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Abstract

The average level and cross-sectional variability of fund alphas are estimated from a large

sample of mutual funds. This information is incorporated, along with the usual regression

estimate of alpha, in a (roughly) precision-weighted average measure of individual fund

performance. Substantial ‘‘learning across funds’’ is documented, with significant effects on

investment decisions. In a Bayesian framework, this form of learning is inconsistent with the

assumption, made in the past literature, of prior independence across funds. Independence can

be viewed as an extreme scenario in which the true cross-sectional distribution of alphas is

presumed to be known a priori.
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1. Introduction

With trillions of dollars invested in actively managed equity mutual funds, it is of
great importance to investors to determine the optimal asset allocation to funds.
Many studies, starting with Jensen (1968), have concluded that fund managers are
unable to ‘‘beat the market,’’ suggesting that investors might want to restrict their
portfolios to passive index funds. Others have argued that, while the average
manager may have no particular skill, ex ante variables such as past performance
and manager characteristics can be used to identify investment skill.1 More recently,
papers by Baks et al. (2001) and Pastor and Stambaugh (2002a,b) have explored the
role of prior information in analyzing the performance of mutual funds and making
investment decisions.2 Henceforth, we refer to these studies as BMW and PS,
respectively.

Since the standard measure of fund performance, ‘‘alpha,’’ is typically not
estimated with much precision, prior beliefs can have a substantial impact. We would
argue, however, that another important source of information about fund
performance has been overlooked up to now, both in traditional studies and in
the more recent Bayesian analyses. The neglected information is the history of
returns on other funds. Ignoring these returns might seem reasonable at first glance—
what could the returns on Vanguard’s Windsor fund possibly tell us about the skill
of the managers of Fidelity’s Magellan fund? Our answer is that aggregating data on
Windsor and all other funds yields important information about the abilities of fund
managers as a group. Since Fidelity is a member of this group, this general
knowledge should have some bearing on our beliefs about Fidelity.

There are currently more than 5,000 equity funds in the U.S. It is natural to think
of the true alphas of these funds as a large sample from an underlying population.
For simplicity, assume they are independent draws from a normal distribution with
mean ma and standard deviation sa. Thus, ma reflects the average level of skill in the
universe of fund managers and sa captures the variability around that average level
for different funds. We could refine the analysis further by conditioning on
individual fund or manager characteristics. However, a careful analysis of the
unconditional case, in which each fund is a random draw from the overall
population, seems to us an appropriate starting point. It will also facilitate
comparison with the earlier literature.

Consider XYZ Investments, a hypothetical fund of interest. Suppose we had
returns data for other funds, but not XYZ. If the number of funds were sufficiently
large and residual fund returns independent, we would effectively be able to infer the
true cross-sectional distribution of the alphas from the ordinary least squares
estimates, i.e., we would know the actual values of the ‘‘hyperparameters’’ ma and sa.
1See Chevalier and Ellison (1999) and Carhart (1997), for instance.
2Perhaps the first important application of the Bayesian perspective in investment research was

Merton’s (1980) paper on estimating the market expected return. Bayesian methods were first used in

testing asset pricing relations in Shanken (1987). Kandel and Stambaugh (1996) examine aggregate return

predictability in a Bayesian framework. Their paper has stimulated much recent research.
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In the absence of any other information about XYZ, it would be natural to take ma
as our best guess or ‘‘estimate’’ of aXYZ, and view sa as indicative of the precision of
this estimate. After all, we know the cross-sectional distribution of the true alphas in
this setting, but we don’t know where in that distribution XYZ’s alpha lies.

Suppose, now, that we did have returns for XYZ and were able to compute the
conventional regression estimate of alpha and its associated standard error. Would
we discard the information about ma and sa in this case? Intuition suggests that the
OLS estimate should be combined with the ma estimate. If data on XYZ were limited,
the OLS standard error might be quite large, perhaps much larger than sa. Then,
presumably, ma would still be given considerable weight in the estimation of aXYZ.
But if the OLS estimate were very precise, it would be weighted more heavily. This is
essentially what happens using the estimation approach developed in this paper.

We use the Fidelity Magellan Fund to illustrate this idea. Magellan had an
impressive OLS alpha estimate of 10.4% per annum (standard error 1.9%) over the
1963 to 2001 period. Aggregating the evidence for all funds in our sample produces
fairly precise estimates of ma and sa, both (coincidentally) about 1.5% before costs.
To a close approximation, our learning model for Magellan amounts to taking a
precision-weighted average of the OLS estimate 10.4% and ma ¼ 1:5%. Here, the
precisions are based on the OLS standard error of 1.9% and sa ¼ 1:5%, respectively.
Since the standard error is larger in this case, greater weight is placed on ma. The
resulting alpha estimate is 4.8%, substantially below the OLS estimate. For funds
with shorter return histories or high residual variance, the weight placed on the
aggregate estimate can be even greater, and alphas can increase as well as decrease.

In general, estimation of alpha in our model will depend on the returns on all other
funds through the estimates of ma and sa. We refer to this as ‘‘learning across funds.’’
The learning arises because each fund alpha is recognized as an observation from an
underlying population. In this sense, all alphas are linked, and so whatever we learn
about the population feeds back into the estimation for any given fund. This sort of
econometric specification is often referred to as a random coefficients model (e.g.,
Swamy, 1971). Our use of Gibbs sampling techniques in Bayesian estimation of the
model is appealing in that the measures of precision obtained for the individual fund
alphas incorporate estimation error in the hyperparameters, ma and sa. This
contrasts with commonly used two-stage estimation procedures. It also allows us to
accommodate prior information, as we now discuss.3

Consider a prior on alpha for our fund, XYZ Investments. The prior is a
subjective belief that we bring to the problem before observing the data. What
3Shrinkage is an important feature of the Bayes-Stein estimates of Jorion (1986) and others, though the

economic motivation and estimation approaches are quite different. In Jorion’s paper, expected returns

are shrunk towards the mean of the minimum variance portfolio. The degree of shrinkage is computed

based on an empirical Bayes approach that examines the cross-sectional dispersion in sample means. The

use of empirical Bayes methods in finance goes back at least to Vasicek (1973) who was concerned with

estimating betas. See Pastor and Stambaugh (1999) for a more recent application. Empirical Bayes

methods, while they could be applied to the other regression parameters of our model, are not appropriate

in the context of our goal of estimating the cross-sectional distribution of (true) alphas, particularly given

the relatively low precision with which individual alphas are generally estimated.
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values, we ask, might the true alpha of XYZ take, and how plausible are these
values? For now, let’s think about alpha before trading costs and various fund
expenses. As mentioned above and consistent with earlier Bayesian studies, we do
not condition our belief about alpha on any observed characteristics of XYZ, though
this would be a natural extension of our framework. Therefore, we are really
thinking about a ‘‘generic’’ fund here—i.e., a random draw from the universe of
funds. In this setting, the prior on aXYZ just reflects our belief about the abilities of
fund managers as a group and amounts to an initial assessment of the cross-sectional
distribution of fund alphas. Thus, it is determined by our prior beliefs about the
values of ma and sa. In particular, the mean of our prior for aXYZ is just the mean of
the prior distribution for ma and reflects our view of the average level of skill in the
fund universe.

Consistent with this perspective, past research has adopted identical (marginal)
priors on management skill for each fund in the given sample. These studies,
however, have gone one step further and specified a joint prior distribution in which
the beliefs about alphas are independent across funds.4 It appears that this
assumption has been adopted for reasons of mathematical tractability, rather than
some underlying intuition or principle. Although this setting provides a natural
starting point for papers breaking new ground, we now use a thought experiment to
argue that the independence assumption is intuitively implausible in the present
context.

Imagine that the true values of alpha for thousands of other funds were somehow
revealed before you even examine XYZ’s returns. Would this information affect your
belief about aXYZ? Consider two specific scenarios. In the first, the true fund alphas
are all exactly equal to zero, i.e., there is no evidence that fund managers have any
skill. In the second scenario, half of the funds have alphas that exceed 3% per
annum. So, in one scenario it looks like the market is extremely efficient and beating
the benchmark may well be an impossible task for professional money managers. In
the other, superior performance is quite common, suggesting an inefficient market in
which mispriced securities are not so hard to identify.

Our intuition is as follows. In the first scenario, the strong ‘‘evidence’’ that the
market is efficient would largely eclipse whatever we initially believed about alphas,
as represented by our marginal prior. After all, that belief was merely a preliminary
assessment of the cross-sectional distribution of alphas, and now we’ve seen the
actual values of alpha for a large sample of funds. Similarly, in the second scenario,
even if we started out extremely skeptical about the abilities of fund managers, we’d
have to acknowledge that skill is fairly common and, therefore, we would revise our
belief about XYZ accordingly.

In short, the prior for a given fund’s alpha will be affected by conditioning on the
values of other fund alphas. Mathematically, this is a statement that the conditional
prior differs from the marginal prior, i.e., the priors are not independent. Our model
accommodates this sort of prior dependence, as beliefs about different fund alphas
4PS decompose alphas into two components, one related to skill and the other to model misspecification.

The skill components are taken to be independent across funds.
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are linked through the common prior belief about the hyperparameters ma and sa.
Even if we have ‘‘diffuse priors’’ or ‘‘vague’’ prior information about ma and sa,
estimation of individual fund alphas is affected in a manner similar to that in the
Magellan example above. Readers who prefer not to think in terms of prior
distributions may want to focus on the diffuse prior results, which include some of
our most striking observations.

The independent prior assumption can actually be nested in our model, providing
additional perspective on its restrictive nature. In the model, prior independence
amounts to a ‘‘dogmatic’’ belief about the cross-sectional distribution of fund skill,
i.e. a belief in which there is no perceived uncertainty about the values of ma and sa.
Right or wrong, this individual is certain that the true values are, say, ma ¼ ma and
sa ¼ sa. The prior for each alpha is then Nðma; s2aÞ, and there is independence across
funds, as the ‘‘common factor’’—uncertainty about the characteristics of the
underlying alpha population—has been eliminated. Since there is no updating of
beliefs about this population, the returns on other funds will have no impact on the
estimation of a given fund’s alpha (provided the return residuals are independent). In
other words, there is no longer any learning across funds. In particular, if the prior
for alpha is diffuse ðsa!1Þ, Bayesian estimation reduces to standard OLS
regression estimation.

Before going on to present the details of the model, we highlight two additional
ways in which Bayesian analysis with learning across funds differs fundamentally
from that in earlier studies. First is the issue of survivorship bias. BMW and PS rely
on prior independence, in conjunction with other assumptions, to justify ignoring
data on the nonsurvivors in their asset allocation analyses. However, it is clear that
this is not possible in our framework since posterior beliefs about a given fund’s
alpha depend on other fund returns through the estimates of ma and sa. Naturally,
excluding the ‘‘losers’’ results in an estimate of ma that is biased upwards. Later, we
estimate this bias to be 50 to 60 basis points per annum.5

The second issue concerns the behavior of the maximum posterior alpha estimate
across all funds. BMW focus on the important question of whether any active
investment in mutual funds is warranted. A sufficient condition for some active
management is that the maximum posterior mean alpha is positive after subtracting
expenses. BMW conclude that the maximum is indeed positive, even when investors
have priors that are very skeptical about the existence of skilled managers. While we
also find that the maximum mean alpha is positive, agreement between the
procedures need not occur in general. This is clear from the following disturbing
implication of prior independence.

With independent residuals, the maximum OLS alpha estimate becomes
unbounded as the number of funds approaches infinity, even when the true alphas
5Recent independent work by Stambaugh (2003) also explores survivorship issues in the context of prior

dependence. Our framework differs from his in that we allow for uncertainty in both the mean (ma) and
variance ðs2aÞ of the cross-sectional distribution of alphas, rather than just the mean, which is Stambaugh’s

focus. We find that learning about sa is crucial for such issues as the plausibility of extreme alphas.

Stambaugh’s analysis of survivorship issues extends to the case in which nonsurvivors’ returns are not

observed, which is a more realistic assumption for the universe of hedge funds.
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are all zero. This follows from standard properties of order statistics under
independent sampling. Therefore, given prior independence, no matter how high the
initial degree of prior skepticism about superior performance, with enough funds the
data will eventually dominate and favor active investment in the funds with extreme
regression estimates. Of course, this need not occur with a fixed number of funds, but
the limiting case suggests that, more generally, extreme performance due to chance
will be given too much weight.

In contrast, in our model with learning across funds, all alpha estimates are shrunk
toward the pooled estimate of ma, which will tend toward zero if fund managers have
no skill. There is greater shrinkage as the number of funds grows large since the
estimate of sa also approaches zero in this context. Given this countervailing
force, the maximum Bayesian estimate of alpha need not be high and, in particular,
need not even be positive after deducting expenses. We present simulation
evidence for N ¼10,000 funds that supports this conclusion. This sort of evaluation
of the behavior of different priors under hypothetical circumstances can be
helpful in the process of eliciting a prior with which one can identify. Here, it
underlines the importance of incorporating dependence in the joint prior on the
vector of alphas.

The remainder of this paper is organized as follows. Section 2 introduces our
model with learning across funds and provides an overview of the estimation
procedure. Simulations are used in Sections 3 and 4 to examine the properties of the
Bayesian estimators in repeated sampling. Specifically, Section 3 focuses on the
estimation of ma and sa, while Section 4 compares estimates of alpha based on our
learning model with those obtained under prior independence. Empirical results
using returns from the CRSP Mutual Funds data file are presented in Section 5 and
robustness along several dimensions is explored in Section 6. Section 7 summarizes
our results and discusses implications of our basic framework for future work on
asset pricing tests.
2. The model with continuous learning priors for alpha

In our initial exploration of prior dependence, we adopt the simplest features of
both BMW and PS. Like PS, we posit a model in which beliefs about fund alphas are
represented by continuous densities. In contrast, BMW truncate the distribution and
place positive mass at a negative value of alpha that reflects the average loss of an
unskilled manager to superior managers. In our empirical application, skill is defined
relative to the CAPM, the Fama and French (1993) three-factor model, an expanded
model that includes the Carhart (1997) momentum factor motivated by the work of
Jegadeesh and Titman (1993), and a seven-factor model that includes, in addition to
the previous four factors, three factors constructed to explain industry return
covariation orthogonal to the other four factors. PS go further by identifying a
subset of the passive assets as pricing model benchmarks and incorporating prior
beliefs about model mispricing as well as skill. Like BMW, we only consider beliefs
about skill.
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2.1. Model and prior specification

We assume that excess returns have a linear factor structure,

rj;t ¼ aj þ b0jF t þ �j;t, (1)

where �j;t�Nð0;s2j Þ. Following BMW, we assume that factor model residuals are
cross-sectionally uncorrelated. Pastor and Stambaugh (2002a,b) impose this condition
after ‘‘non-benchmark’’ passive assets have been included in the factor model. Their
assumption is roughly equivalent to that made in our seven-factor model. We explore
the effects of weakening the residual independence assumption toward the end of the
paper. The vector of factors Ft is assumed to be observable. In our applications, it is
taken as some vector of excess returns on benchmark portfolios.

The investor views true alphas as random draws from a normal distribution with
unknown mean ma and unknown standard deviation sa. Formally, this is the
conditional prior for each aj given ma and sa. Prior beliefs about ma and sa then
determine the marginal priors for the alphas. Because all alphas depend on these
same two parameters, the alphas are not independent of one another in the prior. In
addition, the marginal prior of each alpha is non-Gaussian since it is a mixture of
normals. Priors for ma and sa are assumed independent and are represented by a
normal distribution for ma and an inverted gamma distribution for sa. The numerical
values used in these priors are given in the next section.

In contrast, the priors for betas and residual variances are diffuse (proportional to
1=sj), independent of the alphas, and independent across managers. While informative
dependent priors could be introduced for these parameters as well, the greater precision
with which these parameters are estimated makes such an extension less interesting.
Later, we allow the prior for alpha to be conditioned on a fund’s residual variance.

2.2. Overview of the estimation procedure

In this section, we briefly discuss the main features of our estimation procedure.
Further details are given in the appendix. To simplify the computation, we use a
hierarchical approach in which parameters are divided into sets, some global and
some fund-specific. The global parameters, which affect all funds, consist of ma and
sa. Fund-specific parameters include all the aj, bj, and sj. Using the Gibbs sampler,
we can characterize the joint posterior of all these parameters by analyzing only one
set at a time. By cycling repeatedly through draws of each parameter conditional on
the remaining parameters, the Gibbs sampler produces a Markov chain of parameter
draws whose joint distribution converges to the posterior.6

The Gibbs sampling approach that we use divides the parameters into four blocks,
each of which consists of a draw from a known conditional posterior distribution.
1.
6

sa conditional on aj ðj ¼ 1; . . . ;MÞ and ma.

2.
 ma conditional on aj ðj ¼ 1; . . . ;MÞ and sa.
See Casella and George (1992) for an introduction to the Gibbs sampler.
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3.
7

diff

Sin
8

9

fina
sj and bj conditional on F , rj, and aj for all j ¼ 1; . . . ;M.

4.
 aj conditional on ma, sa, F , rj , bj, and sj for all j ¼ 1; . . . ;M.
While the appendix describes each draw in detail, we outline each step briefly here.
As shown in the appendix, any parameters not conditioned on are irrelevant for that
draw.

In step 1, given ma and all the aj , the conditional distribution of sa combines the
normal likelihood of the aj with the inverted gamma prior for sa. It is well known in
this case that the conditional distribution of sa is also an inverted gamma. Step 2
then combines the normal likelihood of the aj with the normal prior for ma. The draw
of ma is therefore normal as well.7

Step 3 replicates traditional linear regression analysis using conjugate priors. Since
priors on bj and sj are flat and independent of aj , we may simply subtract aj from
fund j’s excess returns and proceed with the draws of sj from its inverted gamma
distribution and bj from its Student-t distribution.

Standard conjugate analysis is also used in step 4, where a normal likelihood for
each aj (conditional on bj and sj) is combined with a normal prior with mean ma and
standard deviation sa. In this case the conditional distribution of aj is normal as well.

2.3. Frequentist properties of Bayesian procedures

A distinctive feature of Bayesian inference is that the probabilistic analysis is
conditioned entirely on the given data. This differs from the classical or frequentist
approach, which considers the average behavior of statistics under hypothetical
repetitions of the experiment on new data sets—data that is not actually observed.
Frequentist properties can still be of interest to a Bayesian from a pre-experimental

perspective, however. As Berger (1985, p. 26) explains, before looking at the data,
one can only measure how well a statistical procedure ‘‘is likely to perform through a
frequentist measure, but after seeing the data one can give a more precise final
measure of performance.’’8

In Section 3, we conduct a frequentist analysis by repeatedly applying our
Bayesian methodology to panels of randomly simulated mutual fund data and
tracking the average behavior of various characteristics of the posterior distribution
of the alphas. We examine sensitivity to the number of funds in the panel as well as
different levels of prior skepticism about the magnitude of managerial skill. In
Section 4, we make comparisons that highlight the role of prior dependence in
forming posterior beliefs about alphas.9 Besides enhancing our insight into the
potential performance of various procedures on actual data, an analysis of this sort
can play an important role in the process of eliciting a satisfactory prior. If repeated
Note that in many similar Bayesian settings, the draw of sa would not condition on ma. Our setting

ers in that the prior on ma has a fixed standard deviation rather than one that is proportional to sa.
ce this prior is not fully conjugate, our setting requires the additional conditioning argument.

Savage (1962) makes this distinction between initial precision and final precision.

Stambaugh (1997) and Jones (2003) also explore the frequentist properties of Bayesian procedures in

ncial contexts.
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application of a given prior to hypothetical data reveals properties that are
inconsistent with one’s intuition about how a properly specified procedure should

behave, then it may be time to go back and modify the prior specification so as to
better reflect one’s actual belief. Of course, all of this exploration and refining of
priors should occur, in principle, before making any inference or decision with the
actual data.

The priors on ma and sa that we use reflect different views on the level of skill
in the population of fund managers. Three versions of our learning prior are
considered, namely, high skepticism, some skepticism, and no skepticism. The
no-skepticism prior is taken to be diffuse for both ma and sa (proportional to 1=sa).
In this case, the data will dominate our beliefs. The other priors for ma and sa are
informative. The ma priors are normally distributed with mean zero and
standard deviation 0.25% (high skepticism) or 1% (some skepticism). All numbers
given are annualized monthly figures. With high skepticism, sa has an inverted
gamma prior centered around 0.75%, with 100 degrees of freedom. With some
skepticism, the values are 3% and 10, respectively. Thus, in these priors, greater
skepticism is associated with a stronger belief that ma is close to zero, as well as
greater confidence that the true alphas will be close to ma. However, one can also
imagine plausible scenarios in which cross-sectional variation in skill would be
perceived as quite high, even if there were a strong belief that the average level of skill
is close to zero.
3. Simulation results with learning priors

Now we study the distribution of beliefs that investors with the priors above
would arrive at given different data sets. First, we consider a world in which
managers have no skill at all, and then we consider one in which the average fund
manager is skilled. For each experiment, we run 1,000 Monte Carlo simulations. Let
M equal the number of funds in our hypothetical panel of returns. We consider
values of M ranging from 10 to 10,000 in order to get a sense of the rate at which
investors learn about the true parameter values. All funds are assumed to exist over
the same 77-month sample period. The actual number of funds in the empirical
sample analyzed later in the paper is 5136, with an average life of 77.3 months.

Fund returns are generated under the factor model in Eq. (1) assuming a single
factor with a monthly mean excess return of 0.005 and a standard deviation of 0.045.
The b and s parameters for each fund are drawn randomly and independently of
each other and of other funds. b is drawn from a normal distribution with mean 1
and standard deviation 0.29, while ln(s) is normal with mean �3:7 and standard
deviation 0.5, a distribution that implies a mean s of 0.028 with a standard deviation
of 0.015 (also expressed on a monthly basis). Both distributions conform closely with
the OLS estimates of these parameters obtained from the empirical sample used later
in the paper. When linear factor pricing does not hold and managers may be skilled
ðaa0Þ, the alphas are also drawn independently from a normal distribution with
annualized values specified for the mean ma and standard deviation sa.



ARTICLE IN PRESS

C.S. Jones, J. Shanken / Journal of Financial Economics 78 (2005) 507–552516
3.1. Simulations when managers have no skill ðaj ¼ 0Þ

Results are presented in plots that display the sampling moments of various
posterior means or functions of posterior means. Fig. 1 shows that the initial prior
can have a significant effect on beliefs about ma, the mean of the population from
which the true alphas are drawn. Panel A of that figure indicates that inferences
about ma are correct on average (across 1,000 simulations) regardless of the sample
size, which is not surprising given that the priors are centered around this value. The
qualitative patterns observed in the rest of the figure follow from a few basic
principles. Since the (true) expected value of each alpha estimator is zero in our no-
skill population, with residual independence, the cross-sectional average of the alpha
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Fig. 1. Monte Carlo averages and standard deviations of ma and sa when managers are unskilled.

Learning priors assume that the M fund alphas are random draws from a normal distribution with mean

ma and standard deviation sa. Each panel displays an average or standard deviation of posterior moments

across 1,000 Monte Carlo simulations of hypothetical data. For each fund, a sample of 77 monthly fund

returns is generated from a one-factor model with true alpha equal to zero. Analyses are performed under

three degrees of prior skepticism—none, some, and high—denoted, respectively, by solid, dashed, and grey

lines. The highly and somewhat skeptical normal priors for ma have mean zero and standard deviations

0.25 and 1.0, respectively; the corresponding inverted gamma priors for sa are centered around 0.75 and

3.0, with degrees of freedom 100 and 10. The unskeptical priors are diffuse.
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estimates must converge to zero as M !1. For large M, the influence of the prior
becomes negligible as well. Consequently, for each of our priors, the standard
deviation (across 1,000 simulations) of posterior means of ma approaches zero when
M is sufficiently large. This is observed in Panel B, which shows that the dispersion
of beliefs about mais quite small for M of 1,000 or more. Thus, investors become
increasingly convinced that their prior mean was correct, i.e., that managers have no
skill on average.

In general, we can think of the posterior mean as roughly a weighted combination
of a cross-sectional average of the alpha estimates and zero, the prior mean of ma. In
other words, the average estimate is shrunk toward zero in forming the posterior
mean of ma. Shrinkage is greatest when M is low (little data) and when the prior is
very precise (high skepticism). In the extreme, when M ¼ 0, the mean of ma is just the
prior mean of zero and there is no variability at all. Thus, there are two offsetting
effects of increasing M: Higher M increases data precision, which reduces dispersion
across simulations, but increasing M also reduces shrinkage, which tends to increase
dispersion. Initially, the shrinkage effect is dominant, but eventually the data
precision effect takes over. Since shrinkage is greatest for the high-skepticism prior, it
takes longer for the data precision effect to dominate and, as a result, dispersion in
the posterior means increases in going from M ¼ 10 to 100, as is evident in Panel B.

By similar reasoning, since the informativeness of the data is held constant when
M is fixed, we would expect dispersion to increase as shrinkage is reduced in going
from highly skeptical to unskeptical priors. This effect should be greatest when M is
small and shrinkage is substantial. The patterns in Panel B confirm these ideas.

Panels C and D of Fig. 1 present results for the posterior means of sa under the
same scenarios. When M ¼ 10, the locations of the first two distributions largely
reflect the assumptions about sa in the informative priors. Increasing M does not
have much impact in the high-skepticism case, as the data are apparently never given
much weight. With some skepticism, the means for sa decline from around 3% with
M ¼ 10 to about 1% with M ¼10,000. Investors learn very gradually that not only
is there no skill on average (ma ¼ 0), but there is no skill at all (ma ¼ 0 and sa ¼ 0) in
this population. The learning is more pronounced with the no-skepticism diffuse
prior, which is not anchored at any particular value. The large posterior mean sa of
about 6% in this case, with M ¼ 10, may in part reflect the considerable uncertainty
about the location of the mean.

3.2. Simulations when managers have some skill ðaja0Þ

We now summarize a similar simulation experiment in which the true alpha of
each fund is drawn randomly from a normal distribution with ma ¼ 0:6% and
sa ¼ 1:5%, a draw that is independent of the draws of bj and sj and of the draws for
other funds. In panels A and B of Fig. 2, we see again that the average simulated
posterior mean for ma converges toward the true value, with considerable learning
occurring by the time M equals 1,000, especially for the less skeptical priors.
Similarly, the lower panels show that by M ¼10,000, investors are likely to conclude
that sa is close to the true value 1.5%. In the case of high skepticism, however, the
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Fig. 2. Monte Carlo means and standard deviations of ma and sa when managers have skill. Learning

priors assume that the M fund alphas are random draws from a normal distribution with mean ma and

standard deviation sa. Each panel displays an average or standard deviation of posterior moments across

1,000 Monte Carlo simulations of hypothetical data. For each fund, a sample of 77 monthly fund returns

is generated from a one-factor model with true alpha drawn from a normal distribution with annualized

mean 0.6% and standard deviation 1.5%. Analyses are performed under three degrees of prior

skepticism—none, some, and high—denoted, respectively, by solid, dashed, and grey lines. The highly and

somewhat skeptical normal priors for ma have mean zero with standard deviations 0.25 and 1.0,

respectively; the corresponding inverted gamma priors for sa are centered around 0.75 and 3.0, with

degrees of freedom 100 and 10. The unskeptical priors are diffuse.
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prior largely dominates the belief about sa for M as large as 1,000. The more diffuse
investor beliefs naturally adjust more quickly.
4. The impact of learning across funds: Simulation results

Having explored the basic properties of our model with learning priors, we now
compare simulation results based on our model with those based on a model with
prior independence across funds. To highlight the impact of learning across funds,
the marginal priors are taken to be the same whether we incorporate dependence or
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not. These marginal priors for alpha are the unconditional ‘‘mixtures’’ implied by the
three joint priors for ma and sa considered above, given the assumption that alphas
are drawn from the normal distribution Nðma;s

2
aÞ. Our objectives are to determine

whether incorporating dependence has much of an effect on posterior beliefs and to
evaluate the extent to which the different beliefs approximate the true underlying
population. As with size and power calculations in classical statistics, this is done
separately for each hypothesis—here, our no-skill and some-skill worlds.

The marginal priors are obtained by simulation using the fact that the density
equals the expected conditional density given ma and sa. Many values of ma and sa
are drawn from their prior distributions, and the densities implied by each pair are
averaged at each point in a grid of alpha values to obtain the implied prior for the
alphas. We find that the ‘‘somewhat skeptical’’ prior distribution is leptokurtic,
implying a higher probability of very large and small alphas than would a normal
distribution. Deviations from normality are more difficult to detect for the highly
skeptical prior, whose tighter distributions for ma and sa imply a more homogeneous
mixture of normals.

For each simulated data sample, we form posterior means of the alphas using both
the ‘‘learning’’ prior considered previously and the ‘‘no-learning’’ prior that imposes
independence across fund alphas. Inference under the latter prior is simplified by the
fact that each fund can be treated separately. The non-Gaussian nature of this prior
requires, however, that these posterior means be computed numerically. We make
use of the fact that the no-learning posterior density for each alpha can be written
(up to a constant of proportionality) as the product of the marginal prior on alpha
and the posterior density of alpha that would have been obtained under flat priors,
or10

pno-learningðaj j rj ;F Þ / pflatðaj j rj ;F Þ � pno-learningðajÞ. (2)

We focus on three aspects of the cross-sectional (across M funds) distribution of
posterior means of the alphas, namely, their average, standard deviation, and
maximum. Again, it is the sampling distributions of these quantities, based on 1,000
simulations, that we examine, first in a world without skill and then in one with.
The cross-sectional average and standard deviation will give us a general feel for the
differences between posterior beliefs with and without learning across funds. The
maximum is of interest in addressing the question of whether any active investment
in mutual funds is warranted, as in BMW. A maximum in excess of transaction costs
is sufficient to warrant some active investment in an optimal portfolio when the
investment universe consists of a market index (and other benchmark assets, if any),
the mutual funds, and a riskless asset.
10More specifically, we use the fact that the marginal posterior for aj can be obtained from the joint

posterior by integrating out bj and sj . Given the prior independence between aj and the other parameters,

the prior for aj can be factored out of the integral. Since it is well known that the flat prior implies a

Student-t distribution for the posterior of aj , both terms on the right-hand side are known. We numerically

integrate once to obtain the normalizing constant, then integrate again to calculate the posterior mean of

the aj under the no-learning prior.
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To gain some intuition for the effect of prior dependence, consider the posterior
distribution of the Mth fund’s alpha, given the entire data set of returns. By a
standard Bayesian result, the posterior for that fund’s alpha can be decomposed as

pðaM jF ; rÞ / pðrM jF ; aMÞpðaM jF ; r1; r2; . . . ; rM�1Þ, (3)

where the second term may be regarded as an ‘‘effective prior’’ on aM .11 This term
represents the investor’s belief about aM before observing the returns on fund M, but
after combining the initial prior with all other fund data. Under learning priors, this
effective prior evolves as M !1, eventually converging to the true cross-sectional
distribution of the alphas (as long as the assumed distributional forms are correct).
Under the no-learning prior, however, the other M � 1 funds are irrelevant, and the
effective prior on the Mth fund’s alpha is simply that fund’s marginal prior. For a
given fund, the learning prior therefore leads to a more ‘‘data-based’’ conclusion,
since the data affect the second term in the posterior as well as the first.

More formally, since each alpha is a random draw from a Nðma;s
2
aÞ distribution

under the learning prior, the mean of the effective prior in (3) equals the posterior mean
of ma and its variance is the posterior variance of ma plus the posterior mean of s2a, both
based on the M � 1 fund returns.12 Without learning across funds, it is the marginal

prior moments that matter. Thus, with no-learning priors, a fund’s alpha estimate is
shrunk toward zero while, under learning priors, there is shrinkage toward the (M � 1
fund) posterior mean of ma. The latter incorporates some shrinkage toward zero as well.

Because the effective prior will eventually converge to the true distribution of the
alphas, the learning prior must eventually (as M !1) lead to more accurate
inferences, on average, than any no-learning prior that is not exactly equal to the
true cross-sectional distribution. In finite samples, however, the relative performance
of the two priors depends on how ‘‘right’’ the marginal prior happens to be—a prior
with a mean equal to the true value and with a small enough standard deviation will
naturally imply posteriors that are closer to the truth. Put differently, from a
frequentist perspective there are two sources of error in the effective prior,
conventional estimation errors and the error of choosing a prior that does not
conform to the truth. The no-learning prior mitigates the first error by giving less
weight to the data, but it is utterly vulnerable to the second. In the simulations
summarized in the next section, the marginal priors are all centered around the true
value of zero. In the most skeptical case, the prior is extremely tight around that
value, and hence is expected to perform relatively well.
4.1. Simulations when managers have no skill

Fig. 3 presents sampling distribution means (across 1,000 simulations), under the
assumption that all managers are unskilled, for three functions of the posterior
11Earlier we spoke of priors conditioned on the true values of some alphas. Here, we are conditioning on

some of the data.
12The former follows from the law of iterated expectations while the latter is based on the variance

decomposition formula.
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means of the alphas. For each of our three priors, results are given first without and
then with learning across funds (prior dependence). For brevity, we denote the
posterior mean of the alpha of fund j as āj. Panels A and B depict the sampling
distribution means of the cross-sectional average āj , illuminating one dimension of
the performance of learning and no-learning priors. As in Fig. 1, since the lack of
skill in any of the Monte Carlo samples is consistent with prior beliefs, both learning
and no-learning priors result in inferences that are correct, at least on average.

Arguing as earlier, with independent informative priors, the prior variance of the
average alpha (1=M times the marginal variance of alpha) approaches zero as M

increases. Although the prior variance still declines with M under learning priors, it
does not approach zero since prior uncertainty about the common ma component is
unaffected.13 Consequently, there will be more shrinkage toward the prior mean in
the no-learning case, resulting in less dispersion for the average āj. If the prior
correctly ‘‘guesses’’ the true population mean, as in Fig. 3, this is a benefit. Of course,
the situation will be quite different when we simulate a world with skill but our priors
continue to reflect a belief that there is none.

Next, we consider results for the cross-sectional standard deviation of the āj ,
shown in the middle panels of Fig. 3. In general, when there is no learning across
funds, the standard deviations are unaffected on average as M increases. This makes
sense in that the posterior mean for each fund is an i.i.d. draw with no learning, so
increasing M simply results in more precise estimates of the same underlying
standard deviation of the āj , a typical sampling result. As in Fig. 1, there’s not much
effect of learning with the high-skepticism prior. With the less skeptical learning
priors, the standard deviations decline sharply and are much lower than the no-
learning standard deviations. This is consistent with the earlier observations about
sa. In short, the investor with a learning prior becomes increasingly convinced of the
reality that the alphas are all zero, while her no-learning counterpart seems capable
only of confirming that the average alpha is zero. Thus, the overall belief about the
set of fund alphas is quite sensitive to the learning/dependence assumption.

The key is that with learning, the data is pooled, which permits a conclusion to be
drawn about the nature of the latent population from which alphas are drawn. Upon
seeing that all of the alpha estimates are statistically ‘‘close’’ to zero, for a large set of
funds, the investor with a learning prior perceives the world as one in which skill is
unlikely to exist and markets are efficient, which thereby informs his belief about the
next fund’s alpha. The investor with a no-learning prior does not recognize such a
link and views the evidence for each fund in isolation. As a result, the maximum āj ,
examined in the bottom two panels of Fig. 3, increases with M under no learning.
This is to be expected in light of the well-known properties of order statistics under
independent sampling. Given enough funds, there will virtually always be some fund
with an extremely large alpha estimate and associated posterior mean, even when the
true alphas are all zero.
13Conditional (on ma and sa) independence under learning priors implies that the prior variance of the

average alpha is the prior variance of ma plus 1=M times the prior mean of s2a. When M ¼ 1, this is just the

marginal variance of alpha.
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Fig. 3. Monte Carlo means when managers are unskilled. Learning priors assume that the M fund alphas

are random draws from a normal distribution with mean ma and standard deviation sa. No-learning priors

are independent across funds, but have the same marginal distributions as the learning priors. Each panel

displays an average statistic over 1,000 Monte Carlo simulations of hypothetical data. The statistics are

based on posterior mean alphas for a cross-section of M funds. For each fund, a sample of 77 monthly

fund returns is generated from a one-factor model with true alpha equal to zero. Analyses are performed

under three degrees of prior skepticism—none, some, and high—denoted, respectively, by solid, dashed,

and grey lines. The highly and somewhat skeptical normal priors for ma have mean zero with standard

deviations 0.25 and 1.0, respectively; the corresponding inverted gamma priors for sa are centered around

0.75 and 3.0, with degrees of freedom 100 and 10. The unskeptical priors are diffuse.
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The situation is quite different with our less skeptical learning priors. Rather than
increase, as in the no-learning case, the sampling distribution average of the
maximum āj actually declines slightly as M increases. Under the no-skepticism
(diffuse) prior with M ¼10,000, a maximum as large as 40% is often observed with
no learning, whereas the values with learning cluster around 1.5%. This is another
manifestation of the fundamentally different perspective attained by incorporating
prior dependence. With learning across funds, each fund’s alpha is shrunk toward
the posterior mean of ma, which converges to zero with M when managers have no
skill (see Fig. 1). Simultaneously, shrinkage increases with M as sa, and hence the
variance of the effective prior in Eq. (3), approaches zero (again, see Fig. 1). These
effects combine to keep the posterior alphas from getting too large. More intuitively,
if the returns of all other funds have convinced us that mutual fund alphas are
generally close to zero, then the given fund’s alpha estimate will have relatively less
impact on its posterior mean.

4.2. Simulations when managers have some skill

Fig. 4 presents simulation results paralleling those in Fig. 3 for a world in which
ma ¼ 0:6% and sa ¼ 1:5%, the same values used in Fig. 2. Since the true alphas are
no longer zero, they are subtracted from the posterior means before computing the
average, standard deviation, or maximum ‘‘alpha error.’’ This facilitates the
evaluation of how closely the posterior means approximate reality.

The beliefs about alphas based on the informative no-learning priors are anchored
at the prior mean of zero. This would be true even with an infinite sample of funds,
since shrinkage is not affected by adding funds under prior independence. As a
result, the average error in Fig. 4 Panel A is consistently negative for these priors,
whereas it is roughly zero on average under the diffuse no-learning prior.

In contrast, with the learning priors, the average error is much closer to zero, at
least for M410. As seen in Panels C and D, the standard deviations under learning
are less than half those without learning when priors are uninformative (no
skepticism). The advantage is reduced with some skepticism and the differences are
very small with high skepticism. From a mean-square error (squared mean error plus
variance) perspective, therefore, the posterior mean alphas based on the learning
priors are clearly superior in this world with skill. Results for the maximum in Fig. 4
under the no-skepticism prior are again striking, especially for M ¼10,000, with
distributions centered around 36% and 5% for no learning and learning,
respectively. Again, these differences reflect shrinkage toward an aggregate alpha
estimate with learning across funds.
5. Empirical application

Given our understanding of the behavior of learning and no-learning priors
under simulated data, we now turn to an application on actual U.S. equity mutual
fund data.
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Fig. 4. Monte Carlo means when managers have skill. Learning priors assume that the M fund alphas are

random draws from a normal distribution with mean ma and standard deviation sa. No-learning priors are

independent across funds, but have the same marginal distributions as the learning priors. Each panel

displays an average statistic over 1,000 Monte Carlo simulations of hypothetical data. The statistics are

based on posterior mean alphas for a cross-section of M funds. For each fund, a sample of 77 monthly

fund returns is generated from a one-factor model with true alpha drawn from a normal distribution with

annualized mean 0.6% and standard deviation 1.5%. Analyses are performed under three degrees of prior

skepticism—none, some, and high—denoted, respectively, by solid, dashed, and grey lines. The highly and

somewhat skeptical normal priors for ma have mean zero with standard deviations 0.25 and 1, respectively;

the corresponding inverted gamma priors for sa are centered around 0.75 and 3, with degrees of freedom

100 and 10. The unskeptical priors are diffuse.
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5.1. Data

Our source for all mutual fund data is the 2001 CRSP Mutual Funds data file,
which contains mutual fund returns from January 1961 to June 2001. To focus solely
on the sample of domestic equity funds, we follow the selection procedure of BMW
to eliminate funds that are likely to have made substantial allocations to other asset
classes.14 In addition, we require that the fund have at least 12 months of returns
data available. This results in a sample of 5,136 funds with an average of 77.3
months of monthly return observations.

As in BMW, we focus on returns before fees and expenses, with the justification
that it is the returns on the underlying stocks themselves that are most likely to
conform with the linear pricing model. Since the mutual fund returns reported by
CRSP are net of both these costs, we add them back to the reported returns. As
BMW note, however, only the management fees are reported by CRSP—the
transactions costs incurred by each fund are unknown. Following BMW, we assume
these costs amount to six basis points per month. Unlike BMW, we include all equity
mutual funds in our sample rather than just those that still existed at the end of our
sample. In some cases, however, we compare these results with inferences based
solely on the 3,844 funds that survived to the end of the sample.

We employ four sets of benchmark returns in our empirical work, specifically, the
excess market return factor (RMRF) motivated by the CAPM, the three-factor
model of Fama and French (1993) (adding SMB and HML), a four-factor model
that augments the Fama–French factors with the momentum spread portfolio
(MOM) of Carhart (1997), and a seven-factor model that also includes three industry
factors. Our primary motivation for including the industry factors is to better
approximate the assumption of residual independence. The industry factors are
constructed in a manner similar to that in Pastor and Stambaugh (2002b).

First, excess returns on 30 industry-sorted portfolios are regressed on a constant,
the three Fama–French factors, and the momentum factor. The unexplained part of
the industry return is then defined as the residual of each regression plus that
regression’s intercept. These unexplained components can thus be viewed as returns
on zero-investment positions. A principal components analysis is performed on these
30 time series, and the first three principal components are taken as portfolio weights
for the three industry portfolios. Given concerns that there might be some sort of
spurious correlation between the weights and the realized industry returns over the
period, we modify the PS procedure and compute principal components separately
for odd and even months. The portfolio weights applied to returns in odd months are
then obtained from the even month data and vice versa.

5.2. Results with learning priors

Table 1 contains posterior means and standard deviations for ma and sa computed
under various learning priors for samples of all funds and surviving funds only. It is
14We are grateful to Klaas Baks for providing the code used to construct this data set.
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Table 1

Posterior means and standard deviations of ma and sa under learning priors

Highly skeptical priors Somewhat skeptical

priors

Unskeptical priors

K ¼ 1 (RMRF)

ma—all funds 1.40 (0.04) 1.47 (0.05) 1.48 (0.05)

ma—surviving funds only 1.92 (0.05) 2.08 (0.06) 2.11 (0.06)

sa—all funds 1.00 (0.07) 1.40 (0.06) 1.50 (0.06)

sa—surviving funds only 0.82 (0.05) 1.24 (0.06) 1.36 (0.06)

K ¼ 3 (RMRF, SMB, and HML)

ma—all funds 1.30 (0.05) 1.38 (0.05) 1.38 (0.05)

ma—surviving funds only 1.77 (0.06) 1.92 (0.06) 1.95 (0.07)

sa—all funds 1.99 (0.07) 2.21 (0.07) 2.26 (0.07)

sa—surviving funds only 1.92 (0.08) 2.24 (0.08) 2.30 (0.08)

K ¼ 4 (RMRF, SMB, HML, and MOM)

ma—all funds 1.33 (0.04) 1.37 (0.05) 1.39 (0.05)

ma—surviving funds only 1.73 (0.05) 1.85 (0.05) 1.87 (0.06)

sa—all funds 1.52 (0.06) 1.77 (0.06) 1.84 (0.06)

sa—surviving funds only 1.38 (0.07) 1.74 (0.07) 1.81 (0.07)

K ¼ 7 (RMRF, SMB, HML, MOM, and industry factors)

ma—all funds 1.71 (0.05) 1.80 (0.05) 1.81 (0.05)

ma—surviving funds only 2.18 (0.05) 2.34 (0.06) 2.37 (0.06)

sa—all funds 2.07 (0.07) 2.27 (0.07) 2.32 (0.07)

sa—surviving funds only 2.07 (0.07) 2.27 (0.07) 2.32 (0.07)

Estimation is based on monthly fund returns over the period January 1961 to June 2001. All numbers are

in annualized percentage terms. The highly and somewhat skeptical normal priors for ma have mean zero

with standard deviations 0.25 and 1.0, respectively; the corresponding inverted gamma priors for sa are

centered around 0.75 and 3.0, with degrees of freedom 100 and 10. The unskeptical priors are diffuse. The

factors are the excess market return RMRF, small-big market cap SMB, high-low book-to-market equity

HML, and past one-year momentum MOM. The industry factors are the normalized first three principal

components of the four-factor model residuals.
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immediately apparent that there is strong evidence of skill in the population of equity
mutual funds. Posterior means of ma from the sample of all funds are generally
between 1.3% and 1.8% per year and are somewhat sensitive to the choice of
benchmark portfolios, with posterior standard deviations that are extremely small.
Thus, the typical fund outperforms all benchmarks considered by a fairly substantial
amount, at least before fees and costs.

When considering asset allocation issues, as we do later, one is necessarily
restricted to existing or surviving funds. BMW address the question of whether this
imparts some sort of survivorship bias on the Bayesian analysis. They make the
following interesting observation. Suppose that the probability of survival is a
function solely of past fund returns, with no separate dependence on the fund
parameters—a seemingly reasonable assumption. In this case, posterior beliefs for
the surviving funds will not be altered by conditioning on the ex post information
about survival. Together with the assumptions of prior and residual independence,
this implies that the posterior distribution for a surviving fund’s parameters depends
only on its own returns.

The situation is more subtle when prior dependence is introduced. It is easy to
show that the information about survival is still redundant if we condition on the
returns for all funds (and factors), not just survivors. However, our belief about one
fund’s parameters will generally depend on the returns of other funds, including the
disappearing funds. The dependence arises because these other returns convey
information about the average level of skill in the population, as measured by ma.
Ignoring these returns can be likened to throwing out one tail of the sample
distribution when estimating a population mean.15

It is clear in Table 1 that including only those funds that survived to the end of the
sample results in a posterior mean for ma that is higher by about 40–60 basis points
per year. Therefore, ignoring survivorship, while irrelevant under no-learning priors,
can substantially inflate alphas computed under learning priors. The survival sample
also tends to generate posteriors for sa that are a little closer to zero. Both of these
effects are to be expected, as the survival sample is likely to exclude those funds
whose alphas are in the left tail of the cross-sectional distribution. Eliminating these
funds increases the mean and slightly reduces the dispersion in the sample.

Less intuitive are the patterns related to the use of different asset pricing models.
Posteriors of ma are fairly similar across the one-, three-, and four-factor models.
However, we are surprised to find that adding industry factors substantially increases
the posterior mean of ma by about 40 basis points. The estimates of ma are even
higher (40 to 50 basis points) than those reported in Table 1 when, as in PS, we
compute the industry components using the full data sample. In principle, any
passive zero-investment position should be a legitimate factor in this context, so the
results are puzzling.
15In principle, one could compute the conditional posterior density pðyj j rj ;F Þ based on a censored

sample if that were the only information available. However, the computation would be complicated

considerably by the fact that the density (likelihood) function describing the data generating process must

now reflect the censoring procedure. Stambaugh (2003) considers this issue in detail.
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The various models produce much more diversity in their estimates of sa, with
posterior means ranging from 1% to 2.3% for surviving funds. The multifactor
models sometimes yield posterior means twice those of the CAPM. Thus, under the
Fama–French model, for instance, there are a significant number of funds with very
high or very low alphas, even if the average alpha is not much different from that of
a CAPM world.

Finally, the effects of differing degrees of prior skepticism are relatively small,
consistent with the greater weight given to the aggregate data under learning priors.
Posterior means of ma under highly skeptical and unskeptical priors never differ by
more than 13 basis points for all funds and 19 basis points for surviving funds only.
Although inferences about sa are somewhat more sensitive, the degree of prior
skepticism is still not as relevant as the choice of asset pricing model.

5.3. Results for individual fund alphas

The same calculations also produce posteriors for each fund’s alpha. In Table 2,
we compare summary statistics for the alpha posterior means under learning priors
with those computed under comparable no-learning priors. The sample contains all
funds, including those funds that did not survive to the end of the sample.

In general, learning and no-learning priors result in very different inferences. All
versions of the learning prior yield average alpha posterior means of 1.3% to 1.8%
per year, consistent with the posterior means of ma, while average alphas for the no-
learning prior may be much higher or much lower depending on the degree of
skepticism imposed. Highly skeptical no-learning priors produce average alphas no
greater than 17 basis points per year, while unskeptical priors imply average alphas
of over 3% for the seven-factor model. The lower values for the highly skeptical no-
learning priors are consistent with the greater shrinkage toward the prior mean of
zero.

Dispersion in alpha posterior means also varies greatly across learning and no-
learning priors, particularly for the extreme cases of high and no skepticism.
Dispersion is closely related to the degree of shrinkage, which depends on the prior
standard deviations under no-learning, but on the estimates of sa under learning. In
Table 1, those estimates all lie between the skeptical prior standard deviations of
0.75% and 3%. With diffuse priors, there’s no shrinkage at all under no-learning,
though shrinkage toward a ‘‘grand mean’’ under learning still reduces dispersion
substantially.

With the Fama–French model, for example, the standard deviation of the alpha
posterior means is just 1.3% for the learning prior, but over 8% for the no-learning
prior. Under highly skeptical priors, the ordering is reversed, with the learning prior
yielding a standard deviation nearly four times that of the no-learning prior (1.13%
versus 0.33%). Here, shrinkage toward zero dominates under no-learning due to the
low prior standard deviation of just 0.75%. As in Table 1, dispersion is heavily
dependent on the asset pricing model as well.

One curious result from Table 2 is that for unskeptical priors, there is a large
difference between average alpha means computed under no learning and learning.
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Table 2

Summary statistics on posterior means of individual fund alphas (all funds)

Highly skeptical

priors

Somewhat

skeptical priors

Unskeptical

priors

K ¼ 1 (RMRF)

Average a posterior mean No learning 0.10 0.65 2.84

Learning 1.41 1.47 1.48

Standard deviation of mean a No learning 0.25 1.72 9.17

Learning 0.32 0.53 0.59

K ¼ 3 (RMRF, SMB, and HML)

Average a posterior mean No learning 0.12 0.78 2.48

Learning 1.32 1.38 1.38

Standard deviation of mean a No learning 0.33 2.22 8.31

Learning 1.13 1.28 1.31

K ¼ 4 (RMRF, SMB, HML, and MOM)

Average a posterior mean No learning 0.13 0.80 2.55

Learning 1.34 1.37 1.39

Standard deviation of mean a No learning 0.34 2.11 7.87

Learning 0.76 0.93 0.97

K ¼ 7 (RMRF, SMB, HML, MOM,

and industry factors)

Average a posterior mean No learning 0.17 1.03 3.03

Learning 1.73 1.80 1.81

Standard deviation of mean a No learning 0.37 2.27 8.41

Learning 1.23 1.38 1.41

Estimation is based on monthly fund returns over the period January 1961 to June 2001. All numbers are

in annualized percentage terms. The highly and somewhat skeptical normal priors for ma have mean zero

with standard deviations 0.25 and 1.0, respectively; the corresponding inverted gamma priors for sa are

centered around 0.75 and 3.0, with degrees of freedom 100 and 10. The unskeptical priors are diffuse. The

factors are the excess market return RMRF, small-big market cap return SMB, high-low book-to-market

equity return HML, and past one-year momentum MOM. The no-learning priors are independent across

funds with the same marginal distribution as in the learning case. The industry factors are based on

principal components of the four-factor model residuals.

C.S. Jones, J. Shanken / Journal of Financial Economics 78 (2005) 507–552 529



ARTICLE IN PRESS

C.S. Jones, J. Shanken / Journal of Financial Economics 78 (2005) 507–552530
With the CAPM benchmark, for example, the average posterior mean is 2.84%
under no-learning priors but only 1.48% under learning priors. It appears that the
higher average of the no-learning alphas is due to the presence of a number of
recently introduced funds that happened to perform well in the late 1990s.16
5.4. Alphas after fees and costs

The central question addressed by BMW is whether any investment in actively
managed mutual funds can be justified. They demonstrate that a necessary and
sufficient condition such investment is that the posterior mean of the alpha for some
fund be greater than the fees and transactions costs required to invest in that fund.
Accordingly, in this section we examine mutual fund alphas computed after fees and
costs.

The results reported in Table 3 differ from those of Table 2 in several ways. First,
alphas are calculated net of the assumed trading costs and actual management fees
that prevailed at the end of the sample (2001). These two components are simply
subtracted from the posterior means computed previously. Like BMW, in asset
allocation decisions we assume that future fees are equal to the last fee observed for
each fund.

Table 3 also differs from Table 2 in that it reports statistics only on the alphas of
those funds that survived to the end of the sample. This is done for comparability
with BMW and is motivated by the fact that these are the only funds in which an
investor could potentially allocate assets.17 Note that although only survivors’
alphas are summarized, all funds are used to compute posteriors under the learning
prior. As discussed earlier, this is necessary in order to avoid survivorship bias when
priors are dependent across funds.

The numbers in the table again indicate large differences between learning and no-
learning priors. Under learning priors, alphas net of fees and costs are on average
around �60 to �70 basis points per annum for the one- to four-factor models and
between �13 and �23 basis points per annum for the seven-factor model. In all
cases, this is roughly 2% below the corresponding levels before fees and costs. Thus,
any advantage that fund managers have in terms of superior skill is apparently more
than offset, from the investor perspective, by the surplus the managers reap and
other fund/trading costs.18 Without learning, average alphas are sometimes below
�2% or above þ2%, depending mostly on the degree of prior skepticism but also on
16Since these funds have fairly short track records and tend to have large residual standard deviations,

they contribute relatively little to the posterior mean of ma which, as noted earlier, incorporates a sort of

weighted least squares estimate. Under unskeptical learning priors, there is substantial shrinkage of these

estimates toward ma. With unskeptical no-learning priors, however, there is no shrinkage, and as a result

these estimates substantially raise the average alpha posterior mean.
17In fact, some of these mutual funds may not have survived past the end of the sample, making them

uninvestable, too.
18Taking into account costs that might be incurred in implementing the benchmark strategies would

improve relative fund performance somewhat. The expense ratio for Vanguard’s Total Stock Market index

fund, for example, is currently 20 basis points.
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Table 3

Summary statistics on posterior means of surviving fund alphas after fees and costs

Highly

skeptical priors

Somewhat

skeptical priors

Unskeptical

priors

K ¼ 1 (RMRF)

Average a posterior mean No learning �2.03 �1.17 2.32

Learning �0.69 �0.59 �0.57

Standard deviation of mean a No learning 0.76 1.71 8.87

Learning 0.75 0.84 0.87

Maximum a posterior mean No learning 0.74 6.87 86.19

Learning 1.72 2.96 3.23

K ¼ 3 (RMRF, SMB, and HML)

Average a posterior mean No learning �2.00 �1.06 1.34

Learning �0.68 �0.60 �0.58

Standard deviation of mean a No learning 0.81 2.33 8.62

Learning 1.31 1.44 1.46

Maximum a posterior mean No learning 0.63 44.54 88.13

Learning 4.12 4.51 4.58

K ¼ 4 (RMRF, SMB, HML, and MOM)

Average a posterior mean No learning �1.99 �1.05 1.40

Learning �0.71 �0.65 �0.62

Standard deviation of mean a No learning 0.82 2.22 8.06

Learning 1.03 1.15 1.19

Maximum a posterior mean No learning 1.21 39.36 81.26

Learning 2.96 3.26 3.28

K ¼ 7 (RMRF, SMB, HML, MOM, and industry factors)

Average a posterior mean No learning �1.94 �0.79 1.86

Learning �0.23 �0.14 �0.13

Standard deviation of meana No learning 0.85 2.38 8.51

Learning 1.39 1.51 1.54
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Maximum a posterior mean No learning 1.59 39.01 96.72

Learning 4.21 4.79 4.97

Estimation is based on monthly fund returns over the period January 1961 to June 2001. All numbers are

in annualized percentage terms. The highly and somewhat skeptical normal priors for ma have mean zero

with standard deviations 0.25 and 1.0, respectively; the corresponding inverted gamma priors for sa are

centered around 0.75 and 3.0, with degrees of freedom 100 and 10. The unskeptical priors are diffuse. The

factors are the excess market return RMRF, small-big market cap return SMB, high-low book-to-market

equity return HML, and past one-year momentum MOM. The no-learning priors are independent across

funds with the same marginal distribution as in the learning case. The industry factors are based on

principal components of the four-factor model residuals.

Table 3 (continued)

Highly

skeptical priors

Somewhat

skeptical priors

Unskeptical

priors
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the benchmark portfolios used. Standard deviations are also sensitive to the choice
of priors, as in Table 2.

In addition, Table 3 shows the maximum posterior mean for every combination of
prior and set of benchmark portfolios. In each case, this maximum posterior mean is
positive, indicating that there is always at least one fund whose alpha, net of fees and
costs, is greater than zero. Our results therefore support BMWs conclusion that some

allocation to actively managed funds is likely warranted.19

While the maximum alpha mean, net of fees and costs, is always positive, its
magnitude is frequently far different under the two priors. Using the Fama–French
factors, for example, the highest no-learning mean alpha is just 63 basis points for
highly skeptical priors, but an enormous 88.13% with no skepticism. Mean alphas
under learning priors in the same two cases are 4.12% and 4.58%, respectively.
While investment in these funds is positive in all of these cases, the extent of this
investment would vary widely.

5.5. Examples

Looking at some specific examples should be helpful in synthesizing what we have
learned in this research. We focus on before-cost alphas from the one-factor model.
One of the top-performing funds under the no-learning unskeptical prior was
Schroder Capital’s Ultra Fund, a ‘‘micro cap’’ fund with (annualized) posterior
mean alpha of 65%.20 There are only 44 monthly returns for this fund and residual
risk is 5.6%. Our second example is the well-known Fidelity Magellan Fund, with
457 monthly returns and a lower residual risk of 3.4%.
19Recall that BMW also model a probability q that a manager is skilled and explore the impact of

different values for this additional parameter.
20Among all funds with at least three years of returns data, Schroder was the top performer (under

unskeptical no-learning priors) both before and after fees and costs. The posterior mean of Schroder’s

alpha after fees and costs was 62.1%.
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Table 4

Alpha posterior means and standard deviations for two mutual funds under the one-factor model

Degree of prior skepticism

High Some None

Schroder Ultra

No-learning 0.2 8.1 65.0

(0.8) (11.1) (10.4)

Learning 1.7 2.1 2.2

(1.0) (1.4) (1.6)

Fidelity Magellan

No-learning 1.5 8.5 10.4

(0.8) (1.9) (1.9)

Learning 3.3 4.6 4.8

(1.0) (1.1) (1.3)

‘‘High’’ and ‘‘Some’’ skepticism denote priors on ma that are normal with zero mean and standard

deviation 0.25% and 1%, respectively. Corresponding priors for sa are centered around 0.75% and 3%,

respectively. Results for ‘‘None’’ are based on diffuse priors.
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The before-cost annualized alpha means and standard deviations (in %) under
various priors are as reported in Table 4. As in our other tables, the degree of
skepticism about the magnitude of skill declines from left to right. Also, as earlier,
the entire panel of fund data is used in the estimation under learning priors.

First, consider the results for no-learning priors. Under the unskeptical (diffuse)
prior, the posterior mean is just the OLS regression estimate and the posterior
standard deviation is equal to the OLS standard error apart from a slight degrees of
freedom adjustment. The enormous estimate of 65% for the Ultra Fund is shrunk
very close to the prior mean of zero under the high-skepticism prior. On the other
hand, the Magellan Fund, with a much lower OLS estimate of 10.4%, has a higher

posterior mean under high skepticism. The reason is that with a much longer time
series and lower residual risk, the Magellan estimate is far more precise, resulting in
less shrinkage toward the prior mean. The greater precision also accounts for the
lower posterior standard deviations of the Magellan Fund alphas.

To further illustrate these ideas, we can approximate the calculation for Magellan
under high skepticism as follows. Since the marginal priors under no-learning are taken
to be the same as those under learning, the prior variance for alpha is roughly equal to
the squared mean of sa plus the variance of ma, or 0:0075

2 þ 0:00252, and the precision
is the reciprocal, or 16,000. Given the standard error of about 1.9%, the precision of
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the OLS estimate for Magellan is 1=0:0192 � 2; 770 and, therefore, the posterior weight
on this estimate is 2770=18,770� 0:15. The resulting precision-weighted average of the
prior mean and the OLS estimate is 0:85ð0Þ þ 0:15ð10:4%Þ ¼ 1:5%, which is equal to
the posterior mean under no-learning in Table 4.

Now, consider the learning prior results. All alpha posterior means reflect
shrinkage toward the posterior means for ma, which range from 1.4% to 1.5% for the
one-factor model in Table 2. For the reason just discussed, shrinkage is again much
greater for the Ultra Fund, resulting in alphas that are uniformly lower than those
for Magellan. As another illustration, consider the Magellan calculation under no
skepticism (none). Since the posterior standard deviations in Table 1 are relatively
small, the effective prior under learning is roughly Nðma; s

2
aÞ with ma ¼ 1:48% and

sa ¼ 1:5%. Basing the ‘‘prior’’ precision on this value of sa, and recalling the 1.9%
OLS standard error for Magellan, the precision-weighted average alpha is now
0:62ð1:48%Þ þ 0:38ð10:4%Þ ¼ 4:9%, close to the posterior mean of 4.8% in Table 4.

For each fund, learning across funds results in larger alphas under high skepticism
but smaller alphas otherwise. With tight (skeptical) priors, this is the result of
shrinkage toward zero (prior mean) under no-learning, but toward 1.4% (mean ma)
under learning. The ordering of alphas reverses as the prior becomes more diffuse
(less skeptical) since shrinkage under no-learning declines, while the data-based
shrinkage under learning remains substantial.21

Differences in posterior standard deviations of alpha under learning and no-
learning priors can be understood in a similar manner. Under high skepticism,
greater shrinkage toward zero reduces the standard deviation under no-learning.
With less skepticism, the data play a greater role and shrinkage toward the pooled
estimate of ma lowers posterior variability under learning priors. The nonmonotonic
behavior of the Schroder fund’s standard deviations as we vary the degree of
skepticism under no-learning is surprising and reflects the bimodal nature of the
posterior distribution for alpha in this case.

Finally, note that alphas need not be lower under learning priors. The three-factor
alpha of the Dreyfus Premier Aggressive Growth Fund, for example, has a posterior
mean of�8:5% before fees and costs under somewhat skeptical no-learning priors. With
the same degree of prior skepticism, learning priors imply a posterior mean of �1:8%.
5.6. Optimal asset allocation

While a complete analysis of optimal investment in equity mutual funds is beyond
the scope of this paper, we continue the previous examples and ask how variations in
prior beliefs affect the allocations to a particular mutual fund. Specifically, we
consider an investor who is able to allocate assets to the value-weighted market
index, a risk-free asset yielding 6% interest, and either the Schroder Capital Ultra
Fund or the Fidelity Magellan Fund.
21To keep things relatively simple, we do not incorporate the link between residual variance and the

prior standard deviation of skill used by BMW and PS. Such a link, considered in Section 6.2, would make

the Ultra prior less precise and reduce shrinkage to the prior mean somewhat, as compared to Magellan.
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Following Kandel and Stambaugh (1996), the investor is assumed to maximize the
expectation of a power utility function of the form

UðW Tþ1Þ ¼

W 1�A
Tþ1

1� A
for A40 and Aa1

lnðW Tþ1Þ for A ¼ 1;

8<
: (4)

where A ¼ 1, 2, or 5. Given a $1 investment at time T , the end of the sample, the
investor’s end-of-period wealth is given by W Tþ1 ¼ 1þ rf ;Tþ1 þ wjrj;Tþ1 þ wmrm;Tþ1.
Here, rf is the riskless return, while rj ðwjÞ and rm ðwmÞ are excess returns on
(allocations to) the fund and the market index, respectively. These returns are net of
annualized fees and costs, which are estimated to be 2.7% for Schroder and 1.6% for
Magellan.

The expectation of UðW Tþ1Þ is taken with respect to the investor’s predictive
distribution for rj;Tþ1 and rm;Tþ1, which incorporates posterior parameter
uncertainty. This is given by

pðrj;Tþ1; rm;Tþ1 j r; rmÞ ¼

Z
pðrj;Tþ1; rm;Tþ1 j yj ; ymÞpðyj ; ym j r; rmÞdyj dym, (5)

where ym and yj denote, respectively, the parameters of the distributions of rm and rj

given rm. The vector of all fund returns is denoted as r. As is often the case in
regression models, with independent priors for ym and yj, the posterior distribution
can be factored as

pðyj ; ym j r; rmÞ / pðyj j r; rmÞpðym j rmÞ, (6)

where pðyj j r; rmÞ has been the object of our study thus far. Yet to be examined is
pðym j rmÞ, which, despite its irrelevance for inferences about yj, is important for
determining allocations to the market portfolio.

Our approach to computing pðym j rmÞ is standard. Letting ym � fmm; smg, we
assume that rm � i.i.d. Nðmm;s

2
mÞ. Given the diffuse prior pðmm;smÞ / 1=sm, the

posterior distribution of sm is an inverted gamma and the posterior of mm is a
Student-t. Using monthly excess value-weighted market returns from January 1961
to June 2001, we find the posterior distribution of mm to have a mean of 0.47% and a
standard deviation of 0.21%. The posterior of sm has a mean of 4.48% and a
standard deviation of 0.15%.

Ten thousand draws from the predictive distribution (5) are simulated by first
drawing yj and ym at random from their respective posteriors and then drawing
returns from

pðrj;Tþ1; rm;Tþ1 j yj ; ymÞ ¼ pðrj;Tþ1 j rm;Tþ1; yjÞpðrm;Tþ1 j ymÞ. (7)

Optimal portfolio weights are solved numerically by maximizing the sample average
of UðW Tþ1), taken across the 10,000 draws. As Kandel and Stambaugh (1996) note,
expected power utility may equal �1 when the total allocation to risky assets is
100% or when short sales are allowed. We therefore impose the constraints that
wj þ wmp0:99, wjX0, and wmX0. For brevity, we report only the optimal allocation
to the mutual fund.
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Table 5

Optimal portfolio allocations to two mutual funds under the one-factor model

Degree of prior skepticism

High Some None

Schroder

No-learning A ¼ 1 0.000 0.501 0.990

A ¼ 2 0.000 0.316 0.990

A ¼ 5 0.000 0.136 0.990

Learning A ¼ 1 0.000 0.000 0.000

A ¼ 2 0.000 0.000 0.000

A ¼ 5 0.000 0.000 0.000

Fidelity

No-learning A ¼ 1 0.443 0.990 0.990

A ¼ 2 0.042 0.990 0.990

A ¼ 5 0.011 0.529 0.672

Learning A ¼ 1 0.990 0.990 0.990

A ¼ 2 0.669 0.925 0.945

A ¼ 5 0.268 0.371 0.379

‘‘High’’ and ‘‘Some’’ skepticism denote priors on ma that are normal with zero mean and standard

deviation 0.25% and 1%, respectively. Corresponding priors for sa are centered around 0.75% and 3%,

respectively. Results for ‘‘None’’ are based on diffuse priors.

A denotes the investor’s coefficient of relative risk aversion.
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Broadly speaking, fund allocations tend to track the alphas reported above once
fees and transactions costs are taken into account. The alphas of these funds are
higher with less skeptical priors, particularly in the no-learning case, and the
allocations reflect this finding. With no-learning priors, as for the alphas themselves,
allocations to the same fund can differ dramatically between investors with different
degrees of prior skepticism. With learning, the information extracted from other
fund returns reduces the influence of the prior. As a result, investors with learning
priors tend to arrive at the same view of managerial skill regardless of their initial
belief, and so their allocations are not very sensitive to the degree of prior skepticism.

The differences between allocations under no-learning and learning, as displayed
in Table 5, are extreme in some cases. With no skepticism, an investor with no-
learning priors would allocate 99%, the maximum, to the Schroder Fund for all
levels of risk aversion considered, while investors with learning priors always allocate
zero to Schroder. The latter reflects the fact that fees and costs of 2.7% for Schroder
exceed the mean alphas with learning in Table 4. Allocations for the Fidelity Fund
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sometimes differ substantially as well. A somewhat risk-averse ðA ¼ 2Þ investor with
highly skeptical learning priors would allocate 67% to Magellan, while a comparable
investor with no-learning priors would allocate only 4.2%.
6. Alternative specifications

6.1. Residual independence

Thus far, our analysis has assumed that factor model residuals are cross-
sectionally uncorrelated. This simplification is driven, in part, by the complexity in
estimating the millions of residual correlations, which is even more problematic than
usual given the differences in sample sizes and sample periods across funds.

As a first step toward addressing this issue, we replace the assumption of residual
independence with the somewhat stylized yet substantially more general assumption
that the residual covariance matrix has a linear factor structure, i.e.,

Covð�t; �
0
tÞ ¼ dd0 þ O, (8)

where O is diagonal and �t is the vector, from (1), of factor model errors that would
exist if all M funds were simultaneously observed. The ‘‘residual factors’’ are
assumed to be orthogonal and, without loss of generality, to have unit variance.

Estimation of this model follows the algorithm of Geweke and Zhou (1996) almost
exactly by augmenting the data with latent residual factors, denoted Gt. Rewriting �j;t

as d0jGt þ xj;t, the factor model (1) becomes

rj;t ¼ aj þ b0jF t þ d0jGt þ xj;t, (9)

where xj;t�Nð0;Oj;jÞ is cross-sectionally independent. The latent factors have mean
zero and are orthogonal to the benchmark factors Ft. We maintain the assumption that
the benchmark is correctly specified, so our previous interpretation of aj as a measure
of skill is unaffected. Given our normality assumptions, Geweke and Zhou show that
the distribution of Gt conditional on the parameters and all other time-t quantities is
Gaussian. Therefore, for each t, we draw Gt in a separate block of the Gibbs sampler.
Conditional on the full time series of Gt, we may draw values of dj together with bj ,
which are jointly multivariate normal. Details are provided in the appendix.

We consider three different factor specifications for (8). The first assumes that all
residuals load on one aggregate residual factor, so that d is an M � 1 vector. The
second specification holds that there are seven orthogonal residual factors, one for
each of the mutual fund objectives identified by Pastor and Stambaugh (2002b). The
errors of each fund classified as having a particular objective load on that objective’s
residual factor only. The third specification combines the first two. Fund residuals
load both on the residual factor related to their objective and to the aggregate
residual factor. In this last case, d is an M � 8 matrix, but only two elements of each
row are nonzero.

Posterior means and standard deviations for ma and sa are presented in Table 6.
For brevity, we report only the results for the market model specification ðK ¼ 1Þ
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Table 6

Effects of alternative assumptions about residual covariances

Uncorrelated

residuals

One aggregate

residual factor

Objective-based

residual factors

Aggregate and

objective-based factors

ma 1.48 1.70 1.11 0.94

(0.05) (0.05) (0.06) (0.10)

sa 1.50 1.78 1.69 1.76

(0.06) (0.07) (0.07) (0.07)

ma and sa represent the cross-sectional mean and standard deviation, respectively, of the population of

mutual fund alphas.
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under unskeptical learning priors. Overall, richer covariance structures are consistent
with lower posterior means and higher posterior standard deviations for ma. The
latter would follow if the covariation captured is predominantly positive. Higher
values are also found for sa. Both effects should lead to less shrinkage in the
individual alphas themselves. To see if this is the case, Fig. 5 plots the posterior
means and standard deviations for alphas estimated under the different residual
models. A 45� line is also shown.

Panel A of the figure shows the relation between alpha posterior means computed
under residual independence and those estimated with a single aggregate residual
factor. The relation, while strong, is far from perfect. The two sets of alpha means
have a correlation coefficient of 0.89, and there is somewhat more dispersion in the
posterior means that result from the residual factor model. Greater dispersion in
alphas is also apparent in Panel B, where posterior standard deviations computed
using the residual factor are larger for most funds.

The remainder of Fig. 5 is qualitatively similar, with alphas generally more
dispersed for the specifications involving a residual factor structure. One surprising
result in panels D and F is the existence of a small number of funds whose alpha
posterior standard deviations are fairly close to zero when computed with residual
factors. It turns out that all 95 funds with alpha posterior standard deviations below
0.25% in Panel F are classified ‘‘Growth and Income’’ funds, even though those
funds comprise only 23% of the entire sample. At least some of the 95 appear to be
index funds, and their posterior mean alphas, which average 1.68% with
Fig. 5. Posterior moments of a under different residual covariance assumptions. This figure compares

posterior mean alphas calculated under residual independence (horizontal axes) with those computed

under a factor structure for the residual covariance matrix (vertical axes). In panels A and B, we assume

there is only a single residual ‘‘factor.’’ In panels C and D, each fund loads on a residual factor that is

common to all funds with the same fund objective. Panels E and F combine these objective-based factors

with an aggregate residual factor. Estimation is based on monthly fund returns over the period January

1961 to June 2001 using the market portfolio as the sole benchmark asset. Numbers are in annualized

percentage terms and result from unskeptical learning priors.
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independent residuals, drop to just 0.23% on average when aggregate and objective
residual factors are introduced.
6.2. Prior dependence between aj and sj

In considering a large cross-section of stocks, MacKinlay (1995) argues that, other
things equal, if aj and sj are unrelated, then there will exist portfolios with more
extreme Sharpe ratios. Both Pastor and Stambaugh (2002a,b), building on their
earlier work, and Baks et al. (2001) incorporate this observation into their prior
specifications for fund parameters, letting the prior variance of aj, conditional on sj ,
be proportional to s2j .

This idea can be incorporated in our framework as well. With the priors on ma and
sa specified as before, we let the conditional prior for aj be normal with mean ma, but
with a variance of (s2j =s

2
0) s2a. In this specification, sa can be interpreted as the

conditional prior standard deviation of the alpha for a fund with residual variance
equal to s20. To maintain comparability with earlier results, we set s0 equal to the
median OLS estimate of sj . Thus, s2a can now be interpreted as the population
variance of mutual fund alphas for funds that have the ‘‘typical’’ amount of residual
noise. Note that s0 decreases with K , as the addition of more factors reduces the
magnitude of sj.

Alternatively, s2a can be thought of as the population variance of s0ðaj=sjÞ. Thus,
we can now think in terms of the ‘‘information’’ or ‘‘appraisal’’ ratio of Treynor and
Black (1973), which considers the risk-adjusted reward to investing in asset j in
relation to the residual risk borne. As they show, the increase in the Sharpe ratio
attained by optimally tilting the benchmark portfolio(s) toward asset j is determined
by both this ratio and the Sharpe ratio of the benchmark.

Posterior computations using this prior are slightly simpler than those for our
previous priors. Conditional on ma and sa, distributions for the aj, bj , and sj follow
Pastor and Stambaugh’s (2002b) results exactly.22 Posterior results for ma and sa
incorporating the prior link between aj and sj are presented in Table 7.In general, we
see small changes in both the mean and standard deviations of ma, but imposing the
link tends to increase posterior means of sa, sometimes by as much as 50%. While
the interpretations of sa with and without the prior link are not identical, these
results suggest an important difference between the two classes of priors. This is
more than confirmed in Fig. 6, which demonstrates huge differences between
individual alphas computed under the two priors when K ¼ 3 and there is no prior
skepticism. In this case, there is much greater variation in the alphas when the link is
imposed, with alpha posterior means ranging anywhere from �20% to 30%.

Inspection of OLS results for individual funds suggests a culprit for this disparity.
We find a small number of funds whose returns are almost perfectly explained by
22Gibbs draws of ma and sa, conditional on aj and sj , are easily derived following the representation of

aj as ma þ ðsj=s0ÞsaZj , where Zj� i.i.d. Nð0; 1Þ. Thus, conditional on the other parameters, ma and sa may

be estimated using standard regression techniques since this representation implies ðs0=sjÞaj ¼

ðs0=sjÞma þ saZj , which is a homoskedastic linear regression.
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Table 7

Posterior means and standard deviations of ma and sa with and without a link between aj and sj

Highly skeptical

priors

Somewhat skeptical

priors

Unskeptical priors

K ¼ 1 (RMRF)

ma—without link 1.40 (0.04) 1.47 (0.05) 1.48 (0.05)

ma—with link (s0 ¼ 0:027) 1.33 (0.04) 1.35 (0.04) 1.36 (0.04)

sa—without link 1.00 (0.07) 1.40 (0.06) 1.50 (0.06)

sa—with link (s0 ¼ 0:027) 1.43 (0.10) 2.01 (0.09) 2.09 (0.09)

K ¼ 3 (RMRF, SMB, and HML)

ma—without link 1.30 (0.05) 1.38 (0.05) 1.38 (0.05)

ma—with link (s0 ¼ 0:020) 1.20 (0.04) 1.24 (0.04) 1.24 (0.04)

sa—without link 1.99 (0.07) 2.21 (0.07) 2.26 (0.07)

sa—with link (s0 ¼ 0:020) 2.80 (0.07) 2.97 (0.07) 3.00 (0.07)

K ¼ 4 (RMRF, SMB, HML, and MOM)

ma—without link 1.33 (0.04) 1.37 (0.05) 1.39 (0.05)

ma—with link (s0 ¼ 0:019) 1.36 (0.04) 1.39 (0.04) 1.40 (0.04)

sa—without link 1.52 (0.06) 1.77 (0.06) 1.84 (0.06)

sa—with link (s0 ¼ 0:019) 2.30 (0.07) 2.52 (0.07) 2.56 (0.07)

K ¼ 7 (RMRF, SMB, HML, MOM, and industry factors)

ma—without link 1.71 (0.05) 1.80 (0.05) 1.81 (0.05)

ma—with link (s0 ¼ 0:017) 1.65 (0.04) 1.70 (0.04) 1.70 (0.04)

sa—without link 2.07 (0.07) 2.27 (0.07) 2.32 (0.07)

sa—with link (s0 ¼ 0:017) 2.67 (0.07) 2.84 (0.07) 2.87 (0.07)

Results in this table labeled ‘‘without link’’ are identical to those reported in Table 2 for learning priors

using all funds. Results labeled ‘‘with link’’ also use learning priors and all available funds but assume that

the conditional prior for aj is normal with mean ma and variance ðs2j =s
2
0Þs

2
a, where s2j is the residual

variance for fund j and s0 is the cross-sectional median OLS estimate of sj . Estimation is based on

monthly fund returns over the period January 1961 to June 2001. All numbers are in annualized

percentage terms. The highly and somewhat skeptical normal priors for ma have mean zero with standard

deviations 0.25 and 1.0, respectively; the corresponding inverted gamma priors for sa are centered around

0.75 and 3.0, with degrees of freedom 100 and 10. The unskeptical priors are diffuse. The factors are the

excess market return RMRF, small-big market cap return SMB, high-low book-to-market equity return

HML, and past one-year momentumMOM. The no-learning priors are independent across funds with the

same marginal distribution as in the learning case. The industry factors are based on principal components

of the four-factor model residuals. Factors and priors for ma and sa are identical for specifications with and

without the ‘‘link’’.

C.S. Jones, J. Shanken / Journal of Financial Economics 78 (2005) 507–552 541
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Fig. 6. Posterior moments of a with and without the link between a and s. This figure compares posterior

means and standard deviations of alphas with (vertical axes) and without (horizontal axes) a prior link

between each fund’s alpha and residual standard deviation. Without the link, alphas are assumed

distributed as Nðma, s
2
a), as in most of the paper. With the link, a is normal with mean ma and standard

deviation ðsj=s0Þsa, where s0 is equal to the median OLS estimate of sj . Estimation is based on monthly

fund returns over the period January 1961 to June 2001. Numbers are in annualized percentage terms and

result from applying unskeptical learning priors to the three-factor model ðK ¼ 3Þ of returns.
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three or more factors, but which have OLS alphas that are small (approximately
two basis points per month) yet statistically significant. Given our earlier
discussion, the large information ratios of these funds can be justified only by a
large value for sa. It follows that the (conditional) prior for a fund with high sj

is highly dispersed, resulting in little shrinkage towards the sample mean for
many funds.

Is it more desirable to impose the prior link between aj and sj or not? In the
mutual fund context, substantive issues arise that go beyond the asymptotic
arbitrage arguments made previously when considering the pricing of individual
stocks. BMW note that, other things equal, increasing the amount of cash held by a
fund lowers both its alpha and residual risk. However, differences in residual risk
across funds and the empirical association between alpha and residual risk will be
driven by many other factors related to variation in funds’ investment strategies. One
important consideration is the nature of the insight that skilled fund managers
possess. Are astute managers able to detect mispricing across a wide range of stocks
at a given point in time and, therefore, able to deliver large alphas with relatively low
residual variance? Or, do managers with the highest alphas focus on particular
industries or market sectors, thereby forgoing some diversification? A prior belief in
the latter hypothesis is consistent with a positive link between aj and sj, while the
former suggests a negative relation. In light of the uncertainties, assuming
independence in the joint prior for aj and sj seems to us to be as reasonable as
the alternatives, but the ultimate choice lies with the reader.
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6.3. Correlation among the alphas

The identification of mispriced stocks can be viewed as a zero-sum game in which
the buyer achieves an abnormal return at the expense of the seller, or vice versa.
Thus, if all equities were held through mutual funds, one might want to treat ma as
known and equal to zero. However, this scenario implies not only that the expected
alpha is zero, but also the further restriction that the realized or actual (size-
weighted) sum of all alphas equals zero. This is inconsistent with our modeling of the
alphas as independent draws from an underlying population, but could be
accommodated by allowing for negative correlation among those draws.

According to the Investment Company Institute, stock mutual funds held just
21% of all publicly traded U.S. stocks at the end of 2003, even after the huge growth
of funds in the 1990s. Thus, incorporating negative correlation is not likely to be
important in this context. An initial exploration of this issue via simulations
reinforces that impression. We abstract from some of the complexities of the actual
data and simplify the computations by simulating funds of equal size, history length,
and (known) residual variance. In this symmetric context, it is easy to show that a
pairwise correlation of �1=ðM � 1Þ between fund alphas would ensure that the sum
of alphas has zero variance and hence equals zero when ma is zero.

A given fund may achieve abnormal returns at the expense of non-fund investors
as well as the other M � 1 funds, however. The question then is how to model the
prior for these non-fund alphas. For simplicity, we treat the non-fund investment as
if it were generated by M other investment vehicles that are not observed but are
treated symmetrically with our M funds.23 Now, since ma is the population mean of
the fund alphas, the mean non-fund alpha must be �ma. If we further assume that the
correlation among all investment vehicles, funds and non-funds, equals
�1=ð2M � 1Þ, then the sum of all the alphas must be zero.

We find that imposing the negative correlation in this manner has a trivial effect
on the posterior means of the hyperparameters and the individual fund alphas in
simulations with N ¼ 10, 100, 1,000 or 10,000 funds. We do see a noticeable
reduction in the posterior variance for ma, however. This makes sense in that the
variance of the average alpha is reduced by imposing the negative correlation. This
has little effect on the posterior means of the alphas, however, since shrinkage of the
regression estimates toward ma depends mainly on the level of sa. It would be
interesting to study the impact of imposing the exact ‘‘adding-up constraint’’ when
we consider the role of prior dependence in asset pricing tests, where the weighted-
average alpha across all assets is zero when a market factor is included in the model.

7. Summary and conclusions

This paper is based on a simple intuitive premise: If the true measures of
performance (alphas) for a large set of mutual funds were somehow revealed to an
23Using M, as opposed to something closer to 4M non-funds, as the 21% figure mentioned above might

suggest, is conservative in that the role of non-fund investment is given greater weight.
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investor, it would affect her belief about the likely degree of abnormal performance
for some other fund not in that set. Mathematically, this is a statement that prior

beliefs for different funds are dependent. They are dependent insofar as an investor’s
expectation about the performance of a fund depends on his belief about mutual
fund managers as a group and, more generally, the degree to which financial markets
are efficient.

We accommodate this perspective by assuming that the true alphas are random
draws from a distribution with hyperparameters ma and sa, the average level of skill
and the standard deviation of skill, respectively. Investors learn about these
parameters by pooling data for all funds and this feeds back into the estimation of
individual fund alphas, a phenomenon we refer to as ‘‘learning across funds.’’ Highly
efficient numerical techniques are developed for evaluating posterior moments in this
context. Simulations are then used to explore the beliefs an investor might arrive at
under different assumptions about actual management skill, an investor’s initial level
of skepticism about abnormal performance, and the number of funds observed.

Of central interest are the differences in estimates that arise as a result of
incorporating ‘‘learning across funds.’’ Two sorts of shrinkage factors emerge as
relevant for understanding the differences observed. First, whereas estimates of a
given fund’s alpha are based solely on that fund’s returns in the traditional
approach, learning gives rise to a data-based shrinkage factor, with each fund’s
estimate tilted toward the pooled estimate of ma, to a degree also determined by the
data. Second, when prior information is incorporated, there is also shrinkage toward
the prior mean, which we take to be zero. This attenuation is stronger without
learning since the data are perceived as less informative about a given fund’s alpha in
this case.

With learning across funds, estimates of the hyperparameters gradually converge
to the true values as M, the number of funds, increases. The convergence tends to be
slower for sa than for ma in the simulations we perform. Ideally, deviations between
the estimates and the true fund alphas would be tightly centered about zero. With
learning, data-based shrinkage does result in an average error that approaches zero,
with very good results when M is 1,000 or higher. In contrast, the ‘‘bias’’ induced by
shrinkage of each fund’s alpha toward the prior mean is fixed under a no-learning
prior, as there is no data-based effect to offset it. Hence, the average error does not
decline with M and is zero only if the prior mean happens to coincide with the actual
value of ma. This is a fundamental difference between the two approaches.

Our empirical application with actual monthly fund returns is based on a set of
over five thousand funds with an average history of about 77 months of data. The
estimates of ma and the average fund alpha are usually around 1.3% to 1.4% per
annum (before expenses) but, surprisingly, are about 40 basis points higher when
industry factors are included. This suggests that managers do indeed possess some
skill in selecting stocks, though not enough to offset the typical expenses of about
2%. Estimates of sa mostly range between 1.5% and 2.3%, depending on the prior
and the benchmark model.

The empirical implications of incorporating ‘‘learning across funds’’ are conveyed
most dramatically by focusing on the fund with the largest posterior mean alpha.
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Using returns net of expenses, the maximum is typically between 2% and 7.3% with
learning. Under no-learning priors, the maximum can be as high as 44% with some
skepticism about the magnitude of alpha or 92% if prior information is ignored
(diffuse priors). These results reflect the data-based shrinkage that occurs with
learning across funds and the absence of this effect when one imposes prior
independence.

While we document a significant impact on the cross-sectional distribution of
estimated alphas, the implications of learning across funds for asset allocation
remain largely unknown. Although two examples demonstrate the substantial effects
of learning on the allocation to a particular fund, the implications for asset
allocation across funds remain unexplored. The additional layer of cross-sectional
dependence in the perceived or ‘‘predictive’’ distribution of returns that arises with
learning makes this an interesting and challenging issue for future work. It would
also be desirable to integrate uncertainty about pricing model misspecification in our
framework, building on Pastor and Stambaugh (2002a,b).

In addition, our simple model with ma and sa might be extended to reflect
conditional dependence through additional hyperparameters related to fund
characteristics. For example, Baks (2003) considers the common effect of a given
manager or fund organization on fund alphas. Alternatively, dependence could be
related to fund holdings data in a Bayesian version of the recent Cohen et al. (2005)
approach. For a given fund, this would provide a basis for optimally combining its
own alpha estimate with that of funds overall and, additionally, with the alphas of
funds following similar investment strategies.

Prior dependence will likely play a significant role in other cross-sectional contexts
as well, such as the testing and evaluation of asset pricing models. For example, one
might doubt the adequacy of the CAPM, a priori, because the theory fails to
incorporate hedging demands, taxes, or behavioral biases, to name just a few of the
many possibilities. Analogous to our argument for mutual fund alphas, knowing the
true deviations from the CAPM for a large set of stocks would affect our belief about
the adequacy of the model in general. This would inform our prior belief about the
deviations for other stocks, though perhaps through a more complicated
specification that ultimately incorporates the covariances between securities and
other stock characteristics. While these natural extensions of our basic framework
are beyond the scope of this paper, we look forward to exploring them in future
work.
Appendix A. the MCMC sampling procedure

The data generating process (for excess fund returns) is assumed to be the linear
factor model

rj;t ¼ aj þ b0jF t þ �j;t, (A.1)

where �j;t�Nð0;s2j Þ are uncorrelated across funds and through time.
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Priors are represented as

ma�Nðma;V aÞ, (A.2)

sa�IGðsa;NaÞ, (A.3)

aj�Nðma;s
2
aÞ, (A.4)

and

pðbj ;sjÞ / 1=sj. (A.5)

There are several standard parameterizations of the inverted gamma distribution.
The parameterization we use is easily interpreted as the posterior distribution that
would result (under the ‘‘diffuse’’ prior pðsaÞ / 1=saÞ following the observation of
the alphas of Na funds, given a known value of ma. The parameter sa is simply the
standard deviation of this sample computed using the known mean ma and using Na

rather than Na � 1 to divide the sum of squared errors (so that the prior remains well
defined even when Na ¼ 1). The density of the inverted gamma distribution in (A.3)
therefore satisfies

pðsa j sa;NaÞ /
1

sNa
a

exp �
Nas

2
a

2s2a

� �
, (A.6)

with a mean approximately equal to sa when Na is large.
As outlined in Section 2.2, the Gibbs sampling approach we use consists of four

blocks. We consider each in turn.

A.1. Drawing sa conditional on a and ma

For shorthand, let a denote the vector of all fund alphas. Given ma and a, the
conditional posterior of sa can be written using Bayes’ Rule as

pðsa jma; a; sa;NaÞ / pða jma;saÞpðsa j sa;NaÞ, (A.7)

which is proportional to

1

sM
a
exp �

Mŝ2a
2s2a

� �
1

sNa
a

exp �
Nas

2
a

2s2a

� �
¼

1

sMþNa
a

exp �
Mŝ2a þNas2a

2s2a

� �
, (A.8)

where ŝ2a ¼ ð1=MÞða� maiÞ
0
ða� maiÞ and i is an M � 1 vector of ones. The

conditional distribution of sa is therefore

IG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMŝ2a þNas2aÞ=ðM þNaÞ

q
;M þNa

� �
. (A.9)
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A.2. Drawing ma conditional on a and sa

In this case we have

pðma jsa; a;ma;VaÞ / pða jma;saÞpðma jma;V aÞ, (A.10)

which is proportional to

exp �
ðma � m̂aÞ

2

2s2a=M

� �
exp �

ðma �maÞ
2

2V a

� �
¼ exp

�ðma � m̄aÞ
2

2ðM=s2a þ 1=V aÞ
�1

 !
, (A.11)

where m̂a ¼ ð1=MÞSjaj and

m̄a ¼ ðm̂aM=s2a þma=V aÞðM=s2a þ 1=V aÞ
�1. (A.12)

Thus, the conditional distribution of ma is

Nðm̄a; ðM=s2a þ 1=V aÞ
�1
Þ. (A.13)

A.3. Drawing sj and bj conditional on F, rj , and aj for all j ¼ 1; . . . ;M

Given aj, we may rearrange the return equation as

rj;t � aj ¼ b0jF t þ �j;t. (A.14)

Assume there are Tj return observations for fund j. Let rj denote the vector of those
returns, ej the vector of fund-j residuals, and Fj the matrix of contemporaneous
factor realizations.24

Since both residuals and priors for sj and bj are independent across funds, each
fund may be treated separately. Given diffuse priors on bj and sj , conditional
posteriors of these parameters for each fund follow easily from standard results for
the linear regression model under normality. Specifically,

sj�IGðŝj ;TjÞ (A.15)

and

bj jsj�Nðb̂
OLS

j ;s2j ðF
0
jFjÞ
�1
Þ, (A.16)

where ŝ2j ¼ ð1=TÞê0j êj, êj ¼ rj � aj � b̂
OLS0

j Fj, and b̂
OLS

j is obtained from a regression
with no intercept.

A.4. Drawing aj conditional on ma, sa, F, rj , bj and sj for all j ¼ 1; . . . ;M

Given bj , we may rearrange the return equation as

rj;t � b0jF t ¼ aj þ �j;t. (A.17)
24Fj requires a fund-specific subscript because different funds are observed over different time periods.
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Conditional on ma and sa, we have complete independence across funds, so we may
again consider each fund separately. Applying Bayes’ Rule and eliminating
irrelevant conditioning arguments, we have

pðaj jma;sa;Fj ; rj ; bj ;sjÞ / pðrj jFj ; aj ;bj ; sjÞpðaj jma;saÞ, (A.18)

which is itself proportional to

exp �
ðaj � âjÞ

2

2s2j =Tj

 !
exp �

ðaj � maÞ
2

2s2a

 !
¼ exp �

ðaj � ~ajÞ
2

2ðTj=s2j þ 1=s2aÞ
�1

 !
, (A.19)

where âj ¼ ð1=TÞStðrj;t � bjF tÞ and

~aj ¼ ðâjT j=s2j þ ma=s
2
aÞðTj=s2j þ 1=s2aÞ

�1. (A.20)

This implies that the conditional distribution of aj is

Nð~aj ; ðTj=s2j þ 1=s2aÞ
�1
Þ. (A.21)
A.5. Convergence of the Gibbs chain

Since the support of each draw is unbounded over the region on which the
parameters are defined, the Gibbs chain is irreducible and therefore convergent (see
Tierney, 1994) given a long enough sequence of draws.

The Gibbs chains run in this paper all consist of 11,000 ‘‘cycles’’ through the
above four draws. The first 1,000 are discarded to negate the effects of initial
conditions. Visual analysis of the autocorrelations of the remaining draws suggests
that convergence is fairly rapid.

A.6. Modifications to the Gibbs sampler when residuals have a factor structure

Little of the above changes when a factor structure in the residuals is introduced.
Writing the data-augmented model as

rj;t ¼ aj þ b0jF t þ d0jGt þ xj;t, (A.22)

then conditional on Gt (the ‘‘residual factors’’) we may use the previous results
simply by replacing bj with b�j ¼ ½b

0
j ; d
0
j�
0, replacing F t with F�t ¼ ½F

0
t;G
0
t�
0, and

reinterpreting sj as the variance of xj;t instead of �j;t.
One additional block in the sampler is required to draw each L� 1 latent variable

Gt. If Mt fund returns are observed at time t, then let rt and at denote the Mt � 1
vectors formed by stacking the excess returns and alphas for these funds. Let bt

denote the Mt � K matrix formed by stacking the b0j and let dt denote the Mt � L

matrix formed by stacking the d0j. Then following Geweke and Zhou (1996), we find
that Gt is conditionally normally distributed with mean

d0tðdtd
0
t þ OtÞ

�1
ðrt � at � btF tÞ (A.23)
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and covariance matrix

I � d0tðdtd
0
t þ OtÞ

�1dt, (A.24)

where Ot is the diagonal covariance matrix of the xj;t for the funds observed at time t.

A.7. A simplified approximate sampling procedure

As described previously, each iteration of the Gibbs sampler involves four steps
(assuming residual independence):
1.
 sa conditional on aj ðj ¼ 1; . . . ;MÞ and ma.

2.
 ma conditional on aj ðj ¼ 1; . . . ;MÞ and sa.

3.
 sj and bj conditional on F , rj, and aj for all j ¼ 1; . . . ;M.

4.
 aj conditional on ma, sa, F , rj , bj, and sj for all j ¼ 1; . . . ;M.
Running the sampler for 11,000 iterations is sufficient for obtaining very accurate
estimates of posterior moments, and this process may take as long as two hours on a
fast personal computer. We find, however, that the algorithm may be easily modified
to produce results that are approximately correct in about 30 s. These modifications
involve steps 1 to 3; step 4 remains unaffected. They are sensible only under
unskeptical (diffuse) priors.

Previously, step 1 involved drawing sa conditional on the aj, where the
distribution of sa was an inverted gamma centered around the sample standard
deviation of the alphas. With a large number of funds, however, the variation in this
draw is very low, so we instead simply set sa equal to the sample standard deviation
of the current values of the alphas. The modification to step 2 is similar: Rather than
drawing ma from its appropriate normal distribution, we simply set it to the sample
average of the current alpha values.

Previously, step 3 involved drawing sj from an inverted gamma distribution and bj

from a normal. Instead, we simply set sj equal to its OLS estimate, obtained by
regressing rj;t � aj on the factors F t (with no intercept). Given this value for sj, the
ensuing draw of bj is the same as it is for the full algorithm.

This simplified algorithm is faster primarily because it avoids generating random
variables with inverted gamma distributions, which is a relatively slow computation.
For the same reason, it is conceptually somewhat simpler, especially for users
unfamiliar with the inverted gamma distribution. The approximate posterior means
it generates are also very accurate. For a three-factor model, the approximate means
(standard deviations) of ma and sa are 1.37 (0.03) and 2.17 (0.05), respectively, which
are close to the true posterior means (standard deviations) under unskeptical
learning priors, which are 1.38 (0.05) and 2.26 (0.07). True and approximate
posterior means for the individual alphas are compared in Panel A of Fig. 7. In
general, differences between the two are small and unrelated to the magnitudes of the
alphas. Panel B shows that the approximate and true posterior standard deviations
are similar as well.
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Fig. 7. True and approximate posterior moments of a for the three-factor model under unskeptical

learning priors. Approximate posterior means and standard deviations of the alphas are compared with

true moments computed under the three-factor model ðK ¼ 3Þ with unskeptical learning priors. The

approximations, described in Appendix A.7, ignore sampling error in all quantities except the fund alphas

and betas. Estimation is based on monthly fund returns over the period January 1961 to June 2001.

Numbers are in annualized percentage terms.
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A.8. Incorporating negative correlation among the alphas

Imposing a prior correlation r among the alphas requires the modification of three
of the blocks of the Gibbs sampler, namely pðma j a;b; s;sa; r;F Þ, pðsa j a;b;s;ma; r;F Þ,
and pða jb;s; ma;sa; r;F Þ.

Drawing from the first two blocks, pðma j a;b;s;sa; r;F Þ and pðsa j a;b;s;ma; r;F Þ,
requires a relatively straightforward adjustment for correlation. To do so, we write
the conditional prior for a as a�Nðmai;s

2
aCÞ, where C is the prior correlation matrix,

a matrix with ones on the diagonal and all off-diagonal elements equal to r. If C�1=2

is the inverse of the Cholesky decomposition of C, then

C�1=2a�NðmaC
�1=2i; s2aIÞ. (A.25)

We use the fact that elements of the vector C�1=2a� maC
�1=2i are i.i.d. Nð0;s2aÞ to

draw sa conditional on a and ma. This step is identical to that of Section A.1 except
that a� mai is replaced by C�1=2a� maC�1=2i. To draw ma, we simply regress the
elements of C�1=2a on the corresponding elements of C�1=2i, where the residual
standard deviation is equal to sa and there is no intercept. Priors on ma are imposed
as priors on the regression slope coefficient.

For the last block, Bayes’ Rule implies that

pða jb; s;ma;sa; r;F Þ / pða jb;s;ma;saÞpðr jb; s;ma;sa; a;F Þ. (A.26)

Given residual independence, the joint likelihood function pðr jb; s;ma;sa; a;F Þ can
be decomposed as the product of individual fund likelihoods, each of which is
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proportional to a normal density for aj with mean âj , as defined in section A.4, and
variance s2j =Tj.

Under the simplifying assumption that sj and Tj are identical for all funds, the
joint likelihood is therefore proportional to a multivariate normal density for the
vector a with mean â and covariance matrix ðs2=TÞI . The conditional prior
pða jb;s; ma;saÞ is by assumption Nðmai;s

2
aCÞ, and the product of these two densities

is therefore also multivariate normal with covariance matrix

½ðT=s2ÞI þ s�2a C�1��1 (A.27)

and mean vector

½ðT=s2ÞI þ s�2a C�1��1½ðT=s2Þâþ s�2a C�1mai�. (A.28)

This is therefore the conditional distribution of the vector of alphas.
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