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Abstract

We find that the S&P 500 Index, its futures contracts, and its most popular ETF display
strong evidence of daily return reversal when implied variance is high. This negative serial
covariance is mostly observed following negative market returns, while positive returns show
a moderate tendency to continue when implied variances are high. Price changes around the
close and the open show a somewhat stronger tendency to reverse, though the serial covariance
we document generally takes longer than a day to resolve. Furthermore, reversal tend to be
stronger when option open interest is high, and the presence of return reversal has a significant
effect on the performance of option trading strategies. Our results have important implications
for how market participants interpret implied variances, which due to serial covariance provide
an extremely biased forecast of longer-horizon return variances.

JEL classification: G12, G13, G14.

Keywords: Implied volatility, return reversal, liquidity.
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1 Introduction

Option markets have the potential to provide extremely useful information to investors, even those

who are not interested in trading options. An obvious example is an asset’s implied volatility,

which may be valuable to an investor making a risk/reward calculation involving that asset. A

precondition is that the implied volatility is reasonably correlated with actual return volatility, and

that any bias in implied volatility be stable and therefore correctable.

Starting with the studies of Day and Lewis (1992) and Lamoureux and Lastrapes (1993), the

empirical options literature has shown that implied variances from equity index options are highly

informative predictors of future realized variances.1 At the same time, they display a systematic

upward bias, and furthermore display a degree of variation that appears to be greater than that of

actual ex ante variance, results that may be interpreted as reflecting the existence of risk premia on

jumps and/or volatility. Fortunately, under plausible assumptions this bias can be well captured

by a simple linear adjustment, as Chernov (2007) demonstrates empirically.

Evaluation of implied volatility forecasts have, since the inception of this literature, generally

evaluated those forecasts on the basis of their ability to predict variances computed from all daily

returns realized over the remaining life of the option. This choice is natural. Since the seminal

work of Merton (1980), it has been well known that higher frequency data can be used to construct

a more accurate proxy of a latent volatility process. Thus, forecast evaluation using daily realized

variances should provide far more power than, say, forecasting the squared monthly return. Forecast

evaluation based on realized variances computed from intra-day returns, an approach used by Blair

et al. (2001), in theory has even greater informativeness, though microstructure issues complicate

implementation and interpretation.

Under the assumption that returns are serially uncorrelated, a variance forecast that is con-

structed be an unbiased predictor of realized variance from daily returns will offer a similarly

unbiased forecast of monthly return variance. This is important given that many uses of variance

1Somewhat contradictory evidence was presented by Canina and Figlewski (1993), who found that implied vari-

ances are essentially uncorrelated with future realized variances. The unrepresentative result of this paper is explained

by Christensen and Prabhala (1998).
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forecasts, for example in portfolio optimization, require that the variance forecast’s horizon corre-

spond to the anticipated holding period. Traditionally, this assumption has been accepted without

very much scrutiny.

There is a long list of studies, however, that challenge the assumption of zero autocorrelation.

One set focuses on the finding of positive index autocorrelation, first identified by Lo and MacKinlay

(1988) and Conrad and Kaul (1988) in studies of the CRSP market index. Campbell et al. (1993)

observed that the autocorrelation was decreasing in the level of trading volume. They further

hypothesized that autocorrelation should decrease with volatility, which was confirmed by LeBaron

(1992).

The difficulty in interpreting these results is that they could be due to the effects of asynchronous

prices, whereby the closing prices of different securities are indicative of values at different points

in time. This has been shown by Fisher (1966) to produce spurious autocorrelation at the index

level even when individual security returns are serially independent, and it is consistent with the

finding from these papers that autocorrelations are smaller in value weighted portfolios than in

equally weighted portfolios, which put more weight on stocks whose closing prices are more likely

to be stale. Furthermore, Ahn et al. (2002) show that the positive autocorrelations observed in

the so-called ‘cash’ market indexes are largely absent from futures returns, again suggesting that

serial correlation is likely a figment of microstructure effects and not something that is in any way

exploitable by traders.

More recently, however, a group of studies has documented new evidence of serial correlation in

stock market returns, but in this case the autocorrelation is negative and therefore inconsistent with

stale prices. Bates (2012), for example, reports that the value weighted CRSP portfolio displayed

significantly negative autocorrelations for several years during the U.S. Financial Crisis. Etula

et al. (2015) find strong evidence of short-term return reversals in U.S. and international stock

market indexes around the end of the month, a pattern that they attribute to the concentration

of institutional trading at that time. Chordia et al. (2002) demonstrate that aggregate order

imbalances, which are positively correlated with contemporaneous returns, negatively predict next-

day market returns. Ben-Rephael et al. (2011) show that daily flows in mutual funds generate a

2



similar pattern of reversal in the Israeli stock market.

The primary goal of our paper is to reassess the ability of implied variances of S&P 500 Index

options to forecast future realized variances at different horizons. Specifically, we are interested in

whether implied variances are as useful in forecasting longer-horizon (e.g. monthly) realized variance

as they are in forecasting short-run (e.g. daily) variances, where any difference is attributable to

the presence of serial correlation.

Our main result is that the VIX index, a measure of the implied variance of the S&P 500 Index,

is a much more biased forecast of longer-horizon variance than it is of the short-horizon variances

typically examined. Specifically, in regressions in which implied variance is the sole predictor, the

slope coefficient in a regression in which the dependent variable is the monthly squared return is less

than half the coefficient of a regression in which the dependent variable is the sum of squared daily

returns. Because the difference between these two dependent variables is a measure of inter-day

serial covariance, these results are equivalent to a finding that serial covariance is predictable by

implied variance. The predictability of serial covariance is highly significant.

This result is very robust. Similar results are obtained for the cash index, the S&P 500 futures

contract, and the SPY “Spider” ETF, suggesting that reversal-based trading strategies may be

implementable, depending on transactions costs. We find similar and significant results in both

halves of our sample, meaning that a single episode, such as the Financial Crisis, is not responsible

for our findings. Finally, we find predictable reversal using different measures of implied variances,

based on the Black-Scholes model and on a ‘model-free’ approach.

It is worth emphasizing that the serial covariance we are documenting is negative rather than

positive. In addition, our primary focus is on the S&P 500 Index futures market rather than a cash

index. Thus, our findings are fundamentally different from those of Lo and MacKinlay (1988) and

LeBaron (1992), for example, who may primarily be documenting patterns in the staleness of prices

that imply spuriously positive autocovariance as a result of the bias identified by Fisher (1966).

We further show that most autocovariance is the result of the reversal of negative rather than

positive returns. That is, as implied variances increase, a negative return is much more likely to

be reversed in the next day or more, while positive returns are not. This raises the possibility that
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either market liquidity is asymmetric, able to absorb buy orders with less transitory price impact

than sell orders, or that available liquidity is symmetric but more likely to be overwhelmed by

selling pressure, for example from fire sale-type trades.

These results are complementary to recent work showing that the VIX is related to market

liquidity. Most notably, Nagel (2012) shows that the level of the VIX is strongly positively related

to the profitability of the short-run reversal strategies of Lehmann (1990) and Lo and MacKinlay

(1990). Interestingly, while reversal trading has typically been most profitable in small, illiquid

stocks (see Avramov et al., 2006), Collin-Dufresne and Daniel (2015) find significant evidence of

reversal in the largest U.S.-listed stocks, but they see no relation between large-cap reversal returns

and the VIX index.

Our results are notable in that they provide an additional link between the VIX index and mar-

ket liquidity and substantially strengthen earlier findings by showing strong evidence of recurrent

negative autocorrelation at the index level. Our results are also somewhat unique in showing that

return reversal remains a significant force even in the last two decades, during which the returns to

traditional cross-sectional reversal strategies have been steadily declining (see Khandani and Lo,

2007).

Our second set of results concerns the exact timing of reversal. We see evidence of reversal in

daily close-to-close returns, but is that where the tendency to reverse is strongest? To answer this

question, we examine daily returns formed based on prices observed at times of day other than

the close. We find that reversal based on closing prices is indeed stronger than reversal based on

prices at most other times of the day. The exception is that reversal is particularly strong when

daily returns are based on prices immediately after the open. Regardless of the time at which daily

prices are recorded, autocovariances are more negative when implied variances are high. The effect

is not particularly strong for returns based on closing prices.

We also examine reversal over horizons shorter than a day. Specifically, we look at how returns

over the last N minutes of one day are reversed in the time from that day’s close to N minutes

after the next day’s open. We find that reversal is strongest for N between about 20 and 60.

Furthermore, this very short-term reversal is most sensitive to the level if implied variance is above
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average. When implied variances are high, futures price movements in the last 30 minutes or so

of the day have a very strong tendency to reverse during the overnight periods and the first 30

minutes of trading the following morning.

In light of the finding that returns around the end of the day seem to exhibit greater reversal,

particularly when implied variances are high, we examine a potential explanation. Specifically, we

hypothesize that end-of-day hedging by options traders may cause temporary price dislocation in

the market index. We therefore investigate the relationship between reversal and the level of open

interest in S&P 500 Index options. We find that the VIX forecasts negative future autocovariance

more strongly when this open interest is high. This result is obtained both for raw open interest

and for a detrended measure of open interest.

Our final set of results concerns implications for option trading strategies. As shown by Lo

and Wang (1995), the fact that asset prices are discounted martingales under the risk neutral

distribution means that option prices are unaffected by serial correlation – under the risk neutral

distribution, it does not exist. As a result, at least in theory, option prices should be more closely

related to daily return volatility than to monthly return volatility, which is impacted much more

heavily by serial correlation. At the same time, the expected payoff of the option is determined by

the actual distribution of returns, which does depend on serial correlation. Hence serial correlation

has a potentially important role to play in determining expected option returns.

The option strategy we focus on is the at-the-money straddle on the S&P 500 Index. This

combination of an at-the-money put and an at-the-money call is constructed to have zero delta,

so that it represents a bet not on the direction of prices but rather on the absolute value of their

change, i.e. it is a bet on volatility. Negative autocorrelation in the returns on the underlying asset

decreases the volatility of the underlying price at longer horizons, and hence reduces the expected

payoff of the straddle. Since the prices of the call and put are not reduced by that autocorrelation,

the result of negative autocorrelation should be lower average returns on the straddle.

For the straddle buyer, there is a natural way to avoid this trap, which is to rebalance the

portfolio daily such that at the end of every day the trader again holds an at-the-money zero delta

straddle. This works by making the trader, at the end of each trading day, indifferent as to whether
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the next day’s underlying price change is positive or negative, implying that they are protected

from the effects of return reversal.

We examine the returns on these two versions of the straddle trade, as well as the difference

in those returns, for straddles of one, two, and three months until expiration. On average, we find

that the buy-and-hold strategy underperforms the daily rebalanced strategy, reflecting the fact that

serial covariance is on average negative. However, these differences are not significant. When we

regress the difference between the buy-and-hold and rebalanced returns on implied variance, we find

a significant relation. When implied variance rises, serial covariance drops, and the buy-and-hold

strategy substantially underperforms the rebalanced strategy.

Taken together, the evidence presented in this paper shows that even the most liquid assets

display serial correlation in high uncertainty environments. The effect is not small. It leads to a

striking reinterpretations of what a change in implied variance actually means for investors, and

it has considerable implications for how equiy and option traders should behave in the midst of a

volatile market.

2 Variance and covariance forecasts

2.1 Regression framework

Traditionally, the literature examining implied variances as forecasts of future realized variances

has focused on the following specification:

Nt∑
i=1

r2i,t = αd + βdIVt−1 + εd,t (1)

In this regression, ri,t represents the logarithmic return of an asset on day i of month t minus the

contemporaneous riskless return. Nt is the number of trading days within that month, and IVt−1

is the implied variance of the asset at the end of the prior month.2

In this paper, we propose to also examine the regression based on squared monthly excess

2As a test of predictability in variances, the regression suffers from a slight misspecification because returns are

not demeaned. It has been understood at least since French et al. (1987) that demeaning has very little impact on

squared returns. We will return to this issue later to show that it is not affecting any of our results materially.
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returns, (
Nt∑
i=1

ri,t

)2

= αm + βmIVt−1 + εm,t, (2)

which follows from our use of continuously compounded excess returns, which at the monthly level

are sums of daily values. Because (
Nt∑
i=1

ri,t

)2

=

Nt∑
i=1

Nt∑
j=1

ri,trj,t,

we can decompose the monthly squared excess return as follows:(
Nt∑
i=1

ri,t

)2

=

Nt∑
i=1

r2i,t + 2

Nt−1∑
i=1

Nt∑
j=i+1

ri,trj,t. (3)

Aside from expected return effects, which will be small, the second term can be interpreted as a mea-

sure of serial covariance, while the first term is simply the sum of squared daily returns considered

above. Thus, the wedge between daily and monthly realized variance is inter-day autocovariance.

We compile several different series for each dependent and independent variable. Daily returns

are based on closing prices of the S&P 500 ‘cash’ Index, the front month S&P 500 futures contract,

or the SPY exchange traded fund, which is the oldest and largest ETF tracking the S&P 500 Index.

The riskless rate we use is from Kenneth French’s website.

Our independent variable is usually based on the VIX, which is the Volatility Index constructed

by the Chicago Board Options Exchange (CBOE). The VIX a model-free implied volatility con-

structed similarly to that proposed by Britten-Jones and Neuberger (2000), and its construction

involves interpolation such that the measure can be interpreted as corresponding to a one-month

contract. In some cases we use the VXO instead. This is a predecessor of the VIX index that is

based on the Black-Scholes model and is constructed from options on the S&P 100 Index.

We create a rescaled measure of implied variance as

IVt =
VIX2

t

120,000
, (4)

where VIX is replaced by VXO in some cases. The denominator reflects the conversion of percentage

to decimal and annual to monthly, so that the resulting series is comparable to our realized variances.

Table 1 contains summary statistics for the data that will underlie most of the analysis in this

section. All data in the table are monthly. The sum of squared daily returns is the dependent vari-
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able of regression (1), while the monthly squared return is the dependent variable of (2). Following

(3), we define the difference as the latter minus the former. The table also shows the end-of-month

values of the squared and rescaled VIX index, computed as in (4).

Several patterns in the data are immediately apparent. First, the average sum of squared daily

returns exceeds the average monthly squared return by a significant margin. From (3), this implies

that serial covariances are negative on average.3 A second observations is that all variance proxies

are persistent, though the sum of squared daily returns is more persistent than the monthly squared

return. It is possible that the lower persistence of monthly squared returns is the result of more

noise in that measure, but if so this noise is not obvious from the standard deviations of the two

proxies, since monthly squared returns display less variability. The higher volatility of the sum

of squared daily returns could be related to the presence of significantly greater kurtosis in daily

returns. A final observation is that implied variances on average exceed both measures of realized

variance, a standard result that likely reveals the presence of a volatility risk premium.

2.2 Main results

We report the results of variance forecasting regressions (1) and (2) in Table 2. The left side of

the table contains results for regression (1), where the dependent variable is the sum of squared

daily returns, which is the the traditional specification for evaluating the bias and efficiency of

implied variance forecasts. Consistent with a large literature, the slope coefficient of the regression

is highly significant in all specifications, with substantial R-squares. The slope coefficients are also

all slightly less than one, which is also a common finding, though we cannot reject the unit slope.

The right side of the table reports results for regression (2), in which the dependent variable is

the squared monthly return. Results here are much different. In almost every sample, the slope

coefficient drops by at least half, in many cases more, indicating that the variance of monthly

returns is much less responsive to changes in implied variances. This pattern holds for the S&P

3As we discuss below, our variance measures use returns that are not demeaned, and hence there is a small

difference between the sum of squared daily returns and the monthly squared return that is driven by expected

returns. However, this component should increase the monthly squared return relative to the sum of squared daily

returns. Hence it cannot explain the average difference shown in the table.
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500 Index, index futures, and the SPY ETF. It is present in our main sample period, in each half

of our sample, and in an extended sample. For the extended sample, we base our implied variance

measure on the VXO index rather than the VIX, since the former is available for four additional

years. Although regressions using the VXO are somewhat haphazard given that the dependent

variable is based on S&P 500 returns, while the independent variable is from S&P 100 options, the

results are nevertheless consistent with others. Furthermore, they show that the lower slope for

regression (2) is obtained in a period that includes the crash of 1987 and that it is found whether

we use model-free or Black-Scholes implied variances.

In comparing the two sets of results, we also see that the R-squares are usually much lower

for the monthly squared return regressions. This is to be expected. Since the work of Merton

(1980) and Andersen and Bollerslev (1998), it has been well understood that higher frequency

data contain significantly more information about the latent variance process and can be used to

construct much more powerful tests of the accuracy of variance forecasts. The monthly squared

return simply contains more noise, and as a result it cannot be predicted as reliably. The only

exception is for the extended sample, which includes the crash of 1987. This caused an enormous

outlier in daily squared returns, which was not as obvious in monthly returns.

For high frequency data to truly offer better inference they must be a proxy of the same latent

variance process, in that the variance rate of high-frequency returns be the same as that of low-

frequency returns. This is equivalent to stating that returns are serially uncorrelated.

To test for the predictability serial covariance directly, we use the result from (3) that a serial

covariance measure,

2

Nt−1∑
i=1

Nt∑
j=i+1

ri,trj,t, (5)

can be constructed from the difference between monthly and daily return variances. We refer to

this measure as ‘total autocovariance’ to emphasize that it is reflects all lead-lag relations between

daily returns within a given month.

Regressing total autocovariance on implied variance will yield a slope coefficient that is exactly

equal to βm − βd, the difference between the slopes of (2) and (1). Table 3 reports the results of

this regression, mainly to verify that the difference in slopes is statistically significant. In short,
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we find very strong evidence, across all samples, that covariance decreases with the level of implied

variance.

As noted above, this is at first glance the result of LeBaron (1992), who also shows that higher

variance reduces autocorrelations in the market index. The subtle but crucial difference is that

we are showing that higher implied variances make autocovariance more negative, while LeBaron

demonstrated that higher variance makes positive autocorrelations closer to zero. Furthermore, the

positive autocorrelations documented by LeBaron are in the cash index in a sample that ends in

1988, which leads to the concern that the autocorrelations are spurious, resulting from the stale

price bias of Fisher (1966). The negative autocovariances we are attempting to explain cannot be

explained by stale prices, and furthermore are present in the returns of easily tradable securities.

The results we have documented so far have rather striking implications for longer-term in-

vestors. Specifically, they show that when the VIX rises, say from 15% to 20%, the annualized

conditional standard deviation implied by the daily squared return regression, estimated from fu-

tures returns, rises from about 11% to 17%. The conditional standard deviation implied by the

monthly squared return regression rises from about 11% to just 14%.4 In other words, about half of

the increase in short-run volatility is transitory, present in daily returns but not in monthly returns.

Figure 1 shows the full relation between the VIX index and the annualized standard deviations

of stock returns, implied by the futures-based estimates of regressions (1) and (2). Overall, while

it is apparent that neither relation is exactly linear, the sensitivity of daily return volatility to the

VIX is roughly twice that of monthly return volatility. The difference between the two is, over

most of the historical range of the VIX, highly economically significant.

The presence of transitory volatility mirrors earlier work such as Poterba and Summers (1988)

and Campbell and Viceira (2002) documenting the presence of a substantial mean reverting com-

ponent in stock prices and showing how this reduces the variance of long-term returns. Barberis

4The relation between VIX and the conditional standard deviation can be convex or concave, depending on the

values of the slope and intercept parameters. For the daily squared return regression, it is convex. For the monthly

squared return regression, it is concave. This explains why the conditional volatility forecast constructed from the

daily squared return regression can increase more than one-for-one with the VIX even though conditional variance

increases less than one-for-one.

10



(2000) shows that these transitory returns have a significant impact on the portfolio decisions of

long-horizon investors. Our results have similar implications, except that they concern horizons of

days or months rather than years or decades.

2.3 Mean effects

Our results thus far are based on a minimal set of assumptions. One that deserves some scrutiny

is that the difference between the dependence of daily and monthly squared returns on implied

variances is that they are differentially sensitive to changes in expected returns.

Suppose that the average daily excess return in month t is equal to µt. Then the sum of squared

daily returns can be rewritten as the sum of a true variance measure and a term driven by expected

returns:
Nt∑
i=1

r2i,t =

Nt∑
i=1

(ri,t − µt)2 +Ntµ
2
t (6)

The squared monthly return is(
Nt∑
i=1

ri,t

)2

=

Nt∑
i=1

Nt∑
j=1

(ri,t − µt)(rj,t − µt) +N2
t µ

2
t

=

Nt∑
i=1

(ri,t − µt)2 + 2

Nt−1∑
i=1

Nt∑
j=i+1

(ri,t − µt) (rj,t − µt) +N2
t µ

2
t ,

where the last three terms can be interpreted as a true short-run variance component, a true

covariance measure, and an expected return component.

What these expressions show is that serial covariances are not the only difference between the

daily and monthly variances. They also differ because of how they are each impacted by expected

returns. Specifically, the impact of the mean on squared monthly returns is Nt (the number of days

in month t) times bigger than its impact on the sum of daily squared returns. Thus, it is possible

that the differences between the results obtained in regressions (1) and (2) are due to expected

returns being dependent on implied variances.

There is a large literature, starting with French et al. (1987), examining whether variances

predict returns. Originally, the predictor was a measure of volatility from lagged returns. More

recently, some authors are using implied volatilities, e.g. the VIX index, as predictors. Results
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from this literature are varied and appear to be sensitive to the sample periods and specifications.

While French et al. find little evidence of any relation between actual price volatility and future

market returns, some authors such as Bollerslev et al. (2015) find that expected long horizon market

returns do tend to be increasing in the VIX.

Table 4 investigates the possibility of a risk/return relation in our sample, reporting the results

of regressions of the form
Nt∑
i=1

ri,t = α+ β f(IVt−1) + εt, (7)

where f(x) = x,
√
x, or 1/

√
x. The dependent variable in all regressions is computed from daily

excess returns on S&P 500 Index futures, and the independent variable is based on either the VIX

or the VXO index. Sample periods are dictated by the availability of these volatility indexes.

In short, the table shows no evidence that implied variances are in any way related to expected

market returns. Thus, it seems almost impossible that any of our earlier results could have been

driven by mean effects. In addition, from a theoretical standpoint, a mean-based explanation of

our main results would have been unlikely. Our finding is that the slope from the regression based

on monthly returns is lower than that based on daily returns, i.e. βm < βd. For the low value

of βm to be attributable to a mean effect, it would have to be the case that µ2t was decreasing in

implied variance. This would require that mean returns be either very positive or very negative

when implied variances are low, moving closer to zero as implied variances rise. Since negative risk

premia are theoretically unlikely, this means that expected returns are decreasing in risk, which

is not only intuitively implausible but inconsistent with the handful of studies that find a positive

relation. All in all, we find little merit to the hypothesis that our findings are due to expected

returns varying with implied variances.

2.4 Covariance decompositions

In this section we examine the nature of the serial covariances that accompany high levels of

implied variance. We begin by decomposing the total autocovariance measure studied previously
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into a first-order term and a higher-order term. In particular, we can write total autocovariance as

2

Nt−1∑
i=1

Nt∑
j=i+1

ri,trj,t = 2

Nt−1∑
i=1

ri,tri+1,t + 2

Nt−2∑
i=1

Nt∑
j=i+2

ri,tri+1,t. (8)

The first term captures the covariance between adjacent days within the month. The second term

is a measure of all serial covariances at lags of two or more.

Table 5 shows the results of regressing each covariance component on implied variance. In short,

the table shows that both first-order and higher-order autocovariances are negatively related to the

level of implied variances. For most samples, the first order effect is more highly significant, but

with a smaller slope coefficient and a lower R-square. This indicates that the tendency for returns

to reverse when VIX is high is not exclusively a high-frequency phenomenon. There is substantial

evidence that more than a day is required for the reversal to occur.

That said, the effect of implied variances on first-order autocovariance is large when we take

into account that the standard deviation of the dependent variable in the first-order regression is

only about half that of the higher-order regression.5 Thus, even though the slope coefficient is

smaller in the first-order regression, implied variance nevertheless explains an important part of

realized first order autocovariances.

An alternative way to decompose covariance is to create a term that reflects reversal or contin-

uation following negative returns and another term that describes what happens following positive

returns. Specifically, we can write

2

Nt−1∑
i=1

Nt∑
j=i+1

ri,trj,t = 2

Nt−1∑
i=1

Nt∑
j=i+1

ri,trj,t1 (ri,t ≥ 0) + 2

Nt−1∑
i=1

Nt∑
j=i+1

ri,trj,t1 (ri,t < 0) , (9)

where 1(C) = 1 if condition C is true and 1(C) = 0 otherwise. If negative returns subsequently

reverse but positive returns continue, for example, then the first term will be positive and the

second term will be negative.

The results of regressing each of these two components on implied variance are presented in

Table 6. What emerges is a clear pattern in which higher implied variance predicts greater reversal

5The first-order covariance measure is on average the sum of about 20 elements. The higher-order covariance

sums about 190 elements on average. This would appear to be the natural explanation for the greater variance in

the higher-order covariance measure.
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following negative returns. Higher implied variances do not predict stronger reversals following

positive returns, however. In fact, we see evidence that they instead push serial covariance towards

positive values. This effect is smaller but nevertheless significant in most samples.

In the literature on return reversal in individual stocks, reversal of positive and negative returns

has been viewed as potentially arising from different sources. Da et al. (2014), for example, argue

that liquidity shocks are the primary cause of the reversal of negative returns, while positive returns

reverse as the result of investor sentiment combined with short-sale constraints. Our findings there-

fore reinforce existing work, such as Nagel (2012), which concludes that higher implied variances

are an indicator of low liquidity.

The finding that autocovariances become positive at high levels of the VIX is surprising given

our evidence thus far.6 While earlier papers such as Lo and MacKinlay (1988) and Conrad and

Kaul (1988) found evidence of positive autocorrelation in returns, this evidence was limited to

cash indexes, which are subject to biases resulting from stale prices. In addition, as shown by

LeBaron (1992), positive autocorrelation was stronger when variances were low. Thus, our findings

on continuation of positive returns are novel in several respects.

3 Reversal timing

Thus far we have seen substantial evidence that serial covariance in daily returns is related to the

level of implied variances. In this section we start by asking whether serial covariances tend to be

particularly large when based on closing prices, or rather is the behavior of close-to-close returns

representative of returns based on prices sampled at any given time of day. We also examine the

nature of higher frequency returns around the daily close to try to gain a better understanding of

the timing of serial covariance.

Finding some evidence that the behavior of closing prices is special, we then investigate one

possible explanation. We hypothesize that derivatives traders may show a tendency to rebalance

6Using the 2/1990 to 11/2015 sample of index futures, we have continuation when −0.0005 + 0.1910 × IV > 0.

Since IV = (VIX/100)2/12, this means that continuation of positive returns occur when VIX exceeds a value of

around 19.
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their hedge portfolios right before the close of trade, then a substantial part of the negative auto-

covariance we document could be related to order imbalances caused by hedging trades. If this is

the case, then we would predict that return reversal would be stronger when open interest in S&P

500 Index options is high. The section concludes by investigating this relationship.

3.1 Timing of daily returns

While it is customary to define daily returns based on subsequent closing prices, other conventions

could be used. As a way to determine whether there is anything in our results that is contingent

on using close-to-close returns, we now ask whether daily returns computed from prices at other

times of the day behave differently.

Specifically, we sample S&P 500 futures prices at times between 200 minutes before the close

and at the close as well as between one minute and 200 minutes after the open. For each of these

times, we construct a daily series of futures prices and use them to compute daily returns.

Figure 2 shows averages of monthly values of total autocovariance constructed from these daily

returns, where monthly total autocovariances are defined as in (5). Values on the left side of the

graph show results based on prices sampled some number of minutes before the close. Values on the

right show results from prices sampled after the open. The value obtained from end-of-day prices,

used elsewhere in the paper, is highlighted, as is the value calculated based on prices observed one

minute after the open.

The figure shows that daily returns based on prices just following the open have a much more

negative amount of serial covariance, suggesting that order imbalances near the open may be large.

The serial covariance of returns based on closing prices is smaller, but still somewhat more negative

than covariances based on prices away from the open and close. Thus, there is perhaps modest

evidence that prices around the close show a greater tendency to revert relative to prices sampled

closer to the middle of the trading day.

We next reexamine our main finding, that return reversal strengthens with implied variance,

using the same timing alternatives. Figure 3 therefore shows the slope coefficients of monthly

regressions of total autocovariances on lagged implied variances, which are computed based on the
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VIX index, where only the timing of the daily price series is changed.

In short, there is only modest evidence that returns based on end-of-day prices behave much

differently. Although the slope coefficient is maximized just prior to the close, the value of that

coefficient is not very different to coefficients obtained at different times of the day. What is perhaps

more notable is that the reversal of returns constructed based on prices just following the open is

not particularly strong when implied variances are high, even though reversal of those prices is high

unconditionally.

3.2 Timing of returns around the close

From Table 5, we know that a substantial amount of serial covariance is beyond the first order,

implying that reversal requires horizons of several days or more to complete. Nevertheless, there

remains the possibility that part of the return reversal we have seen happens over a much shorter

time frame. We investigate this by analyzing the relation between returns in the last N minutes of

one day and the return from the close of that day to N minutes following the next day’s open.

We perform this investigation by analyzing the performance of a reversal-based trading strategy.

This strategy will buy futures following negative returns and sell futures following positive returns.

The size of the position will be increasing in the magnitude of these returns. In addition, to make

strategies with different holding periods more comparable we will hold larger positions when the

holding period is shorter.

These goals are achieved using the following weight:

−0.01× rate of return in last N minutes of day t

E [|return in last N minutes of the day|] E [|return from close to N minutes after next open|]
The interpretation of the numerator is natural – we short futures following positive returns and

go long following negative returns, with position sizes that are proportional to the return. The

denominator is chosen so that the expected absolute portfolio return, or

E [|weight× return from close of day t to N minutes after t+ 1 open|]

is equal to 0.01 on average, at least approximately.

Implementation of this strategy requires estimates of the two expectations in the denominator.
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Since these are estimates of absolute values, they should be estimated with reasonable accuracy

even in small samples. We therefore proxy for each expectation using the average of the most recent

22 lagged values.

Figure 4 shows the average return, in basis points per day, on this strategy as a function of N .

The result is a clear peak in average returns roughly between N = 20 and N = 60. To be more

specific, the figure shows that a trader who bought or sold at the close based on the return over the

prior 30 minutes, and then held that position until 30 minutes after the next open, would earn on

average slightly more than 12 basis points per day. This is a significant return given the moderate

volatility of the strategy.7

Figure 5 shows how the expected return on the same trading strategies vary with implied

variance. The values plotted are simply the slope coefficients obtained from regressing trading

strategy returns on the lagged implied variance, which is again computed based on the VIX. Since

negative serial correlation will imply positive returns on a reversal strategy, we expect these slope

coefficients to be positive based on what we have seen so far. The figure shows that they are indeed

generally positive, and that the profitability of very short term reversal strategies, particularly

those with N between 5 and 45, are the most positive.

To summarize, in this section we have seen that although reversal is apparent at a daily horizon

or longer, there is a tendency for reversal to be particularly stronger over a much smaller window

before the market close and after the subsequent open. Reversal in this time frame is stronger

unconditionally, but it is particularly strong when implied variance is high.

3.3 Option open interest and return reversal

Given the somewhat special nature of return reversal right around the close, we hypothesize that

there may be tendency for order imbalances to concentrate towards the end of the day. While there

are many reasons why this might be the case, one possibility is that derivatives traders make their

final hedge-rebalancing trades at that time before markets close for the night.

7The strategy is designed to have an expected absolute return of 1% per day. If returns were normally distributed,

then their standard deviation would be slightly higher, around 1.25%. In our data, returns are not normal and the

standard deviations are closer to 2%.
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Besides giving a reason for why end-of-day reversal is particularly strong, an explanation based

on derivatives hedging could also give a rationale for the importance of implied variance in driving

return reversal. Specifically, higher implied variance is clearly a strong proxy for greater risk, which

makes hedging derivatives positions more critical. In addition, Jones (2003) shows that variance

and market returns become more highly correlated when variances rise. Thus, in times of high

variance, traders are not only able to delta-hedge using index futures, but they can also partially

hedge their ‘vega’ risk as well.

If derivatives hedging is indeed a factor behind return reversal, then we would expect reversal

strength to depend on the size of the option positions being hedged. Without a perfect proxy for

the extent of these positions, we rely simply on the open interest in the S&P 500 Index options

market, measured as the total number of puts and calls. Since open interest has trended upward as

option markets have increased in prominence, we also consider a detrended version of open interest

that is calculated by subtracting the lagged 66-day moving average of open interest from the current

value.

Because open interest can change quickly, often due to option expiration, we find that open

interest is primarily useful in predicting serial covariances over horizons of less than a month.

Table 7 reports the results of weekly regressions in which the dependent variable is the total

autocovariance from each week. This is computed similarly to (5) except that it uses all the returns

in a week rather than in a month. The independent variables include the implied variance and the

option open interest, both from the last day of the previous week (typically Friday). Regression

also include an interaction term.

In regressions by itself, we see that open interest has a negative but insignificant effect on return

autocovariance. When we include implied variance as a second predictor, the negative coefficient on

open interest becomes significant in the two specifications that use detrended open interest. When

we add an interaction term involving both implied variance and open interest, we find significance

in all four regressions.

Overall, the regression evidence suggests a modest but significant role for options markets.

Greater open interest means that any increase in implied variance is more likely to predict future
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return reversals. This is consistent with the hypothesis that trades related to option hedging become

larger or more impatient when market uncertainty is high.

4 Reversal-based trading strategies in S&P 500 Index options

In theory, option prices should be unaffected by serial correlation. That statement, made most

clearly by Lo and Wang (1995), reflects the fact that serial covariance is a property of the conditional

mean of returns. Since option prices are determined under the equivalent martingale measure,

where all conditional means are equal to the riskless rate, there is no role for serial covariance in

the valuation of options. That said, serial covariance can affect the payoff of an option, and thus it

could be an important determinant of expected option returns. This is the issue we investigate in

this section.

As a motivating example, imagine an options trader who has purchased both an at-the-money

call and an at-the-money put, both with two days until expiration. This position, the so-called

‘straddle,’ is often interpreted as being a bet on the volatility of the underlying asset, since its

payoff is sensitive only to the magnitude and not the direction of price movements.

Now suppose, one day later, that the underlying security’s price has declined substantially. This

is good news for the option trader, who sees a high likelihood of a large payoff from the put option

that is now in the money. However, if the returns on the underlying asset exhibit a tendency to

reverse, then large profits may not materialize, as the underlying will tend to revert back towards

its starting value, where the option payoffs may be too small to cover the cost of the straddle.

Thus, negative autocovariance will tend to reduce the payoffs of positions, like straddles and

options in general, that are positive bets on volatility. But since negative autocovariance does not

affect the price of those positions, those lower payoffs will have the effect of reducing expected option

returns. Thus, strategies like the straddle will exhibit poor performance when serial covariance is

negative.

There is a way for the trader to avoid the harm due to serial covariance, however. Following

the same substantial decline in the underlying security’s price, the trader could protect themselves

by selling the straddle that they purchased originally and replacing it with a new at-the-money
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(ATM) straddle.

By doing so the trader accomplishes two things. First, the trader locks in the gains that have

resulted from owning a put option that is now in the money.8 Second, by rebalancing into a new

ATM straddle, the option trader eliminates all directional dependence in his or her portfolio. So

whether or not the subsequent day sees a reversal, the option trader is indifferent.

In this section we examine the performance of zero delta ATM straddles. These combine the

put and call that, for a given maturity, are closest to being at the money, The call and put are not

held in exactly the same quantity, but are rather weighted so that the Black-Scholes delta of the

combined portfolio is exactly zero. This helps ensure that the strategy represents a pure bet on

volatility rather than on the direction of the S&P 500 Index.

We compare the strategy of buying an ATM straddle and holding it for many days to the

alternative of buying an ATM straddle and then rolling it over into a new ATM straddle at the end

of each trading day. We refer to these two strategies as ‘buy-and-hold’ and ‘daily rebalanced.’ We

examine their average returns, alphas, and betas, and how all three depend on the level of implied

variance.

We analyze option trading strategies on a monthly basis. We initiate new ATM straddle posi-

tions on the day that regular options expire, namely the third Friday of the month. Buy-and-hold

strategies involving straddles with two or three months remaining until expiration are held until

expiration Friday of the next month. Because of well known issues involving noise in option prices

close to expiration, the buy-and-hold strategy for the one-month straddle holds the position for one

week less, exiting the trade on the Friday prior to expiration week. Daily rebalanced strategies are

invested over the same time periods, but instead of holding the position fixed they are rebalanced

into a new zero-delta ATM straddle at the end of each day. We assume that all transactions take

place at the bid-ask midpoint.

Table 8 shows results for the returns on the buy-and-hold and rebalanced strategies. In addition,

8One might imagine that this put option would be relatively cheap even though it is in the money, given that mean

reversion will tend to reduce the value of the put’s payoff at expiration. However, as discussed above, the valuation

of this option is unaffected by serial covariance, so the expected shrinkage in the final payoff does not have any effect

on the option’s price.
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we examine the differences between those returns, where the buy-and-hold return is subtracted from

the rebalanced return. While results vary slightly by maturity, a number of patterns are apparent.

First, average returns on buy-and-hold strategies are lower than average returns on rebalanced

strategies. These are reported in the table as intercept-only regressions. While the difference

between those means is not statistically significant, it is consistent with the unconditionally neg-

ative autocovariance we find in our sample, which has a more detrimental effect on buy-and-hold

performance.

When we regress buy-and-hold returns on lagged implied variance, we find a negative coefficient,

again consistent with more negative serial correlation worsening performance, but again it is not

significant. However, when we look at the difference between the rebalanced and buy-and-hold

strategies, we find that return differences are significantly related to the level of implied variance.

This is due to the fact that while buy-and-hold and rebalanced returns are strongly correlated, only

the former has its performance adversely impacted by negative serial correlation. This result holds

for all three option tenors.

If we add the excess market returns to the regression, by themselves and interacted with lagged

implied variance, then we can interpret the parameters as describing time-varying alphas and

betas. In these regressions, the alphas on the buy-and-hold strategies are decreasing in implied

variance, while the alphas on the rebalanced strategies are increasing. The alphas of the return

differences (or the differences between the alphas) are increasing and statistically significant. Both

beta parameters are statistically insignificant for the return differences due to the fact that the

betas of the buy-and-hold and rebalanced strategies largely cancel out.

5 Conclusion

In this paper we demonstrate a simple but surprising fact, namely that higher levels of implied

variance are associated with negative serial covariance in the returns on the S&P 500 Index, its

futures contracts, and its most popular ETF. This finding suggests that even the most liquid equity-

linked assets may in some situations display return reversal. It also confirms the finding of Nagel

(2012) that the VIX is a significant predictor of market illiquidity.
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One implication of our findings is that implied volatilities may provide an extremely biased

view of market risk for an investor with an investment horizon of a month or more. When implied

variances rise, fully a half if not more of that increase represents a purely transient component,

which affects daily returns but that washes out completely by a one-month horizon.

Although we find substantial evidence of return reversal at horizons longer than one day, return

reversal appears to be particularly strong around the daily close and the daily open, suggesting a

concentration of order imbalances at those points. Furthermore, the reversal in very short-term

returns right around the daily close is most sensitive to changes in implied variance, suggesting

that order imbalances at the close are increasing in times of market uncertainty. We investigate the

possibility that reversal is related to trades by option hedgers, which might be expected to cluster

at the close, by examining the role of open interest in return reversal. We find strong evidence that

open interest in S&P 500 Index options strengthens the negative serial covariance in index returns.

Finally, we examine the effects that serial covariance has on the performance of option trading

strategies. We find that buy-and-hold strategies involving zero delta straddles perform badly rela-

tive to strategies that rebalance daily into new zero-delta straddles when implied variances are high.

We argue that this is due to the fact that by maintaining their zero delta, the rebalanced strat-

egy effectively immunizes the options trader from negative autocorrelation, which would otherwise

cause his expected option payoffs to be diminished.

A somewhat unexpected finding was that return reversal was mainly if not solely present fol-

lowing negative returns. Positive returns showed a tendency, though it was not as significant, to

continue rather than reverse. Understanding why this continuation exists and how it is manifested

at different return horizons is ongoing work.
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Figure 1: Annualized volatility predictions based on monthly and daily variance regressions. This

figure plots the conditional volatilities implied by regressions (1) and (2), estimated using S&P 500

Index futures returns, as a function of the VIX index.
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Figure 2: Average total covaraiance measure for daily S&P 500 futures returns computed from

prices at different times of the day. This figure plots the total autocovariance measure (5) analyzed

throughout this study, but with one change. Instead of using daily closing prices to calculate

returns, we create an alternative daily returns series based on prices recorded some number of

minutes before the close (the negative values on the horizontal axis) or some number of minutes

after the open (the positive values on the horizontal axis). The plot therefore shows how average

autocovariances change according to the time at which daily prices are recorded.
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Figure 3: Implied variance slope coefficient from regressions of total covaraiance measure for daily

S&P 500 futures returns computed from prices at different times of the day. This figure plots the

slope coefficients resulting from regressing the total autocovariance measure (5) analyzed through-

out this study on lagged implied variance. The only difference with other results is that daily

returns are based on prices recorded some number of minutes before the close (the negative values

on the horizontal axis) or some number of minutes after the open (the postive values on the hori-

zontal axis), rather than only on closing prices. The plot therefore shows how the responsiveness of

autocovariance to implied variance changes according to the time at which daily prices are recorded.
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Figure 4: Average return for reversal-based S&P 500 futures strategies with different formation and

holding period lengths. In this graph we plot average returns, in basis points per day, of strategies

formed on the basis of the return in the last N minutes of one day, where the trade is initiated at

that day’s close and held until N minutes following the next day’s open. The horizontal axis of the

figure represents N . The strategy involves putting the following weight, at the close of day t, in

the front-month futures contract:

−0.01× rate of return in last N minutes of day t

E [|return in last N minutes of the day|] E [|return from close to N minutes after next open|]
We proxy for the two expected values using averages over the 22 days leading up to day t−1. A

portfolio with this weight holds a position that is negatively related to the return in the last N

minutes of the formation day. Furthermore, this portfolio should have a return, regardless of the

investment horizon, whose expected absolute value is approximately 0.01.
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Figure 5: Implied variance slope coefficient from regressions of returns on reversal-based S&P 500

futures strategies with different formation and holding period lengths. Following Figure 4, we

consider reversal based strategies formed on the basis of the return in the last N minutes of one

day, where the trade is initiated at that day’s close and held until N minutes following the next

day’s open. The portfolio weight is designed so that the portfolio return has an expected absolute

value of approximately 0.01 regardless of N . The figure shows the results of regressing strategy

returns on lagged implied variance for different values of N , which is represented on the horizontal

axis.
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Table 1

# of
obs. Mean SD AC(1) Mean SD AC(1) Mean T-stat SD AC(1)

S&P 500 Index 311 0.0027 0.0048 0.7145 0.0018 0.0033 0.2070 -0.0008 -4.2824 0.0036 0.3276
1/1990-11/2015

S&P 500 Futures 311 0.0028 0.0053 0.6294 0.0018 0.0034 0.2044 -0.0010 -4.5752 0.0038 0.3504
1/1990-11/2015

SPY ETF 274 0.0030 0.0055 0.6300 0.0018 0.0032 0.2223 -0.0011 -4.9156 0.0040 0.3650
2/1993-11/2015

Mean SD AC(1)

0.0038 0.0037 0.8496
1/1990-11/2015

This table reports summary statistics for our two variance proxies and for the VIX index.  Data are monthly.   Variance proxies are based on continuously 

compounded returns, where returns on the S&P 500 Index and the SPY ETF are in excess of the riskless rate.  Returns are not demeaned.  The difference is 

computed as the monthly squared return minus the sum of daily squared returns.  Statistics reported are the mean, standard deviation, and first-order 

autocorrelation.  We also report t-statistics for the difference between the two variance proxies, which are based on Newey-West standard errors with five 

lags.  Sample periods are determined by data availability.

Monthly squared returnsSum of squared daily returns Difference

Squared rescaled VIX 
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Table 2

Asset/Sample IVol Intercept Slope R2 Intercept Slope R2

S&P 500 Index VIX -0.0008 0.9254 0.4395 0.0003 0.4078 0.1824
2/1990-11/2015 (-1.9590) (5.5512) (1.2996) (8.1619)

S&P 500 Futures VIX -0.0008 0.9522 0.3821 0.0003 0.4083 0.1739
2/1990-11/2015 (-1.7729) (5.3430) (1.3021) (7.9686)

SPY ETF VIX -0.0007 0.9517 0.4445 0.0003 0.3908 0.0995
2/1993-11/2015 (-1.7235) (5.4911) (1.3932) (7.6212)

S&P 500 Futures VIX 0.0000 0.7004 0.6648 0.0005 0.3855 0.3792
2/1990-12/2002 (-0.1056) (8.6478) (1.9324) (6.3658)

S&P 500 Futures VIX -0.0009 1.0437 0.3840 0.0001 0.4179 0.2295
1/2003-11/2015 (-2.5208) (5.1406) (0.4417) (6.1135)

S&P 500 Futures VXO 0.0001 0.7610 0.0887 0.0006 0.3455 0.1053
2/1986-11/2015 (0.1523) (4.0257) (2.3605) (8.2957)

Squared monthly returnsSum of squared daily returns

This table reports monthly regressions of different realized variance proxies on lagged one-month implied variances, which are calculated 

based on the VIX or VXO indexes.  Variance proxies are based on continuously compounded returns, where returns on the S&P 500 Index 

and the SPY ETF are in excess of the riskless rate.  Returns are not demeaned.  T-statistics, in parentheses, are computed using the Newey-

West procedure with eight lags.  Sample periods are determined by data availability.
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Table 3

Asset/Sample IVol Intercept Slope R2

S&P 500 Index VIX 0.0011 -0.5170 0.2382
2/1990-11/2015 (1.9829) (-2.8754)

S&P 500 Futures VIX 0.0011 -0.5439 0.2348
2/1990-11/2015 (1.9007) (-2.9085)

SPY ETF VIX 0.0010 -0.5609 0.2491
2/1993-11/2015 (1.8627) (-2.9688)

S&P 500 Futures VIX 0.0005 -0.3150 0.0811
2/1990-12/2002 (2.5012) (-5.7549)

S&P 500 Futures VIX 0.0011 -0.6258 0.3107
1/2003-11/2015 (1.9069) (-2.9545)

S&P 500 Futures VXO 0.0004 -0.4155 0.0519
2/1986-11/2015 (0.5470) (-2.3568)

Total autocovariance

This table reports monthly regressions of the total autocovariance measure, which 

is defined as the monthly squared return minus the sum of squared daily returns, 

where returns on the S&P 500 Index and the SPY ETF are in excess of the riskless 

rate.  The independent variable is a lagged one-month implied variance, calculated 

based on either the VIX or VXO index.  T-statistics, in parentheses, are computed 

using the Newey-West procedure with eight lags.  Sample periods are determined 

by data availability.
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Table 4

Intercept R2

0.0051 -0.0388 0.0000
(1.1964) (-0.0279)

0.0043 0.0119 0.0000
(0.4425) (0.0609)

0.0068 -0.0001 0.0002
(0.5839) (-0.1901)

Intercept R2

0.0076 -0.5674 0.0026
(2.3055) (-0.5946)

0.0089 -0.0616 0.0011
(1.1449) (-0.4068)

0.0044 0.0000 0.0000
(0.4509) (0.1007)

This table reports regressions of monthly continuously compounded futures 

returns on various transformations of the lagged one-month implied variance 

(IV ), which is calculated based on either the VIX or VXO index.  T-statistics, in 

parentheses, are computed using the Newey-West procedure with five lags.  

Sample periods are determined by data availability.

IV  based on the VIX index, 2/1990-11/2015

IV  based on the VXO index, 2/1986-11/2015

𝐼𝑉𝐼𝑉 1/ 𝐼𝑉

𝐼𝑉𝐼𝑉 1/ 𝐼𝑉
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Table 5

Asset/Sample IVol Intercept Slope R2 Intercept Slope R2

S&P 500 Index VIX 0.0005 -0.1954 0.1248 0.0006 -0.3233 0.1359
2/1990-11/2015 (3.4699) (-4.0154) (1.2270) (-2.2007)

S&P 500 Futures VIX 0.0004 -0.1756 0.1136 0.0007 -0.3699 0.1541
2/1990-11/2015 (3.5685) (-4.3658) (1.3190) (-2.3582)

SPY ETF VIX 0.0003 -0.1768 0.1240 0.0007 -0.3850 0.1574
2/1993-11/2015 (3.1890) (-5.6994) (1.2366) (-2.1953)

S&P 500 Futures VIX 0.0003 -0.0959 0.0374 0.0002 -0.2240 0.0395
2/1990-12/2002 (1.5361) (-1.6258) (1.0993) (-2.9892)

S&P 500 Futures VIX 0.0003 -0.2028 0.1499 0.0008 -0.4230 0.2397
1/2003-11/2015 (1.9470) (-5.7033) (1.3365) (-2.2466)

S&P 500 Futures VXO 0.0003 -0.1441 0.1060 0.0001 -0.2718 0.0226
2/1986-11/2015 (2.5787) (-3.3866) (0.1762) (-1.9373)

This table reports monthly regressions of first order and higher order autocovariance measures on on lagged one-month implied 

variance, calculated based on either the VIX or VXO index.  The two autocovariance measured are based on the decomposition

where the first term can be interpreted as a first-order autocovariance while the second term includes all higher orders.  T-statistics, 

in parentheses, are computed using the Newey-West procedure with eight lags.  Sample periods are determined by data availability.

1st order autocovariance Higher order autocovariance
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Table 6

Asset/Sample IVol Intercept Slope R2 Intercept Slope R2

S&P 500 Index VIX -0.0005 0.2218 0.0234 0.0016 -0.7405 0.1609
2/1990-11/2015 (-1.7106) (2.8574) (2.4335) (-4.2676)

S&P 500 Futures VIX -0.0005 0.1910 0.0174 0.0016 -0.7365 0.1535
2/1990-11/2015 (-1.9027) (2.6352) (2.2898) (-3.9002)

SPY ETF VIX -0.0006 0.2374 0.0271 0.0017 -0.7992 0.1806
2/1993-11/2015 (-1.9688) (3.2846) (2.2549) (-4.0173)

S&P 500 Futures VIX -0.0006 0.1911 0.0098 0.0012 -0.5110 0.0497
2/1990-12/2002 (-1.2382) (1.4327) (1.9293) (-3.4734)

S&P 500 Futures VIX -0.0004 0.1899 0.0243 0.0015 -0.8157 0.2314
1/2003-11/2015 (-1.1755) (2.1507) (1.8439) (-3.8150)

S&P 500 Futures VXO 0.0001 0.0138 0.0056 -0.0009 -0.0471 0.0172
2/1986-11/2015 (0.4867) (2.3515) (-3.0114) (-1.3714)

This table reports monthly regressions of asymmetric autocovariance proxies on on lagged one-month implied variance, calculated based on 

either the VIX or VXO index.  on the squared and rescaled VIX or VXO index.  Asymmetric autocovariances are computed based on the 

decomposition

where the two terms differ because one term includes all pairs of returns in which the first return is positive, while the other term includes 

pairs in which the first return is negative.   T-statistics, in parentheses, are computed using the Newey-West procedure with eight lags.  

Sample periods are determined by data availability.

First return is positive First return is negative
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Table 7

Intercept VIX2 OI OI × VIX2
R2 Intercept VIX2 OI OI × VIX2

R2

0.000 -0.188 0.176 0.001 -0.210 0.169
(2.633) (-3.581) (2.780) (-3.815)

0.000 0.000 0.004 0.000 0.000 0.001
(0.430) (-1.427) (-0.242) (-0.929)

0.001 -0.187 0.000 0.178 0.001 -0.209 0.000 0.169
(2.589) (-3.636) (-1.614) (2.519) (-3.852) (-0.857)

0.000 0.044 0.000 -0.099 0.205 0.000 0.022 0.000 -0.099 0.190
(-1.173) (0.547) (2.223) (-2.385) (-1.099) (0.259) (2.360) (-2.353)

0.000 -0.001 0.003 0.000 -0.001 0.003
(-2.252) (-1.615) (-2.426) (-1.837)

0.000 -0.187 -0.001 0.178 0.001 -0.209 -0.001 0.171
(2.627) (-3.622) (-2.027) (2.764) (-3.866) (-2.254)

0.000 -0.175 0.001 -0.389 0.198 0.000 -0.193 0.002 -0.486 0.195
(3.033) (-4.248) (1.998) (-2.446) (3.465) (-4.938) (2.237) (-2.754)

S&P 500 Index, OI = detrended log open interest S&P 500 Futures, OI = detrended log open interest 

This table reports weekly regressions of the total autocovariance measure, which is defined as the squared weekly return minus the sum of 

squared daily returns within the week, where returns on the S&P 500 Index are in excess of the riskless rate.  The independent variables 

include the lagged implied variance, calculated based on the VIX index, a measure of the open interest in S&P 500 Index options, and an 

interaction term.  Open interest is the log of the total number of S&P 500 Index option contracts outstanding as of the end of the prior 

week.  Detrended open interest subtracts off the variable's 66-day moving average.  T-statistics, in parentheses, are computed using the 

Newey-West procedure with five lags.  The sample period, which is 2/1996 to 9/2015, is determined by the availabiltity of open interest 

data. 

S&P 500 Index, OI = log open interest S&P 500 Futures, OI = log open interest 
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Table 8

Intercept IVt-1 RMt RMt×IVt-1 Adj. R2 Intercept IVt-1 RMt RMt×IVt-1 Adj. R2 Intercept IVt-1 RMt RMt×IVt-1 Adj. R2

-0.092 -0.042 0.050
(-2.527) (-1.542) (1.615)
-0.040 -1.011 0.005 -0.048 0.121 -0.004 -0.009 1.132 0.010

(-0.848) (-1.608) (-1.318) (0.224) (-0.208) (2.771)
-0.040 -0.792 -2.037 -9.867 0.049 -0.040 0.277 -4.323 3.337 0.168 0.000 1.069 -2.286 13.204 0.017

(-0.851) (-1.316) (-0.910) (-0.453) (-1.135) (0.658) (-3.011) (0.240) (-0.011) (2.100) (-1.095) (0.708)

-0.058 -0.045 0.013
(-2.424) (-2.439) (0.688)
-0.032 -0.504 0.001 -0.044 -0.015 -0.004 -0.012 0.489 0.003

(-1.080) (-1.102) (-1.983) (-0.039) (-0.527) (2.698)
-0.019 -0.436 -2.401 -1.311 0.124 -0.032 0.048 -2.164 -1.612 0.192 -0.013 0.484 0.237 -0.301 -0.004

(-0.640) (-1.153) (-1.865) (-0.165) (-1.480) (0.159) (-3.160) (-0.298) (-0.535) (2.675) (0.219) (-0.060)

-0.036 -0.020 0.016
(-2.161) (-1.530) (1.342)
-0.022 -0.260 -0.001 -0.023 0.065 -0.004 -0.001 0.325 0.005

(-1.091) (-0.733) (-1.387) (0.200) (-0.078) (2.964)
-0.013 -0.207 -1.693 -2.103 0.148 -0.016 0.113 -1.270 -3.634 0.184 -0.003 0.320 0.423 -1.530 0.004

(-0.626) (-0.692) (-1.908) (-0.367) (-0.968) (0.441) (-2.743) (-0.848) (-0.205) (2.879) (0.582) (-0.471)

-----------------------------------  Two months until expiration  -----------------------------------

-----------------------------------  Three months until expiration  -----------------------------------

This table reports results of regressing monthly returns on straddle strategies on lagged implied variance, computed from the VIX index, as well as market model 

regressions in which alpha and beta are linear functions of lagged implied variance.  The buy-and-hold strategy involves buying a zero delta at-the-money (ATM) 

straddle and holding it for approximately three or four weeks.  The rebalanced strategy involves rebalancing daily into a new zero delta ATM straddle.  The 

difference regressions examine the returns on the rebalanced strategy minus the returns on the buy-and-hold strategy.  T-statistics, in parentheses, are computed 

using the Newey-West procedure with one lag.  The sample period, which is 1/1996 to 8/2015, is determined by the availabiltity of option price data. 

Buy-and-hold Rebalanced to zero delta Difference

-----------------------------------  One month until expiration  -----------------------------------
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