportional to product of the unconditional

distribution of the process and a one-period transition probability, or

p(Y1|φ)p(log S2, Y2| log S1, Y1,φ).

The unconditional distribution p(Y |φ) is therefore used as the candidate generating density

for Y1. Because Y follows an Ornstein-Uhlenbeck process, its stationary distribution is Gaussian

with mean −α
δ and variance −σ2

2δ .

4.2.1 Application to S&P Composite Returns

The model was estimated on 521 weekly S&P 500 Composite returns constructed fromWednes-

day closing prices between January 1987 and December 1996. Various degrees of discretization

were considered. First, we generate posteriors by augmenting only with volatility and not with

higher frequency price data (“h=1”). Next, we increase the frequency of the Euler approxima-

tion, which requires us to additionally augment using up to five subperiods per observed data

point (“h=.2”).
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One million iterations of the Markov chain were performed, with the first 50,000 discarded

to negate the effects of initial conditions. Posterior means and standard deviations are reported

in

Table 2: Stochastic Volatility Parameters

µ α δ σ

Posterior mean 0.00331 -0.842 -0.203 0.273

Posterior standard deviation 0.00068 0.528 0.126 0.097

Standard error of posterior mean 0.00001 0.017 0.004 0.004

table 2 for the case of h = .2. To assess numerical accuracy, batch means of 190 blocks of size

5,000 were computed. The batch means are plotted in figure 5, and it is evident that the block

size is large enough so that these batch means are approximately serially uncorrelated.6 The

standard deviation of these means may therefore be used to calculate the standard error of the

posterior mean in the usual way.

Table 2 reports posterior means, standard deviations, and standard errors of the posterior

means. Consistent with the vast amount of research in time-varying volatility, we find volatility

to be highly persistent, with the posterior mean for δ implying a daily autocorrelation of around

.96. The posterior means are estimated with great accuracy, with numerical standard errors at

least 30 times smaller than the respective posterior standard deviations.

The full posterior densities of the four parameters of the model are shown in figure 6.

Again, posteriors are plotted using the Rao-Blackwell procedure described previously. Three

out of the four posteriors appear highly non-normal, with pronounced skewness, implying that

classical asymptotic approximations could be inaccurate.

In addition, the graphs reveal that discretization bias does exist – the “naive” posteriors

(“h=1”) differ noticeably from the HFA posteriors (such as “h=.2”), except for the parameter
6The batch means of α, δ, and σ have serial correlations less than .02 in absolute value. The batch means of

µ have a serial correlation of .19, implying that its estimated standard error is likely somewhat understated.
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µ, the mean return. The posteriors constructed using augmented higher frequency data are

generally more dispersed than those that do not augment with more frequent data, and this

dispersion is towards larger absolute values. Furthermore, a relatively small number of subin-

tervals appears to erase most of this bias.7

Figure 7 plots the mean and 95% highest posterior density intervals of the posteriors for the

latent volatility process (eY ) for each week of the sample.8 We find the time series average of the

weekly volatility posterior means to be about 1.75 percent per week, or .8 percent daily. Time

variation is clearly present (the October 1987 crash is very prominent), but the width of the

95% HPD intervals is large, making precise statements about the location of the latent volatility

process difficult. In fact, on 485 out of the 521 weeks of the sample, the 95% HPD interval

for volatility includes the time series average of 1.75 percent. We conclude that although

time variation is clearly present in the data, identifying particular periods in which volatility is

relatively high or low is not as straightforward as one might imagine.

4.3 An interest rate process with rounding

In the presence of bid-ask spreads, price discreteness, or other microstructure effects observ-

able in high frequency data, it is apparent that either the model or the data must not be taken

literally. Some seven-day Eurodollar rates, for example, are typically quoted in sixteenths, even

when annualized rates are as low as three percent, as they were in the early 1990s. The biases

induced by rounding and the construction of more robust classical estimators are the subjects

of papers by Cho and Frees (1988), Gottlieb and Kalay (1985), and Ball (1988), among others.

These papers largely deal with the estimation of simple and geometric Brownian motion, how-

ever, and none provide a way to avoid rounding bias for more general processes. In this section

we suggest a general approach to estimating diffusion processes in the presence of rounding.
7Using a subsample we verify that higher frequency Euler approximations to not noticeably shift the posteriors

any further.
895% HPD intervals of exp(Yk) are calculated as follows. Let Y i

k, i = 1, . . . , N denote N posterior draws of Yk

sorted in ascending order. Then (Y i
k, Y

j
k ) will be the HPD interval if i and j solve mini,j Y

j
k −Y i

k s.t. j− i ≥ .95N.

23



Furthermore, it should be possible to extend the approach to account for more complicated

models that account for a bid-ask spread, such as those proposed by Hasbrouck (1998).

4.3.1 A rounding correction

Instead of taking recorded interest rates as observations, without error, of a diffusion process,

we may alternatively interpret them as specifying the approximate location of the diffusion at

that time. A simple working hypothesis might be that the observed rate is simply the tick that

is closest to the true value of the process. Suppose that the tick size is known to be 1
16 . Then

we may believe that an observed rate of 4 1
16 percent actually implies that the true value of the

process fell somewhere inside the interval 4 1
32 to 4 3

32 . The HFA procedure can then be used to

augment the observed rounded data with the unobserved “true” diffusion. This requires only

a slight generalization of the Markov chain used thus far.

Let R denote the rounded process, X the true unobserved process, and φ the set of model

parameters. Our goal is to construct a Markov chain for φ and X whose marginal distribution

on φ will converge to p(φ|R). Since the diffusion is never actually observed, Xo is empty and

X = Xu.

Let TR denote the set of times for which the interest rate is observed (i.e. for which Rk is

not null). For times kh in TR, R provides a “prior” about the location of the diffusion Xk. In

this case we know by the Markov property that

p(Xk|X−k,R,φ)

simplifies to9

p(Xk|Xk−1, Xk+1, Rk,φ).

By Bayes rule, this is proportional to

p(Xk+1|Xk,Rk,φ)p(Xk|Xk−1, Rk,φ).
9Previous and future values of R are irrelevant since they are just noisy versions of previous and future values

of X, and the Markov property implies that the only relevant values of X are Xk−1 and Xk+1.
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The first conditional density is simplified by noting the deterministic relationship between

Xk and Rk. Then applying Bayes rule to the second conditional density and again noting the

deterministic relationship between Xk and Rk, we conclude with the result that

p(Xk|X−k,R,φ)∝ p(Xk+1|Xk,φ)p(Xk|Xk−1,φ)p(Rk|Xk).

The result is identical to that of the previous sections except for the addition of the “prior”

p(Rk|Xk), which is proportional to unity where |Rk − Xk| is less than half of one tick and is

zero elsewhere. It is easily incorporated into the Metropolis-Hastings chain as follows: Draw a

candidate X∗k to replace the current draw Xk from the distribution p(Xk|Xk−1,φ). Accept this

draw with probability

α(Xk,X∗k ) =min{p(Xk+1|X∗k ,φ)p(Rk|X∗k )
p(Xk+1|Xk,φ)p(Rk|Xk)

,1}.

Since the acceptance probability will be equal to zero if X∗k and Rk are not within half a tick,

we are guaranteed that the augmented diffusion process will be consistent with the discretely

observed rounded data R. This also implies that it will always be the case that for the previous

draw p(Rk|Xk) = 1. This term is therefore superfluous.

For times kh that are not in TR, the same logic holds except that Rk is null. We still draw can-

didatesX∗k to replace the current drawXk from the distribution p(Xk|Xk−1,φ). The acceptance

probability, however, simplifies to

α(Xk,X∗k ) =min{p(Xk+1|X∗k ,φ)
p(Xk+1|Xk,φ)

,1},

which of an identical form to that of the previous sections.

4.3.2 The interest rate process

Chan, Karolyi, Longstaff, and Sanders (1992) estimated models of the short rate of the form

dxt = (α+ βxt)dt + σxγ
t dBt (16)

This specification encompasses a number of interest ratemodels, most notably those of Vasicek

(1977) and Cox, Ingersoll, and Ross (1985).
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The Euler approximation of this process10 is given by

xk+1 = xk + hα+ hβxk +
√
hσxγ

kεk+1.

Although it is possible to estimate γ, for simplicity of exposition we fix γ at the value 1.5,

close to the estimate of Chan et al. The discretization then suggests a straightforward approach.

After some rearrangement of terms, we are left with

xk+1 − xk√
hx1.5

k
= α

√
hx−1.5k + β

√
hx−.5k + σεk+1, (17)

again putting us in a standard linear regression framework. If we assume the flat prior

p(α,β,σ)∝ 1
σ
,

then, as before, σ will have an inverted gamma distribution and (α,β) will have a bivariate

normal distribution that is conditional on the draw of σ .

4.3.3 Experimental results

One thousand days of interest rate datawere constructed by simulating the Euler approximation

of the interest rate diffusion process (16) with h = .04 and then rounding off to the nearest

sixteenth of one percent. The annualized parameter values used were α = .008, β = −.1, and
σ = .75, with 244 days per year. The parameter γ is fixed at and assumed known equal to 1.5.

The simulated data are plotted in figure 8.

We consider both the rounded and the underlying unrounded data and seek to answer two

questions: (1) How does the presence of rounding shift the parameter posteriors? (2) Will the

rounding correction described above correct the bias induced by rounding, or will the loss of

information that rounding entails make inference about the true parameters difficult even with

the correction?
10Again, the process does not satisfy Lipschitz conditions due to the unbounded derivative of xγ . If γ > 1, as

we will have in this case, the derivative is unbounded as x →∞. We solve the problem by truncating the diffusion

function, but at a sufficiently high level (interest rates of 500 percent) such that the truncation is irrelevant.
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Figure 9 shows posteriors for each of the three parameters. Posteriors were calculated with

h = .1, which is larger than the value used in the simulation but is sufficiently small to eliminate

the discretization bias. In each panel, three posteriors are shown: one based on the unrounded

diffusion data (solid line), one based “naively” on the rounded data (dashed line), and one that

uses the rounded data but implements the rounding correction (dotted line).

For α and β, rounding has a relatively minor effect on posteriors, shifting both slightly away

from zero. The posteriors that correct for rounding are virtually indistinguishable from those

based on the unrounded data – rounding causes no loss of information relevant for inference

about α and β.

For σ , rounding causes a major bias. The posterior that is based on rounded data is shifted

towards significantly higher values, consistent with the observations of Cho and Frees (1988)

and Ball (1988), among others, for the case of geometric Brownian motion. The rounding

correction does not restore the “idealized” posterior perfectly, as it did for α and β, suggesting

that rounding does cause a loss of information about the location of σ . Nevertheless, the

rounding correction yields a vast improvement over the naive processing of rounded data.

In the previous examples, convergence of the Markov chain was investigated informally,

either through the use of a Monte Carlo experiment (table 1) or an inspection of batch means

(figure 5). While no evidence pointed to the absence of convergence, a more formal diagnostic

may be desired. We may assess convergence using the method of Gelman and Rubin (1992),

who propose to use a variance ratio as an indicator of convergence.

The method requires that a number of independent Markov chains be simulated. We simu-

late 30 chains in parallel up to a length of 4500 iterations. To check for convergence by iteration

n, the within-chain variance of the first n iterations is compared to the between-chain variance

of the same draws. The precise construction of this variance ratio may be found in Gelman and

Rubin (1992).

A variance ratio near one indicates that the chain has approximately converged, as each

chain is providing the same estimate of the target density. For the current example, these

ratios are plotted in figure 10, and the results are encouraging. For the drift parameters α and
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β, convergence appears to be very quick, with only minute deviations from one after about

1000 iterations. For σ , convergence is somewhat slower, with the variance ratio decreasing

from about 1.4 to 1.02 after 3500 iterations. The results suggest that the apparent convergence

in the previous examples could be established more formally were multiple Markov chains to

be simulated.

5 Extension to jump-diffusions

It is well-documented (see, for example, Jorion, 1988, or Ball and Torous, 1985) that the price

continuity implied by diffusion models is a poor description of some asset price time series.

An alternative to the pure diffusion process is the jump-diffusion. This section will illustrate

how Poisson-type jumps can be added to the diffusion models considered previously.

For simplicity, however,we focus on univariate processes inwhich the process represents the

price of a traded asset and hence must be non-negative. The jump diffusion can be represented

by the following stochastic differential equation:

dXt = µ(Xt)dt + σ(Xt)dBt +Xtdqt, (18)

where µ(Xt) and σ(Xt) are the same as before and dqt is the increment of a Poisson jump pro-

cess with lognormal jumps11 and constant jump intensity λ. Conditional on a jump occurring,

the increment dqt is of size Yt , making the impact on the increment dXt equal to XtYt . We

make the standard assumption that

log(1+ Yt) ∼ N(θ,δ2).

This combination of assumptions insures that the process Xt will remain nonnegative.

Following Ball and Torous (1983), we use a Bernoulli jump process to generate a convergent

discrete approximation of the Poisson component. Combining this with the Euler approxima-

tion considered thus far, our discrete-time approximation of the Poisson jump-diffusion model
11In cases in which Xt is not a traded asset price but is instead some other process that may become negative,

jumps that are normal, not lognormal, may be considered.
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is given by

Xk+1 = Xk + hµ(Xk)+
√
hσ(Xk)εk+1 + ιk+1XkYk+1, (19)

where Yk+1 = exp (θ + δηk+1) − 1, εk and ηk are independent standard normals, and ιk is

an independent Bernoulli random variable that takes the value 1 with probability λh and 0

otherwise.

The last term, ιk+1XkYk+1, represents the potential jump in the process X, with ιk = 1

indicating that there was a jump between observations k−1 and k. Conditional on there being

a jump, it’s magnitude does not depend on the discretization interval h; only the probability

of jumping declines with h.

The simplifying assumption of the Bernoulli over the Poisson jump process is the restriction

that no more than one jump can occur over any period of length h in the Bernoulli model,

while multiple jumps are possible in the Poisson model. As Ball and Torous note, as h → 0

the probability of more than one jump per interval shrinks to zero at a faster rate than the

probability of zero or one jumps per interval. Because h is a parameter under our control, the

difference between the Bernoulli and Poisson models may therefore be made arbitrarily small.

5.1 The jump-diffusion Markov chain

The Markov chain used will be a modification of the one developed previously. As before, we

will adopt an algorithm of drawing one period of latent data at a time. The jump component

adds another dimension to this draw, however, so that instead of drawing from

p(Xk|Xk−1, Xk+1,φ)

when Xk is a latent data point, we will instead draw from

p(Xk, Jk|Xk−1, Jk−1, Xk+1, Jk+1,φ),

where Jk = (ιk, Yk) and φ denotes the vector of parameters of both the diffusion and jump

components.
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As before, this expression can be rearranged using theMarkov property of the jump-diffusion

model as the product of two transition densities:

p(Xk, Jk|Xk−1, Jk−1,φ)p(Xk+1, Jk+1|Xk, Jk,φ)

Furthermore, because the jump arrivals are independent of one another, this distribution sim-

plifies to

p(Xk, Jk|Xk−1,φ)p(Xk+1, Jk+1|Xk,φ).

As in the pure diffusion case, this distribution is generally intractable, but the rearrangement

again suggests a simple procedure: draw Xk and Jk = (ιk, Yk) from p(Xk, Jk|Xk−1,φ), a nor-

mal/Bernoulli/lognormal draw, and accept the draw in a Metropolis-Hastings step with an ac-

ceptance probability based on the remaining term, p(Xk+1, Jk+1|Xk,φ).

By Bayes rule, this remaining term is proportional to p(Xk+1|Jk+1, Xk,φ)p(Jk+1|Xk,φ).

Since Jk+1 is independent of Xk, it reduces to p(Xk+1|Jk+1, Xk,φ), a Gaussian density. The

probability of accepting a new draw (X∗k , J
∗
k ) over the previous draw (Xk, Jk) will therefore be

equal to

min{p(Xk+1|Jk+1, X∗k ,φ)
p(Xk+1|Jk+1, Xk,φ)

,1}.

This provides a method for drawing Xk and Jk when both are unobserved. When Xk is

observed, however, it is still the case that Jk is not – even if we observe the process we still

don’t observe the jumps. Therefore, some draws of the latent data will be from

p(Jk|Xk−1, Jk−1, Xk,Xk+1, Jk+1,φ).

Because Jk describes the jump between Xk−1 and Xk, most of these conditioning arguments

are irrelevant, reducing the distribution to

p(Jk|Xk−1, Xk,φ),

which is proportional to

p(Xk|Xk−1, Jk,φ)p(Jk|Xk−1,φ).
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Since Jk is independent of Xk−1, this further reduces to

p(Xk|Xk−1, Jk,φ)p(Jk|φ).

As before, we use aMetropolis-Hastings step and draw Jk fromp(Jk|φ)with a Bernoulli/lognormal

draw. The remaining term, p(Xk|Xk−1, Jk,φ), is a normal density, and it is used to construct

the probability of accepting J∗k over Jk, which is given by

min{p(Xk|J∗k ,Xk−1,φ)
p(Xk|Jk,Xk−1,φ)

.

The remaining block draw of the Markov chain is the draw of the parameters given the

observed and augmented data. Given the full time series of both Xk and Jk, changes in Xk

can be decomposed into a diffusion component and jump component, and the parameters of

each may be considered separately. The diffusion component, Xk+1 − Xk − ιkXkYk+1, can be

addressed as in the pure diffusion case previously developed.

Because jump arrivals are independent sources of randomness, the jump intensity param-

eter may be considered separately from other parameters, with a simple Binomial likelihood

based on the time series of ιk. Let K equal the augmented sample size minus one, which is

the maximum number of jumps possible. Let N1 equal the number of jumps, or N1 =
∑K

k=2 ιk.

Then the likelihood of λh is proportional to (λh)N1(1−λh)K−N1 , which is itself proportional to

a standard beta density for λh. A conjugate beta prior on λh generates a corresponding beta

posterior.

Inference about the parameters underlying the jumpmean and variance parameters θ andδ2

follows straightforward analysis, since the time series of log(1+Yk) is i.i.d. normal. (Of course,

Yk is only known conditional on a jump occurring, or when ιk = 1.) Flat or normal/inverted

gamma priors on θ and δ2 result in the standard student-t/inverted gamma posterior for these

parameters.

It is important to recognize a danger in likelihood-based analysis of jump-diffusions, as

pointed out by Honoré (1998). It is that the likelihood function is potentially unbounded if δ

or σ(Xt) are allowed to become arbitrarily small. Honoré alleviates this problem by restricting

his maximum likelihood parameter grid search to a compact interval that does not include
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parameters that would allow either δ or σ(Xt) to reach zero. We may effectively follow the

same prescription here by imposing zero prior probability on parameter values that allow δ or

σ(Xt) to become smaller than some prespecified values. This will result in a truncated posterior

that may easily be sampled from using accept-reject (see Box and Tiao, 1973, p. 67-69).

5.2 An application to the dollar/mark exchange rate

In an analysis of jumps in the foreign exchange market, Jorion (1988) found that the presence

of jumps in the U.S dollar/German mark exchange rate could explain a significant amount of

the leptokurtosis observed in exchange rates. In this section we will reestimate his model over

the same sample period, 1974-85, as well as an updated sample period, 1974-1997. Jorion

found that jumps were most beneficial in explaining weekly movements, so that is the data

frequency examined here as well.

The model considered by Jorion is a simple combination of geometric Brownian motion and

lognormally distributed Poisson jumps:

dXt = µXt + σXtdBt +Xtdq.

Given a discretization interval h, we chose the following uninformative prior for the five

parameters:

p(µ,σ , θ, δ, λ)∝
(√

λh(1− λh)σδ
)−1

This prior combines standard flat priors on (µ,σ) and (θ, δ) with the uninformative prior for

λh suggested by Box and Tiao (1973, p. 34-35). To avoid unboundedness in the likelihood

functions, we modify the prior to assign zero probability to values of σ or δ below 10−4, well

below the values reported by Jorion.

Under these priors, conditional on the full augmented sample of Xk and Jk, we have the

following conditional distributions for the five parameters:

• Let µ̂ be the slope and σ̂ the standard error of a regression of

Xk+1 −Xk − ιk+1XkYk+1√
hXk
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on the constant
√
h. Then σ has an inverted gamma distribution (truncated at 10−4) with

gamma parameter 2/
(
(K − 1)σ̂2

)
and alpha parameter K−1

2 .

• Conditional on σ , µ is normally distributed with mean µ̂ and variance σ2

Kh .

• Let θ̂ be the samplemean and δ̂2 the sample variance of log(1+Yk). Then δ has an inverted

gamma distribution with gamma parameter 2/
(
(N1 − 1)δ̂2

)
and alpha parameter N1−1

2 ,

also truncated at 10−4.

• Conditional on δ, θ is normally distributed with mean θ̂ and variance δ2
N1
.

• The jump probability λh has a standard beta distribution with parameters N1 + 1
2 and

K −N1 + 1
2 .

Table 3: Dollar/DM Exchange Rate Estimation

Posterior means and standard deviations (in parentheses)

µ(×103) σ(×102) λ θ(×103) δ(×102)
Subsample -0.05 0.39 1.58 0.01 1.03

1974-85 (1.10) (0.21) (0.44) (0.95) (0.15)

Full sample 0.02 1.20 0.21 -2.44 2.27

1974-97 (0.50) (0.23) (0.25) (4.38) (0.67)

Results for the 1974-85 sample, reported in table 3, generally confirm those of Jorion (1988),

although we find the jump intensity to be somewhat higher and the two mean parameters to

be indistinguishable from zero. Parameters differ markedly between the subsample and full

sample. The jump process implied by the full sample has much less frequent but significantly

larger jumps, undoubtedly reflecting the fact that excess kurtosis is 1.83 for the whole sample,

compared with just .91 for the 1974-85 subsample.
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There appears to be a problem separating the effects of the different parameters influencing

the mean return; µ and θ, for example, have a posterior correlation of −.84. An advantage of

the present Bayesian procedure is that if we were interested in the total expected return per

unit time, which is µ + λ
(
exp(θ + δ2/2)− 1

)
, we could construct a posterior distribution of

this quantity as well. It turns out that this total expected return has a mean of 2.56 × 10−4

and a standard deviation of 5.53 × 10−4 for the subsample and a mean of −2.40 × 10−4 and

a standard deviation of 4.28× 10−4 for the full sample. Although still indistinguishable from

zero, inference about these total expected returns is still sharper than it is about the individual

parameters.

It is also clear that many of themarginal posteriors are highly non-normal. In the full sample

period, for instance, λ, which is strictly positive, has a mean of .21 and a standard deviation

of .25, indicating a large amount of positive skewness in the posterior. One implication is that

the asymptotic Gaussian sampling distribution relied on by frequentist estimators such as MLE

may be inappropriate in finite samples. The Bayesian approach’s finite sample inference may

therefore offer a more realistic assessment of parameter uncertainty.

The main advantage of the method presented here, however, is that diffusions other than

simple geometric Brownianmotionmay be combinedwith Poisson jumpprocesses. Themethod

may therefore be useful in estimating themore complicated jump-diffusion processes currently

being studied in the options pricing literature.

6 Conclusion

The HFA procedure is a simple and general method for the analysis of a wide variety of diffu-

sion processes commonly found in continuous time finance theory. It was shown to be easily

extendible to jump-diffusions as well. In part because of its Bayesian nature, HFA is robust to

a variety of features common in economic and financial data, such as nonstationarity, latent

variables, small samples, and microstructure-induced measurement error.

The main complication of the method is the need to augment with many points of high fre-
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quency data. The Gaussian nature of this discretization, however, makes the method tractable.

This tradeoff results in a computational requirement that can be met in reasonable time on a

desktop PC. This is in contrast to some computationally infeasible simulation-based frequentist

methods (see Danielsson, 1994).

The application of HFA to several examples generates results that are consistent with con-

ventional methods and in line with other empirical studies. A Monte Carlo study demonstrated

that the method has good performance even when chains are relatively short. One of the ad-

vantages of the Bayesian nature of the procedure is demonstrated when the latent S&P volatility

process is extracted from the time series of prices. This link between the uncertainty about

parameters an volatility may be helpful in options hedging and risk management in general.

Together with its robustness to certain microstructure effects and its relative ease in imple-

mentation, it is hoped that the method proposed in this paper will provide a more practical

way to operationalize the use of continuous time models.
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A The conditional distribution of log Sk

In working with the Euler approximation of the stochastic volatility model of section 4.2, the

advantage of working in terms of log prices is that the distribution

p(log Sk| log Sk−1, log Sk+1, Xk−1, Xk,Xk+1)

is Gaussian, while

p(Sk|Sk−1, Sk+1, Xk−1, Xk,Xk+1)

is not. This section will derive the former distribution for the general case in which the inno-

vations in the Euler approximation (11) have correlation ρ.

Section three demonstrated that

p(log Sk| log Sk−1, log Sk+1, Xk−1, Xk,Xk+1)

∝ p(log Sk,Xk| log Sk−1, Xk−1)p(log Sk+1, Xk+1| log Sk,Xk).

Applying Bayes rule again, this is equal to

p(log Sk| log Sk−1, Xk−1, Xk)p(Xk| log Sk−1, Xk−1)

·p(log Sk+1| log Sk,Xk,Xk+1)p(Xk+1| log Sk,Xk).

Now note that both p(Xk| log Sk−1, Xk−1) and p(Xk+1| log Sk,Xk) are independent of log Sk. For

the former distribution, this observation is obvious. For the latter we rely on the fact that Sk−1

does not enter either the mean or the variance of Xk. This implies that

p(log Sk| log Sk−1, log Sk+1, Xk−1, Xk,Xk+1)

∝ p(log Sk| log Sk−1, Xk−1, Xk)p(log Sk+1| log Sk,Xk,Xk+1).

Now let

m1 = hµ + ρ
eXk−1

σ
(Xk −Xk−1 − hα− hδXk−1)

m2 = hµ + ρ
eXk

σ
(Xk+1 −Xk − hα− hδXk)

v1 = he2Xk−1(1− ρ2)

v2 = he2Xk(1− ρ2)
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Using standard results for bivariate normal random variables, we can see that

log Sk|(log Sk−1, Xk−1, Xk) ∼ N(log Sk−1 +m1, v1)

log Sk+1|(log Sk,Xk,Xk+1) ∼ N(log Sk +m2, v2)

The density of log Sk can therefore be written as

f(log Sk = y| log Sk−1, log Sk+1, Xk−1, Xk,Xk+1)

∝ exp

(
−1
2
(y − log Sk−1 −m1)2

v1
− 1
2
(log Sk+1 −y −m2)2

v2

)
,

which is proportional to

exp
(
−1
2
(Ay2 + By)

)
,

where

A = 1
v1
+ 1

v2

B = 2
(
−m1 + Yk−1

v1
+ m2 − Yk+1

v2

)

Completing the square, we conclude that

log Sk|(log Sk−1, log Sk+1, Xk−1, Xk,Xk+1) ∼ N
(
− B
2A

,
1
A

)
.
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Figure 2: Simulated Geometric Brownian Motion

simulated with mu=.025 and sigma=.25
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Figure 3: Posteriors for Mu (GBM)
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The top panel plots posterior distributions of mu under different Euler discretizations, ranging from h=1 (no data augmentation)
to h=.05.  The bottom panel compares the finest and coursest discretizations with the posterior constructed using the analytical
procedure.
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Figure 4: Posteriors for Sigma (GBM)
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The top panel plots posterior distributions of sigma under different Euler discretizations, ranging from h=1 (no data augmentation)
to h=.05.  The bottom panel compares the finest and coursest discretizations with the posterior constructed using the analytical
procedure.
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Figure 5: Stochastic Volatility Parameter Batch Means
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For each parameter, the Markov chain output draws were divided into batches of size 5000 and a

mean was computed for each batch.  These batch means are plotted in each panel.
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Figure 6: Stochastic Volatility Posteriors
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Each panel plots posterior distributions of the stochastic volatility model parameters under varying degrees of high frequency
augmentation, ranging from augmentation with volatility data only (h=1) to augmentation with 5 subperiods per observed data
point (h=.2).
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Figure 7: S&P 500 Volatility Posteriors
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For each week in the sample the mean of the posterior of the latent volatilty process is plotted (solid line) along with the upper
and lower 95% HPD bounds (dotted lines).  The dashed line plots the time series average of the weekly posterior means.
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Figure 8A: Simulated Interest Rate Diffusion Data

300 305 310 315 320 325 330 335 340 345 350
4.5

5

5.5
Figure 8B: Unrounded vs. Rounded Data

The dashed line in the lower panel shows the data within the box in the upper panel in closer detail.  The solid line plots the
rounded version of the same data.
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Figure 9: Interest Rate Process Posteriors
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The solid lines plot annualized posteriors constructed using the unrounded diffusion data.  Dashed lines result from data that
are rounded to the nearest sixteenth of one percent.  The dotted lines use the rounded data but implement the rounding
correction described in section 4.3.
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Figure 10: Ratio of Between−Chain to Within−Chain Variance for CEV Model

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.99

1

1.01
beta

0 500 1000 1500 2000 2500 3000 3500 4000 4500
1

1.25

1.5
sigma

Thirty Markov chains were simulated in parallel up to 4500 iterations.  Following Gelman and Rubin (1992), each panel plots the
ratio of the variance between chains to the variance within chains for a particular parameter as a function of the length of the
Markov chain.  Values close to 1 indicate approximate convergence.
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