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Using a new Bayesian method for the analysis of diffusion processes, this article finds
that the nonlinear drift in interest rates found in a number of previous studies can be
confirmed only under prior distributions that are best described as informative. The
assumption of stationarity, which is common in the literature, represents a nontrivial
prior belief about the shape of the drift function. This belief and the use of “flat”
priors contribute strongly to the finding of nonlinear mean reversion. Implementation
of an approximate Jeffreys prior results in virtually no evidence for mean reversion
in interest rates unless stationarity is assumed. Finally, the article documents that
nonlinear drift is primarily a feature of daily rather than monthly data, and that these
data contain a transitory element that is not reflected in the volatility of longer-
maturity yields.

The drift of the short-term interest rate is an important determinant of a
wide variety of asset prices, both inside and outside the boundaries of
what is often called fixed income. While volatilities may be estimated
relatively accurately using high-frequency observations of the short rate,
the short rate’s extreme persistence makes identifying the true shape of the
drift function a particularly elusive goal.

If our goal is merely to fit prices, then the difficulty in estimating a drift
function can be avoided by backing out implied drifts using a no-arbitrage
approach such as Hull and White (1990) or Heath, Jarrow, and Morton
(1992). These methods bypass the true distribution entirely, focusing on
solving for the risk-neutral drift function that is consistent with the cross
section of bond prices. If our goal, however, is to learn from prices and
to be able to assess theories, such as the expectations hypothesis, that link
short and long rates, then estimating the drift function under the true
measure is unavoidable.

In several recent articles, a variety of sophisticated econometric
techniques have been brought to bear on the problem. In particular,
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Ait-Sahalia (1996a) and Stanton (1997) propose nonparametric-based
methods for estimating nonlinear drift and diffusion functions of the
short rate. Both articles find that the nonlinearity in the drift function
is important. In fact, Ait-Sahalia (1996b, p. 385) concludes, in reference
to the linear drift models of Chan et al. (1992) and others, that “the
principal source of rejection of existing models is the strong nonlinearity
of the drift.” He finds that interest rates behave like a random walk over
nearly their entire historical range, reverting toward the middle of this
range only when they become very high or very low. In a fully nonpara-
metric analysis, Stanton (1997) estimates a comparable drift function,
with very little mean reversion for all rates below 15% but substantial
negative drift for higher rates.

Similar results are reported by Conley et al. (1997; hereafter CHLS),
who estimate a drift function that is nonzero only for rates below 3% or
above 11%. Jiang and Knight (1997) find a comparable pattern of non-
linear mean reversion in a sample of Canadian interest rates.

Figure 1 plots the drift functions — the expected change in the short rate
per year as a function of the level of the rate— estimated by Ait-Sahalia
and CHLS. While there is general agreement that higher interest rates tend
to drift downward and low rates upward, how high and how low rates
must be for this to happen remains a point of contention, with Ait-Sahalia
assigning random walk-like behavior for a much wider range of interest
rates.

One possible criticism of all of these articles is that each assumes the
stationarity of the interest rate process, a characteristic that has a great deal
of economic appeal but which fails to receive strong support in formal
tests.'? Ait-Sahalia’s estimator, since it requires the nonparametric esti-
mation of the marginal density of the spot rate, is undefined if rates
are nonstationary. The CHLS approach relies on the moment conditions
of Hansen and Scheinkman (1995), which can loosely be interpreted as
statements of the fact that functions of stationary processes have an
unconditionally zero drift. Because imposing stationarity of the short
rate puts restrictions on the possible shape of its drift function, any
analysis that imposes this restriction runs the risk of mechanically assum-
ing away the question of interest, no matter how appealing the restriction
seems.

! The exception is Stanton’s (1997) method, which Bandi and Phillips (2001) show is applicable to processes
that are recurrent, a significantly weaker condition than stationarity.

2 Pagan, Hall, and Martin (1996) report Dickey-Fuller statistics for a variety of short-term interest rates
that are generally between 0 and —2, not negative enough to reject the unit root at a 95% confidence level.
They further report evidence that the presence of a levels effect in variance reduces the Dickey—
Fuller critical value, making the presence of a unit root even more difficult to reject. The Dickey—
Fuller statistic for Ait-Sahalia’s data set is calculated to be —2.29, also higher than its 5% critical value
of —2.88.
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Drift function estimates

Panel A contains the drift function estimated by Ait-Sahalia (1996b). Units on the vertical axis denote the
expected annualized change in the short rate. Panel B graphs the drift function estimated by Conley et al.
(1997) under the assumption that the variance elasticity parameter ~ is equal to 1.5, which is close to the
values estimated in this article. Because of their treatment of the short rate as a subordinated process, the
scale of the vertical axis is unidentified.

Even if the short rate is stationary, its high degree of persistence may
make small-sample inference problematic. Several recent Monte Carlo
studies have examined the finite sample performance of estimators used
in the previous articles and have concluded that this performance can be
deficient.

Pritsker (1998) finds that the asymptotic significance levels of Ait-
Sahalia’s (1996b) specification test are often inappropriate in finite sam-
ples. He notes that nonparametric procedures have been predominantly
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studied in an iid setting, and that little is known about optimal
implementation of these procedures (particularly the choice of bandwidth)
when the data generation process is highly persistent, as is the case
with interest rates. Persistence is also unrecognized by Ait-Sahalia’s test
statistic, since it is not a concern in large samples. In a careful considera-
tion of the case of Vasicek (1977) interest rates, Pritsker finds that the
asymptotic test rejects the true null approximately 50% of the time in some
cases.

More relevant to the current study, Chapman and Pearson (2000) find
that both Stanton’s and Ait-Sahalia’s estimators display a finite sample
bias toward finding nonlinearity in a drift that is actually linear. Chapman
and Pearson attribute this bias to the nonparametric procedures that
underlie both of these articles’ estimation methods and contend that the
evidence provided by Stanton and Ait-Sahalia is insufficient to conclude
that nonlinear drift is a “robust stylized fact.”

While both Pritsker (1998) and Chapman and Pearson (2000) suggest
that nonparametric methods may be unreliable in the detection of non-
linearities, there is a more general concern in estimating time-series models
that has nothing to do with nonparametric methods. The problem is that
standard estimators such as ordinary least squares and maximum like-
lihood are generally biased for time-series models. In the first-order auto-
regressive model, for example, it is wellknown that in finite samples the
autoregressive coefficient is biased toward zero. How this bias generalizes
to more complicated nonlinear models is unknown.

In spite of these problems, analysis of nonlinear mean reversion remains
important simply because of its relevance for so many economic issues.
Nonlinear drift offers potential improvements in fixed income pricing, as
Ahn and Gao (1999) have recently demonstrated, and is also compelling
because it has the potential to explain, at least in part, a number of
the outstanding puzzles about the term structure. Bekaert, Hodrick, and
Marshall (2000) propose to explain empirical findings of the expectations
hypothesis using a regime-switching model that Ang and Bekaert (2002)
have shown is capable of capturing nonlinear behavior in the short rate.
Pfann, Schotman, and Tschernig (1996) observe that the nonlinear rela-
tions that exist between short and long yields and also between their
volatilities are also consistent with nonlinear models of the short rate.
Finally, nonlinearity in the short-rate drift might explain why standard
tests of stationarity generally do not reject the unit root. Because Dickey—
Fuller tests are based on the assumption of a linear autoregressive model,
data generated by a stationary nonlinear drift model could have little
power to reject the unit root.

In order to remain consistent with previous literature, I focus on repre-
sentations of the short-term interest rate as a continuous-time diffusion
process. This decision reflects the fact that diffusions are the modeling
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framework of choice for much of modern asset pricing. With this asset
pricing theory, prices of related fixed-income securities can be calculated
without resorting to linear or log-linear approximations that may not hold
accurately. More importantly, diffusions provide a parsimonious frame-
work for examining data of different frequencies, since a single diffusion
model automatically determines conditional distributions of the process at
all time horizons.

Because of the problems that have been attributed to the use of
asymptotic frequentist methods, particularly those which rely on the
stationary of the process under consideration, this article takes a
Bayesian perspective. A primary task of the article is therefore to
introduce a new method for the Bayesian analysis of diffusion pro-
cesses that will generate exact finite-sample inferences even for nonsta-
tionary models.

Using this method I reassess the evidence for the drift nonlinearities first
identified by Ait-Sahalia using a time series of short-term interest rates.
Robustness of the results will be evaluated by comparing results generated
under a variety of priors, where each is chosen to represent some notion of
prior ignorance. This type of Bayesian analysis, suggested by Leamer
(1985) and Poirier (1995), interprets the sensitivity of results to the speci-
fication of the prior as evidence against the availability of an “objective”
conclusion.

The results of this article demonstrate that fully efficient parametric
analysis may be no less problematic than nonparametric analysis, and that
conclusions in favor of nonlinear drift may largely be driven by implicit
prior beliefs that contain a nontrivial amount of information about the
shape of the drift function. This article shows that the priors that generate
nonlinear drift may reasonably be interpreted as informative, and that
under other priors the result disappears completely.

Lastly, the article identifies that the evidence favoring nonlinear drift is
primarily a feature of high-frequency data, and that these data contain a
transitory noise component that accounts for roughly half the daily varia-
tion in the short rate. The analysis reveals an obvious misspecification
of the one-factor model, so I propose a simple two-factor extension with a
latent nonlinear stochastic mean process. The generalized model recon-
ciles the different sampling interval results and provides further evidence
against the nonlinearities identified previously.

The article proceeds as follows: Section 1 reviews previous work in
modeling nonlinear interest rate processes. Section 2 develops a Bayesian
method for estimating parameters of discretely observed diffusion
processes. The method is applied in section 3 to analyze nonlinear mean
reversion under the different prior distributions. Section 4 checks for
model misspecification and introduces the stochastic mean model.
Section 5 concludes.
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. Modeling Nonlinear Drift in the Short-Term Interest Rate

Within the class of one-factor models, the interest rate process has tradi-
tionally been modeled as having a linear drift, often with a constant
elasticity of variance. As a diffusion, the process is written as

drt = K/(M — r[)dt + Ur’[ydB;. (1)

In this form, the parameters of the process each have intuitive meaning.
The long-run mean of the process, toward which rates drift, is given by p,
and the speed of this drift is given by k. Volatility is measured by o, and
the variance elasticity is given by 2v. With =0, this is the model of
Vasicek (1977), while for v=.5, it is the specification used by Cox,
Ingersoll, and Ross (1985). A thorough examination of this class of
models was carried out by Chan et al. (1992).

For simple linear models such as these, estimating the drift may be as
simple as running a least squares regression. These same models, however,
have often been found to be unsatisfactory in their description of short-
rate dynamics and their implications for other security prices. The alter-
natives that have been proposed are often a great deal more complex.
Gray (1996), Pfann, Schotman, and Tschernig (1996), and Naik and Lee
(1993), for example, have generalized standard models to include regime
shifts, Das (2002) and Johannes (2002) add jumps, while Andersen and
Lund (1997), Balduzzi, Das, and Foresi (1998), and Jegadeesh and
Pennacci (1996) consider multifactor models in which volatility is stochas-
tic or interest rates revert in a linear fashion toward a stochastic attractor.
Articles too numerous to mention have explored other generalizations.

The primary model considered in this article, while more general than
those first proposed by Vasicek (1977) and Cox, Ingersoll, and Ross
(1985), remains in the single-factor class. This choice reflects a belief
that this class of models has not yet been fully explored. At the very
least, it seems natural to ask how much of the dynamics of both short-
and long-term yields can be explained by a more general one-factor model
before considering multifactor models.

Because there is little reason a priori to assume particular specifications
of either the drift or diffusion functions, Ait-Sahalia (1996b) advocates the
use of flexible functional forms to approximate their true unknown
shapes. He proposes the following model of the short rate process:

dry = (00 + our, + aor; + os/r,)dt + \/ﬁo + v+ Bor B, (2)

CHLS adopt the same drift parameterization as Ait-Sahalia but keep the
constant elasticity of variance (CEV) diffusion used by Chan et al. (1992):

dry = (a + air + aor? + as /r)dt + or] dB,. (3)

This is the primary model considered in the remainder of the article.
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Because it is a characteristic that has generally been assumed in previous
work, it is useful to consider the parameter restrictions that are required to
generate stationarity. In fact, stationarity of the nonlinear drift model can
be achieved in several ways. A simple sufficient condition is that o, <0
and a3 > 0. In Ait-Sahalia’s (1996b) treatment of this model, these are the
parameter restrictions he employs. CHLS note, however, that the restric-
tion on « is unnecessary when ~ > 1.5. In this case the stationarity of the
process may be “volatility induced” rather than “drift induced.” 1 will
examine the implications of imposing each type of stationarity in the
estimation of the model.

2. A Bayesian Method for the Analysis of Diffusion Processes

The primary difficulty in estimating diffusion processes stems from the
intractability of their transition densities and hence likelihood functions.?
Because the Bayesian posterior distribution is typically attained as the
normalized product of the prior distribution and the likelihood function,
the unknown form of the likelihood impedes Bayesian analysis as well.
I address this problem by using a combination of simple numerical tech-
niques: the Euler approximation, the Gibbs sampler, and the Metropolis—
Hastings algorithm. By combining these tools appropriately, posterior
distributions of the parameters of the diffusion process can be generated
to any desired degree of accuracy. This is accomplished by generating
thousands of draws from these multivariate posteriors. Given a large
enough set of such draws, moments, confidence intervals, and marginal
densities of the parameters can be computed easily.

The econometric approach of this article is based in a strand of statistics
known as Markov chain Monte Carlo (MCMC). Appendix A provides a
brief introduction to the Gibbs sampler, perhaps the simplest example of
MCMC.* The following sections assume a casual familiarity with this
technique.

2.1 Augmenting with high-frequency data
The approach of this article to estimating diffusions is based on a simple
intuition: if the diffusion,

d}’, = M(rts ¢)dt+0'(}’,, (b)dBl» (4)

3 Ait-Sahalia (2002) has shown how to construct analytical approximations of the likelihood function of a
univariate diffusion process. Even in the univariate case, however, the likelihood function is of a
nonstandard form, making the derivation of marginal posterior densities for a subset of the parameters
problematic when there are more than a few parameters.

4 Casella and George (1992) provide a much more detailed introduction to the Gibbs sampler.
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is observed often enough, then the biases caused by the estimation of the
discretized version (the Euler approximation),

ry — T :N(”tflsﬁb)“"g(”rfla(b)en (5)

should be negligible.

In theory, therefore, we could avoid the elaborate econometrics of
continuous-time processes by simply restricting our analysis to high-
frequency data. Unfortunately high-frequency data are not always avail-
able, particularly for less recent historical periods. And even if, say, daily
data were available, would it be of sufficiently high frequency to render
discretization bias insignificant? There is in general no way to answer this
question except through empirical investigation with a method that can be
used to account for this bias.

Even if the data were available, there are a number of reasons why the
use of high-frequency asset price data may be undesirable. Price discrete-
ness, infrequent trading, intraday volatility periodicity, bid-ask bounce,
and periodic market closure are all difficult to reconcile with the simple
and elegant properties of the diffusion process. Although some of these
problems can be corrected for using simple modifications of the procedure
proposed here, each would invalidate the simple estimation of the discre-
tized process of Equation(5).

The resolution proposed in Jones (1999) is to use Tanner and Wong’s
(1987) data augmentation algorithm to augment the observed data with
paths of much higher frequency data— for example, augmenting monthly
with daily data.> As these augmented data are added at closer and closer
intervals, the likelihood of the discretized approximation will converge to
that of the true diffusion likelihood, following the results of Pedersen
(1995) and Brandt and Santa-Clara (2002). In practice, the frequency of
the Euler approximation will be chosen to be high enough so that it will
have approximately the same distribution as the diffusion of interest. This
will generally mean that the observed data are of a lower frequency than
the frequency at which the Euler approximation operates. For example,
we may be working with month-end data, but a reasonable diffusion
approximation might require 10 discrete time transitions per month,
making 9 out of every 10 data points unobserved.

Conditional on this unobserved high-frequency data in addition to the
observable low-frequency data, a distribution for the model parameters
may usually be obtained quite easily. We then integrate out, using a Gibbs
sampler-like Markov chain, the dependence on particular paths of unob-
served data to get posteriors conditional on only the observed data.

Similar methods have been proposed independently by Elerian, Chib, and Shephard (2000) and Eraker

(2001), although the former’s method is applied only to univariate processes.
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The idea of augmenting with high-frequency data may be considered
the Bayesian counterpart of the simulation-based classical literature on
continuous-time econometrics, which typically uses the Euler approxima-
tion to compute by simulation objective functions that are analytically
intractable. Examples include Duffie and Singleton (1993), Gourieroux,
Monfort, and Renault (1993), Pedersen (1995), Gallant and Tauchen
(1996), and Brandt and Santa-Clara (2002). These approaches use the
Euler approximation to simulate forward paths of artificial data. Simu-
lated moment-based procedures, for example, use the Euler approxima-
tion to simulate long paths of the diffusion which are then used to
calculate unconditional moments of the model. Simulated maximum like-
lihood uses the Euler approximation to compute each one-period transi-
tion density numerically, requiring a large number of short simulated
paths.

In contrast, the simulations in this article merely “bridge” the observed
low-frequency data with short paths of high-frequency data. Each simula-
tion is entirely consistent with the low-frequency data, automatically
preserving many of the stylized facts observable in the original data: the
general historical shape, the patterns of volatility, and the degree of
persistence, for example. Figure 2 illustrates the comparison of high-
frequency data augmentation with two classical methods, the simulated
method of moments [e.g., Duffie and Singleton (1993)] and simulated
maximum likelihood [e.g., Brandt and Santa-Clara (2002)]. It is clear
that by pinning down both ends of the simulated paths the variance of
the latent high-frequency data can be reduced dramatically relative to
other methods. Since all methods require some form of Monte Carlo
integration, the lower variance of augmented data results in greater
computational efficiency.

It should be emphasized that the purpose of augmenting with high-
frequency data is to reduce discretization bias, not add information to the
sample. Although each path of high-frequency data will add information
to the relatively scarce low-frequency data, by integrating out the depen-
dence on particular high-frequency paths, this information is washed out
of the final posterior distribution.

2.2 Details of the Markov chain

To explain the details of the procedure it is necessary to have a more
precise statement of the Euler approximation. For maximum intuition,
the procedure is described for a univariate process r, although a multi-
variate generalization is simple and is pursued later in the article.
A discrete time process operating on a unit of time of length 4, the Euler
approximation of Equation (4) may be written as

Festyh — Tin = hi(rins @) + Vho (1, d)ex, (6)
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Panel A: Unconditional Simulations (e.g. simulated method of moments)
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Figure 2

Simulation of high-frequency data

The figure depicts three different schemes for simulating at a higher frequency than the observed data. In
panel A, simulations are being used to compute unconditional moments and may have little or no relation
to the observed data. The simulations in panel B could be used [see Brandt and Santa-Clara (2002)] to
compute numerical approximations of transition densities of the process. Panel C shows how simulated
high-frequency data may be used to “bridge” the observed low frequency data.

where ¢, ~ i.i.d. N(0,1) and ¢ is a vector of parameters. I will assume that
data are observed at equally spaced intervals of unit length, and that the
interval endpoints correspond to the integer values of k4. In other words,
the Euler approximation breaks up the observation interval into 1/A
subperiods, each of length 4. When the dependence on a particular value
of & is implicit, it is convenient to let r, denote ry,.

From Pedersen (1995) or Brandt and Santa-Clara (2002) we know that
under regularity conditions the likelihood of the Euler approximation con-
verges to that of the diffusion as 4 — 0. The approach will therefore allow /
to be arbitrarily small regardless of the frequency of the observed data.
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Let R® denote the set of all the observed low-frequency data, corres-
ponding to integer values of kh. Let R" denote the unobserved high-
frequency data, corresponding to noninteger k4. Following the intuition
of the Gibbs sampler, the Markov chain will alternate between drawing
from the conditional distributions p(¢|R°, R") and p(R"|¢, R®).

We draw from the distribution of the model parameters conditional on
both observed and augmented data. From Bayes’ rule,

P(¢[R®, RY) o< L(¢; R, R)p(9), ()

where L is the likelihood function and p(¢) is the prior. The Euler approx-
imation allows us to compute L(¢; R° R") as the product of Gaussian
transition densities, allowing the computation of the conditional density
Pp(6|R® RY) up to a constant of proportionality. Frequently this density is
a highly tractable form, and standard Gaussian methods may be used to
draw ¢. At the very least, knowledge of the distribution makes it possible
to draw the parameter vector ¢ using a numerical procedure such as the
Metropolis—Hastings algorithm. This step is described in more detail for a
specific example in the next section.

If it were possible to draw directly from the distribution p(R"|¢, R°),
then the specification of the Markov chain would be complete. In even the
simplest cases, however, this high-dimensional distribution is of unknown
form, meaning that an additional numerical technique must be applied.

I adapt a technique proposed by Jacquier, Polson, and Rossi (1994) for
the analysis of discrete-time stochastic volatility models. It is termed a
cyclic Metropolis chain because it “cycles” through the individual elements
of R", drawing values of R" point by point using the Metropolis—Hastings
algorithm at each step. In essence, we make each element of R" a separate
block in the Markov chain. Thus if there were 1000 elements of R", we
would have 1001 block draws in the Markov chain: 1000 draws of high-
frequency data points and one draw of ¢.°

Appendix B describes the data augmentation procedure in greater
detail.

. Estimating the Short-Rate Model

The primary model of nonlinear drift considered in the remainder of the
article is

dr, = (ap + aury + aor? + oz /r,)dt + or]dB,. (8)

6 Although it is most convenient to illustrate a Markov chain that “cycles” through the elements of R"
drawing each element r, individually, this is not generally the most computationally efficient method. In
computer languages that are optimized for matrix operations (such as Matlab) we can increase speed by
performing multiple draws simultaneously. Because of the Markovian nature of the problem, this is not
problematic as long as adjacent elements of R" are not drawn simultaneously. By drawing every other
element of R" at the same time, the Markov chain can be reduced to just three “blocks.”
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Special cases of the model include Vasicek; Cox, Ingersoll, and Ross; and
the linear drift class considered by Chan et al.
The Euler approximation of the nonlinear drift model is given by

Fres1 — e = h(oo + agrg + azrlzc +as/rk) + \/EUVZGIﬁLl« 9)

It is important to note that the usual sufficient conditions for convergence
of the Euler approximation are not met by this model. Specifically, growth
and Lipschitz are conditions are violated as r — 0 and as r — co. Because
the minimum and maximum interest rates observed in the sample are
about 3% and 24%, respectively, it is possible that failure of these condi-
tions in regions far from where the data were actually realized is unim-
portant. Because of these concerns, however, several tests of convergence
are performed in Appendix C, with the results highly supportive of con-
vergence.

In particular, the appendix shows that augmenting with high-frequency
data is particularly important when looking at monthly data, as interest
rates generated by a naive discretization (£ =1) can easily be rejected as
coming from the corresponding diffusion process. By reducing the dis-
cretization interval to .05 or .2, however, the tests no longer result in
rejections. In the simulation of daily data, discretization bias is not
detected, implying that discretization bias may not be very important for
these data. With the support these results provide, we proceed with the use
of the discretization scheme.

The heteroscedasticity in Equation (9) may be eliminated by rearran-
ging the Euler approximation as

Fipl — T . . _
LR -~ k= ao\//_lrk7 + 041\/}_1}’]1( s azx/f_lri K
Vhr,

+Oé3\/ﬁi’]:1_7 + O€k+1 (10)

were v considered a known constant rather than a parameter to be
estimated, this rearrangement falls under the standard homoscedastic
linear regression framework. The “flat” prior p(«a, o) = 1/0 and the nor-
mality of the ¢, would therefore lead to a Student-t/inverted
gamma distribution for the parameter vector (o, o) conditional on the
full set of actual and augmented data. In order to estimate -y, an additional
Metropolis—Hastings step must be added. This step is described in
Appendix D.

3.1 The data

The time series used to proxy for the short-term interest rate is the same
seven-day Eurodollar rate series used by Ait-Sahalia (1996b). The data are
graphed in Figure 3. This daily series, with 5505 observations, covers the
period from June 1, 1973, to February 25, 1995.
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Figure 3

The one-week Eurodollar rate

The figure depicts daily observations of the one-week Eurodollar rate from June 1, 1973, to February 25,
1995.

One goal of this article is to determine the robustness of nonlinear mean
reversion to different sampling intervals. In addition to estimating the
model using the entire daily sample, I will repeat the estimations using
only the 261 month-end observations. While the daily data have the
potential of adding additional information, they appear to be very noisy
with many highly transitory shocks, especially in the first half of the
sample. Part of this noise appears to be microstructure-related, since the
reported rates are usually approximate multiples of one-sixteenth of 1%.
Monthly data should allow us to mitigate the effects of this predominately
high-frequency noise. In any case, if our primary concern is to learn about
the drift of the process, it is likely that monthly and daily data will yield
similar results, as higher-frequency observation tends to add little infor-
mation about parameters of the drift.

3.2 Prior distributions

I will consider several prior distributions with the goal of determining how
different prior beliefs affect conclusions about the shape of the drift
function. The two classes of priors are considered — the flat prior and
an approximate Jeffreys prior—are both chosen to represent different
notions of prior ignorance. Within each class I will consider differing prior
beliefs about stationarity. The first is a prior that is not informative about
stationarity. The second is a prior that contains a belief that the process
is stationary with probability one. The last is a belief that the process
is stationary, and furthermore, that the stationary is drift induced,
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corresponding to the parameter restrictions imposed by Ait-Sahalia
(1996b). Differences in conclusions across the six priors will be taken as
evidence of a Bayesian small sample problem, in which no “objective”
Bayesian inference is possible.

The first class, the flat prior, is particularly easy to work with and is
interesting for a variety of reasons. Flat priors allow us to examine most
directly the shape of the likelihood function. Since the flat prior mode is
typically very close to the maximume-likelihood estimate, sometimes iden-
tical to it, flat prior results have a frequentist interpretation. In addition,
the flat prior is also a natural choice since it is the prior that is often
favored by applied Bayesian researchers.

In the case of exogenous regressors, the flat prior has a more theoretical
grounding as well, since it is synonymous with the Jeffreys prior, which is
known to have many desirable properties. One such property is that the
Jeffreys prior is invariant to reparameterizations of the model —two
models parameterized differently will yield the same results if each is
analyzed under the Jeffreys prior derived under its own parameterization.
Another is the fact that the Jeffreys prior is the prior distribution that
minimizes Shannon’s commonly used measure of information, giving a
more formal justification for the view that the Jeffreys prior is maximally
ignorant.

When regressors are endogenous, the flat and Jeffreys priors no longer
coincide.” As has been argued forcefully by Phillips (1991a, 1991b), flat
priors can be quite informative for time-series models. In his analysis of
the first-order autoregressive model, y, = py,_; + ¢, Phillips notes that the
data should be expected to do a better job distinguishing nearby values of
the autoregressive parameter p when the true value of p is close to or
within the explosive region |p| > 1. Intuitively, if y explodes then the ratio
of signal to noise about p goes to infinity, since the mean is level dependent
but the variance is not. In a frequentist setting this behavior leads to the
superconsistency and downward bias of the MLE estimator.

Phillips argues that the flat prior, by ignoring this property of the
model, effectively imposes a prior view that explosive behavior is improb-
able. Mechanically the MLE estimate of p is identical to its Bayesian
posterior mean. By not anticipating and correcting for the bias of the
MLE estimator, the researcher is implicitly taking an informed view that
this bias is somehow desirable.

Proposing to use the Jeffreys prior as a better representation of prior
ignorance, Phillips derives the Jeffreys prior for the AR(1) model and
finds that it assigns much higher prior densities to values of p in the
explosive region than to nonexplosive values of p. In effect, the Jeffreys

7 Stambaugh (1998) is a recent case in which flat and Jeffreys priors are different both in their form and in
the inferences drawn using them.
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prior offsets the finite sample bias of MLE. Phillips finds that the conclu-
sions that result from using the Jeffreys prior are similar to those made
using frequentist unit root econometrics. Namely, the rejections of unit
roots that result from flat prior Bayesian analysis are generally overturned
when using the Jeffreys prior.

Whether or not the short rate actually has a unit root, its high degree of
persistence makes concerns about the flat prior relevant for our analysis.
I therefore consider an approximation of the Jeffreys class of priors as an
alternative to flat priors.®> Again, I consider the case in which the prior
belief contains no information about stationarity and the case in which
parameter combinations that generate stationary or drift-stationary beha-
vior are viewed as having zero prior one.

Without a prior belief about stationarity, the flat prior is given by

1
PF(OGU,’Y)O(;, (11)

while the stationary flat prior is’

1
prs(a, 0,7) o o for ap <0 & a3 >0, or v>1.5 & a3 >0, (12)
0 otherwise.
The flat prior that imposes drift-induced stationarity is
for ap <0 & a3 >0,
prp(a,0,7) e @ (13)

o
0 otherwise.

The Jeftfreys prior, as discussed in Appendix E, does not have a closed-
form representation and must be computed by simulation. If we let p;
denote the Jeffreys prior that does not impose stationarity, then the
corresponding stationary prior is given by

pi(a,0,7) fora,< 0& az>0, orvy>1.5 & a3 >0,
pis(a,0,7) o . (14)
0 otherwise.
The Jeffreys prior that imposes drift-induced stationarity is then
ps(a,o,7) forax; <0 & as >0,
pis(a,o,7) o . (15)
0 otherwise.

In all cases, o must be positive.

8 The approximation arises because it is assumed in the derivation of the Jeffreys prior that the discretized
process is observed continuously, so that data augmentation is not required in the computation of the
prior. The implications of this assumption are discussed in Appendix E.

% The case in which ag>0, o < 0, and a, = a3 = 0 is also consistent with stationarity but has zero prior
probability (since the prior contains no point masses) and can therefore be ignored. Assigning a point
mass to a, = a3 = 0 in the prior should be expected to tilt posteriors away from nonlinearity.
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These “restricted” priors used to impose stationarity are particularly
easy to work with. Following Box and Tiao (1973, p. 67-69), it can be
shown that, in the region in which the restricted prior is nonzero, a
posterior which incorporates a restricted prior is proportional to the
corresponding posterior using an unrestricted prior. Where the prior
probability is zero, so must be the posterior probability. This result
suggests the simple approach of accept/reject as a way of drawing the
parameters in the restricted case: draw the vector of parameters as if the
prior were unrestricted and accept only those parameter vectors for which
the stationarity restrictions hold.

3.3 Results

Markov chains were simulated to length 110,000 and the first 10,000
draws were discarded to negate the effects of initial conditions. To facili-
tate numerical computations only 1 out of every 10 iterations of the chain
were saved, leaving 10,000 draws from the posterior distribution for each
prior. A natural concern in any Markov chain Monte Carlo method is
that the posterior draws are too highly autocorrelated, an indication that
the chain may be slow to converge to its invariant distribution. The
autocorrelation of the 10,000 draws saved is not high, however. In fact,
the first-order autocorrelations of the drift parameter draws are nearly
identically zero. The draws of ¢ and ~ have first-order autocorrelations of
about .5, declining to about .02 at the 10th lag, values that should not raise
concerns about convergence.

Given the results in Appendix C, discretization bias is eliminated by
setting /2 equal to .2 for all analysis with daily data and .05 for analysis
with monthly data. Smaller values of / have no noticeable impact on any
of the results.

Table 1 lists descriptive statistics on the posterior draws for the annual-
ized parameters for both sampling frequencies and each of the six priors.
Specifically, I report the means, standard deviations, and 95% highest
posterior intervals.'®

Comparison of panels A and B reveals major differences between the
parameter values implied by the daily and monthly data. First, the drift
parameter posterior means are significantly closer to zero for the monthly
data than they are for the daily data. Surprisingly, the monthly data
generate much lower standard deviations for the drift parameter poster-
iors than do the daily data.

The obvious cause of this difference is the much higher annualized
volatility of the daily Eurodollar rates. Using the posterior mean values
of o and  obtained under the flat prior, I compute and plot the time series

10 For unimodal distributions such as these, the 95% highest posterior density (HPD) interval is calculated
numerically as the shortest interval that contains at least 95% of the posterior draws of a given parameter.
It may be interpreted as a Bayesian confidence interval.
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Figure 4

Model-implied Eurodollar volatility

The solid line represents the daily time series of spot rate volatilities implied by the nonlinear drift model
using posterior means of ¢ and v computed using daily data. The dashed line shows the corresponding
monthly time series computed using monthly posterior means.

of or]. Figure 4 compares the resulting annualized volatility paths that
result from using daily and monthly posterior means. The differences are
striking, with daily data implying an average annualized volatility of
about 5.6%, compared with just 2.7% implied by the monthly data.

In addition to simply being higher overall, volatility in the daily data is
less level dependent than it is for monthly data. For daily rates, the
posteriors of « for different prior distributions are tight around means
between 1.35 and 1.4, slightly lower than the values reported by Chan et al.
That monthly rates imply a somewhat higher « is consistent with the
presence of transitory noise that is less level dependent.

One possibility is that this noise is simply a product of a bid-ask effect or
the existence of a discrete grid on which rates or prices are quoted.
A preliminary version of this article calculated that such a grid would
have to be fairly coarse for this to be a plausible explanation. A quick
calculation yields a similar result: Suppose the observed interest rate, r,, is
the sum of some “true” unobserved rate, r;, and an i.i.d. error, n,, that is
normally distributed with mean zero. The variance of the change in
observed rates is therefore equal to

var(Ar}) + 2var(n,). (16)

As the sampling frequency decreases, the first term comes to dominate the
overall variance, making the observation error 7, irrelevant. For higher-
frequency data, however, this term should be more important.
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Rough calculations reveal that raising the annualized volatility from
2.7% to 5.6% as the sampling frequency increases from once per month to
once per day would require the standard deviation of 7, to be around 0.2
percentage points, which would seem to be a large amount in the liquid
Eurodollar market.

While the choice of prior has little impact on the posteriors of the
variance parameters o and ~, the prior has a major effect on the posterior
means of the drift parameters (g, a1, ap, a3). Posterior standard devia-
tions are also affected by the prior, with larger differences in the monthly
results. In general, the flat prior results in posteriors for the drift para-
meters that are further away from zero than those of the Jeffreys prior,
although with somewhat higher standard deviations.

Because they impose sign restrictions, it is not surprising that the priors
that impose stationarity result in posteriors that are more conclusive
about the signs of the drift parameters. Nevertheless, for both sampling
frequencies and for each prior, the large dispersion of the posteriors often
makes inferences about the exact magnitudes of individual parameters
difficult, especially the parameters of the drift function.

Because the multivariate posterior distribution exhibits strong correla-
tions, sometimes above .95 in absolute value, looking at marginal poster-
iors may understate the informativeness of the joint posterior. In addition,
the parameters («, a1, an, a3) have, individually, little economic interpre-
tation, so a more illuminating viewpoint of the posterior is desirable.
A natural quantity of interest is the drift function itself,

wu(r) :a0+a1r+a2r2+a3/r, (17)

evaluated over a variety of values of r. Using the parameter draws of the
Markov chain, a posterior of the drift function can be evaluated for
the range of r observed in the data (2.9% to 24.3%). Figures 5 and 6
show the medians and 95% HPD confidence intervals (dashed lines) of
these distributions for each prior and sampling frequency.

Panel A of Figure 5, for example, reveals a pattern of nonlinear mean
reversion similar to that reported in previous studies. Little positive or
negative drift is found for rates between 3% and 15%, while very strong
negative drift is found for higher rates. The magnitude of the effect is
striking. When the short rate is at 20%, its posterior median drift is —45%
per year. Even the upper bound of the 95% confidence interval is about
—10% per year.

In comparison, the same data, when analyzed under the Jeffreys prior,
produces much weaker evidence for nonlinear drift. Panel B of Figure 5
shows that the drift posterior computed under the Jeffreys prior has
substantial mass above zero even for interest rates above 15%.

Given that the flat prior analysis suggests highly stationary parameter
values, imposing stationarity does not substantially affect any results, as is

812



Nonlinear Mean Reversion

Panel A: Flat Prior Panel B: Jeffreys Prior
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Figure 5

Interest rate drift posteriors for daily data

The figure reports posterior means and 95% highest posterior density intervals (the shortest interval
containing 95% of all posterior mass) for the drift function,

a0 +ayr+ a4+ as/r,

evaluated over the range of r observed in the sample. All posteriors were estimated using daily Eurodollar
data from June 1, 1973, to February 25, 1995.
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Figure 6
Interest rate drift posteriors for monthly data

Panel B: Jeffreys Prior
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The figure reports posterior means and 95% highest posterior density intervals (the shortest interval
containing 95% of all posterior mass) for the drift function,

a +ayr+ axr? + as/r,

evaluated over the range of r observed in the sample. All posteriors were estimated using month-end

Eurodollar data from June 1973 to February 1995.
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apparent in Table 1 and panels C and E of Figure 5. Under the Jeffreys
prior, however, stationarity is no longer as obvious, so a prior belief that
imposes stationarity has a significant impact. In panels D and F, we see
that nonlinear drift is restored even under the Jeffreys prior.

Given the form of the parameter restrictions imposed by drift-induced
stationarity, the nonlinearity found in panel F is not totally unexpected,
since the restriction that «, >0 ensures a negative drift for sufficiently
high levels of the interest rate. What is interesting is that this negative
drift is inferred for values of r that are not too extreme, with reliably
negative drifts for interest rates as low as 15%. Because the posterior
distributions of ~ lie below 1.5, stationarity must be induced by the drift
rather than the volatility of interest rates. Therefore there is little
difference between the results generated by the two different types of
stationarity restriction.

Comparing the daily results of Figure 5 with the monthly results of
Figure 6 reveals a relation similar to that found in the parameter estimates
themselves: nonlinear mean reversion appears much stronger in daily data
than it does in monthly data, despite the fact that confidence intervals are
larger for daily data. As measured by the width of the 95% HPD intervals,
the monthly data are actually more informative, and they suggest that
nonlinear drift, if it exists, is not as large as one would conclude after
looking only at higher-frequency data.

As with daily data, monthly data support more nonlinear drift more
strongly under the flat prior than the Jeffreys prior. In fact, panel B of
Figure 6 shows that monthly data provide no evidence of any drift when
viewed under the Jeffreys prior, generating a drift posterior that is almost
perfectly centered around zero. When a stationarity restriction is added to
either prior, whether that stationarity is drift induced or volatility induced,
nonlinear drift is again observed, but with a magnitude far below that
implied by daily data.

These results suggest that the finding of nonlinear drift is highly depen-
dent on the choice of the sampling frequency, the type of prior—flat or
Jeffreys — and the prior belief about whether interest rates are stationary.
Only for daily data under a flat prior can this negative drift in high interest
rates be inferred without imposing stationarity.

For both daily and monthly data, discretization bias is evident when
comparing the above results with those generated under the naive discre-
tization (k= 1). For daily data analyzed under the flat prior, for example,
the posterior mean of +y rises from 1.31 when 7=1to 1.36 when h=.2, a
movement of more than two posterior standard deviations. Reducing
h even further to .05, however, does not further change this mean. For
monthly data, the mean of v under the flat prior rises from 1.56 with =1
to 1.63 with 1= .05, and then rises slightly to 1.64 as % is decreased further
to .01.
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Panel A: Daily Data with h=.2 Panel B: Daily Data with h=1
0.5 0.5

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
interest rate interest rate
Panel C: Monthly Data with h=.05 Panel D: Monthly Data with h=1
0.25 0.25

-0.25 -0.25 N
AN
N
-0.5 -0.5
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
interest rate interest rate
Figure 7

Discretization bias in interest rate drift posteriors
The figure reports posterior means and 95% highest posterior density intervals (the shortest interval
containing 95% of all posterior mass) for the drift function,

ap +arr + o + as/r,

computed using different values of the discretization parameter 4. For daily data, the results for
h=.2 correspond to the results reported previously for the flat prior. For monthly data, the
h=.05 results are identical to the previous flat prior results. Choosing / = 1 sets the Euler approximation
frequency equal to the frequency of the data, making data augmentation unnecessary but inducing
discretization bias.

Drift inferences change and discretization bias is reduced through data
augmentation. Panels A and B of Figure 7 show the drift posteriors
obtained using daily data under the stationary Jeffreys prior with /4 set
either to 1 or to .2. While the differences are not large, the drift non-
linearity is slightly more severe with =1, and the posterior variance
appears smaller as well. Differences are much more pronounced in
monthly data, as evident in panels C and D, where a conclusion of drift
nonlinearity appears to hinge on the value of / chosen, with smaller # now
making nonlinear drift significantly more likely.
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3.4 What belief does the flat prior represent?

Although the flat prior is intuitively appealing and has a natural inter-
pretation as being similar to maximum likelihood, it cannot be justified
formally as uninformative. As Phillips (1991a, 1991b) argued for the
first-order autoregressive model, the flat prior for the nonlinear drift
model is likely to represent an informed belief about the probabilities of
different parameter vectors that are near the boundaries of the stationary
parameter space.

A natural question is whether a bias like that found in the simple AR(1)
model might appear in the more complicated model considered here. I will
then ask how results generated under the Jeffreys prior should be expected
to differ.

Suppose interest rates are generated according to the linear drift model

dr; = (g + ayry)dt + or]dB, (18)

but when we estimate the model we include the nonlinear drift parameters
as well:

dr; = (ag + aur, + aar? + as/r,)dt + or]dB,. (19)

What will be the sampling distribution of the posterior mean of the vector
a=(ag, ay, @y, @3)?

While sampling distributions are of obvious interest to the frequentist
econometrician, they are useful to the Bayesian as well. Because sampling
distributions are known a priori, they are revealing about the properties of
the prior. In particular, biases can be interpreted as evidence of a prior
that is not completely uninformative.

The Monte Carlo experiment performed is designed to capture some
characteristics of the daily sample of Eurodollar data. One thousand 5505-
day samples were simulated under the parameter values «gy=.0072,
o= —.12, 0=1.55, and v=1.36. While the values of ¢ and  are equal
to their posterior means from Table 1, «p and o are chosen to generate a
highly persistent process that slowly reverts to a long-run mean of 6%.""!
Because discretization bias appears to be negligible for daily data, the
process was both simulated and estimated with #=1, meaning that no
data augmentation was used.

Posterior distributions were computed under both the flat and Jeffreys
priors used above. With posterior means chosen as point estimates, the
top half of Table 2 contains bias and root mean squared error summaries
for the six parameters of the model. The bottom half addresses the
frequencies with which the true parameters are within the top 5% or

1 The properties of the linear drift function, .0072 — .12 r,, become more apparent by rewriting the function
as .12 (.06 —r,).
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bottom 5% of the posterior distributions, where values near 5% are clearly
desirable for each.

While the volatility parameters are precisely estimated under both
priors, the results show substantial bias under the flat prior for all four
parameters of the drift. Using the Jeffreys prior results in biases that are
uniformly smaller, in some cases by wide margins. For instance, under the
flat prior the parameter «; is on average estimated to be equal to —25.48,
even though its true value is zero. The Jeffreys prior results are much
better behaved, with a bias of just —1.11 for the same parameter. Root
mean squared errors are also much lower under the Jeffreys prior, gen-
erally around half of their values under the flat prior.

It is also interesting to look at the frequencies with which the true
parameter values lie in the tails of the posterior distributions. In this
dimension, both priors exhibit difficulties. Ideally an uninformative
prior would have the property that true parameter value would be con-
tained in the upper 5% of the posterior mass in approximately 5% of the
Monte Carlo samples. Table 2 shows, however, that in 1000 Monte Carlo
samples, the true value of a3, zero, was never in the upper in the upper tail
of the posteriors computed under the flat prior, while it was in 60% of the
upper tails using the Jeffreys prior. Less extreme but still problematic
results are obtained for other parameters. Neither prior therefore ade-
quately represents a completely uninformed view.

More important is how these biases are translated into biases about
the drift as a whole. Following the procedure in Section 3.3, I compute

Table 2
Monte Carlo simulation results

Qo €3] Qz a3 o Y

True parameters 0.0072 -0.12 0 0 1.55 1.36
Bias
Flat prior —0.0979 2.740 —25.48 0.00117 0.0136 0.00124
Jeffreys prior 0.0288 —0.452 —1.11 —0.00042 0.0178 0.00197
Root mean squared error
Flat prior 0.1406 4.049 41.66 0.00185 0.1057 0.01981
Jeffreys prior 0.0759 1.818 15.67 0.00108 0.1105 0.02053
Probability that true parameter is in top 5% of posterior
Flat prior 0.277 0.003 0.246 0.000 0.053 0.055
Jeftreys prior 0.035 0.096 0.047 0.607 0.089 0.093
Probability that true parameter is in bottom 5% of posterior

Flat prior 0.000 0.269 0.001 0.284 0.074 0.070
Jeftreys prior 0.174 0.051 0.048 0.031 0.124 0.119

The table reports results from the Monte Carlo simulation of the nonlinear drift model
dr, = (ag + arr + aar? + as /r,)dt + or]dB,

under parameter values that produce linear drift. Bias is defined as the average difference between
posterior means and true parameter values, with root mean squared error defined similarly. The
bottom two panels report how often the true parameters fall in the upper and lower tails of the
posterior distributions.
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Figure 8

Monte Carlo distributions of the estimated drift

The figure summarizes the results of 1000 Monte Carlo simulations of interest rate paths generated by a
model with linear drift. For each simulated sample, posterior distributions of the parameters of the
nonlinear drift model,

dr; = (g + arr, + azrf +az/r)dt + or]dB;
were computed under both the flat and Jeffreys priors. Panel A plots the average of the posterior means of
the drift function in addition to the true drift function (the dotted line), while panel B summarizes the

standard deviation of this estimator as a function of the level of the interest rate. Panels C and D report
how often the true drift falls in the upper and lower 5% of the posterior distributions.

a posterior mean for the drift function for each of the Monte Carlo
samples. The average of the drifts computed under each prior, as well as
the true drift, are plotted in panel A of Figure 8.

The graph reveals that the biases apparent in the elements of o under
the flat prior generate strong biases toward nonlinear drift. Furthermore,
the magnitudes of the nonlinear drift typically estimated using the flat
prior are not unlike those estimated by Ait-Sahalia (1996b), CHLS (1997),
and Stanton (1997), as well as in the current article. Panel A also shows
that while the Jeffreys prior does not completely eliminate this sort of bias,
it reduces it considerably. Panel B shows that the standard deviation of the
Jeffreys prior “estimator” is less than half of that of the flat prior.
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Panels C and D report the frequency with which the true drift falls in the
upper 5% and lower 5% of the posterior distribution, respectively. Ideally,
if a prior is truly uninformative these frequencies should each be close to
5%. Unfortunately the figure shows that both can be far from that value
for both priors.

For the flat prior, panel C shows that the true drift for interest rates
above 10% is in the posterior distribution’s upper tail in 15% to 22% of all
samples. Meanwhile, the probability that the true drift is in the lower tail
of the posterior distribution is too low for the flat prior. Furthermore,
summing these frequencies reveals that the true drift, for high interest
rates, is in the middle 90% of the posterior distribution less than 80% of
the time. The holder of a flat prior, in addition to exhibiting bias, therefore
shows a tendency to be overly confident in his conclusions.'?

Panels C and D show that drift posteriors computed under the Jeffreys
prior are comparatively well behaved for high interest rates, but that they
have deficiencies at low to moderate rates. Specifically, the frequencies
with which the true drift lies in the upper and lower tails of the posterior
distribution are both far too high. At an interest rate of 5%, for instance,
there is roughly a one in three chance that the true drift will lie outside the
middle 90% of the posterior. Since both the bias and estimator standard
deviations are very small in this region, the result can only be explained by
the Jeffreys prior generating inferences that are overly sharp. When using
the Jeffreys prior, inferences that small but significant positive or negative
drift exists in low to moderate rates should therefore be discounted.

Before looking at the data, the holder of a flat prior expects to conclude
in favor of the existence of nonlinear drift even when it is not a true
feature of the data. As in the autoregressive model, the flat prior therefore
represents an informative prior belief that the model is stationary. In
particular, the flat prior in this case corresponds to a belief that the drift
is nonlinear.

We can find some intuition for the directions of these biases in an
analogy with linear time-series models. In the case of the AR(1), finite
sample bias tends to make the process appear more mean reverting than it
actually is, with the magnitude of this bias decreasing as the sample size
grows [see, e.g., Marriott and Pope (1954)]. Since drift nonlinearity is a
feature of the tails of the empirical distribution of short rates, the para-
meters that determine the degree of nonlinearity in the model, a, and a3,
are effectively estimated with less data than the parameters ag and a;,
which substantially affect the drift of the short rate throughout that

2 Since flat prior analysis generates conclusions similar to maximum-likelihood estimation, a natural

question from the frequentist perspective is how often the null hypothesis that o, = a3 = 0 is rejected.
Likelihood ratio statistics computed from the 1000 Monte Carlo draws show that the probability of
rejecting at the 95% level is 9.3%, while the probability of rejecting at the 90% level is 17%.
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distribution. As with the AR(1), finite sample biases lead us to find
spurious mean reversion, but with biases most severe in the nonlinear
parameters «, and a3, we also incorrectly characterize this mean reversion
as nonlinear.

These results provide a natural interpretation of the drift posteriors
graphed in Figures 5 and 6. In panels A and C of Figure 5, we saw that
adding a belief in stationarity to the flat prior resulted in few changes. The
Monte Carlo exercise suggests that this is because the flat prior is already
informative about stationarity. The same effect is present in panels A and
B of Figure 6, although not as strongly. The Jeffreys prior, meanwhile,
represents less of a belief in stationarity, so the addition of this informa-
tion to the prior has large effects. In Figure 6, panels B and D, for
example, assuming stationarity leads to the conclusion that nonlinear
drift is highly probable, even when no drift was evident without that
assumption.

. Specification Analysis and an Extension to the Model

The very different inferences drawn using daily and monthly data are
compelling evidence for model misspecification, since for diffusion mod-
els, all sampling frequencies should generate similar parameter estimates,
although possibly of differing precision. In this section I present addi-
tional evidence of model misspecification and explore an alternative
model that reconciles some earlier results.

4.1 A specification check

A direct specification analysis may be performed by examining the nor-
malized residuals that are generated in the estimation process at each step
of the Markov chain. In the Euler approximation,

Fstyn — Tin = h(rins @) + Vho (i, d)ex, (20)

the normalized residuals ¢, are assumed to be independent standard
normal random variables.

Following Zellner (1975), we may view € as a parameter vector and
compute the posterior distributions of various functions of it. For model
diagnostic purposes, these functions should include moments and auto-
correlations. Violations of either independence or normality is indicative
of model misspecification.

Posterior distributions of these functions are obtained similarly to
posteriors of the model parameters. At each iteration of the Markov
chain, given the current draw of the parameter vector and the augmented
data, the time series of ¢, may be calculated.!> The mean, standard

13 Results in this section are based on the flat prior, although other priors lead to similar conclusions.
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Table 3
Specification analysis

Panel A: 1y, — 1 = hpp(rin @) + Vho(ren, ¢)ex

Mean(e) StDev(ex) Skew(er) Kurt(ex) pi(er) pimler)
Daily data 0.0000 1.0000 0.0656 4.7368 —0.0169 —0.0639
(0.0061) (0.0042) (00255  (0.4501)  (0.0060)  (0.0056)
Monthly data —0.0002 0.9999 0.0013 3.0036 0.0002 0.0025
(0.0138) (0.0096) 0.0339)  (0.0678)  (0.0137)  (0.0135)
Panel B: 11y, — rin = hp (rens Oxns &) + Vho' (rins Oy 6) €,
Ok~ 1n — O = 1t (Bkns ) + Vo (B, 0l
Mean(ej,) StDev(e},) Skew(e},) Kurt(e}) p(€r) I2VAGY)
Daily data —0.0003 1.0000 —0.0779 3.3503 —0.0016 —0.0003
(0.0061) (0.0042) (0.0169 0.0698)  (0.0060)  (0.0060)
Monthly data 0.0019 0.9999 —0.0002 3.0059 —0.0012 —0.0022
0.0277) (0.0198) 0.0678)  (0.1370)  (0.0277)  (0.0279)
Mean(ef) StDev(e] Skew(el) Kurt(e] p1(€]) pi/n(€r)
Daily data —0.0001 1.0001 —0.0001 3.0123 0.0003 .
(0.0060) (0.0043) (0.0147)  (0.0301)  (0.0060)  (0.0060)
Monthly data —0.0000 0.9998 —0.0125 3.0556 —0.0038 —0.0025
(0.0278) (0.0198) 0.0679)  (0.1463)  (0.0278)  (0.0283)
plers €)
Daily data 0.0001 (0.0059)

Monthly data  —0.0008 (0.0275)

The table reports posterior means and standard deviations (in parentheses) of various moments of the
residuals of the one- and two-factor models. A correct specification implies that the average residual,
Mean(e;), should be zero. The residual standard deviations, StDev(e,), should be one, Skew(e;) should be
zero and Kurt(e,) should be three (since it represents total rather than excess kurtosis). Within-period
order autocorrelation, p;(ex), between-period autocorrelation, pip(€), and cross-equation correlation,
p(e;. €l), should all equal zero.

deviation, skewness, and kurtosis of the e vector are then computed for
comparison with their theoretical values of 0, 1, 0, and 3, respectively. In
addition, the first and 1/Ath order autocorrelations are calculated to
detect violations of independence, where the first-order autocorrelation
primarily captures within-period dependence and the 1/4th order auto-
correlation captures dependence between adjacent periods.

Panel A of Table 3 lists the posterior means and standard deviations of
these functions of e. For daily data, only the mean and standard deviation
of the standardized residuals appear to be close to their theoretical values.
Residuals exhibit positive skewness and pronounced excess kurtosis, and
their autocorrelations appear to be negative, particularly between adja-
cent days. Taken together, these observations suggest there is a transient
and fat-tailed component of interest rates that is not captured by the
current model specification.

Results from monthly data reveal none of these problems, as the i.i.d.
normal assumption appears to be well satisfied. This further supports the
notion that the source of the model misspecification is a transient compo-
nent that ceases to be relevant at a one-month horizon. The possible
sources of such a component include bid-ask bounce and feedback from
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the reserve requirement cycle effects in the Federal funds market identified
by Hamilton (1996).

The existence of this noisy component of high-frequency interest rates
casts strong doubt on the relevance of some of the previous results and
those of the studies that use the same data. As the data come from Ait-
Sahalia (1996b), the criticisms are relevant for this article in particular, but
they are also applicable to some of the parametric analysis of Chapman
and Pearson (2000), which also uses the daily Eurodollar data to estimate
a nonlinear one-factor model.

4.2 A nonlinear stochastic mean model of interest rates
Durham (2002) also finds that interest rate drift nonlinearity is more
associated with noisy interest rate data, and he has suggested that the
apparent transitory component not currently captured by the model
motivates the adoption of a stochastic mean model of interest rates.
These models posit that interest rates are driven by a persistent process,
but that rates deviate from this process in a random but highly transient
way. Examples of stochastic mean models may be found in the articles by
Andersen and Lund (1997), Balduzzi, Das, and Foresi (1996), Jegadeesh
and Pennacci (1996), and Piazzesi (2001), among others.

The stochastic mean model considered in this article,

dr, = k(6 — r))dt + 0°dB" (1)

do, = (ag + a1, + b? + a3/0,)dt + 097‘1352)’ (22)

has the interest rate , mean revert to the stochastic mean process 6, in a
linear fashion, putting all drift nonlinearities in the stochastic mean
equation.'* The volatility elasticity is allowed to differ between the two
processes, since earlier results suggested that more transient dynamics
may have a lower elasticity. As simplifying assumptions, both variances
are assumed to depend on 6, only, rather than on both 6, and r,, and the
two Brownian motions are assumed to be independent.

The stochastic mean model is somewhat more difficult to estimate since
the 0, process is latent. Nevertheless, the econometric approach described
previously and in Appendix B is easily extended to such models. Follow-
ing this algorithm, parameter estimates were obtained using daily data by
again setting i1 =2 for daily data and 4= .05 for monthly data.

Panel B of Table 3 reveals that the two-factor stochastic mean model
shows much less evidence of misspecification than did the previous

14 Tdeally, one might like to make the drift functions of both equations nonlinear. The decision to focus on
the stochastic mean equation reflects a desire for parsimony and the literature’s focus on nonlinear mean
reversion as a long-run phenomenon.
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one-factor model. While the interest rate equation [Equation (21)] gener-
ates some excess kurtosis in its standardized residuals when estimated
from daily data, it is far less than that reported for the original model.
No violations of i.id normality are apparent for the stochastic mean
equation or for either equation when estimated with monthly data.

Parameter posterior statistics for the stochastic mean model estimated
with daily data are reported in panel A of Table 4. Figure 9 contains the
corresponding drift posterior graphs, where the drift shown is now the
drift of the stochastic mean process, 6,, rather than the interest rate.
As before, a variety of priors are used, with the flat prior now given by
p(K, & 6,a,0,v)x 1/€o. Instead of deriving a new Jeffreys prior on the
combined set of drift parameters « and «, I use the approximate Jeffreys
prior on « derived for the univariate process. While this is not the true
Jeffreys prior for the two-factor model, it is the Jeffreys prior for the drift
parameters in « conditional on the vector (k, &, 8, 0, 7). The high precision
of the posterior distributions of these parameters suggests that condition-
ing on these parameters should be relatively harmless.

Prior robustness is also checked by varying the prior belief about
stationarity. Since it turns out that x>0 with posterior probability one
for all prior distributions, stationarity of the joint process depends in
practice solely on the conditions on « and « described in Section 1.

Both Figure 9 and panel A of Table 4 reveal that the dynamics of the
stochastic mean process estimated from daily data are almost identical to
the dynamics of the original nonlinear interest rate process when esti-
mated using monthly data. The transient dynamics identified earlier there-
fore appear to be well captured in the difference between the r, and 6,
processes.

Given the unobservability of 6,, estimating the stochastic mean model
using 261 monthly observations should be imprecise, at best. In addition,
the transitory nature of the deviations of r, from 6, induces a potential
aliasing problem, since high-frequency dynamics or r, should be difficult,
if not impossible, to estimate using low-frequency data. Nevertheless, for
completeness, parameter estimates obtained using monthly data are
reported in panel B of Table 4. The corresponding drift plots are in
Figure 10.

The table shows that there are large differences between the values of «
and ¢ supported by daily and monthly data, although this is somewhat to
be expected due to aliasing. In the frequency domain, it is known that
cycles of higher frequency than that of the observed data will be incor-
rectly attributed to lower frequency cycles [see Hamilton (1994)]. Since the
deviations of r, from 6, implied by daily data have half-lives well under one
month, the aliasing problem is likely to be severe here.

The monthly parameter estimates of the stochastic mean process, how-
ever, capture a much lower frequency dynamic and are almost identical to
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Figure 9

Stochastic mean drift posteriors for daily data

Panel B: Jeffreys Prior
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The figure reports posterior means and 95% highest posterior density intervals (the shortest interval
containing 95% of all posterior mass) for the drift function of the stochastic mean process,

oy + 0119-‘1-(1292 + a3 /0.

All posteriors were estimated using daily Eurodollar data from June 1, 1973, to February 25, 1995.
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the daily estimates. In addition, the precision of the posterior distributions
of the drift parameters are almost identical to the precision obtained with
daily data, suggesting again that high-frequency data have little informa-
tion to add over monthly data about the shape of the drift function.
Figures 9 and 10 confirm earlier results that nonlinear drift is primarily
a feature of a misspecified model of high-frequency data. While sufficient
stationarity assumptions can be imposed through the prior to generate
nonlinear drift, the magnitude of this nonlinearity is much less than that
found under the original model using daily data. Using monthly data,
conclusions are largely unaffected by the choice of model, as the short-
term deviations from the stochastic mean process become irrelevant.

4.3 An economic specification test

Because one of the primary reasons for estimating the short-rate process is
to be able to use that process to price other fixed-income securities, a
natural evaluation of a model might therefore be based on how well the
model describes the prices or price dynamics of these securities.

Specifically 1 consider whether the models and parameter estimates
reported above are consistent with the observed volatility of three-
month interest rates. While this maturity is relatively short, it is still
substantially longer than the seven-day rates used to estimate the model.

Model bond prices are calculated under the local expectations hypo-
thesis. Longstaff (2000) has argued that the expectations hypothesis is an
accurate characterization of three-month repo rates, but may fail to hold
for Treasury bills because of institutional demand for the high liquidity
they provide. Duffee (1996) documents liquidity-driven volatility in Treas-
ures bills that appears absent from other short-term debt. Because repo
rates are difficult to obtain over a long sample, I use Eurodollar loan rates
instead, which should similarly be unaffected by liquidity effects.
Although these Eurodollar rates contain a credit risk component, if this
component is relatively smooth it should not influence the calculation of
daily interest rate volatilities.'

Given a level, ry, of the current short rate, three-month bond prices
B(ry) for the one-factor model are obtained by simulating 10,000 three-
month paths of the short rate and then calculating the Monte Carlo
estimate

| 10,00 25
B(rg) = —10’000 ; exp <_/to r,dl) , (23)

where a trapezoidal approximation is used to compute the integral. The
three-month interest rate is then computed as R(rp) = —(1/.25)logB(ro).

15 A constant term premia would not affect these calculations either.
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Figure 10

Stochastic mean drift posteriors for monthly data

Panel B: Jeffreys Prior
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The figure reports posterior means and 95% highest posterior density intervals (the shortest interval
containing 95% of all posterior mass) for the drift function of the stochastic mean process,

o+ 8+ arf® + a3 /6.

All posteriors were estimated using monthly Eurodollar data from June 1973 to February 1995.

829



The Review of Financial Studies | v 16 n 3 2003

Following Ito’s lemma, the volatility of the three-month rate is then
obtained by numerically differentiating R(ro) and multiplying this deriva-
tive by the instantaneous volatility of the short rate, yielding (OR/dro)ory.

Volatilities for the two-factor model are calculated similarly under the
assumption that ro = 6. 16 As before, simulation is used to obtain R(ro, 6,),
R(rg + €, 6y), and R(rg, 6y + ¢) for each value of r,. Together, these may be
used to numerically calculate the partial derivatives OR/dry and OR/0b.
Because of the independence of the processes for r, and 6,, the three-month
interest rate variance is given by

AR 2 /OR 2
(a—ro("o,@o)é@g) +<a—90(}’0,90)090/) . (24)

These calculations were performed using both models and both daily
and monthly posterior distributions computed under the flat prior. From
each posterior, 500 sets of model parameters were drawn at random to
construct posterior distributions of the three-month rate’s volatility as a
function of its level. Figure 11 plots the mean of this distribution, along
with its 5th and 95th, percentiles, as solid lines.

These model-implied volatilities are compared to a locally linear non-
parametric regression estimate of the daily volatility of changes in the
three-month rate. This regression estimate is calculated using the Federal
Reserve’s time series of three-month Eurodollar rates over the same time
period used to estimate the models. Figure 11 plots these curves as dashed
lines, along with the 5th and 95th percentiles for the nonparametric
estimate calculated from 5000 draws of the Kiinsch (1989) block bootstrap
with a block size of 100."”

While comparison of Bayesian posteriors to frequentist confidence
intervals is somewhat informal, the top left panel shows clearly that the
volatility in daily Eurodollar rates is largely absent from three-month
Eurodollar rates, as the one-factor model fitted to daily data grossly
overpredicts the level of volatility of this longer-maturity yield. When
fitted to monthly data (top right panel), the model-implied volatilities
come very close to matching the nonparametric estimates, implying
again that transient movements in the short rate do not impact the
three-month rate.

16 Since the deviations of r, from 6, are short-lived, the initial state of r, is fairly unimportant.

17 Given the time series of r3,,(¢), I run a locally linear regression of realized squared changes y(¢) = (r3p(t) —
3t — 1))* on a constant and r3,/(7 — 1). In local linear regression, the fitted value at 73y, is obtained as
the intercept of the weighted least squares regression of y(r) on a constant and r3y (1 — 1) — 73p. The
weights are proportional to the normal density with mean zero and standard deviation .0125 (the
bandwidth parameter) evaluated at r3)(# — 1) — 3. The Kiinsch (1989) bootstrap algorithm resamples
the time series r3,,(¢) in blocks of consecutive observations in order to account for the persistence of the
data. Local linear regression is applied to each resampled dataset to generate the 5th and 95th percentiles
graphed.
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Panel A: 1—Factor Model, Daily Data Panel B: 1—-Factor Model, Monthly Data
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Figure 11

Nonparametric versus model-implied three-month interest rate volatility

Solid lines represent the mean, 5th, and 95th percentiles of the posterior distribution of the three-month
rate’s volatility, calculated under the model listed and assuming the local expectations hypothesis. The
heavy dashed line depicts three-month volatilities calculated using a locally linear nonparametric regres-
sion, while other dashed lines show Sth and 95th percentiles from the bootstrap distribution of the

nonparametric regression line.

The bottom panels contain results for the stochastic mean model. This
model produces three-month volatilities that come very close to matching
the nonparametric estimates regardless of what sampling interval is used
to estimate the model, suggesting that it is better specified than the one-
factor model.

Given the problems with transient noise in the seven-day Eurodollar
rate, one might argue for using a different short-term rate, such as the
Federal funds rate. Unfortunately other very short-term rates generate
similar results, not reported here. The Federal funds rate and, to a lesser
extent, the 30-day Eurodollar rate are both more volatile and have much
stronger nonlinear mean reversion when sampled daily versus monthly.
Another alternative would be to use a longer maturity rate, such as the
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three-month Treasury bill rate, to proxy for the short rate. Chapman,
Long, and Pearson (1999) argue, however, that the three-month yield is a
poor substitute for the “instantaneous” rate of interest when the model
under consideration is nonlinear, as is ours. Using the longer yield “can
significantly affect both estimates of the diffusion function and discount
bond prices.” The use of noisy short-maturity rates may therefore be
unavoidable.

. Conclusion

Taken together, the results of the article combine to suggest that objective
evidence for nonlinear mean reversion in the short-term interest rate is
weak. The conclusion that high interest rates exhibit strong negative drift
is extremely sensitive to the choice of prior, even when the choice is made
between priors that could all be defended as representing relatively unin-
formed views. Results are also sensitive to the sampling frequency and
model, with daily data implying much stronger nonlinearities and a level
of interest rate volatility almost twice that apparent in monthly data.

Results in Chapman and Pearson (2000) suggest that nonparametric
methods are biased toward finding nonlinear mean reversion even when it
is not present. This article establishes that fully efficient parametric infer-
ence (such as maximum likelihood) may be just as vulnerable to such false
inferences. From a frequentist perspective, this vulnerability arises in the
form of biases similar to those found for simpler linear time-series models.
In the nonlinear drift model, however, these biases affected nonlinear
terms most severely, often generating spurious nonlinearity.

From a Bayesian perspective, we may attribute the tendency to find
spurious nonlinearity to the selection of an informative prior distribution,
possibly one that does not accurately reflect the investigator’s actual prior
belief. This view suggests that alternative priors be considered, and the
article considered a number of variations. While it is impossible to say
which prior is the “correct” one, several characteristics of the prior
distributions are important to note.

e The flat prior effectively represents a prior belief that the drift
function is nonlinear, with the same shape and possibly the same
magnitude as the drift function that is estimated in the data. Similar
to the AR(1) model, the posterior means of the drift parameters are
biased in repeated samples. A flat prior, by not anticipating and
correcting for this bias, is implicitly taking an informed view that this
bias is desirable.

e The Jeffreys prior, which Phillips (1991b) argues is the best
representation of true prior ignorance, suggests no evidence for
nonlinear drift unless stationarity is imposed.
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e Imposing stationarity in a prior distribution represents a nontrivial
amount of prior information. While such a prior is not unreasonable,
it must be recognized that conclusions drawn about nonlinear drift
under this prior are not entirely data based. For the monthly interest
rate sample and also for the two-factor stochastic mean model, a
stationarity restriction was required to generate the conclusion that
high rates have a negative drift.

It was also shown that changing the sampling frequency can result in
very different inferences about both the drift and volatility of interest
rates. Specifically, daily data appear to contain a volatile transitory com-
ponent that is unreflected in longer-term dynamics or the volatilities of the
three-month Eurodollar rate. A nonlinear stochastic mean model of inter-
est rates appears to fit the data much better and suggests that it is the
unmodeled transitory component of short rates that is largely responsible
for the finding of nonlinear drift.

While many of the problems with high-frequency data could be
avoided, without loosing much sample information, by looking solely at
month-end observations, the data augmentation procedure was crucial for
eliminating discretization bias in these estimates. Under some priors,
discretization bias was sufficiently severe to substantially change one’s
inferences about drift nonlinearity.

Although a definitive conclusion about the existence of nonlinear drift
cannot be made solely by observing the short rate itself, there exists a
variety of information in long-term yields and interest rate options that
may be much more revealing than the short rate itself. While incorporat-
ing these data into the analysis of nonlinear drift remains a challenge, it is
called for by the fact that although more than 5000 observations of daily
data are available, the current data sample is effectively small. With these
data alone, precise statements about the shape of the drift func-
tion — statements that different individuals with different prior beliefs
can agree on — are impossible to make.

Appendix A: An Introduction to the Gibbs Sampler and Data Augmentation

The Gibbs sampler is motivated by the frequent need to draw from intractable multivariate
distributions. For simplicity, consider the bivariate case in which we desire to draw from
the distribution p(a, 8]X), where X represents the observed data. In many cases the density
pla, f1X) is of an unknown form, while the conditional densities p(«|3, X) and p(5|a, X) are
of standard forms.

A Gibbs sampling chain is formed as follows:

1. Choose some arbitrary value for « and label it «.

2. Draw f, from the distribution p(3|cy, X).

3. Draw «; from the distribution p(«|5o, X).

4. Repeatedly draw (3, from p(S3|a,, X) and «,, from p(a|S,, X).
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Under very mild conditions, the pairs (o, 3,) converge in distribution to p(a, 8|X).
Posterior means, for example, may therefore be calculated by simulating a long chain of
(a» B,), discarding the values at the beginning of the chain (the “burn-in period”), and then
averaging the remaining draws.

A simple example of the usefulness of the Gibbs sampler is provided by the following
discrete time version of Vasicek’s interest rate model:

1=t = k(p—r-1) + o€ (25)

While this model is linear in the data, it is nonlinear in parameters (because of the interaction
of x and p), making standard linear regression analysis inapplicable.

Note, however, that were p a known constant, then the equation would conform to the
standard linear regression framework, with the quantity p—r_; filling the role of the
regressor. Under the flat prior p(k, o) x l/o, the posterior distribution of x and o is well
known;  is distributed as a student’s 7 and ¢ as an inverted gamma.

Similarly, if x and o were known, then Equation (25) could be rearranged as

re— (1 = K)r—1 = K+ o€, (26)

With s assumed known, the model is linear in its lone unknown parameter . Since o is
known, the flat prior p(u) < 1 implies that the posterior of x is normal.

By alternately drawing from the conditional distributions p(k, o|u, R) and p(u|s, o, R),
the Gibbs sampler may be used to obtain draws from the joint posterior, p(k, o, MR).18
Averaging these draws, for example, would produce an estimate of the posterior mean.

In principle, the Gibbs sampler may be used to draw from any distribution p(6", ¢, ...,
6~ X) in which the conditional distributions (010, j # i, X) are of standard forms. Further-
more, each parameter “block,” ¢, may be uni- or multivariate. The Gibbs sampler may
therefore be used to analyze very complex posteriors when decomposition into simpler
conditionals is possible. A variety of examples may be found in Chib and Greenberg (1996).

A particularly powerful incarnation of the Gibbs sampler has been coined “data augmen-
tation” by Tanner and Wong (1987). This approach is motivated by the fact that many
posterior distributions could be calculated more easily if some unobserved variable was in the
researcher’s dataset. Although the researcher does not observe this latent data, he may know
(or be able to draw from) their distribution conditional on the observed data and the
unobserved model parameters. The solution is to form a Gibbs sampling chain, alternately
drawing from the conditional distribution of the model parameters given the observed and
augmented data, and the conditional distribution of the augmented data given the real data
and the model parameters.

Jacquier, Polson, and Rossi (1994) used this technique in a well-known analysis of
stochastic volatility models. In this case, estimation of the price and volatility equations
would be straightforward were volatility an observed variable, that is,

p(parameters|prices, volatilities)

is a known density. Since volatility is latent, it must be integrated out to obtain the true
posterior )

p(parameters|prices).
This is accomplished using a Gibbs sampling chain that alternates between the two
conditionals’

p(parameters|prices, volatilities) and p(volatilities|parameters, prices).

18 In this example it is easy to see that the “blockings” of the Gibbs sampler are often not unique. It would
have been equally straightforward to alternate between p (k|u, o, R) and p (1, o]s, R).

19 The conditional distribution of the volatility paths turns out to be quite complicated, requiring the use of
additional tools similar to the ones used in later sections of the current article. For purposes of illustra-
tion, I skip the details here.
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In essence, the latent, or “augmented,” data are treated as a high-dimensional parameter
vector. The data augmentation scheme therefore generates the joint posterior distribution of
the parameters and the augmented data given the observed data. This makes it possible to
construct marginal posteriors not only of the parameters, but for the latent variables as well.
In applications such as stochastic volatility, this may be a very useful by-product of the
estimation scheme.

Appendix B: Details of the Data Augmentation Procedure

Let X, denote an L-dimensional diffusion process satisfying the stochastic differential
equation

dxX, = p(Xy, ¢)dt + o(X:, ¢)dB,, (27)

where u(x, ¢): REx®— RE and o(x, ¢) : REx®— REx RP satisfy regularity conditions,
B, is a D-dimensional standard Brownian motion, and ¢ is a vector of parameters.
The Euler approximation of this model is given by

Xiesyn = X + hp( X, @) + Vho (X, d)ex 41, (28)

where ¢, ~ i.i.d. N(0, Ip), Ip is the D-dimensional identity matrix, and /4 is the discretization
interval length. For brevity, we will write X, as X}, making dependence on a particular value
of h implicit.

As stated above, the approach followed in this article will be to estimate the discretized
process of Equation (28) while allowing / to be arbitrarily small. If the discretization
interval / is smaller than the frequency of the observed data, Tanner and Wong’s (1987)
data augmentation algorithm will be used to augment the observed low-frequency data with
unobserved high-frequency data.

Suppose the vector X represents the time k/ realization of the L-dimensional process
generated by the Euler approximation of Equation (28). Divide the L-dimensional vector X
into subvectors, X and X}, based on whether the realization of the component of the process
at that time is observed (X)) or unobserved (X}). If k% is a noninteger, then X}, is completely
unobserved, implying X}/ = Xj and X} = ¢. In other cases, X} may be partially observed, as
in a stochastic volatility model, where a price may be observed while volatility remains latent.

To perform the data augmentation, the Markov chain cycles through all k for which X}
is nonempty and uses the Metropolis—Hastings algorithm to replace old values of X}’ with
new ones.

To draw the new value of X}, let X", denote the set of all unobserved realizations save
X}, the unobserved part of the process realized at time k4. Let X° denote the set of all
observed data.

Our goal is to draw from the conditional distribution, p(X}|X",,X°, ¢). Because the Euler
approximation is a Markov process (reflecting our assumption about the underlying
diffusion), only the contemporaneous and adjacent observations are relevant conditioning
variables, meaning that

PXGXY, X0, ) = p(X( | Xio1, X, Xir, ©).- (29)

Bayes’ rule and the Markov property can be applied to show that this density is propor-
tional to

m(XY) = p( X1 | X, X2, 0)p(Xi | Xi—1, X, 6), (30)

a product of two Gaussian kernels, one for X;; and one for X}/. While 7(X}’) is generally not
proportional to a Gaussian density for X}, the second term, p(X}/| Xi_1, X¢, ¢), is a Gaussian
density corresponding to the conditional distribution of X}’ from the Euler discretization.
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We therefore use this density as a candidate generator for drawing X} with the Metropolis—
Hastings algorithm.

For every candidate-generating density, the Metropolis—Hastings algorithm specifies the
acceptance probability required for convergence. The acceptance probability depends on
both the target and candidate-generating densities evaluated at both the current and candi-
date draws. This probability is higher for candidate draws that have higher probability under
the target density, but is lessened for draws that are generated too frequently by the candidate
distribution. If ¢(X}/) denotes the density of the candidate generator and w(X}') the target
density (up to a constant of proportionality), then the acceptance probability (the probability
of replacing the current draw X}’ with a new draw X}*) is equal to

(X)X
m‘“{ﬂxz)q(&;‘*) ’ 1}' G

The main advantage of the candidate-generating density proposed is simply that it reduces
the number of calculations required to implement the algorithm, since the candidate density
cancels out one of the kernels in the target density of Equation (30). The candidate density
P(X{| X1, X7, ¢), along with a target density that is proportional to Equation (30), therefore
results in a very simple implementation of Metropolis—Hastings:

® Draw a candidate value, X}, from p(X}/| X1, X7, ¢) as a possible replacement of the
current value, X}/

® Replace the current value, X}/, with the new draw, X}*, with probability

(X1 | X, X7, 8) }
ming ——————~- %2 2 '] 5, 31
s Gl

Otherwise, retain the old value.

Essentially we simulate the process forward from time (k — 1)/ to time ki to generate the
candidate draw X}, then accept X" over the current draw X} depending on how likely each
one is to have preceded Xj ;.

One of the important characteristics of a candidate-generating density is that its tails
dominate those of the target. If this is not the case, then the algorithm may display high
rejection rates or even become “stuck” for many draws. The candidate generator chosen
naturally has fatter tails than the target because it is conditioned on less information (Xj_
and X7) than the target density (X;_;, X}, and X;), so we do not experience such problems
here. Typically the acceptance rate for draws in the univariate case is about .6, while for the
bivariate case it is about .4.

Lastly, in the interest rate diffusions considered in the article, negative interest rates are
prohibited. Because the interest rate volatility rapidly declines as r— 0 for the models
considered, it is extremely rare for the candidate generator to produce a negative candidate
draw for the interest rate. In these rare cases we simply reject the draw.

Appendix C: Convergence of the Euler Approximation

Because Lipschitz and grown conditions are not satisfied by the drift or diffusion functions of
the nonlinear model, standard sufficient conditions for the convergence of the Euler approx-
imation are not met, raising the possibility that the approximation may not converge. In this
appendix I briefly consider two moment-based tests of convergence intended to provide some
validation of the Euler discretization.
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For a given set of parameter values satisfying stationarity conditions, N hundred year-long
paths of the interest rate process are simulated using the Euler discretization of Equation (9).
The terminal value of the ith simulation, r7; is taken as a single draw from the unconditional
distribution of the discretized process.

I first test whether the unconditional first through fourth moments of the discretized
process match those of the corresponding diffusion. Following the work of Ait-Sahalia
(1996a and 1996b), tools for solving for stationary densities have become well known. In
particular, we know that the stationary distribution of any diffusion process dr, = u(r,) dt +

o(r;) dB, is proportional to
1 "2
5 €Xp / u(x2) dx |.
o(r) r o(x)

Once this density is computed, moments may be calculated by quadrature.
Letting M; denote the jth uncentered moment of r calculated from Equation (32), define
the vector /; as

(32)

rri — M
rT: M,
b = 33
' rTl M3 ( )
rT, My

If the unconditional density of the Euler approximation, computed by simulation, matches
the diffusion process density, then E[A]=0. Given the independence of the rz;, these
moment restrictions may be tested, following Hansen (1982), by defining

& 1 &
— 2 . = f§ .
N 2 h; and S N 2 hlh[

(34)

and computing the statistic

q=T¢S g (35)

If E[h]=0, then as N — oo the limiting distribution of g is x> with four degrees of freedom.
(Since there are no parameters that must be estimated, the number of degrees of freedom
matches the number of moment conditions.)

The second test uses moment restrictions derived by Hansen and Scheinkman (1995) for
stationary diffusion processes. Let ¢(x) = x and ¢*(x) = x> denote two “test functions” and A
the infinitesimal generator of the interest rate diffusion process for a given set of parameter
values satisfying stationarity conditions.”® Hansen and Scheinkman’s results may be applied
to show that if the values r7; are generated by the diffusion process corresponding to A, then
the random vector

A¢(’”T,i)

Ad*(rri)
o= Ad(rri)p(rr-1,i) — (r'r,) Ap(rr-1,) (36)
' A¢™(rri)d(rr—1. “(rri) Ap(rr—1.)

('T’) A (rr-1)

YB(rr—1) —
Ap(rr )" (rr—1) —
¢ ( )= ¢ (rri) Ag"(rr-1,)

Ad* (rri)¢* (rr—1i

20 Hansen and Scheinkman’s (1995) results are stated in terms of the infinitesimal generators or the
forward (A) and reverse-time (A*) processes. For stationary one-factor diffusions, A = A", simplifying
the presentation here.
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Table 5
Euler discretization convergence tests
Daily data

h=1 h=.5 h=.33 h=.2
Test 1 (p-value) 8.61 (0.07) 0.42 (0.98) 4.30 (0.37) 8.44 (0.08)
Test 2 (p-value) 4.07 (0.67) 1.19 (0.98) 10.69 (0.10) 5.26 (0.51)

Monthly data

h=1 h=.5 h=2 h=.05
Test 1 (p-value) 107.62 (0.00) 15.34 (0.00) 3.21 (0.52) 5.99 (0.20)
Test 2 (p-value) 77.00 (0.00) 44.98 (0.00) 8.14 (0.23) 6.23 (0.40)

The table reports test statistics and p-values for two tests of the convergence of the Euler approximation
of the model

dr; = (o + eqry + axr? + as/r)dt + or]dB,.
In the top panel, results are reported for data simulated under the parameter values reported in the flat

prior column of Table 1, panel A, while the bottom panel uses parameters from panel B.

Test 1 checks that the first four unconditional moments of the discretized process match those of the
diffusion and is distributed asymptotically as a x*(4) under the null hypothesis that the discretized and
continuous-time processes produce the same stationary distribution. Test 2 checks moments from Hansen
and Scheinkman (1995) and is distributed as a x2(6) under the null.

has mean zero. Note for this test both the terminal value and next-to-terminal values r7; and
rr—1; must be collected from each simulation. A test statistic ¢, may be calculated similarly to
q1, but ¢, will have six degrees of freedom instead of four.

While the first test is used to check that the Euler approximation and diffusion process
produce the same marginal distribution for rz, the second test, since it relies on the joint
distribution of r7_; and r7, should also detect discrepancies between the transition prob-
abilities of the Euler approximation and that of the diffusion.

Each test was implemented using both the flat prior posterior means from daily and
monthly data to simulate data and construct the g; and z; variables. One hundred thousand
independent simulations were performed using values of / ranging from 1 to .05. Test
statistics and p-values are displayed in Table 5.

Overall, convergence does not seem to be much of an issue for data sampled at a daily
frequency, as none of the test statistics are large enough to reject the null hypothesis that the
simulated data are equivalent to data generated by the limiting diffusion process. Even
the daily simulations with 4=1 produce a distribution that is indistinguishable from the
true diffusion.

With monthly data, discretization bias is clearly evident, as both tests easily reject the null
that the Euler approximation, simulated with either 7=1 or 1=.5, generates the same
distribution as the diffusion process. Convergence appears extremely likely though, since
the same tests do not result in rejections for smaller values of /4. I conclude that concerns
about the validity of the Euler approximation for this model are not large enough to avoid its
use, though / should preferably be set equal to a number smaller than .2 for monthly data.

Appendix D: Drawing the Variance Parameters of the Short-Rate Model
The Euler approximation of the nonlinear spot rate model is given by
T+l — Tk = h(ao + are + Ozzri + (13/}’/() + \/ﬁo’?‘;ek+1. (37)

Because 7 is unknown, a closed-form conditional distribution for the full parameter vector
(g, 11, a0, 3, 0, y) given the augmented dataset does not exist.

838



Nonlinear Mean Reversion

Were ~ known, however, the Euler approximation could be rearranged as

rkr/l—Trk = ao\/ﬁr;"/ + Oq\/ﬁl‘,l;’y + 042\//;}’/2:’y + Oé;\/ﬁi’,?li7 + 0€k+1- (38)
k
In this standard regression form, flat priors imply an inverted gamma distribution for o and a
multivariate Student’s 7 distribution for («v, a1, a3, 3). If o were known as well, (ag, o, iz,
a3) would be multivariate normal.
Given this distribution for
p(ao, o, a2, 3R, R%, 0,7), (39)

the full parameter posterior could be drawn from in two separate blocks if the conditional
distribution

(o, 7|R®, R", g, vy, 2, 3) (40)

were known as well. While this distribution is of an unknown form, its density is known up to
a constant of proportionality as the product of the Gaussian Euler likelihood and the prior
distribution. Drawing o and ~ using the Metropolis—Hastings algorithm is therefore feasible.

Construction of a Metropolis step requires the specification of a candidate-generating
density for (o, 7). Our choice of candidate generator is driven by the availability of analytical
draws from

q(olv) = p(o|R*, R, g, a1, a2, 03, 7). (41)

Following standard linear regression techniques, this distribution of o is an inverted gamma.
Given a candidate-generating density for v, say g(7), a joint candidate generator is given by

q(a,7) = q(alm)q()- (42)

For g(~) we will choose a Gaussian density with mean M., and variance V2 which are chosen

by trial and error to minimize serial correlation in the draws of o and ~.
The Metropolis—Hastings acceptance probability, the probability of moving from one
draw (o, ) to a new draw (¢”, 7") is therefore equal to

. [ L(a",v")q(alv)q(v)
m‘“{ua, Do e’ 1}’ “3)

where L(o,7) is the data likelihood for o and « holding the other parameters fixed. The
Markov chain will therefore tend to move from (o, v) to (6%, 7*) when the latter yields a higher
likelihood, with this tendency tempered by the probabilities of (o*,~*) versus (o, 7) as draws
from the candidate-generating distribution.

Appendix E: Implementing the Jeffreys Prior

As a preliminary step, we discuss the calculation of the Jeffreys prior. While the full Jeffreys
prior is formulated as the square root of the determinant of the information matrix, for
multiparameter models it is common to define the Jeffreys prior for a subset of the para-
meters of the model. What is called the “Jeffreys prior” in this article actually consists of a flat
prior on ¢ and v, or p(o, 7) x 1/, multiplied by the square root of the determinant of the
block of the information matrix that pertains to a.

Using the Euler approximation likelihood, we calculate the 4 x 4 information matrix for
the a vector, whose (i,5) element is given by

E[leogL} (44)

Oaiaq/

where o= (g, a1, aa, a3).
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Evaluation of these expressions is problematic for several reasons. First, although these
partial derivatives can be evaluated easily, it is not possible to compute the expectations of
these expressions analytically. We must therefore resort to simulation to take expectations.

Second, the likelihood of the process is only computable after augmenting with high-
frequency data, while the expression above is an expectation of a function of the observed
data only. In order to maintain tractability, an approximate Jeffreys prior is therefore derived
under the assumption that the discretized process is observed continuously rather than only
once per period. Since more frequent observation of a process does not generally result in
sharper inference about mean parameters, the effect of assuming more frequent observation
is most likely unimportant.

The Jeffreys prior is defined as the square root of the determinant of the information
matrix. Given observations observed at intervals of length 4, the likelihood function may be
written as

7= o) 1 exp 71(1'/(“ — 1 — hog — hoqr,zif hozzr,zC — ha3/rk)2 ‘ (45)
2hmor] 2 hor}!

Taking logs and calculating second derivatives, we find

Plogl  h ’“r,zw Plogl  h ’“'1,27
a3 T 202 —~ k dagda; 202 e k
FlogL  h ’“rHW Plogl  h ’“r,l Ly
dapday 202 — k dapda; 202 — k
Flogl __ h \Roo, Plogl  h Ko (46)
a2 202 e K Oa Oy 202 yr k
Olog L h Ki 5, &logL h A,
= —— r, ! = ——
Oay Oz 20? £~ k 003 20? £~ k
FlogL  h Kir”" logL  h K'l,—z—zv
dandas 202 — K 003 T 202 —~ K

Using the fact that 7= Kh, define

N —

TK 1
T , 47
LelZS } )

and note that as 7 — 0 N(p) converges to the expected path integral of some power of r,. The
a block of the information matrix is therefore proportional to

NO)  N(1) N(2) N(-1)

[N N@) NG N(O)
lve Ne) ve Ny | “
N(=1) N(0) N(1) N(-2)
and the Jeffreys prior on (a, o, ),
(o, 0,7) \/|7/<7 (49)

To compute the Jeffreys prior in practice, the expectations in N(p) must be computed by
simulation. To evaluate the prior for a given set of parameters, 1000 interest rate paths, based
on 500 paths of standard normal deviates, were simulated using antithetic random variables.
To prevent nonnegativity, paths were truncated at .1%.%!

2l Changing the truncation to .01% did not substantially affect any results.
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Rather than redoing the parameter draws under the Jeffreys prior, we can make use of the
10,000 parameter draws made for the flat prior. Let the subscript J denote the Jeffreys prior
and F the flat prior, so

ps(@,0,7|R?) o< p(R|av, 0, 7)ps (e, 0,7) (50)

1
pF(OQU"Y‘RO) O(p(R‘)'a’U”Y) (51)

.
Substituting the second expression into the first, we have

Pi(GIR®) o< pr (@R )ps (v, 0. 7)0 o< pr($[R®)V/]1]. (52)

From our flat prior analysis, we already have many draws from p{$|R°). To “convert”
these draws into draws from p,($|R®), we turn once again to the Metropolis—Hastings
algorithm. Using our empirical distribution of pA$|R°) as the candidate generator, the
Metropolis acceptance probability of moving from ¢=(ag, aj, a2, a3, 0,7) to
¢" = (ag, af, 0,03, 0%, ") takes a simple form:

(g, ¢*) = max{iﬁj—éi;), 1}. (53)

Parameters that have greater probability under the Jeffreys prior will be favored, while those
with a low Jeffreys prior probability will be accepted with lower probability.
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