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Abstract

This paper proposes and estimates a more general parametric stochastic variance model of
equity index returns than has been previously considered using data from both underlying and
options markets. I conclude that the square root stochastic variance model of Heston (Rev.
Financial Stud. 6 (1993) 327) is incapable of generating realistic returns behavior, and that the
data are better represented by a stochastic variance model in the CEV class or a model with a
time-varying leverage e4ect. As the level of market variance increases, the volatility of market
variance increases rapidly and the leverage e4ect becomes substantially stronger. The height-
ened heteroskedasticity in market variance that results causes returns to display unconditional
skewness and kurtosis much closer to their sample values, while the model falls short of ex-
plaining the implied volatility smile for short-dated options and conditional higher moments in
returns.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamic nature of asset price volatility has long been a popular subject in the
empirical ;nance literature, and even greater interest in volatility dynamics has followed
the development of stochastic volatility models of option pricing. These models attribute
the higher prices of options far from “at-the-money” to return non-normality generated
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by time-varying volatility. Because much of the interest in options focuses on the
options that are furthest from at-the-money and therefore have positive payo4s only
in extremely rare circumstances, precise characterizations of volatility dynamics are
particularly important.
While the need to better model extreme events for the purposes of option pricing

made the task of understanding volatility more exacting, the existence of options has
made the researcher’s data set much richer, so that more ;nely tuned models may be
investigated with greater hope of obtaining accurate results.
Traditionally, volatility dynamics in asset prices have been explored using the time

series of returns on the assets being studied. Following the work of Engle (1982) and
Bollerslev (1986), models in the ARCH class have been studied extensively for this
purpose and remain popular today. Perhaps because of the rapid growth in derivatives
markets, continuous-time stochastic volatility models have recently become popular
as well, and a growing body of research is concerned with ;tting these models to
asset returns. Two recent examples are the papers by Gallant and Tauchen (1997) and
Andersen et al. (2002).
An alternative approach is to infer the risk-neutralized volatility dynamics from the

prices of options. While methods of inferring risk-neutral returns probabilities from the
cross section of options prices are well-known following the seminal work of Breeden
and Litzenberger (1978), more recent studies such as Bates (2000) and Bakshi et al.
(1997) ;t parametric stochastic volatility models to option prices to learn about the
parameters of these models.
But since the risk-neutral and objective measures are not wholly dissimilar, there

must be an advantage to using both sets of data (the time series of the underlying’s
prices and the prices of options on it) to infer both measures simultaneously, a point
made forcefully by Chernov and Ghysels (2000a). In addition, since it is the di4erence
between the two measures that de;nes risk premia, it may further be advantageous to
estimate the two measures together so that estimation errors relating to these di4erences
can be treated in a sensible way. In fact, a number of recent papers have pursued this
idea. Pan (2002), Poteshman (1998), and Chernov and Ghysels (2000a) all use some
combination of a time series of the underlying price and one or more time series of
liquid, short-term, near-the-money option prices to infer the dynamics of the underlying
volatility process under both the objective and risk-neutral measures. 1

In its use of option implied volatilities for the purpose of estimating more reali-
stic volatility dynamics, the paper is related to a growing literature on alternative
volatility proxies. The use of high-frequency realized volatilities (often calculated at
5-min intervals) is increasingly popular, pursued by Andersen and Bollerslev (1997)
and Andersen et al. (2001) among many others. The range, or the high price mi-
nus the low price over some interval, has been employed recently by Gallant et al.
(1999) and Alizadeh et al. (2001) for similar purposes. It is possible that implied
volatility provides a proxy that is less noisy than the range and easier to work with

1 Studies by Benzoni (2001) and Jiang and van der Sluis (1998) have similar objectives, but both use
options data only to estimate the parameters that are not identi;ed by data on the underlying. Additional
literature is reviewed in Chernov and Ghysels (2000b).



C.S. Jones / Journal of Econometrics 116 (2003) 181–224 183

than high-frequency realized volatility, although this paper provides no evidence for or
against this conjecture.
In this paper, I consider a more general form of the one-factor stochastic variance

model than has been considered previously and estimate the model in a Bayesian
framework from a bivariate time series of returns and option implied volatilities. The
analysis results in parameter estimates for both the objective and risk-neutral pro-
cesses. The results show that the model I propose generates more realistic dynamics
for stochastic variance and for equity index returns than does the standard square root
model used by Heston (1993) and many others. I ;nd that as variance increases, its
own volatility increases at an even faster rate. Furthermore, the so-called “leverage
e4ect,” or the negative correlation between the price and instantaneous variance pro-
cesses, becomes substantially stronger at higher levels of variance. A positive shock
to market variance therefore increases the probability that market variance may grow
even larger. The compound e4ect of several of these shocks can be large, and extreme
returns may result. Because the price and variance processes are negatively corre-
lated, particularly in high volatility states, this extreme return will more often than not
be negative, frequently of a magnitude that the square root process is incapable of
generating.
I focus on the implications of these models for higher moments of asset returns,

since many of the outstanding puzzles in options markets and other areas of empirical
asset pricing depend crucially on violations of the normality of returns. I ;nd a realistic
degree of unconditional non-normality implied by the new models, while the higher
moments generated by the square root model fall far short of the levels observed in
actual data. When conditioned on a value for the market variance, very short-horizon
returns have a distribution that is much closer to Gaussian. For a monthly horizon,
however, the new models generate conditional distributions with fatter tails than even
a stochastic volatility jump-di4usion estimated from a similar data set. Unfortunately,
model-implied options prices, while greatly improved over the square root speci;cation,
still fail to match observed prices of short-dated options.
Section 2 of this paper motivates the econometric speci;cation and outlines a few

of its properties. The estimation method used in the paper is described in Section 3.
Section 4 contains the results, including parameter estimates and the models’ implica-
tions for higher moments and option prices. Section 5 summarizes and discusses the
results.

2. The model

By far the most popular recent formulations of stochastic volatility in continuous time
have been variants of the stochastic variance model of Heston (1993). Using a square
root process to represent the dynamics of instantaneous variance, Heston assumes the
process

dSt = �St dt +
√
VtSt dZ

(1)
t ;

dVt = (�+ �Vt) dt + 	
√
Vt dZ

(2)
t ; (1)
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where dZ (1)
t and dZ (2)

t are increments of Brownian motion with correlation 
. Heston
demonstrates how Fourier inversion techniques may be used to produce an analytical
stochastic variance option pricing formula.
For option pricing, much interest centers around the values of �, 	, and 
, which

determine the ways in which the distribution of St departs from the lognormal. Kurtosis
depends in large part on the magnitude of 	 relative to that of �. If 	 is relatively
large, more “volatile” variance will lead to fat tails, raising the prices of all options far
from at-the-money. Skewness depends in addition on 
, and it has often been argued
that the typical downward slope of Black–Scholes implied volatilities of equity options
across moneyness (the “leverage” e4ect) is evidence of a negative value of 
.
Unfortunately, the square root speci;cation is generally rejected as a model of stock

index returns. While Andersen et al. (2002) ;nd that the rejection is due primarily to the
insuJcient kurtosis generated by the model, Pan (2002) rejects the square root model
in part based on its implications for the term structure of volatility. Other rejections
are reported by Chernov and Ghysels (2000a), Benzoni (2001), and less formally by
Bakshi et al. (1997).
Subsequent generalizations to the model have included stochastic interest rates (Scott,

1997; Bakshi et al., 1997), stochastic dividends (Pan, 2002), and jumps (Bates, 2000;
Bakshi et al., 1997; Scott, 1997; DuJe et al., 2000; Pan, 2002; Eraker et al., 2003).
Of the three, only the inclusion of jumps has shown much promise for reversing the
rejections of the model.
For several reasons, however, the econometric analysis of jumps in option pricing

has proven to be problematic. First, small sample problems may be severe because
jumps that are large enough to have a substantial e4ect on options prices must be
infrequent in order to be consistent with the underlying returns data. These types of
large jumps are seldom found in empirical analysis of jump-di4usions applied to broad
market indexes. 2 Secondly, although jumps may help ;t the prices of options, including
them is not necessarily bene;cial for the purpose of option hedging. Bakshi et al.
(1997, 2000) ;nd that adding jumps to the square root stochastic variance model has
little e4ect on pricing or hedging longer maturity options and actually worsens hedging
performance for short maturities. This result is somewhat surprising since adding jumps
leads to the greatest improvement in the pricing of short maturity options, and it raises
the possibility that including jumps amounts to over;tting.
In this paper, I focus on stochastic variance alone as the source of non-Gaussian re-

turn dynamics. While including jumps will naturally improve the ;t of options prices,
it seems reasonable to investigate more general forms of the one-factor stochastic vari-
ance model before pursuing additional extensions such as jumps, particularly because
of the problems with jumps and the soon-to-be obvious misspeci;cation of the square
root model. 3

2 When jump processes are estimated using the time series of returns only, the jump intensity estimate
tends to be high and the jump size small. Studies that ;nd relatively small jumps include Andersen et al.
(2002), Ball and Torous (1985), Jorion (1989), and Pan (2002). Using a Bayesian approach, Eraker et al.
(2003) ;nd larger jumps, with a more negative mean, than any of these papers. The implications of EJP’s
estimates are considered below.

3 Poteshman (1998) also has this goal.
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Fig. 1. Properties of implied volatility.

2.1. Stochastic speci�cation

The goal in this section is to propose a more general parametric form of stochastic
variance process than has been considered previously. The motivation is empirical, and
it is based on the a casual inspection of the top panel of Fig. 1, which plots the VIX
index, an index of the Black–Scholes implied volatility of S&P 100 index options, from
January 2, 1986, to June 2, 2000. The plot is truncated at 100% for visual clarity; in
the 2 weeks following the crash of October 1987, implied volatilities as high as 150%
were recorded. The lower panel of Fig. 1 plots the absolute change in the VIX index
versus its level at the previous close over the same period.
From panels it appears that periods of high volatility coincide with periods of volatile

volatility, an observation that appears to be at odds with Heston’s square root formu-
lation. We can see this by deriving the stochastic volatility (as opposed to variance)
process implied by Heston’s model.
Let vt denote the time t instantaneous volatility, so vt =

√
Vt . By Ito’s lemma,

dvt =− �
2vt

(
−�
�
+
	2

4�
− v2t

)
dt +

1
2
	 dZ (2)

t : (2)
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The equation shows that the volatility of instantaneous volatility (as opposed to the
volatility of instantaneous variance) is not level dependent under the square root vari-
ance model, at least over short intervals.
Because level dependence does seem to be a feature of the data, this paper will

consider a somewhat broader class of models for stochastic variance. The ;rst gener-
alization I consider is identical to the one o4ered for interest rate processes by Chan
et al. (1992). The square root in the variance di4usion term is simply replaced by an
exponent of undetermined magnitude, so that we have

dSt = �St dt +
√
VtSt dZ

(1)
t ;

dVt = (�+ �Vt) dt + 	V 1t dZ (2)
t ; (3)

where again Corr(dZ (1)
t ; dZ (2)

t ) = 
.
Following Chan et al., this constant of elasticity of variance (CEV) speci;cation

has been investigated in interest rates in a number of papers, and has been applied
to stochastic variance processes by Chacko and Viceira (2001) and Lewis (2000). In
empirical analysis of US short-term interest rates, starting with Chan et al., typical
estimates of 1 are around 1.5. Conley et al. (1997) recently noted that such processes
will have stationary distributions even when � is positive, making mean reverting drift
an unnecessary condition for stationarity.
It will be convenient to reparameterize the model to work with uncorrelated Brownian

motions B(1)
t and B(2)

t . Henceforth I will maintain Corr(dB(1)
t ; dB

(2)
t ) = 0 and introduce

correlation between St and Vt by rewriting the model as

dSt = �St dt +
√
VtSt dB

(1)
t ;

dVt = (�+ �Vt) dt + 	1V
1
t dB(1)

t + 	2V
1
t dB(2)

t : (4)

This is equivalent to the previous parameterization (3) once we set 	=
√
	21 + 	22 and


= 	1=
√
	21 + 	22.

Writing the model as in (4) suggests a second generalization of the variance process
that falls outside the CEV class:

dVt = (�+ �Vt)dt + 	1V
1
t dB(1)

t + 	2V
2
t dB(2)

t : (5)

By introducing separate power parameters on the two random shocks to instantaneous
variance, the elasticity of variance is no longer constant, but depends instead on the
level of the variance process. More importantly, by allowing 1 and 2 to di4er the
model allows the correlation of the price and variance processes to depend on the level
of instantaneous variance. This correlation will be equal to


(V ) =
	1V

1
t√

	21V
21
t + 	22V

22
t

: (6)

One can easily see that the correlation will increase in magnitude as Vt gets larger if
1=2¿ 1. I will call this speci;cation the 2GAM model.
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As other studies have done, I impose an admittedly ad hoc form for the variance risk
premium and assume that the form of the risk-neutralized process is identical to that
under the true measure. Replacing the stock price drift with the instantaneous interest
rate r and replacing the variance drift parameter � with its risk-neutral counterpart �∗,
we have

dSt = rSt dt +
√
VtSt dB

(1)∗
t ;

dVt = (�+ �∗Vt) dt + 	1V
1
t dB(1)∗

t + 	2V
2
t dB(2)∗

t : (7)

The implied price of variance risk is therefore

(� − �∗)V√
	21V 21 + 	22V 22

: (8)

Section C.8 veri;es the Novikov condition for the CEV model, although a proof for
the 2GAM model is unavailable.

2.2. Regularity conditions

One drawback to the variance processes in (3) and (5) is that they do not generally
satisfy commonly used suJcient conditions for a number of important results. One
problem stems from the fact that global growth and Lipschitz conditions may be vio-
lated by the di4usion function depending on the values of 1 and 2. For many purposes
(such as proving existence and uniqueness of solutions) violations of these conditions
are not necessarily problematic, as shown in Appendix C. They do, however, raise
concerns about the assumed convergence of the Euler approximation scheme used be-
low. For the CEV process, the growth condition will be violated as V → ∞ if 1¿ 1,
while the Lipschitz condition is violated as V → 0 if 1¡ 1. For the 2GAM model,
the two conditions can be violated simultaneously if 1¡ 1¡2 or 2¡ 1¡1.
An additional issue, which will be shown below, is that for some values of 1¿ 1

the CEV variance process can lack all unconditional moments other than the ;rst. This
in turn implies potentially in;nite skewness and kurtosis of market returns. In fact, the
parameter estimates reported in Table 1 suggest this behavior for the CEV process.
While analytical results are not available for the 2GAM model, it is likely that it also
lacks these moments given the parameter estimates in Table 1.
To di4ering degrees, the Bayesian approach addresses both issues. First, the existence

of moments is irrelevant for Bayesian inference, which only requires the existence
of transition densities, a much weaker condition. Secondly, violations of growth and
Lipschitz conditions outside the range of data observed in the sample are less critical to
the Bayesian, whose calculations are all conditional on the observed sample, than they
are to the frequentist, who must consider other hypothetical samples. 4 Nevertheless,
violations of these conditions prompt the investigation of the validity of the Euler
approximation, in particular if the scheme is used to simulate relatively long paths for

4 There are some important exceptions to this statement. Bayesian analysis under the Je4reys prior, for
instance, requires the integration across alternative realizations of the data.
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the purpose of options pricing. The results of several tests, described in Section C.10,
are highly supportive of the accuracy of the approach taken.

2.3. Expected average variance and option price approximations

The cost of the model generalizations proposed is the loss of closed form option
pricing formulas. While not o4ering closed form prices, the CEV and 2GAM models
may still provide accurate approximate solutions for the prices of relatively short-term
at-the-money options.
The approximation is based on Hull and White’s (1987) argument that when the price

and variance processes are uncorrelated, the price of an option under any stochastic
variance model could be computed as the expectation of the Black–Scholes price with
the variance argument replaced by the random future realization of average variance
over the life of the option. If variance is not priced, as Hull and White assume, then
the expectation is taken under the true measure. In general, however, if � �= �∗ then
the expectation would be taken under the risk-neutral measure.
Let QV denote the average variance over the life of the option, or

QV t; t+� =
1
�

∫ t+�

t
Vs ds: (9)

Because the Black–Scholes formula is close to linear in its variance argument for
short-term at-the-money options, approximating EQ[BS( QV )] by BS(EQ[ QV ]) may not
result in large approximation errors, as the Jensen’s inequality error will tend to be
minor.
Correlation between the price and variance process presents an additional reason to

invalidate this approximation, but the practical importance of correlation is unclear for
at-the-money options. To the extent that price-variance correlation and skewness are
related, the analysis of Jarrow and Rudd (1982) suggests that for these options the
additional approximation error caused by non-zero correlation is likely to be small. 5

Approximating the Black–Scholes implied variance by the expected average future
variance is especially attractive for stochastic variance models such as CEV or 2GAM
because expected average variance can be accurately and easily approximated. Given
its linear drift, the expected average variance is approximately linear in the current
state of instantaneous variance, or

EQt [ QV t; t+�] ≈ A+ BVt;

where B=
1
�∗�

(e�
∗� − 1) and A=− �

�∗
(1− B): (10)

By using Black–Scholes implied variance as a proxy for the quantity on the left-hand
side, EQt [ QV t; t+�], the relation can be used to provide some information about the oth-
erwise unobservable process Vt . Even once error is introduced into the equation, the

5 Results in an unpublished appendix, available from the author, verify the validity of the approximation
under a wide range of parameter values.
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equation can be used to draw more precise inference about the path of Vt than would
be possible using returns alone. This, in turn, will lead to more precise inference about
the parameters that determine the dynamics of Vt , namely �, �, 	1, 	2, 1, 2, and 
.
Furthermore, this relation between implied and instantaneous variance can also be used
to infer the value of the otherwise unidenti;ed risk-neutral parameter �∗.

3. Estimation strategy

This paper will adopt a Bayesian perspective and will use the procedure developed
in Jones (1998) to compute posterior distributions for the parameters in (5) and (7).
The Bayesian framework is used primarily for reasons of eJciency and tractability. It
is a likelihood-based method and should therefore make full use of the information in
the sample, providing exact ;nite-sample even for very complicated models. Although
Bayesian analysis is naturally suited to situations in which the researcher has some
prior information, the priors used in this analysis will be nearly uninformative, so this
is of limited importance.
In this section I will describe the data, specify the econometric model, review the

data augmentation procedure of Jones (1998), and propose an extension to this method
that will allow the information in implied volatilities to be extracted in a simple
way.

3.1. The data

The models are estimated using daily S&P 100 index returns and daily implied
volatilities from the S&P 100 options market. The time period considered extends from
January 2, 1986 to June 2, 2000, a sample size of 3537 observations. In many cases
I will consider a “post-crash” subsample beginning on July 1, 1988, which contains
2907 observations.
The S&P 100 was chosen over the S&P 500 partly because of the S&P 100’s more

liquid options market during the 1980s. The more compelling reason to analyze the
S&P 100 index, however, is the availability of the Chicago Board Options Exchange
Market Volatility Index (VIX). This index represents an average of eight near-term
near-the-money Black–Scholes implied volatilities from options on the S&P 100 index.
The construction of the VIX index is described in detail in Whaley (1993).

Use of the VIX index could be criticized on the grounds that it is a hypothetical
measure, since the index does not generally coincide with the implied volatility of any
particular option traded that day. Similar criticism could be aimed at term structure
research that uses bootstrapped and interpolated values to construct constant maturity
zero coupon yields. Partly because of these concerns, I will allow for the possibility that
the VIX index makes random deviations from the implied volatility of the hypothetical
option that it is designed to mimic. An assessment of the magnitude of this error will
be an output of the estimation.
This relaxation of the purely deterministic link between data from the underlying and

options markets represents a departure from previous studies that have combined data



190 C.S. Jones / Journal of Econometrics 116 (2003) 181–224

from the two markets. In theory, given the synchronous observation of the underlying
asset’s price and perhaps some other market fundamentals, option prices can be inverted
to yield the underlying asset’s exact instantaneous volatility. 6 Relaxing the strictness
of this relation reTects a purely empirical perspective and is similar to the allowance
of additional error terms in term structure research, where theory implies, for example,
that bond yields of all maturities are deterministically linked in a single-factor term
structure model. The realities of asset price data, which include sources of error such
as asynchronous data and bid-ask spreads, make deterministic relations as unrealistic
in options. 7

3.2. The econometric model of implied volatility

The full model to be estimated is described by the SDEs that govern the dynamics
of St and Vt under the objective measure, given by (3) or (5), and a regression-type
equation that links the unobservable Vt to an observed implied variance,

IVt = A+ BVt + �t : (11)

Eq. (11) builds on (10) with the addition of an error term and the replacement of
EQt [ QV t; t+�] by its proxy, IVt . The time series IVt is a simple transformation of the VIX
index: it is converted to decimals, squared to change it from a volatility to a variance,
then divided by 264 to convert to a daily basis. Since the VIX index reTects a 22-day
implied volatility, I set �= 22.
Because of the apparent heteroskedasticity in IVt demonstrated in Fig. 1, the regres-

sion error �t will be assumed be heteroskedastic as well, with a standard deviation
proportional to Vt . We therefore have �t ∼ i:i:d:N(0; �2V 2

t ), with � a parameter to be
estimated. The magnitude of � will reTect the accuracy of the proxy of EQ[ QV ] by IV .
Allowing this form of heteroskedasticity should mitigate the concern that the level

e4ect in the volatility of volatility apparent in Fig. 1 is solely due to measurement
error. If this is the case, then we may still ;nd low values for 1 and 2.

3.3. Computing posteriors by data augmentation

Estimation of these models using standard methods is diJcult for several reasons.
First, the dynamics of St and Vt are represented as a di4usion process, making standard
maximum likelihood or moment-based approaches impractical. The latency of stochastic
variance further limits the e4ectiveness of these approaches. Lastly, the method used
must simultaneously estimate the parameters of the SDE (4) or (5) and the regression
equation (11).

6 This was proved formally by Bergman et al. (1996).
7 Christensen and Prabhala (1998) have argued recently that these types of measurement errors are severe

enough to bias tests of the informational content of implied volatility. Additional sources of error could arise
from simpli;cations made about the dividend process (Harvey and Whaley, 1991) or errors in the market’s
inference about the current state of market volatility.
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The approach taken uses the data augmentation procedure of Jones (1998) and is
similar to the methods of Eraker (2001) and Elerian et al. (2000), although the latter’s
method applies only to univariate processes. The method is based on the idea that the
Euler approximation, a discrete time Gaussian model, can be used to approximate the
transition density of a di4usion process. The Euler approximation has been used in
many papers, and its use in likelihood-based inference has been justi;ed by Pedersen
(1995) and Brandt and Santa-Clara (2002). Under regularity conditions, the Euler ap-
proximation converges to the di4usion as the time step of the Euler process shrinks to
zero.
It is suJcient for convergence that growth and Lipschitz conditions are satis;ed,

both of which the unconstrained model may violate. Results in Section C.10 suggest
that this is unlikely to be a problem in the present context. Simulation results in Jones
(2002) suggest that the Euler approximation is accurate even in more nonlinear models.
The Euler approximation for the 2GAM stochastic variance model is

S(k+1)h = Skh + h�Skh +
√
h
√
VkhSkh�

(1)
k+1;

V(k+1)h = Vkh + h(�+ �Vkh) +
√
h	1V

1
kh �

(1)
k+1 +

√
h	2V

2
kh �

(2)
k+1; (12)

where �(1)k and �(2)k are independent standard normals and k = 0; : : : ; K .
In the estimation of the model, the stock price process St will be observed at the

end of each trading day. Without loss of generality, assume that these end-of-day
times correspond to t ∈{0; 1; 2; : : : ; T}. A discrete time stochastic variance model may
therefore be formulated by setting h= 1. One can see, however, that the 1-day return
would then have a conditionally Gaussian distribution. To induce non-normality at this
horizon, h must be small.
For convergence of the Euler approximation and for the generation of non-normality

in conditional one-period returns, it is therefore imperative to allow h to be small in
the estimation process, even if this means that the Euler approximation interval h is
considerably smaller than the time interval at which the data are observed. This creates
a problem for likelihood and moment-based inference, since neither the moments nor
the transition densities of the Euler approximation are known over intervals larger than
h. The strategy proposed by Pedersen (1995) and Brandt and Santa-Clara (2002) is to
compute the likelihoods by simulation. In moment-based techniques such as Gallant and
Tauchen’s (1996) eJcient method of moments, moments are computed by simulating
long paths of the Euler approximation.
Since estimation of (12) essentially amounts to the analysis of a conditionally Gaus-

sian model with a large number of missing data points, this paper will make use
of Tanner and Wong’s (1987) data augmentation algorithm in a manner similar to
the discrete time stochastic volatility analysis of Jacquier et al. (1994). Although we
do not see the augmented data, we often know their distribution conditional on the
model parameters and the data that are observed. Data augmentation expands the pa-
rameter vector to include all augmented data in addition to the structural parame-
ters (e.g. � and �) and then seeks to characterize the posterior distribution of this
vector.
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Since posteriors of such high dimension can seldom be derived analytically, Markov
chain Monte Carlo (MCMC) methods are used, in which many random draws are gen-
erated from the posterior distribution rather than deriving the distribution analytically.
Given enough draws from the posterior, sample moments, quantiles, and even densities
are easy to calculate.
Rather than analyzing the entire parameter vector as a whole, the Gibbs sampler

is used to break it down into a number pieces, each drawn conditional on the previ-
ous draws of all the others. Eventually, the Markov chain formed by this procedure
converges to the true posterior.
More formally, suppose � is a multidimensional random vector that can be partitioned

into I subvectors {� (1); � (2); � (3); : : : ; � (I)} of possibly di4erent sizes, and suppose the
goal is to generate a sequence of random draws from the distribution p(�|X ), where
X represents some data set. Choose some arbitrary initial value �0 and then iteratively
form a chain of �n = {�(1)n ; �(2)n ; �(3)n ; : : : ; �(I)n }. For i between 1 and I , let �(i)n be a
random draw of � (i) from its conditional distribution p(� (i)|�(−i)n ; X ), where

�(−i)n = {�( j)n ; j¡ i} ∪ {�( j)n−1; j ¿ i}: (13)

The result of the Gibbs sampler is that under extremely mild conditions the Markov
chain �n converges in distribution to p(�|X ).
For the stochastic variance process, the partitions � (i) will be de;ned as follows:

• � (1) = {�; �; �},
• � (2) = {	1; 	2; 1; 2},
• � (3) = {A; B},
• � (4) = {�},
• {� (5); : : : ; � T+5}= {Vt; t = 0; 1; : : : ; T},
• {� (T+6); : : : ; � I}= {(St ; Vt); t �∈ integers}.

The data set X corresponds to the observations of the stock price St and the implied
variance index IVt for t = 0; 1; : : : ; T .
One can think about the procedure as “cycling” through the partitions � (i). Each

cycle (n) begins with a draw of � (1), followed by draws of � (2), � (3), and � (4). The
set of all end-of-day values of Vt are cycled through next. Lastly, the algorithm cycles
through the pairs of (St ; Vt) that are realized at times between the end-of-days. 8

As opposed to the simulated maximum likelihood methods of Pedersen (1995) and
Brandt and Santa-Clara (2002), which simulate the Euler approximation forward, the
draws of high-frequency data here merely “bridge” the observed low frequency data

8 Although the number of partitions I =(T=h)+6 can be very large, often close to half of the I draws can
be performed simultaneously, reducing computing time considerably. Because the Euler approximation is a
Markov process, only adjacent observations (t−h and t+h) are relevant for each draw of Vt or (St ; Vt). We
can therefore draw every other � (i) (for i ¿ 4) simultaneously and alternate between just a few matrix draws
rather than I individual draws. Describing the method as “cycling” through the I draws is for expositional
convenience only.
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Fig. 2. Methods of simulation for likelihood-based inference of di4usions.

with short paths of high frequency data. Fig. 2 illustrates the di4erence between the two
approaches. The advantage of the latter method is that the variance of the simulated
data is smaller, since it must be consistent with both the start and end points. Since both
methods must e4ectively integrate out the dependence on particular paths of simulated
data, the smaller variance makes this integration less computationally demanding. This
is particularly apparent when considering latent variable models, such as stochastic
volatility, where simulated maximum likelihood is sometimes infeasible.
The methods for performing the draws of the structural parameters (� (1) to � (4)) are

contained in Appendix A, but the most important details can be described brieTy. In
drawing these parameters, virtually “Tat” priors are used exclusively for all parameters
except �, for which a small amount of prior information was found to be sometimes
necessary. Each parameter is assumed independent of the others in the prior, with the
joint prior given by

p(�; �; �; 	1; 	2; 1; 2; �∗; �; �)˙
1
	2
f(�); (14)

where f(�) is the inverted gamma distribution with 15 degrees of freedom and gamma
parameter 40/3. 9 The posterior distribution is computed to be proportional to the prior

9 This inverted gamma distribution would result as the posterior distribution following the observation of
15 data points with a sample standard deviation of 0.1 with the di4use prior p(�) ˙ 1

� . The sample sizes
used in the analysis are all over 2,500, making f(�) a relatively uninformative prior. With a truly di4use
prior, however, the algorithm occasionally approached a ;xed point at � = 0.
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times the complete likelihood, which includes both the product of transition densities
and the likelihood of the initial observation (S0; V0). Since S0 is non-stationary, its
density is assumed to be di4use, and so the joint density of (S0; V0) is replaced with
the unconditional density of just V0.
In drawing the augmented price and variance data, two algorithms are required. The

;rst is applicable at non-integer t, which represent times at which neither St or Vt (nor
implied volatility) is observed. Our goal for these t is therefore to draw St and Vt from

p(St ; Vt |� S ;S−t ;V−t ; IV); (15)

where W−t refers to all realizations of the time series Ws save the value at s= t and
where �S refers to the parameters of the stock price=variance process.
Since we are already conditioning on V−t , the additional conditioning on IV is

irrelevant, since past and future values of IV just provide noisy signals about the
contemporaneous values of V . The Markovian nature of the model further makes ob-
servations of S and V at times before t−h and after t+h irrelevant as well. The draw
therefore reduces to the somewhat simpler

p(St ; Vt |� S ; St−h; Vt−h; St+h; Vt+h): (16)

Invoking Bayes rule, this can be shown to be proportional to

p(St ; Vt |� S ; St−h; Vt−h)p(St+h; Vt+h|� S ; St ; Vt); (17)

which is the product of a bivariate Gaussian density for (St ; Vt) and a bivariate Gaussian
density conditional on (St ; Vt). Their product, unfortunately, is not a standard density
for (St ; Vt).
To draw the pair (St ; Vt), a Metropolis–Hastings algorithm is proposed in which

candidate draws are generated by p(St ; Vt |� S ; St−h; Vt−h). The probability of accepting
a candidate draw (S∗t ; V

∗
t ) over the previous draw (St ; Vt) will therefore be equal to

min
{
p(St+h; Vt+h|� S ; S∗t ; V ∗

t )
p(St+h; Vt+h|� S ; St ; Vt) ; 1

}
: (18)

Thus, candidate draws are generated to be consistent with (St−h; Vt−h) and accepted
based on there consistency with (St+h; Vt+h).
The second main type of data augmentation draw is for integer t, in which St is

observed but Vt is not. A contemporaneous value of implied variance IVt is observed
as well. Slightly di4erent from before, we would like to draw from

p(Vt |St ; � S ;S−t ;V−t ; IV): (19)

In this case, the implied variance time series is informative, because IVt provides
information about Vt , and Vt is not contained in V−t . As before, however, past and
future values of IV are irrelevant given past and future values of V . In addition, the
Markovian nature of the model again makes observations of S and V at times before
t − h and after t + h irrelevant. The density therefore simpli;es to

p(Vt |� S ; St−h; Vt−h; St ; St+h; Vt+h; IVt); (20)
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which by Bayes rule (after eliminating irrelevant conditioning variables) is proportional
to

p(Vt |� S ; St−h; Vt−h; St)p(IVt |� S ; Vt)p(St+h; Vt+h|� S ; St ; Vt): (21)

Details of the Metropolis step used to draw Vt are relegated to Appendix B.
In practice, the acceptance rates of both Metropolis draws are typically around 50%

for the bivariate draw of (St ; Vt) and 67% for the univariate draw of Vt .

4. Results

Three versions of the model will be considered. The unrestricted version is the
2GAM model as it was described in (5). The ;rst restricted version is the CEV model,
in which the constraint 1=2 is imposed. The ;nal version (the SQRT model) imposes
the additional restriction that 1 = 1

2 , and is therefore identical to the square root model
of Heston (1993). Both versions will be estimated over the full sample of January
1986 to June 2000 and the post-crash sample, which begins in July 1988. Six hundred
thousand iterations of the estimation algorithm are made, with the ;rst hundred thousand
discarded to eliminate dependence on the initial conditions.
In this section I will begin with a summary of the posterior distributions of the

model parameters, followed by an assortment of model diagnostics. The focus will
then shift to the implications of the results for the distribution of returns, and I will
examine both the higher moments and the options prices generated by each model.
In examining the implications of the models, I focus on parameter estimates obtained

from the 1988–2000 sample. My intention is to examine whether the behavior of stock
prices and implied volatilities over a period that excludes the stock market crashes of
1929 or 1987 o4ers any suggestion that such extreme events are possible. In other
words, is there anything fundamentally di4erent about the biggest market crashes, or
are they simply extreme cases of more frequently observed phenomena?

4.1. Parameter posteriors

Table 1 presents summary statistics on the posterior distributions of the model para-
meters computed using h= 1

10 .
10

The ;rst two columns of the table contain posterior means and standard deviations of
the parameters of the SQRT model. The second two columns report the same statistics
for the CEV model, and the last two contain results for the 2GAM model. I report
posterior statistics for the 10 parameters of the model as well as two simple trans-
formations of these parameters. The ;rst transformation, 
(0:0001), is the correlation
between the price and variance processes when V=0:0001, computed from (6). 11 This
value of V corresponds to a daily volatility of 1%, a fairly typical day for the S&P

10 Similar results are obtained by setting h = 1
3 , but results are noticeably di4erent from those obtained

using h=1, suggesting that discretization bias is potentially a problem but that a relatively small amount of
augmented data leads to the approximate convergence of posteriors.
11 For the CEV and SQRT models, this correlation does not depend on V .
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100 index. Second, I report 	(0:0001), the volatility of instantaneous variance given
V = 0:0001.
For all three models, results vary noticeably across the two samples. This demon-

strates the large e4ect the crash of October 1987 has on the estimates, since the second
sample only di4ers from the ;rst in its exclusion of the months prior to July 1988.
Di4erences are particularly large in the parameters that determine the volatility of in-
stantaneous variance, namely 	1, 	2, 1, and 2. For the SQRT model, 	1 and 	2
are much larger in the sample that includes October 1987, attesting to the massive
volatility spike that occurred at the time of the crash. These higher volatilities should
generate much fatter tails and also alter the implied volatility smile. Di4erences in the
parameters of the CEV and 2GAM di4usions are more diJcult to interpret because of
the interaction of the di4erent variance parameters.
The ;rst main empirical ;nding of the paper concerns the CEV model and is found

in the two middle columns of Table 1. In both the whole sample and the post-July
1988 subsample, I ;nd precise estimates of 1 that are greater than one, capturing the
level dependence of the volatility of implied volatility that was evident in Fig. 1. A
high variance elasticity it also found by Chacko and Viceira (2001) and by Poteshman
(1998), the latter using a non-parametric approach to estimate a di4usion function
that is convex, at least for low to moderate levels of V . The level dependence of
the volatility of volatility that is implied by the CEV model is somewhat similar to
the so-called “GARCH di4usion” model, in which 1 = 2 = 1, and to the EGARCH
models proposed by Nelson (1991) and favored by Pagan and Schwert (1990). It is, in
addition, a characteristic of the GARCH speci;cation estimated by Hentschel (1995).
The second main result is that the additional generalization to the 2GAM model

appears to be important. The last columns of Table 1 show that the 1 parameter is
substantially higher than 2 for both sample periods. Since 	1¡ 0, this will have the
e4ect of making the leverage e4ect stronger (or the correlation between the price and
variance processes more negative) as the level of variance increases. In many other
aspects, the CEV and 2GAM models are quite similar, with drift parameters that are
extremely close to zero over both samples.
For both the CEV and 2GAM models, the volatility of instantaneous variance on a

typical day, 	(0:0001), is lower than it is for the SQRT model and is somewhat closer
across the two sample periods. For all three models, strong negative correlations are
typical between the price and variance process.
One potential concern is that � is essentially indistinguishable from zero for the CEV

and 2GAM models. Since � determines the degree of mean reversion in the variance
process drift, these results might lead one to conclude that the variance processes is
explosive. Conley et al. (1997) show, however, that this conclusion is false, because
stationarity will be generated through the di4usion term as long as either 1 or 2 are
greater than one, regardless of the sign of �. These results are reviewed in Appendix C.
For the SQRT model, further parameter instability is evidenced in the estimates of

�∗. Since this parameter is important in determining the relation between implied and
instantaneous variances, this instability is somewhat consistent with the observation of
Bates (2000) that the implied volatility smile of S&P 500 index options appeared to
experience a regime switch at the time of the crash of 1987. In contrast, the CEV and
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Table 1
Posterior means and standard deviations (in parentheses)

SQRT SQRT CEV CEV 2GAM 2GAM
Parameter 1986–2000 1988–2000 1986–2000 1988–2000 1986–2000 1988–2000

� 4:82 × 10−4 1:75 × 10−4 4:60 × 10−4 4:50 × 10−4 5:35 × 10−4 4:58 × 10−4

(1:52 × 10−4) (1:19 × 10−4) (1:42 × 10−4) (1:46 × 10−4) (1:37 × 10−4) (1:40 × 10−4)

� 3:86 × 10−6 2:41 × 10−6 0:58 × 10−6 0:53 × 10−6 0:51 × 10−6 0:89 × 10−6

(0:04 × 10−6) (0:07 × 10−6) (0:09 × 10−6) (0:10 × 10−6) (0:10 × 10−6) (0:11 × 10−6)

� −1:47 × 10−2 −1:81 × 10−2 −0:03 × 10−2 0:05 × 10−2 −0:06 × 10−2 −0:48 × 10−2

(0:31 × 10−2) (0:22 × 10−2) (0:22 × 10−2) (0:25 × 10−2) (0:23 × 10−2) (0:25 × 10−2)

	1 −1:99 × 10−3 −0:97 × 10−3 −1:76 −0:43 −8:16 −3:67
(0:07 × 10−3) (0:03 × 10−3) (0.35) (0.10) (2.56) (0.89)

	2 2:63 × 10−3 1:05 × 10−3 1.74 0.38 7:81 × 10−1 0:18 × 10−1

(0:04 × 10−3) (0:03 × 10−3) (0.33) (0.08) (2:36 × 10−1) (0:07 × 10−1)

1 0.50 0.50 1.33 1.17 1.50 1.39
N/A N/A (0.02) (0.02) (0.03) (0.03)

2 1.24 0.84
(0.03) (0.03)

�∗ −4:73 × 10−2 1:13 × 10−2 3:14 × 10−2 3:40 × 10−2 3:80 × 10−2 3:55 × 10−2

(0:14 × 10−2) (0:19 × 10−2) (0:16 × 10−2) (0:22 × 10−2) (0:27 × 10−2) (0:31 × 10−2)

� 4:49 × 10−2 6:55 × 10−2 8:18 × 10−2 6:14 × 10−2 8:43 × 10−2 5:59 × 10−2

(0:16 × 10−2) (0:27 × 10−2) (0:25 × 10−2) (0:42 × 10−2) (0:35 × 10−2) (0:31 × 10−2)


(0:0001)a −0:60 −0:68 −0:71 −0:75 −0:70 −0:78
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

	(0:0001)a 3:30 × 10−5 1:43 × 10−5 1:14 × 10−5 1:22 × 10−5 1:13 × 10−5 1:27 × 10−5

(0:06 × 10−5) (0:03 × 10−5) (0:02 × 10−5) (0:03 × 10−5) (0:02 × 10−5) (0:02 × 10−5)

a
(0:0001) is the correlation of the price and volatility processes given an instantaneous variance of
0:0001, corresponding to a daily volatility of 1%. 	(0:0001) is the volatility of instantaneous variance given
the same condition.

2GAM models show relative stability for �∗ across sample periods. As in the results
of Pan (2002), this parameter is positive, implying a lack of mean reversion in the
variance process drift. In the SQRT model, this causes the variance process to explode,
while volatility-induced stationarity again prevents explosion in the CEV and 2GAM
models.

4.2. Diagnostics

As in Eraker (2001), model diagnostics may be developed by examining the residuals
de;ned implicitly by the Euler approximation of the SDE. At each iteration of the
Markov chain, given the current draw of the parameter vector and the augmented data,
these residuals can be evaluated. Under the SQRT model, for instance, these residuals
are de;ned as

�ak = (Sk − Sk−1 − h�Sk−1)=(
√
h
√
Vk−1Sk−1);

�bk = (Vk − Vk−1 − h(�+ �Vk−1))=(
√
h
√
	21 + 	22

√
Vk−1): (22)
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Since �ak and �bk are assumed to be standard normals, correlated with each other but
serially independent, the examination of low-order moments and autocorrelations is
a convenient way to detect model misspeci;cation. Additional tests make use of the
residuals of the implied variance, or “VIX”, Eq. (11), which implies that (IVt − A −
BVt)=(�Vt) ∼ i.i.d. N (0; 1).
Following Zellner (1975), we may view these residuals as model parameters or as

latent variables. Like other parameters, posterior distributions can be constructed for
functions of these parameters simply by evaluating the function given the residuals
computed at each step of the Markov chain. For the purpose of model diagnostics,
these functions will consist of the sample mean, standard deviation, skewness, kurtosis,
and two autocorrelations. The Euler approximation residuals are situated in time h
days apart from another, so the “intra-day” autocorrelation is simply their ;rst-order
autocorrelation. For these residuals, the “daily” autocorrelation is therefore the (1=h)th
order autocorrelation. The VIX equation produces only daily residuals.
Table 2 reports the posterior medians and 95% con;dence intervals for these statis-

tics over both sample periods. For the CEV and 2GAM models, residual means and
standard deviations are indistinguishable from their theoretical values of zero and one,
respectively. Some failures are observed for the SQRT model, however, most impor-
tantly in the standard deviation of the price equation residuals over the 1986–2000
sample. Since the standard deviation is less than one, residuals are on average were
too small, indicating that the model-implied returns variance was often too high, most
likely caused by an attempt to ;t the crash of 1987.
The CEV and 2GAM models also perform well in matching the theoretical skewness

and kurtosis of zero and three, respectively, for the price and variance equation residuals
over both samples. The SQRT model, in contrast, ;ts only the post-crash sample, as
its variance equation residuals over the 1986–2000 sample display substantial excess
kurtosis. Autocorrelations in price and variance equation residuals are also smaller for
the CEV and 2GAM models over both samples, although a small amount of negative
autocorrelation is detectible in the CEV price equation residuals.
Where the CEV and 2GAM models fail is in describing the behavior of the VIX in-

dex. Over the 1986–2000 sample, residuals from the VIX equation display pronounced
skewness and excess kurtosis as well as substantial positive residual autocorrelations.
While the SQRT model displays problems here as well, they are not as severe. The
results di4er appreciably in the post-crash sample, in which the 2GAM model displays
only marginal misspeci;cation and the other two models show signi;cant if modest
deviations from normality.
To summarize, the SQRT model fails to describe neither the price, variance, nor VIX

dynamics over the full sample period, but performs reasonably well in the post-crash
sample. The CEV and 2GAM models appear to describe the actual price and variance
dynamics well, even over the full 1986–2000 sample period, but are inconsistent with
the dynamics of the VIX index. The 2GAM model o4ers moderate improvements over
the CEV process on a number of measures.
One possible explanation for these results is that the price of variance risk is mis-

speci;ed, with the true price of risk more time-varying than any of the models allow.
In October of 1987 the VIX index peaked at 150%, equivalent to a one-month implied
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Table 2
Posterior medians and 95% con;dence intervals for model diagnosticsa

Mean Standard Skewness Kurtosis Intra-day Daily
deviation autocorrelation autocorrelation

Price equation, 1986–2000 sample
SQRT −0:004 0.975 −0:005 3.006 −0:047 0.000

(−0:012; 0:004) (0:967; 0:982) (−0:030; 0:021) (2:956; 3:060) (−0:057;−0:037) (−0:011; 0:010)

CEV 0.003 0.994 −0:006 3.016 −0:011 −0:001
(−0:006; 0:013) (0:987; 1:001) (−0:032; 0:019) (2:965; 3:069) (−0:022;−0:002) (−0:011; 0:009)

2GAM 0.001 0.997 −0:006 3.017 −0:005 −0:001
(−0:008; 0:011) (0:989; 1:005) (−0:032; 0:019) (2:967; 3:070) (−0:016; 0:006) (−0:011; 0:009)

Price equation, 1988–2000 sample
SQRT 0.013 0.994 −0:003 3.014 −0:011 −0:001

(0:004; 0:022) (0:986; 1:002) (−0:031; 0:025) (2:957; 3:073) (−0:022; 0:000) (−0:012; 0:010)
CEV 0.004 0.993 −0:006 3.011 −0:012 −0:001

(−0:007; 0:014) (0:985; 1:001) (−0:034; 0:022) (2:955; 3:070) (−0:024;−0:001) (−0:012; 0:010)
2GAM 0.004 0.997 −0:006 3.012 −0:006 −0:001

(−0:007; 0:014) (0:988; 1:005) (−0:034; 0:022) (2:956; 3:070) (−0:018; 0:006) (−0:012; 0:010)

Variance equation, 1986–2000 sample
SQRT 0.009 0.991 0.462 9.021 −0:014 0.006

(0:001; 0:017) (0:983; 0:998) (0:413; 0:528) (8:289; 10:102) (−0:025;−0:004) (−0:004; 0:017)
CEV −0:001 0.997 0.022 3.033 −0:005 0.001

(−0:011; 0:009) (0:990; 1:004) (−0:004; 0:047) (2:981; 3:089) (−0:016; 0:005) (−0:009; 0:011)
2GAM −0:001 0.999 0.019 3.030 −0:002 0.002

(−0:011; 0:009) (0:992; 1:006) (−0:006; 0:045) (2:978; 3:085) (−0:012; 0:009) (−0:008; 0:012)

Variance equation, 1988–2000 sample
SQRT −0:014 0.996 0.021 3.030 −0:008 0.002

(−0:023;−0:005) (0:987; 1:004) (−0:007; 0:049) (2:973; 3:090) (−0:020; 0:003) (−0:009; 0:013)
CEV −0:003 0.996 0.018 3.028 −0:007 −0:004

(−0:014; 0:008) (0:988; 1:004) (−0:010; 0:046) (2:971; 3:089) (−0:019; 0:004) (−0:015; 0:007)
2GAM −0:006 0.998 0.020 3.036 −0:003 −0:004

(−0:017; 0:004) (0:990; 1:006) (−0:008; 0:048) (2:978; 3:097) (−0:015; 0:008) (−0:016; 0:007)

VIX equation, 1986–2000 sample
SQRT 0.003 0.991 0.210 8.428 0.064

(−0:030; 0:036) (0:968; 1:015) (0:059; 0:734) (7:226; 14:082) (0:032; 0:095)
CEV 0.000 0.999 −1:335 21.188 0.152

(−0:033; 0:033) (0:976; 1:022) (−1:539;−1:128) (18:157; 24:285) (0:116; 0:186)
2GAM 0.000 0.999 −1:365 24.053 0.141

(−0:033; 0:033) (0:976; 1:022) (−1:582;−1:164) (20:861; 27:802) (0:111; 0:171)

VIX equation, 1988–2000 sample
SQRT 0.000 0.996 0.111 3.599 0.047

(−0:036; 0:037) (0:971; 1:022) (−0:009; 0:227) (3:288; 4:081) (0:011; 0:083)
CEV 0.000 0.995 −0:093 4.050 0.040

(−0:036; 0:037) (0:970; 1:021) (−0:755; 0:102) (3:133; 13:236) (−0:002; 0:092)
2GAM 0.000 0.994 0.006 3.254 0.016

(−0:036; 0:037) (0:969; 1:020) (−0:120; 0:119) (2:994; 3:961) (−0:020; 0:052)

aA correct speci;cation implies that the residual mean is zero, the standard deviation is one, skewness is
zero, kurtosis is three, and autocorrelations are zero.

volatility of 43%, roughly ten times the average monthly volatility of the S&P 100 in-
dex. The magnitude of this value suggests the that the di4erence between the objective
and risk-neutral volatility forecasts may have been unusually large. Time variation in
risk premia should be expected to produce both outliers and positive autocorrelations
in the VIX residuals.
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4.3. Dynamic behavior of implied volatility

To illustrate the kinds of implied volatility paths one might expect to see under
each model, I graph several simulated trajectories of implied volatility. Each path of
IVt is simulated using the post-July 1988 posterior means as the true parameters and
represents a time series of 3537 days, the length of the entire sample from January
1986 to June 2000.
Fig. 3 plots eight simulations performed under each model, where the implied volatil-

ities are plotted on an annualized percentage basis. The SQRT simulations on the left
side are fairly uniform, displaying relatively regular and moderate Tuctuations. In the
middle and right-hand columns, the simulations of the CEV and 2GAM models exhibit
behavior more consistent with the actual data, plotted in Fig. 1. Long periods of low
and non-volatile volatility are interrupted by occasional volatility spikes, which tend
to die out quickly, especially for the 2GAM model. This is the same characteristic
that Schwert (1990) noted of S&P 500 index volatilities around the crash of October
1987.
This fast decay following volatility spikes might be somewhat surprising since the

values of � used in the CEV and 2GAM simulations are extremely close to zero, which
in linear Gaussian models would correspond to autoregressive coeJcients in excess of
0.995. For nonlinear models, however, Conley et al. (1997, p. 532) argue that focusing
on the drift alone “abstracts from the role of uncertainty,” and they demonstrate that
mean reversion can be due to either the di4usion or the drift. Intuitively, when the
variance elasticity is large, then large movements in volatility are likely when volatility
is high. When the move is upward, the volatility of volatility increases even more,
furthering the chance of another large move. But when these movements are downward,
the volatility of the next movement in volatility is reduced dramatically, and the process
tends to stay down, sometimes for very long periods.

4.4. The leverage e:ect

For the 2GAM model, Table 1 showed that 1¿2 with extremely high posterior
probability. Since 	1¡ 0, the e4ect of this is to make the correlation between price
and variance processes inversely related to the level of instantaneous variance. This is
clear from (6).
Fig. 4 shows this correlation as a function of instantaneous volatility. On a typical

day, the volatility of the S&P 100 is just under 1% per day, and the ;gure shows that
all models imply relatively similar correlations. It is when markets become turbulent
that the correlation implied by the 2GAM model becomes even more negative. In the
most extreme cases, when daily volatility exceeds 3%, this correlation is fairly close
to negative one. Through this mechanism, extreme shocks to volatility are likely to
be associated with large negative returns. This will substantially increase the skew-
ness of returns under the 2GAM model relative to the CEV model, as will be shown
next.
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Fig. 3. Simulated volatility paths.

4.5. Unconditional skewness and kurtosis of returns and implied volatilities

The ability to generate realistic higher moments in stock returns is one of a stochas-
tic volatility model’s most crucial requirements. For several reasons, I focus not on
the population moments implied by the various models, but on the distributions of
sample moments generated by each model. These distributions supply a more informa-
tive description of the return characteristics implied by each model than do population
moments since they address more directly what values of higher moments are likely to
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Fig. 4. Correlation between price and instantaneous variance processes (posterior means and 90% con;dence
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be found in a ;nite sample of data. 12 For this reason, the focus on sample moments
o4ers a more parallel basis to compare observed and model-implied moments.
The focus on model-implied distributions of sample moments is also motivated by

the fact that some model-implied population moments may not exist, as shown in
Section C.6. For example, given the parameter estimates reported in Table 1, CEV
model returns have ;nite mean and variance, but not skewness or kurtosis, since the
variance process has no ;nite moments higher than the ;rst. Distributions of sample
moments remain well-de;ned and ;nite even when their probability limits are not,
and they provide an intuitive means to measure the degree of non-normality that each
model is capable of generating.
The sample moments of the levels and changes in the VIX index are also statistics

that can be compared with their model-implied counterparts. Examination of these mo-
ments could reveal whether model misspeci;cation is caused by unreasonable volatility
dynamics or an incorrect characterization of the distribution of returns conditional on
volatility (e.g. jumps or no jumps).

12 For example, they will reveal whether higher moments are driven primarily by large returns occurring
somewhat infrequently (a high median, low variance distribution of sample kurtosis) or by enormous returns
occurring with minute probability (a low median, high variance, and right skewed distribution of sample
kurtosis).
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Table 3
Distribution percentiles of 13-year sample moments

Returns VIX Levels VIX Changes

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

Actual sample moments
Post-crash sample (1988–2000) −0.299 8.058 1.102 4.975 0.795 15.426
Whole sample (1986–2000) −2.230 49.218 4.627 54.696 17.201 990.817

Model-implied sample moment distributions
SQRT 1st −0.247 3.570 0.029 2.263 −0.099 3.025

5th −0.189 3.720 0.144 2.392 −0.067 3.096
50th −0.055 4.156 0.469 2.886 0.008 3.292
95th 0.067 4.851 0.885 4.057 0.089 3.554
99th 0.118 5.273 1.106 4.909 0.121 3.699

CEV 1st −1.255 4.137 0.935 3.584 −2.892 4.791
5th −0.491 4.644 1.167 4.454 −1.071 5.731
50th 0.012 8.779 2.276 10.074 −0.010 14.564
95th 1.014 48.031 5.143 38.554 0.921 98.284
99th 3.576 140.375 7.388 71.721 2.297 238.658

2GAM 1st −2.384 3.868 0.892 3.732 −5.833 4.556
5th −0.702 4.177 1.125 4.473 −1.734 5.461
50th −0.097 6.205 2.184 10.305 −0.024 14.922
95th 0.140 24.930 5.797 56.651 1.356 192.174
99th 0.460 68.774 9.548 144.287 4.062 604.541

EJP-SVJa 1st −2.147 5.062 0.056 2.324 −0.139 3.272
5th −1.636 6.150 0.174 2.460 −0.101 3.383
50th −0.692 11.108 0.502 2.970 −0.015 3.704
95th −0.074 22.430 0.965 4.259 0.073 4.248
99th 0.182 31.252 1.266 5.287 0.112 4.590

aThe EJP-SVJ model is Eraker et al. (2003) model of stochastic volatility with jumps in the price process.

To account for the uncertainty of the parameter estimates, distributions of sample
moments are computed using many di4erent draws from the posterior distribution of
the parameter vector. Speci;cally, I draw ;ve thousand parameter vectors at random
from each model’s posterior distribution. For each parameter draw, I simulate a 13-year
sample of returns and variance data, starting with a randomly drawn initial level of
V . Given the level of instantaneous variance V at the end of each day, I draw a
corresponding value of the VIX index from (11). For each sample I compute skewness
and kurtosis for daily returns (simple, not logarithmic), VIX levels, and VIX changes.
Various percentiles of these distributions are reported in Tables 3.
For comparison, I also include the results generated by Eraker et al. (2003, EJP)

jump-di4usion (“SVJ”) model, which combines the square root stochastic variance
process with a Poisson jump. Because the full posterior distribution is not available for
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this model, distributions of sample moments are computed using the point estimates
reported in Table 3 of their paper. These estimates are calculated from daily S&P
500 returns from the 1980–1999 period, which is notable since it contains the 1987
crash. 13

The simulated distribution for the SQRT, CEV, and 2GAM models represent a type
of predictive distribution that is not conditioned on the terminal values of the sample
data, since the initial value of volatility in each simulation is drawn from the uncondi-
tional distribution of the process rather than the ;ltered distribution of volatility on the
last day of the sample. The simulations for EJP’s SVJ model, since they are based on a
single set of point estimates, generate what is commonly called a parametric bootstrap
distribution.
Table 3 compares model-implied distributions of 13-year sample moments with ac-

tual sample moments calculated over the 1986–2000 and 1988–2000 periods. 14 It is
immediately apparent that the 2GAM and CEV models typically generate far greater
deviations from normality in returns than does the SQRT model. The table shows that
for both sample periods the sample skewness and kurtosis lie beyond the 1st and 99th
percentiles of the distributions implied by the SQRT model. The 1986–2000 sample
moments are particularly hard to reconcile with the square root volatility process.
By adding jumps, the SVJ model comes close to capturing the negative skewness in

returns observed around the 1987 crash. It is not as successful as the CEV or 2GAM
models at generating the required level of kurtosis, however. This is despite the fact
that the SVJ parameters are estimated on a sample of returns that includes the 1987
crash, while the other models are based on post-crash posterior distributions.
By allowing the leverage e4ect to increase in magnitude as the level of variance

rises, the 2GAM model is able to produce substantially more negative skewness than
the CEV model while producing more moderate levels of kurtosis. While the skewness
falls short of being consistent with the 1986–2000 sample moments, it is on par with
that generated by the model that includes jumps.
Additional insight is gained from looking at the sample and model-implied moments

of the levels and daily changes in the VIX index. In both sample periods, both levels
and changes were positively skewed with substantial excess kurtosis. The level of
non-normality is extreme in the 1986–2000 sample, which is largely due to the increase
from 36% to 150% in the VIX index that occurred on the day of the 1987 crash. While
none of the models is capable of reproducing the skewness or kurtosis of VIX changes,
the 2GAM model comes closest. Only the CEV and 2GAM models are successful in
matching the higher moments in the levels of the VIX index.

13 Simulations of the VIX index under the SVJ model are performed by numerically establishing the relation
between Vt and the 22-day ATM call price, which is then converted into an implied volatility. Since no
volatility or jump risk premia are estimated by EJP, these parameters are assumed to be zero. Finally, a
proportional error of 6% (in line with the results for the CEV and 2GAM models from Table 1) is added
to the simulated implied volatility.
14 The average length of these two samples is about 13 years.
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Table 4
Conditional moments

Returns VIX Levels

Skewness Kurtosis Skewness Kurtosis

Moments conditional on V0 = 0:0001
SQRT � = 1 −0.100 3.009 0.106 3.017

� = 5 −0.238 3.105 0.155 2.978
� = 22 −0.414 3.317 0.326 2.960

CEV � = 1 −0.096 3.013 0.238 3.115
� = 5 −0.240 3.145 0.588 3.654
� = 22 −0.508 3.675 1.398 7.072

2GAM � = 1 −0.107 3.020 0.261 3.135
� = 5 −0.267 3.194 0.646 3.843
� = 22 −0.568 3.954 1.786 11.898

EJP-SVJ � = 1 −0.559 8.491 0.089 3.014
� = 5 −0.304 4.117 0.162 3.027
� = 22 −0.215 3.299 0.248 3.053

Moments conditional on V0 = 0:001
SQRT � = 1 0.053 3.001 0.003 3.012

� = 5 0.105 2.989 0.061 3.004
� = 22 0.190 3.014 0.065 2.997

CEV � = 1 −0.089 3.021 0.357 3.227
� = 5 −0.235 3.133 0.874 4.508
� = 22 −0.462 3.558 2.271 14.445

2GAM � = 1 −0.241 3.126 0.655 3.853
� = 5 −0.602 3.825 2.043 14.720
� = 22 −1.049 5.252 5.350 105.352

EJP-SVJa � = 1 0.072 3.091 0.021 3.002
� = 5 0.162 3.050 0.081 2.995
� = 22 0.320 3.161 0.173 3.050

aThe EJP-SVJ model is Eraker et al. (2003) model of stochastic volatility with jumps in the price process.

4.6. Conditional skewness and kurtosis of returns and implied volatilities

It is well-known (see Das and Sundaram, 1999, for example) that although stochas-
tic volatility models may produce large unconditional deviations from normality, their
conditional distributions often look relatively Gaussian. Table 4 presents the higher
conditional moments of the same models considered previously, where the sole con-
ditioning variable is the level of the instantaneous variance process Vt . One, 5- and
22-day time horizons are considered.
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For simplicity, conditional population moments are calculated using the posterior
mean parameter values taken from the 1988–2000 sample, and are computed from ;ve
hundred thousand independent simulated paths of prices and instantaneous variances.
As before, Eraker et al. (2001) SVJ model uses parameter values estimated from S&P
500 returns from 1980–1999. Since the conditional moments of the levels and changes
in the VIX index are nearly identical, I report only the results for the former.
Table 4 shows that conditional 1-day return distributions under the SQRT, CEV,

and 2GAM models are very nearly Gaussian, in stark contrast to the unconditional
distributions. Given a relatively typical initial variance of 0:0001 (a volatility of 1% per
day), return distributions of all three models are only slightly left-skewed with almost
no excess kurtosis. The SVJ model of Eraker et al. (2001) produces substantially greater
deviations from normality at the 1-day horizon, with a conditional kurtosis almost as
high as the median unconditional level from Table 3. At longer horizons, however, the
ordering is reversed, with the three continuous models producing the greatest levels
of kurtosis for 22-day returns. The 2GAM model, for instance, has a 22-day return
kurtosis of 3.95, while the kurtosis of the SVJ model is just 3.30.
When volatility is unusually high (V0 = 0:001, corresponding to a volatility of about

3.2% per day), the 2GAM model o4ers the highest conditional kurtosis at all time
horizons. Furthermore, the two speci;cations based on the square root volatility process
(the SQRT and SVJ models) imply positive skewness in the returns distribution. One
interpretation is that because the square root variance di4usion function is concave in
Vt , the volatility of the variance process decreases relative to its level, causing the
randomness in the variance process to becomes less important as Vt increases. As a
result, the process approximates more closely the lognormal model, implying the right
skew in simple returns observed in Table 4. The SVJ model exhibits similar behavior
because at high levels of di4usive volatility, the jump component becomes relatively
unimportant.
Similarly to the unconditional moments in Table 3, the conditional distributions of

the VIX process in Table 4 are substantially less Gaussian for the 2GAM and CEV
processes. While intuition about the “right” levels of conditional skewness and kurtosis
in volatility is less readily available than it is for returns, these moments perhaps most
clearly distinguish the various speci;cations from one another.

4.7. Option prices

If the CEV and 2GAM models produce substantially greater non-normality in returns,
at least over longer horizons, they should have an advantage over the SQRT model in
explaining the volatility smile, or the tendency of options far from the money to sell at
premiums relative to a Black–Scholes benchmark calculated using the implied volatility
of an at-the-money option. I will therefore examine how the di4erent models price puts
and calls of di4erent maturities with varying degrees of moneyness. I calculate these
prices by simulation under the risk-neutral measure, again using the post-July 1988
posterior means as the parameter values for simulation. For simplicity, I assume that
the interest and dividend rates are zero.



C.S. Jones / Journal of Econometrics 116 (2003) 181–224 207

Table 5
Model-implied put and call pricesa

Puts ATM Calls

Strike 80 90 95 99 100 101 105 110 120

� = 5, SQRT 0.0000 0.0001 0.0223 0.5252 0.9259 0.4960 0.0069 0.0000 0.0000
V0 = 0:0001 CEV 0.0000 0.0001 0.0243 0.5286 0.9288 0.4988 0.0074 0.0000 0.0000

2GAM 0.0000 0.0002 0.0268 0.5350 0.9339 0.5015 0.0072 0.0000 0.0000

� = 5, SQRT 0.0030 0.2386 1.0023 2.3852 2.8651 2.4004 1.0623 0.2965 0.0094
V0 = 0:001 CEV 0.0207 0.3530 1.1213 2.4337 2.8901 2.4030 0.9968 0.2306 0.0030

2GAM 0.0484 0.4267 1.1658 2.4011 2.8348 2.3249 0.8669 0.1422 0.0002

� = 22, SQRT 0.0029 0.1382 0.6391 1.7566 2.1917 1.6980 0.4515 0.0365 0.0000
V0 = 0:0001 CEV 0.0131 0.2004 0.7204 1.8148 2.2400 1.7408 0.4619 0.0357 0.0000

2GAM 0.0206 0.2320 0.7687 1.8639 2.2859 1.7771 0.4761 0.0367 0.0000

� = 22, SQRT 0.6294 2.4101 4.0695 5.8383 6.3434 5.8735 4.2372 2.6998 0.9499
V0 = 0:001 CEV 1.3255 3.0786 4.5571 6.1290 6.5822 6.0574 4.2280 2.5147 0.6906

2GAM 1.2805 2.8082 4.1204 5.5521 5.9724 5.4191 3.4959 1.7684 0.2538

� = 66, SQRT 0.4527 1.7044 2.9967 4.5010 4.9524 4.4323 2.6957 1.2541 0.1589
V0 = 0:0001 CEV 1.1603 2.5670 3.7987 5.1711 5.5796 5.0198 3.0819 1.4078 0.1343

2GAM 1.1338 2.5198 3.7481 5.1232 5.5332 4.9702 3.0402 1.3772 0.1254

� = 66, SQRT 4.4168 7.9026 10.1267 12.1362 12.6699 12.2145 10.5199 8.6627 5.7329
V0 = 0:001 CEV 6.7271 9.6490 11.4727 13.1332 13.5781 13.0387 10.9941 8.7315 5.1907

2GAM 4.1383 6.6201 8.2791 9.8487 10.2778 9.7215 7.6608 5.4667 2.3888

aAssuming an initial stock price of $100 and an interest rate of zero.

Each option price is calculated from one-hundred thousand simulations assuming an
initial stock price of $100. Two variance reduction techniques are used: antithetic vari-
ables and conditional simulations, whereby only Vt is simulated. The latter technique
is developed by Willard (1997) and implemented recently by Poteshman (1998). For
the 2GAM model, Willard’s method is inapplicable since the price/variance correlation
is time-varying, so I instead use the extension of Romano and Touzi (1997).
Table 5 shows the prices of puts and calls generated by each model for a variety of

strike prices, times to maturity, and initial variance levels. To highlight the di4erence
between the models, no in-the-money options were included. Standard errors of the put
and call prices are not reported but are less than 2% of the option price for all options
whose values exceed 0:0001.
Because the drift of the variance process under the risk-neutral measure is everywhere

positive for all three models, option prices in Table 5 tend to be high. For the shorter
term options, however, this e4ect is relatively minor. While all models generate com-
parable prices for options that are approximately at-the-money, substantial di4erences
exist for options that are far from at-the-money. Deep out-of-the-money put options
are valued higher by the CEV and 2GAM models than by the SQRT model. In some
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cases these options are over ;ve times more expensive under the CEV model and over
10 times more expensive under the 2GAM model. In contrast, the deep out-of-the-
money call options are generally more expensive under the SQRT model, reTecting
the less negative skewness of returns for that model.
For longer term options, the large positive drift in the CEV variance process implies

very expensive options of all degrees of moneyness. The plausibility of these prices is
undermined by the implication that the implied volatility term structure is unreasonably
upward sloping. Given an initial level of variance equal to 0:0001 (a volatility of 1%
per day), the 5-day, 22-day, and 66-day ATM implied volatilities are 17%, 19.5%,
and 28%, respectively, for the CEV model. While implied volatility curves are often
upward sloping, consistent upward slopes of this magnitude are unreasonable, as Pan
(2002) argues. Misspeci;cation in the assumed price of volatility risk is a possible
explanation for these results.

4.8. Implied volatility smiles

To determine whether the implied volatility smiles generated by the CEV and SQRT
models are consistent with options price data, I engage in a preliminary analysis us-
ing closing prices of S&P 100 equity options from July 1988 through August 1996.
Black–Scholes implied volatilities are calculated using the method of AXYt-Sahalia and
Lo (1998). Since this method is only applicable to European-style options, the results
here are open to criticism. It will be apparent below, however, that the early exercise
premium would have to be extremely large to alter the results. In addition, the quali-
tative results are identical if S&P 500 options are used instead, and these options are
European.
Using this method, simultaneously observed puts and calls with the same strike price

and maturity are used to infer the implied index forward price. This circumvents the
need for an accurate dividend forecast and a concurrent value for the true value of
the index, but allows only one implied volatility to be extracted from every pair of
options.
I de;ne “at-the-money” as the equality of the strike price and the implied forward

price. I discard all option prices that are not part of matched pairs as well as all option
prices recorded on days without at least two matched pairs. On each day, at-the-money
implied volatilities for each maturity are calculated by interpolating (or occasionally
extrapolating) the corresponding volatility smiles on that day.
I compute the di4erence between each matched pair’s implied volatility and the

contemporaneous at-the-money implied volatility for the same maturity. This di4erence,
the “smile magnitude,” will be plotted against a normalized strike price, which is
equal to the true strike price over the implied forward price minus one. Looking at
the di4erence between two implied volatilities calculated from the same model should
reduce the extent with which the di4erences between the models are driven simply by
di4erent levels of risk-neutral drift.
Although we should expect this measure of the volatility smile to depend on both

the time to maturity of the option and the level of at-the-money implied volatility, I
group data only by the former. Three maturity groups are considered: (a) options with
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between 21 and 23 days to expiration, (b) options with between 64 and 68 days to
expiration, and (c) options with between 120 and 144 days to expiration. 15

The observed smile magnitudes (dots) are plotted in Fig. 5 along with the volatil-
ity smiles generated by the CEV (solid line), the 2GAM (dashed line), and SQRT
(dot-dash line) models. Subplots on the left-hand side assume an initial level of in-
stantaneous variance equal to 0:0001, while those on the right assume V0 = 0:001.
In general, the model-implied smiles for 22-day (1-month) options are far less se-
vere than those observed in the data. For 3-month options, the ;t of the CEV and
2GAM models is somewhat better, while for 6-month options the ;t is quite good. In
all cases, the SQRT model is clearly inadequate in explaining most in-the-money and
out-of-the-money options prices.

5. Conclusion

As opposed to the GARCH literature on stock volatility, in which new models
are primarily introduced to explain previously unnoticed features of price dynamics,
the continuous-time literature has tended to favor models that generate closed form
solutions for derivative prices. While such an emphasis is natural given the typical uses
of these models, the inability of popular models to generate realistic price dynamics
limits their usefulness.
The models introduced in this paper have obvious advantages over the square root

model of Heston (1993) and others. While the square root model does produce non-
Gaussian returns, the skewness and kurtosis it generates are far too small to be con-
sistent with equity index returns. The unconditional skewness and kurtosis generated
by the CEV and 2GAM models matched the sample moments remarkably well, even
those moments calculated from a sample that included the crash of 1987. It is notable
that the model-implied moments reported were implied by parameters estimated over a
sample that did not include that crash. The results therefore suggest that the patterns of
returns and volatility in relatively calm markets can be informative about less benign
states as well. In other words, we may not need to see a crash to know the probability
with which one will occur.
Unfortunately, while the option prices and volatility smiles generated by the CEV

and 2GAM models are in many cases much more realistic that the prices implied by
the square root model, they are still inconsistent with the volatility smile consistently
observed in short-term equity index options. This suggests that while unconditional
moments are well-described simply by modeling volatility as a more nonlinear pro-
cess, conditional moments may not be. An analysis of conditional moments shows
near-Gaussian behavior for all of the stochastic variance models, particularly at short
horizons. Jumps, which substantially increase conditional non-normality, may therefore
be an important component of returns, at least under the risk-neutral measure.

15 In an earlier version of this paper, I examined the implied volatility smile of 5-day options as well. After
observing that the bulk of the out-of-the-money option prices were no larger than a single tick, I excluded
all very short-term options data from the paper.
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The CEV and 2GAM models are also incapable of matching the time series behavior
of the VIX index of implied volatility during the crash of 1987, although they o4er
tremendous improvement over models based on the square root variance process. One
possible explanation is that the price of risk is misspeci;ed. Another is that volatility
itself might jump, an interesting idea introduced by Bates (2000) and DuJe et al.
(2000) and carefully pursued by Eraker et al. (2003). A third is that volatility is better
described by a two-factor model, which has been pursued by Alizadeh et al. (2001)
and Chernov et al. (2003), among others.
Although option prices and conditional moments remain somewhat of a puzzle, many

other aspects of the data are less perplexing. The results of this paper suggest a simple
link between the observed intertemporal patterns in volatility and the existence of very
rare and very large market crashes.
When volatility is low, it tends to stay low, sometimes over extremely long periods,

since its drift is near zero and its own variance is small. When eventually there is
a large positive shock to the volatility process, volatility itself rapidly becomes more
volatile, and the probability of a larger subsequent rise in volatility increases dramat-
ically. Successive positive shocks to volatility can therefore compound rapidly, and
the eventual occurrence of such shocks makes the extreme return a rare but regular
event. When the degree of negative correlation between prices and volatility increases,
these extreme returns, more likely than not, are stock market crashes. Following the
crash, these high volatility states tend to die out quickly because the mean reversion
in volatility is itself volatility induced.
While there remain unanswered questions regarding the correct speci;cation of con-

ditional moments, risk premia, and options pricing, the models developed here show
clear potential as simple yet much more realistic generalizations of existing models.
With the growing popularity of derivatives written on realized volatilities rather than
prices, future work using these derivatives’ prices may provide a natural way to im-
prove our understanding of volatility dynamics even further.
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Appendix A. Drawing the parameters

In this appendix I describe draws of the four parameter blocks of �=(� (1); � (2); � (3);
� (4)) given the entire set of high-frequency stock prices and variances, written in
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shorthand as S and V . As an illustration, consider the draw of � (3). We would like
to draw from the distribution p(� (3)|� (1); � (2); � (4); S; V ), which is, by Bayes rule,
proportional to p(S; V |�)p(� (3)), where p(� (3)) is the prior on � (3). The likelihood
function, p(S; V |�), can be decomposed as the likelihood of the initial observation times
the likelihood of all subsequent observations, or p(S; V |�)=p(S0; V0|�)p(S; V |�; S0; V0).
The second term here is the product of Gaussian transition probabilities, and were we
to ignore the ;rst non-Gaussian term many analytical results would be available about
the conditional distributions of the parameters in � (1) to � (4).
In fact, the strategy in drawing parameters will be to ignore this ;rst term and then

make a correction for it later. Speci;cally, we generate a candidate set of parameter
draws � (1) to � (4) from distributions such as p(S; V |�; S0; V0)p(� (3)) and then accept
or reject the collection of draws � (1) to � (4) depending on what they imply about the
missing term, p(S0; V0|�). Sections A.1–A.4 consider the draws of � (1) to � (4), while
Section A.5 gives the criterion for acceptance.

A.1. Drawing � (1) = {�; �; �}

Given the parameters of the di4usion function, 	1, 	2, 1, and 2, and observation of
the full price and variance paths, we can derive the conditional distribution of � (1) using
the SUR methodology of Chib and Greenberg (1996). From the Euler approximation
(22), the parameters �, �, and � can be seen as the coeJcients of a bivariate linear
regression with a time-varying but known residual covariance matrix.
Inference about � is complicated, however, by the fact that additional information

about � is also provided by the intercept of the regression equation for implied variance,
IVt=A+BVt+Vt*t , where B=(1=�∗�)(e�

∗�−1), A=−(�=�∗)(1−B), and *t ∼ N (0; �2).
Rearranging, we get

IVt − BVt
Vt

=−1− B
�∗Vt

�+ *t : (A.1)

Conditional on �∗ and � and assuming a Tat prior, this regression equation implies a
normal distribution for �.
Now using this conditional posterior as a prior for �, and choosing extremely di4use

prior means and variances for � and �, the method of Chib and Greenberg (1996) can
be applied directly.

A.2. Drawing � (2) = {	1; 	2; 1; 2}

The parameters 1 and 2 enter the model in a nonlinear way, so drawing from
their distribution presents an additional challenge. Because little is known about the
distribution of 1 and 2, I will use the Metropolis–Hastings algorithm to generate
their posterior. I will assume di4use prior information about both, or p(1; 2) ˙ 1.
As a candidate generating density I will use an independent bivariate random walk, so
that the candidate draw is equal to the previous draw plus two independent Gaussian
innovations with mean zero and standard deviation +.
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EJciency will be improved if 	1 and 	2 are drawn jointly with 1 and 2, because
the four parameters are highly correlated in the posterior. The candidate draws 	̃1 and
	̃2 will be conditioned on the candidate draw of ̃1 and ̃2. This conditional draw can
be motivated by a rearrangement of the Euler approximation (12):

S(k+1)h − (1 + h�)Skh√
h
√
VkhSkh

= �(1)k+1;

V(k+1)h − Vkh − h�− hVkh�√
hV 2kh

= 	1V
1−2
kh �(1)k+1 + 	2�

(2)
k+1:

Note from the ;rst equation that given � and the time series of (Sk ; Vk) the residual
�(1) can be treated as an observed variable. The second equation can then be interpreted
as a linear regression on an observed variable, V 1−2kh �(1)k+1, with 	1 as the regression
coeJcient and 	2 as the standard deviation of the residual. 16

With the Tat prior p(	1; 	2) ˙ 1=	2, 	2 has an inverted gamma distribution and
	1 has a normal distribution given 	2. This bivariate distribution is used to generate
candidate pairs (	̃1; 	̃2) given the draw of 1 and 2. The complete candidate generating
density is therefore given by this IG/normal density multiplied by the bivariate normal
random walk density used to draw 1 and 2. Let fG(	1; 	2; 1; 2) denote this density.

We can calculate the true conditional distribution of (	1; 	2; 1; 2) up to a constant
of proportionality by an application of Bayes rule:

p(	1; 	2; 1; 2|�; �; �; S; V; S0; V0)

˙ p(S; V |�; �; �; 	1; 	2; 1; 2; S0; V0)p(	1; 	2; 1; 2): (A.2)

The ;rst term on the right side is the completed likelihood function—the probability
of generating the full set of high frequency S and V given the model parameters.
This likelihood is calculated using the Euler approximation and is therefore the prod-
uct of bivariate Gaussian transition densities. The second term is the prior, which is
proportional to 1=	2.
The Metropolis–Hastings algorithm dictates the probability with which the candidate

draws must be accepted in order for convergence to the proper distribution to occur.
The probability of moving from the previous draw (	1; 	2; 1; 2) to the candidate draw
(	̃1; 	̃2; ̃1; ̃2) is

min
{
p(S; V |�; �; �; 	̃1; 	̃2; ̃1; ̃2)p(	̃1; 	̃2; ̃1; ̃2)fG(	1; 	2; 1; 2)
p(S; V |�; �; �; 	1; 	2; 1; 2)p(	1; 	2; 1; 2)fG(	̃1; 	̃2; ̃1; ̃2) ; 1

}
: (A.3)

The resulting draws will converge to p(	1; 	2; 1; 2|�; �; �; S; V; S0; V0).

A.3. Drawing � (3) = �∗

Again recall the assumptions about the relationship between the instantaneous and
option-implied variances: IVt = A + BVt + Vt*t , where B = (1=�∗�)(e�

∗� − 1), A =
−(�=�∗)(1− B), and *t ∼ N (0; �2).

16 This approach is borrowed from Jacquier et al. (2001).
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Conditional on all parameters save �∗, the normality of *t enables the computation
of a likelihood function for �∗. This likelihood is non-standard, however, and the
conditional posterior for �∗ is of an unknown form. A value of �∗ is therefore drawn
using the griddy Gibbs sampler of Ritter and Tanner (1992), where the Grid consists
of ten thousand equally-spaced points between −0:1 and 0.2.

A.4. Drawing � (4) = �

Given A and B, a time series of homoskedastic regression residuals is de;ned by
*t = (IVt − A− BVt)=Vt . The parameter � is the standard deviation of *t , so given any
prior of the inverted gamma form the posterior of � is also an inverted gamma.

A.5. Incorporating the information in V0

Suppose we have drawn a candidate set of parameters � using the steps described
in B.1–B.4. Then these parameters are jointly drawn from a density proportional to
p(S; V |�; S0; V0)p(�), which ignores the information in the initial observation (S0; V0).
In order to take the full likelihood into account, we require the posterior be given by
p(S; V |�; S0; V0)p(S0; V0|�)p(�) .
We therefore correct the previous draws of � = (� (1); � (2); � (3); � (4)) by rejecting

the parameter draws that are least likely to generate V0 in their stationary distribution.
Given the nonstationarity of St , its initial value can be assumed di4use, containing no
information about the model parameters. This accept/reject step is accomplished again
using the Metropolis–Hastings algorithm, with the draws described in B.1–B.4 jointly
used as the candidate generator. The Metropolis–Hastings algorithm therefore dictates
that the set of new draws (�̃ (1); �̃ (2); �̃ (3); �̃ (4)) is accepted over the old set of draws
(� (1); � (2); � (3); � (4)) with probability

min

{
p(V0|�̃ (1); �̃ (2); �̃ (3); �̃ (4))
p(V0|� (1); � (2); � (3); � (4))

; 1

}
: (A.4)

If the new draw is rejected, we repeat the old one.

Appendix B. The distribution of high-frequency variance

For integer t both St and IVt are observed, so draws of the latent variable Vt should
come from

p(Vt |� S ; St−h; Vt−h; St)p(IVt |� S ; Vt)p(St+h; Vt+h|� S ; St ; Vt); (B.1)

where the ;rst term is proportional to a the conditional density of a bivariate normal
random variable with mean

M = Vt−h + h(�+ �Vt−h) + 
(Vt−h)
	(Vt−h)√
Vt−h

(St − h(1 + �)St−h) (B.2)
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and standard deviation is
√
h	(Vt−h)

√
1− 
2(Vt−h), where 
(V ) = (	1V 1 )=√

	21V 21 + 	22V 22 and 	(V ) =
√
	21V 21 + 	22V 22 . The second term, p(IVt |� S ; Vt), is

proportional to

1
Vt

exp

(
−1
2

(
IVt − A− BVt

�Vt

)2)
: (B.3)

Again using the Metropolis–Hastings algorithm, a candidate draw of Vt is generated
from the convolution of the ;rst term, p(Vt |� S ; St−h; Vt−h; St), and an approximation
to the second term, p(IVt |� S ; Vt), that is given by

pa(IVt |� S ; Vt) = 1
QV
exp

(
−1
2

(
IVt − A− BVt

� QV

)2)

˙ exp

(
−1
2

(
Vt − (IVt − A)=B

� QV=B

)2)
; (B.4)

where QV = 1
2(Vt−h + Vt+h). The approximate density therefore represents a normal

distribution for Vt , making the candidate generating density

p(Vt |� S ; St−h; Vt−h; St)pa(IVt |� S ; Vt) (B.5)

normal as well. The Metropolis acceptance probability, or the probability of replacing
the previous draw Vt with the candidate draw V ∗

t , is

min
{
p(St+h; Vt+h|� S ; St ; V ∗

t )p(IVt |� S ; V ∗
t )pa(IVt |� S ; Vt)

p(St+h; Vt+h|� S ; St ; Vt)p(IVt |� S ; Vt)pa(IVt |� S ; V ∗
t )
; 1
}
: (B.6)

Appendix C. Some results for the CEV process with � ¿ 1

The relatively simple speci;cation of the CEV process makes it possible to prove a
number of results that are diJcult to show for the 2GAM process. Given the parameter
estimates in Table 1, I focus on the case in which ¿ 1.

C.1. De�nition of the scale measure

The scale measure is de;ned as∫ n

m
s(x) dx; (C.1)

where s(x), the scale density, is

s(x) = exp


−

x∫
2�(y)
	2(y)

dy


 : (C.2)
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For the CEV process dV = (�+ �V ) dt + 	V  dB, the scale measure is equal to∫ n

m
exp
(

2�
	2(2− 1)

1
x2−1 +

2�
	2(2− 2)

1
x2−2

)
dx: (C.3)

C.2. Boundary behavior at +∞

In;nity is not attainable as long as∫ +∞

m
s(x) dx =+∞ (C.4)

for arbitrary m (see Karlin and Taylor, 1981, pp. 230–231).
For the CEV process with ¿ 1, the result is obtained regardless of the signs of �

and �. We can observe that as x ↑ +∞,

exp
(

2�
	2(2− 1)

1
x2−1 +

2�
	2(2− 2)

1
x2−2

)
→ 1; (C.5)

since 1=x2−1 and 1=x2−2 both converge to zero. The integral therefore diverges in this
case as well.

C.3. Boundary behavior at 0

The lower bound of 0 is not attainable if∫ n

0
s(x) dx =+∞ (C.6)

for arbitrary n.
For the CEV process with ¿ 1,

exp
(

2�
	2(2− 1)

1
x2−1 +

2�
	2(2− 2)

1
x2−2

)
≈ exp

(
2�

	2(2− 1)
1

x2−1

)
(C.7)

as x ↓ 0, since the 1=x2−2 term diverges to +∞ at a slower rate.
If �¿ 0 and ¿ 1, then 2− 1¿ 1 and 1= 2�=	2(2− 1)¿ 0. This implies that

exp
(

2�
	2(2− 1)

1
x2−1

)
= exp

(
1

x2−1

)
¿ exp

(
1
x

)
¿
1
x

(C.8)

holds for small enough x. Since 1=x is not integrable at 0, (C.6) is satis;ed.

C.4. Existence and uniqueness of the solutions

We have proven that as long as ¿ 1, the sign of � is irrelevant for the attainability
of 0 and +∞ by the CEV variance process. Furthermore, the sign of � is irrelevant
for the attainability of +∞. For the zero drift case, identical results are proved by
Andersen and Andreasen (1998).
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Together, the unattainability of 0 and +∞ is equivalent to Assumption 1 of Conley
et al. (1997). They note that this assumption is a suJcient condition for the existence
and uniqueness of the solution of the variance SDE, according to Theorem 5.7 of
Karatzas and Shreve (1991, p. 335).
Given the existence of the solution to the variance SDE, the solution of the price

SDE can also be shown to exist using a theorem of Revuz and Yor (1999, p. 375).
De;ning dM = � dt +

√
V dB (which is well-de;ned due to the square integrability

of
√
V , proved below), the price process can be written as dS = f(t; S) dM , where

f(t; S)=St . Since f satis;es a Lipschitz condition and is locally bounded, the solution
of the price SDE exists and is unique.

C.5. Stationarity

Given the unattainability of 0 and +∞, the stationary density, if it exists, will be
proportional to 1=(s(x)	2(x)) (see Karlin and Taylor, 1981, p. 241). Existence of the
stationary distribution is ensured as long as∫ +∞

0

1
s(x)	2(x)

dx¡∞ (C.9)

(see Karlin and Taylor, 1981, p. 221).
When  �= 1, the stationary density must take the form

C
1

	2x2
exp
(
− 2�
	2(2− 1)

1
x2−1 − 2�

	2(2− 2)
1

x2−2

)
; (C.10)

where C is an integrating constant.
If ¿ 1, then as x ↑ +∞ this density approaches C=(	2x2) since the exponential

converges to 1. Since∫ +∞

m

1
x2

dx¡∞ (C.11)

for m¿ 0, the right tail of the density is integrable regardless of the signs of � and �.
As x ↓ 0, the behavior of the exponential is determined solely by the term inside

the exponential that diverges at the fastest rate. When ¿ 1, this is the 1=x2−1 term,
making the density asymptotically proportional to

1
x2

exp
(
− 3
x2−1

)
; (C.12)

where 3 = 2�=	2(2− 1)¿ 0 as long as �¿ 0.
De;ning a change of variable u= x1−2, we have∫ m

0

1
x2

exp
(
− 3
x2−1

)
dx =

∫ +∞

m1−2

1
1− 2

exp(−u) du; (C.13)

which is ;nite.
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Thus for ¿ 1 and �¿ 0, both tails of the density are integrable. Given the absence
of singularities inside (0;+∞), the whole density is therefore integrable, implying the
existence of the stationary distribution. Again, the sign of � is irrelevant as long as
¿ 1.
Following Conley et al. (1997), the stationarity of a process is said to be “volatility-

induced” when a deterministic process with the same drift would be explosive. Since the
parameter region de;ned by ¿ 1, �¿ 0, and �¿ 0 implies stationary behavior even
though the drift is everywhere positive, stationarity in this region is volatility-induced.
These are the conditions given by Conley et al. (1997, p. 539) for the cases considered
here. 17

C.6. Existence of moments

For ¿ 1, the variance process will have a ;nite kth moment whenever the integral∫ +∞

0
xk

1
	2x2

exp
(
− 2�
	2(2− 1)

1
x2−1 − 2�

	2(2− 2)
1

x2−2

)
dx (C.14)

is ;nite. As long as k ¿ 0, the xk term reduces the integrand as x ↓ 0 (which was
already shown to converge as long as �¿ 0), so the integral converges at 0. Thus,
only the upper limit of the integral must be shown to converge for a positive moment
to exist.
Since the exponential term converges to 1 as x ↑ +∞, convergence of the integral

just requires that∫ +∞

0

xk−2

	2
dx (C.15)

is ;nite. This will be the case whenever k ¡ 2− 1. Therefore if ¿ 1, then V has a
;nite unconditional ;rst moment, while a ;nite second moment requires that ¿ 1:5
and a ;nite “11

2” moment requires that ¿ 1:25. As long as ¿ 1, the sign of � is
unimportant.

C.7. Expected future variance

AXYt-Sahalia (1996, p. 532) argues that E[Vt+5|Vt] = a + bVt under conditions ap-
parently satis;ed by the CEV process. His result, however, makes use of Dynkin’s
formula (see Oksendal, 2000, p. 118), which is not necessarily applicable if Vt is only
a local martingale. It is possible to demonstrate, however, that the linear form likely
provides an accurate approximation for values of 5 from 1 to 22 days, the horizons
for which it will be used.
For the CEV process, posterior means of � are very close to zero, hence highly

suggestive results are available from examining the case of � = 0, for which the

17 Note that the  parameter used by CHLS is equivalent to 2 in the present notation. In addition,
identi;cation issues related to subordination require CHLS to set 	 equal to 1, without loss of generality.
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transition density of the CEV process has been derived by Cox (1996) among others. In
this case, we can compute the expectation of Vt+5 both using the linear approximation
and using the actual density function. For the parameter values in Table 1, the two
approaches yield very similar answers. For a 5-day horizon they are virtually identical,
while for the 22-day horizon the approximate expectations are slightly higher for high
initial values of Vt .
When �¿ 0, it is obvious that the approximate expectation must be biased upward,

because the stationary variance of Vt is ;nite while the limit as 5 → ∞ of a + bVt
is not (since b → ∞). This approximation error is likely to bias �∗ towards slightly
lower values, will which tend to o4set the upward bias in E[Vt+5|Vt].
Taking the approximation as given and integrating E[Vt+5] from 5=0 to �, Fubini’s

theorem implies E[Vt; t+�|Vt]=A+BVt , where B=(1=��)(e��−1) and A=(�=�)(1−B).

C.8. The Novikov condition

It is assumed that the process under the objective measure follows dS = �S dt +√
V dZ (1) with dV =(�+�V ) dt+	V  dZ (2). Under the risk-neutral measure it satis;es

dS = rS dt +
√
V dZ (1)∗ with dV = (�+ �∗V ) dt + 	V  dZ (2)∗.

These dynamics implicitly de;ne the prices of risk. These functions, 61(V ) and
62(V ), are the solutions to

√
V61(V ) = � − r and 	V 62(V ) = �V − �∗V . Thus

61(V ) =
� − r√
V

and 62(V ) = cV 1−; (C.16)

where c = (� − �∗)=	.
The implied Radon–Nikodym derivative is well-de;ned and markets are free from

arbitrage opportunities if the Novikov condition is satis;ed:

E
[
exp
(
1
2

∫ T

0
(621(Vt) + 622(Vt)) dt

)]
¡∞: (C.17)

To check the condition, we may derive an upper bound for the expectation in
(49) using Jensen’s inequality and Fubini’s theorem. Since the exponential is convex,

E
[
exp
(
1
2

∫ T

0
(621(Vt) + 622(Vt)) dt

)]
6
∫ T

0
E
[
exp
(
1
2
(621(Vt) + 622(Vt))

)]
dt:

(C.18)

It therefore suJces to show the ;niteness of

E
[
exp
(
1
2
(621(Vt) + 622(Vt)) dt

)]

=E
[
exp
(
1
2
((� − r)2V−1

t + c2V 2−2
t )

)]
: (C.19)
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Using the stationary density derived above, this requires that∫ +∞

0
exp
(
1
2
((� − r)2x−1 + c2x2−2)

)
(C.20)

× 1
	2x2

exp
(
− 2�
	2(2− 1)

x1−2 − 2�
	2(2− 2)

x2−2
)

dx¡∞: (C.21)

As long as ¿ 1, exp( 12 ((�− r)2x−1 + c2x2−2)) is decreasing in x. With the previous
result that the stationary density is integrable at +∞, the integral in (53) must also
converge at +∞.
As x ↓ 0, the behavior of the exponential terms is determined solely by the term

inside the exponentials that diverges at the fastest rate. As long as ¿ 1, the x−1

and x2−2 terms diverge more slowly than x1−2. Following the previous proof of the
existence of a stationary distribution, the integral in (53) therefore converges at 0.
Since the integrand lacks other singularities, (53) is satis;ed.
Thus as long as ¿ 1 and �¿ 0, the Radon–Nikodym derivative is well-de;ned

even though the prices of risk are unbounded.

C.9. Derivative pricing

The absence of arbitrage implies an equivalent probability measure Q under which
discounted security prices are local martingales. Without additional restrictions on the
drift and di4usion functions (such as growth and Lipschitz conditions), discounted
prices will not necessarily be martingales. It therefore does not follow that the time-t
price of a security with payo4 f(St+�) can always be represented as EQt [e−r�f(St+�)].

Lewis (2000) notes, however, that in certain cases this representation still holds. For
example, the absence of arbitrage implies that the price of a European put option be
bounded by the strike price, K . Since the discounted put price is a local martingale
that is bounded below by 0 and above by K , it must be a martingale (see Oksendal,
2000, p. 126). The put price can therefore be represented as EQt [e−r�max{K−St+�; 0}].

While it is straightforward to value a call option by appealing put-call parity, Lewis
(2000, p. 285–286) also proves that the call price is given by EQt [e−r�max{St+�−K; 0}]
as long as the variance process is non-explosive under the objective and risk-neutral
measures (which we have shown) and that the correlation between the price and volatil-
ity processes is negative (which we ;nd empirically).

C.10. Validity of the Euler approximation

While the convergence of the Euler approximation may not be established analy-
tically, experimentation can provide some evidence of its validity for speci;c cases.
Establishing the accuracy of the Euler approximation’s implied transition densities is
problematic, however, because the true transition densities of the CEV process are
unknown as long as � �= 0. For both sample periods, however, the posterior mean of
� is extremely close to zero, and the transition density of the CEV process for � = 0
has been derived by Cox (1996) among others. It is therefore relevant and convenient
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to look at the convergence of the restricted CEV process, dV =�V dt+	V  dB, as the
discretization parameter h goes to zero.
For a given h, ten million 1-day paths variance paths were simulated from initial

values of either 0.0001 or 0.001. Since the correct transition density of the di4u-
sion process is known, a cumulative distribution function, denoted as 8D(V ), may be
calculated by numerical integration. Now let Vi denote the terminal value of the ith
simulation and 8N the CDF of the standard normal. Under the null hypothesis that the
simulated distribution matches the analytical one,

Xi ≡ 8−1
N (8D(Vi)) ∼ N (0; 1): (C.22)

E ≡ :X 2
i therefore has a chi-squared distribution under the null and may be interpreted

as a summary statistic for the accuracy of the Euler approximation.
Given the large number of simulations, the limiting behavior of E can be character-

ized with great accuracy. For either level of initial variance, and using either sets of
CEV parameter estimates reported in Table 1 (but with �=0), the deviation of E from
its expected value of ten million declines by more than half each time h is halved until
this deviation is within the 95% con;dence interval implied by the chi-squared distri-
bution. While statistically signi;cant deviations are observed for values of h as small
as 0.01, the e4ects on posteriors of choosing a much larger h are extremely minor.
Posteriors are not noticeably di4erent for h=0:33 or h=0:1, for instance, though they
are obviously di4erent from those obtained with h= 1.
In option pricing applications, it is sometimes necessary to simulate the variance

process over signi;cantly longer intervals. In these applications, extremely small values
of h appear to be necessary for accurate results, making the approximation very slow
and possibly unreliable. Much better performance is obtained by simulating the Euler
approximation of the log volatility process. For the CEV model, the log volatility
process becomes d ln V=((�=V )+�−	2V 2−2) dt+	V −1 dB. While the transformation
induces nonlinearity in the drift, the convexity of the di4usion is greatly reduced. The
result is that option prices computed by simulating the log process are not noticeably
di4erent for values of h smaller than 0.1.
A formal test of accuracy of the Euler approximation over long horizons can be con-

structed based on the steady-state density of the CEV process calculated in
Section C.5. Letting 8S(V ) denote the true steady-state CDF of ln V , the convergence
of the Euler approximation implies

Yi ≡ 8−1
N (8S(ln Vi)) ∼ N(0; 1); (C.23)

where ln Vi is the terminal value of a suJciently long simulation of the log process.
Using one million 100-year simulated paths, :Y 2

i is observed to quickly converge to its
expected value as h goes to zero. The result appears robust to the choice of parameter
values and is obtained for the 2GAM model as well.

For further reading

The following reference may also be of interest to the reader: Black and Scholes
(1973).



222 C.S. Jones / Journal of Econometrics 116 (2003) 181–224

References

AXYt-Sahalia, Y., 1996. Nonparametric pricing of interest rate derivative securities. Econometrica 64, 527–
560.

AXYt-Sahalia, Y., Lo, A.W., 1998. Nonparametric estimation of state-price densities implicit in ;nancial asset
prices. Journal of Finance 53, 499–547.

Alizadeh, S., Brandt, M.W., Diebold, F.X., 2001. Range-based estimation of stochastic volatility models.
Journal of Finance 57, 1047–1091.

Andersen, L., Andreasen, J., 1998. Volatility skews and extensions of the Libor market model. Working
paper.

Andersen, T.G., Bollerslev, T., 1997. Heterogeneous information arrivals and return volatility dynamics:
uncovering the long-run in high-frequency returns. Journal of Finance 52, 975–1005.

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P., 2001. Modeling and forecasting realized volatility.
Working paper.

Andersen, T.G., Benzoni, L., Lund, J., 2002. An empirical investigation of continuous-time equity return
models. Journal of Finance 57, 1239–1284.

Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pricing models. Journal of
Finance 52, 2003–2049.

Bakshi, G., Cao, C., Chen, Z., 2000. Pricing and hedging long-term options. Journal of Econometrics 94,
277–318.

Ball, C.A., Torous, W.N., 1985. On jumps in common stock prices and their impact on call option pricing.
Journal of Finance 40, 155–173.

Bates, D.S., 2000. Post-’87 crash fears in the S& P 500 futures option market. Journal of Econometrics 94,
181–238.

Benzoni, L., 2001. Pricing options under stochastic volatility: an empirical investigation. Working paper.
Bergman, Y.Z., Grundy, G.D., Wiener, Z., 1996. General properties of option prices. Journal of Finance 51,

1573–1610.
Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy

81, 637–659.
Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31,

307–327.
Brandt, M.W., Santa-Clara, P., 2002. Simulated likelihood estimation of di4usions with an application to

exchange rate dynamics in incomplete markets. Journal of Financial Economics 63, 161–210.
Breeden, D., Litzenberger, R., 1978. Prices of state-contingent claims implicit in options prices. Journal of

Business 51, 621–651.
Chacko, G., Viceira, L.M., 2001. Spectral GMM estimation of continuous-time processes. Working paper.
Chan, K.C., Karolyi, G.A., Longsta4, F.A., Sanders, A.B., 1992. An empirical comparison of alternative

models of the short-term interest rate. Journal of Finance 47, 1209–1227.
Chernov, M., Ghysels, E., 2000a. A study towards a uni;ed approach to the joint estimation of objective

and risk neutral measures for the purpose of options valuation. Journal of Financial Economics 56,
407–458.

Chernov, M., Ghysels, E., 2000b. Estimation of stochastic volatility models for the purpose of options pricing.
In: Abu-Mostafa, Y.S., LeBaron, B., Lo, A.W., Weigend, A.S. (Eds.), Computational Finance 1999. MIT
Press, Cambridge, pp. 567–581.

Chernov, M., Gallant, A.R., Ghysels, E., Tauchen, G.E., 2003. Alternative models for stock price dynamics.
Journal of Econometrics, this issue.

Chib, S., Greenberg, E., 1996. Markov chain Monte Carlo simulation methods in econometrics. Econometric
Theory 12, 409–431.

Christensen, B.J., Prabhala, N.R., 1998. The relation between implied and realized volatility. Journal of
Financial Economics 50, 125–150.

Conley, T.G., Hansen, L.P., Luttmer, E.G.J., Scheinkman, J.A., 1997. Short-term interest rates as subordinated
di4usions. Review of Financial Studies 10, 525–577.

Cox, J.C., 1996. The constant elasticity of variance option pricing model. Journal of Portfolio Management,
special December issue, 15–17.



C.S. Jones / Journal of Econometrics 116 (2003) 181–224 223

Das, S.R., Sundaram, R.K., 1999. Of smiles and smirks: a term structure perspective. Journal of Financial
and Quantitative Analysis 34, 211–239.

DuJe, D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for aJne jump-di4usions.
Econometrica 68, 1343–1376.

Elerian, O., Chib, S., Shephard, N., 2000. Likelihood inference for discretely observed non-linear di4usions.
Econometrica 69, 959–993.

Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of UK
inTation. Econometrica 50, 987–1008.

Eraker, B., 2001. MCMC analysis of di4usion models with application to ;nance. Journal of Business and
Economic Statistics 19, 177–191.

Eraker, B., Johannes, M., Polson, N., 2003. The impact of jumps in volatility and returns. Journal of Finance
59, forthcoming.

Gallant, A.R., Tauchen, G.E., 1996. Which moments to match? Journal of Econometric Theory 12,
657–681.

Gallant, A.R., Tauchen, G.E., 1997. Estimation of continuous-time models for stock returns and interest
rates. Macroeconomic Dynamics 1, 137–168.

Gallant, A.R., Hsu, C.T., Tauchen, G.E., 1999. Using daily range data to calibrate volatility di4usions and
extract the forward integrated variance. Review of Economics and Statistics 81, 617–631.

Harvey, C.R., Whaley, R.E., 1991. Dividends and S& P 100 index option valuation. Journal of Futures
Markets 12, 123–137.

Hentschel, L., 1995. All in the family: nesting symmetric and asymmetric GARCH models. Journal of
Financial Economics 39, 71–104.

Heston, S., 1993. A closed-form solution for options with stochastic volatility with applications to bond and
currency options. Review of Financial Studies 6, 327–343.

Hull, J., White, A., 1987. The pricing of options on assets with stochastic volatilities. Journal of Finance
42, 281–300.

Jacquier, E., Polson, N.G., Rossi, P.E., 1994. Bayesian analysis of stochastic volatility models. Journal of
Business and Economic Statistics 12, 371–389.

Jacquier, E., Polson, N.G., Rossi, P.E., 2001. Bayesian analysis of stochastic volatility with leverage e4ect
and fat tails. Journal of Econometrics, forthcoming.

Jarrow, R., Rudd, A., 1982. Approximate option valuation for arbitrary stochastic processes. Journal of
Financial Economics 10, 347–369.

Jiang, G., van der Sluis, P., 1998. Pricing stock options under stochastic volatility and interest rates with
eJcient method of moments estimation. Working paper.

Jones, C.S., 1998. Bayesian estimation of continuous-time ;nance models. Working paper.
Jones, C.S., 2002. Nonlinear mean reversion in the short-term interest rate. Review of Financial Studies,

forthcoming.
Jorion, P., 1989. On jump processes in the foreign exchange and stock markets. Review of Financial Studies

1, 427–445.
Karatzas, I., Shreve, S.E., 1991. Brownian Motion and Stochastic Calculus. Springer, Berlin.
Karlin, S., Taylor, H.M., 1981. A Second Course in Stochastic Processes. Academic Press, San Diego.
Lewis, A.L., 2000. Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach.
Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59,

347–370.
Oksendal, B., 2000. Stochastic Di4erential Equations: an Introduction with Applications. Springer, Berlin.
Pagan, A.R., Schwert, G.W., 1990. Alternative models for conditional stock volatility. Journal of

Econometrics 45, 267–290.
Pan, J., 2002. The jump-risk premia implicit in options: evidence from an integrated time-series study. Journal

of Financial Econometrics 63, 3–50.
Pedersen, A.R., 1995. A new approach to maximum likelihood estimation for stochastic di4erential equations

based on discrete observations. Scandinavian Journal of Statistics 22, 55–71.
Poteshman, A.M., 1998. Estimating a general stochastic variance model from option prices. Working paper.
Revuz, D., Yor, M., 1999. Continuous Martingales and Brownian Motion. Springer, Berlin.



224 C.S. Jones / Journal of Econometrics 116 (2003) 181–224

Ritter, C., Tanner, M.A., 1992. The Gibbs stopper and the griddy Gibbs sampler. Journal of the American
Statistical Association 87, 861–868.

Romano, M., Touzi, N., 1997. Contingent claims and market completeness in a stochastic volatility model.
Mathematical Finance 7, 399–412.

Schwert, G.W., 1990. Stock volatility and the crash of ’87. Review of Financial Studies 3, 77–102.
Scott, L.O., 1997. Pricing stock options in a jump-di4usion model with stochastic volatility and interest rates:

applications of Fourier inversion methods. Mathematical Finance 7, 413–426.
Tanner, M.A., Wong, W.H., 1987. The calculation of posterior distributions by data augmentation. Journal

of the American Statistical Association 82, 528–549.
Whaley, R.E., 1993. Derivatives on market volatility: hedging tools long overdue. Journal of Derivatives 1,

71–84.
Willard, G., 1997. Calculating prices and sensitivities for path-independent derivative securities in multifactor

models. Journal of Derivatives 5, 45–61.
Zellner, A., 1975. Bayesian analysis of regression error terms. Journal of the American Statistical Association

70, 138–144.


	The dynamics of stochastic volatility: evidencefrom underlying and options markets
	Introduction
	The model
	Stochastic specification
	Regularity conditions
	Expected average variance and option price approximations

	Estimation strategy
	The data
	The econometric model of implied volatility
	Computing posteriors by data augmentation

	Results
	Parameter posteriors
	Diagnostics
	Dynamic behavior of implied volatility
	The leverage effect
	Unconditional skewness and kurtosis of returns and implied volatilities
	Conditional skewness and kurtosis of returns and implied volatilities
	Option prices
	Implied volatility smiles

	Conclusion
	Acknowledgements
	Appendix A. Drawing the parameters
	Drawing theta(1)={mu,alpha,beta}
	Drawing theta(2)={sigma1,sigma2,gamma1,gamma2}
	Drawing theta(3)=beta
	Drawing theta(4)=xi
	Incorporating the information in V0

	Appendix B. The distribution of high-frequency variance
	Appendix C. Some results for the CEV process with gamma>1
	Definition of the scale measure
	Boundary behavior at +
	Boundary behavior at 0
	Existence and uniqueness of the solutions
	Stationarity
	Existence of moments
	Expected future variance
	The Novikov condition
	Derivative pricing
	Validity of the Euler approximation

	References


