
THE JOURNAL OF FINANCE • VOL. LXXIII, NO. 2 • APRIL 2018

Option Mispricing around Nontrading Periods

CHRISTOPHER S. JONES and JOSHUA SHEMESH∗

ABSTRACT

We find that option returns are significantly lower over nontrading periods, the vast
majority of which are weekends. Our evidence suggests that nontrading returns can-
not be explained by risk, but rather are the result of widespread and highly persistent
option mispricing driven by the incorrect treatment of stock return variance during
periods of market closure. The size of the effect implies that the broad spectrum of
finance research involving option prices should account for nontrading effects. Our
study further suggests how alternative industry practices could improve the efficiency
of option markets in a meaningful way.

A VARIETY OF INSTITUTIONAL and psychological factors suggest that portfolio risk
and return may differ between periods of trading and nontrading. The stock
market is more volatile over trading periods than over nontrading periods,
possibly due to a lower rate of private information revelation (French and Roll
(1986)). It is also profoundly less liquid outside of regular trading hours, which
should drive a wedge between average returns over trading and nontrading
periods (French (1980), Longstaff (1995), Kelly and Clark (2011), Cliff, Cooper,
and Gulen (2008)). Prolonged periods of nontrading may also give investors
with limited attention a chance to process stale information, whether contained
in firm earnings announcements (Dellavigna and Pollet (2009)) or news more
generally (Garcia (2013)). Finally, traders may have a strong desire to exit the
market over nontrading periods, with no open positions, particularly for more
speculative strategies or for longer periods of nontrading (Hendershott and
Seasholes (2006)).
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While the above effects have been documented to varying degrees in the
market for individual stocks or stock indexes, one might expect most if not
all to be more pronounced in the market for options. Predictable differences
in volatility should have first-order effects on option prices (see also Dubinsky
and Johannes (2006)), while varying liquidity should affect not only the option
end user but also the market maker who must delta-hedge his underlying
exposure in the stock market (e.g., Cetin et al. (2006)). Limited attention may
be more problematic in option markets, where small changes in fundamentals
can have large valuation effects. Finally, option trades can be extremely risky,
particularly for net written option positions, pushing some traders to withdraw
completely during overnight or weekend periods.

Among these effects, it is the desire to close positions over the weekend that
Chen and Singal (2003) conclude was responsible for the weekend effect in
stocks. The weekend effect, or the tendency of stock returns to be low over the
weekend, is perhaps the most widely documented nontrading effect (French
(1980)). Though evidence of the effect goes back to the early 1900s (Fields
(1931)), authors such as Connolly (1989) and Chang, Pinegar, and Ravichan-
dran (1993) show that it started to dissipate in the 1970s or 1980s. Chen
and Singal (2003) hypothesize that the desire to close positions before the
weekend would be most pronounced for short sellers who were deterred by
the unbounded downside risk inherent in their positions. When option mar-
kets opened in the 1970s and 1980s, these investors were able to take bearish
positions with limited downside risk or hedge downside risk over nontrad-
ing periods using options. Consistent with their hypothesis, Chen and Singal
(2003) show that the introduction of options on a firm’s stock coincides with the
elimination of the weekend effect for that firm.

Writing options also exposes a trader to unbounded downside risk, particu-
larly over nontrading periods. For call options, this comes from the potentially
infinite positive payoff that accrues to the option buyer as the stock price rises.
While delta-hedging reduces this exposure, the inability to perfectly hedge due
to transactions costs, price discontinuities, and nontrading periods means that
this downside risk cannot be eliminated. That is, a call writer can experience
an arbitrarily large loss if the stock price rises high enough before the hedge
can be rebalanced. When writing put options, downside risk is bounded but
often extremely large, since the maximum payoff (which occurs when the stock
price drops to zero) can be orders of magnitude greater than the option’s price.
Paradoxically, delta-hedging a put causes this downside to become unbounded,
since hedging requires taking a short position in the stock, which itself is
unbounded.

Given the above discussion, if investors are generally averse to holding posi-
tions with extreme downside risk over the weekend, option writers may have
an incentive to cover their positions by Friday close. While this should have no
effect in a Black and Scholes (1973) world in which options can be replicated via
continuous trading, Bollen and Whaley (2004) show empirically that demand
pressure does, in fact, have a substantial impact on option prices. Garleanu,
Pedersen, and Poteshman (2009) add to this evidence and show theoretically
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that the effect is likely driven by the inability to perfectly replicate. Since cover-
ing net written option positions can be regarded as positive demand pressure,
any tendency to do so prior to Friday close should lead to temporarily higher
option prices that return to normal by the following Monday.

Alternatively, those same investors should be willing to keep their short po-
sitions open given some additional compensation for the substantial downside
risk they face. Since compensation to option writers comes in the form of nega-
tive option returns, this argument suggests that we should also see a weekend
effect in call and put options, with weekend option returns being significantly
lower than returns over the rest of the week.

Using a large sample of daily returns on equity options over the period from
January 1996 to August 2014, we investigate nontrading effects in the equity
option market. We find pervasive, large, and highly statistically significant ev-
idence that nontrading returns on options are lower than trading returns. We
focus on average returns on delta-neutral positions, which are highly negative
over periods of nontrading (i.e., weekends and midweek holidays), but essen-
tially zero on average on other days. There is no evidence of any nontrading
effect in underlying stock returns in our sample.

We find strong effects in puts and calls and across almost all levels of maturity
and moneyness, with the results robust to different sampling methods and
weighting schemes. The nontrading effect is negative in each year of our 19-
year sample and is statistically significant in most. We also find strong evidence
of a nontrading effect in S&P 500 Index puts and weaker evidence of nontrading
effects in S&P 500 Index calls. We find significant nontrading effects for regular
weekends, long weekends, and midweek holidays.

Nontrading effects are also evident in implied volatilities. As noted by French
and Roll (1986), the variance of the return over a weekend (Friday close to
Monday close) is just slightly greater than the variance over a regular weekday,
implying little variance during periods of market closure. However, implied
volatilities seem to embed the expectation that stock price variance will remain
sizable even when the market is closed. This discrepancy is large and significant
for both equity options and S&P 500 Index options.

We explore three possible explanations for these findings. The first is that
nontrading returns are lower because of differential levels of risk between
trading and nontrading periods. The second is that aversion to unbounded
downside risk rises over nontrading periods, as hypothesized by Chen and
Singal (2003). Since this risk is experienced by option writers but not buyers,
option writers will require a higher risk premium to keep positions open. Since
writers are short options, this means that option returns must be negative over
the weekend. The third explanation we consider is that the nontrading effect
is the result of widespread and highly persistent market mispricing.

We find that portfolios of delta-neutral positions do show somewhat greater
risk over nontrading periods relative to trading periods. For puts, the effect
is modest: the put portfolio’s standard deviation is about 10% higher over
nontrading periods (mostly weekends) than it is over regular trading intervals,
and there is no significant change in return skewness or kurtosis. In contrast,
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the call portfolio’s standard deviation is about 50% higher over nontrading
periods, and this is accompanied by a significant increase in kurtosis.

Despite the increase in risk over nontrading periods, writing options re-
mains attractive according to a number of performance measures. Short option
positions display positive and significant alphas over nontrading periods that
far exceed those of trading periods. Sharpe ratios and information ratios are
also much higher over nontrading periods. We account for nonnormality in the
distribution of option returns by computing certainty-equivalent rates under
power utility and by computing the performance indexes of Kadan and Liu
(2014), which are designed to account for the effects of higher moments. For
each of the option portfolios considered, these measures are generally higher
for nontrading periods, in most cases by an amount that is both substantial
and significant, with the strongest results for delta-hedged puts.

To examine whether the nontrading effect is associated with greater aversion
to risk, rather than with risk by itself, we examine cross-sectional relations
between portfolio risk and the nontrading effect. We find that the magnitude of
the effect is highly related to the Black and Scholes (1973) “gamma,” the second
derivative of the option price with respect to the stock price. We verify that
gammas have a strong positive association with the risk of delta-hedged option
portfolios, over both trading and nontrading periods. This is expected given
that higher convexity reduces the effectiveness of delta-hedging, particularly
when underlying price movements are large. Thus, if option writers have a
greater aversion to downside risk over nontrading periods, as Chen and Singal’s
(2003) hypothesis suggests, then higher gamma options should experience more
negative nontrading returns.

Likewise, the same logic would seemingly apply to “vega,” the derivative of
the option price with respect to volatility. Higher vega makes an option more
sensitive to changes in the volatility of the underlying asset and therefore
increases the risk of the option position, even if it is delta-hedged. Indeed,
we find that the risk in delta-hedged option positions is even more strongly
related to vega than it is to gamma. Surprisingly, however, greater vega does
not seem to result in any additional return over nontrading intervals. Thus,
greater risk aversion by option writers can only explain the nontrading effect
given an explanation for why one type of risk exposure (gamma) is undesirable,
while an even more important type (vega) is not.

The explanation that is more consistent with our findings is that investors
are pricing options using a method that does not properly account for the
difference in the behavior of stock prices when the market is open or closed.
As French (1984) demonstrated over 30 years ago, if market participants do
not account for the deterministic link between trading time and volatility, then
option implied volatilities will tend to be too high just prior to nontrading
periods. Furthermore, option prices will embed a rate of time decay that is too
large over nontrading periods and too small over trading periods. This would
result in a nontrading effect like the one we document, in particular, one that is
driven by gamma risk but not vega risk, as it is gamma rather than vega that
is closely tied to time decay. The consequence is widespread mispricing in the
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option market, with abnormal rates of return on all options—but particularly
those with high gamma—negative over weekends and midweek holidays.

Our results imply that studies analyzing equity options data would benefit
from accounting for nontrading effects, either by controlling for them explicitly
or by analyzing data at a frequency (e.g., weekly or intraday) at which the
nontrading effect can safely be ignored. Given that the effect of nontrading on
expected returns is at least as large as the risk premia generated by traditional
option pricing models, our findings also suggest that mispricing may play a
larger role in the option market than has been emphasized in the literature
thus far. Since option prices are used in many types of research (volatility
estimation, reaction to corporate events, and understanding the risk-return
relation) to infer the representative investor’s information set, we believe that
our findings should be of broad interest.

While a stand-alone trading strategy that captures the entire nontrading
effect would be difficult to achieve due to transactions costs, our results remain
useful for improving option-based trading strategies. Most obviously, nontrad-
ing effects have clear implications for when option traders should enter and exit
their positions. Our findings should also be useful in setting quotes, whether
by market makers or other traders using limit orders.

On a practical level, our study suggests that market efficiency may be im-
proved by greater awareness of the problems associated with option pricing in
calendar time. Currently, option pricing models are often implemented in cal-
endar time, rather than in trading time, both in archival data sets (e.g., IvyDB)
and in market data feeds (e.g., the VIX Index). We have seen little discussion
of the shortcomings of this approach. If market participants (traders and data
providers) were to begin implementing models in trading time, we believe that
market efficiency could be improved measurably.1

We know of only one other paper that investigates weekly patterns in options
markets. In examining short-term at-the-money options on 30 stocks over a pe-
riod of just 21 months, Sheikh and Ronn (1994) find some evidence of a weekly
seasonal pattern in which call returns are highest on Wednesdays, but they do
not find a weekend effect in calls or puts. After adjusting option returns by sub-
tracting Black and Scholes (1973) model-implied returns, the pattern in calls
disappears, though a significant weekend effect arises in adjusted put returns.
Our paper resolves the ambiguity of their findings, showing that weekend ef-
fects are present in both calls and puts over a far more extensive sample.

The paper is organized as follows. In Section I, we describe our data, sam-
pling methods, and portfolio construction. Section II contains our main results
documenting nontrading effects in returns and implied volatilities. Section III
examines the relationship between nontrading effects and various measures of
risk. Section IV concludes.

1 As French (1984) discusses, option pricing in trading time is also incorrect given that interest
accrues on a calendar-time basis. When interest rates are low, the use of trading time is highly
preferable even if imperfect.
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I. Data and Methods

Our primary data source is the IvyDB data set from OptionMetrics. This data
set includes all U.S.-listed options on equities, indexes, and exchange traded
funds. In our paper, we generally restrict attention to individual equity options
on stocks that were members of the S&P 500 as of the end of the prior year,
though for some results, we examine all equity options or options on the S&P
500 Index itself.

Throughout our analysis, we form portfolios of call and put options by taking
the equal- or value-weighted average of the returns, either hedged or unhedged,
of each option in that portfolio. Our data set includes closing bid-ask quotes
rather than transaction prices, so we compute values and returns from quote
midpoints. Since options have zero net supply, the concept of value-weighting
must be reinterpreted—what we call value-weighted portfolios are actually
weighted by the dollar value of open interest for each option. Excess returns
are computed using the shortest maturity yield provided in the IvyDB zero
curve file.

In some cases, we form call and put portfolios on the basis of maturity and/or
delta. We consider three maturity ranges and six delta ranges so that all options
in a given portfolio are roughly comparable and all portfolios have a reasonable
number of options included. When we pool calls and puts into a single portfolio,
calls and puts are each given a 50% weight, which is a way to make the resulting
portfolio approximately delta-neutral and yet model-free.2

Because many option contracts are rarely traded, we choose our sample to
alleviate the concern that our results are driven by untraded contracts. We
therefore focus on a relatively liquid subsample, namely, options that have
traded with positive volume for five consecutive days as of the formation date.
These contracts exhibit much higher trading volume on average during our
holding period, and they have much smaller bid-ask spreads.

Because individual equity options are American, early exercise can be opti-
mal for in-the-money puts and for in-the-money calls that are about to pay div-
idends, and the investment return based on optimal exercise could be greater
than the no-exercise return we compute. To alleviate the problem for calls, we
exclude all observations that occur in the five days leading up to and includ-
ing a stock’s ex-dividend date, a conservative range that includes all dates on
which early call exercise is optimal. Early exercise remains a minor issue for
deep-in-the-money puts.

We impose several additional filters to eliminate a small number of observa-
tions that appear to be data errors, that violate arbitrage conditions, or that
appear to represent noncompetitive quotes. First, we eliminate observations
for which there is a large reversal (2,000% followed by −95% or vice versa)
in option returns or delta-hedged returns. We also eliminate options that vio-
late arbitrage bounds. For options on equities, which are American, we require

2 In the Internet Appendix, which is available in the online version of the article on the Journal
of Finance website, we consider an alternative portfolio in which calls and puts are matched on
the basis of maturity, delta, and open interest. We obtain similar results for this portfolio.
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Table I
Summary Statistics

This table reports basic summary statistics for our sample and for the larger data set from which
our sample is constructed. Panel A shows the average number of observations (contracts observed)
per day, average percentage spread, and average volume (in terms of 100-share contracts) for four
different samples, each of which is a subset of the previous one. The first sample is the full IvyDB
data set. The second only keeps options on firms that are members of the S&P 500. The third only
keeps options with five consecutive days of positive trading volume. The final sample excludes
observations that fail one of the remaining filters described in Section I. Panel B reports moments
and betas for hedged and unhedged option portfolios constructed from the final sample, where
portfolio weights are proportional to lagged dollar open interest. Data are daily from January 4,
1996 through August 28, 2014.

Panel A: Sample Characteristics

Full Data Set
S&P 500

Constituents
Five Days of

Positive Volume

Final Sample
with Additional

Filters

Average number of observations per day
Puts 61,860.0 19,588.5 1,797.9 1,635.0
Calls 60,063.7 19,322.2 2,780.4 2,532.9

Average percentage bid-ask spread
Puts 52.06 51.38 15.15 14.56
Calls 42.92 25.19 14.69 14.07

Average number of contracts traded
Puts 21.67 48.45 380.51 386.56
Calls 35.91 77.34 435.84 422.28

Panel B: Return Moments

Mean SD Skewness Kurtosis Beta

Unhedged excess returns
Puts and calls −0.0023 0.0238 1.6841 10.8287 −0.4698
Puts −0.0057 0.1060 0.7548 5.6799 −7.0761
Calls 0.0011 0.0872 0.3924 4.9799 6.1364

Delta-hedged excess returns
Puts and calls −0.0012 0.0202 2.6735 29.7915 −0.9342
Puts −0.0015 0.0204 2.1975 17.9576 −0.5344
Calls −0.0008 0.0246 1.9672 51.2985 −1.3339

that the option price be no less than the current exercise value. For calls, the
price must be less than the current stock price. For puts, it must be less than
the strike. We also eliminate observations for which the bid price exceeds the
ask price or the bid-ask spread is more than $10 or more than the price of
the underlying stock, as these observations might be data recording errors,
noncompetitive “stub” quotes posted by a market maker who does not want to
trade, or undocumented missing value codes (e.g., 999). We also require, at the
date of portfolio formation, that the bid price be above zero and that the bid-ask
spread be no more than twice the bid.

The top panel of Table I contains statistics that describe the average cross
section in our sample. On average, the IvyDB data set includes around 60,000
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calls and puts per day. About one-third of those are on S&P 500 stocks, and
about one-tenth are what we consider highly liquid. A small number of those
observations are filtered out, leaving us with around 1,800 puts and 2,800 calls
per day. The contracts we include have relatively small bid-ask spreads, around
15% on average, compared with 51% and 25% for puts and calls, respectively,
for the entire S&P 500 sample. They also trade much more, at roughly 400
contracts per day on average, which is six to eight times more than the full
S&P 500 sample.3

Taken together, the filters above eliminate the largest and most suspicious
outliers in our sample and ensure that we focus primarily on more liquid
options. We note that all of our main results are robust to dropping any or all of
these filters, and that further tightening the requirements on trading volume
increases the estimated magnitude of the nontrading effect. These robustness
results are reported in Section II.B.

Our analysis requires the use of implied volatilities, and unless otherwise
noted, we use those provided by IvyDB, which are computed using a binomial
tree approach that accounts for dividends. Because they are equivalent to Black
and Scholes (1973) values for stocks that pay no dividends, we refer to the
implied volatilities and “Greeks” as “Black-Scholes” values. The option price
sensitivities of each option, that is, delta, gamma, vega, and theta, are also
computed with the Black and Scholes (1973) model using the implied volatility
of the same option.

The IvyDB data set does not include an implied volatility for about 3% of the
observations included in our analysis. Following Duarte and Jones (2008), we
fill in missing implied volatilities with those of similar contracts. Specifically, if
a call option’s implied volatility is missing, we use the implied volatility of the
put contract written on the same underlying firm with the same maturity and
strike price. If both put and call implied volatilities are missing, we use the
value from the same contract on the previous day. It is worth noting that this
procedure for filling in missing implied volatilities relies only on current and
lagged information. A portfolio strategy that uses the implied volatilities from
this procedure for portfolio formation and to compute hedge ratios is therefore
fully implementable. Furthermore, our results are robust to filtering out these
observations.

We compute option returns based on closing bid-ask midpoints, and excess
returns account for the number of calendar days within the return holding
period.4 The change in value of a delta-hedged portfolio is

Ct − Ct−1 − �t (St − St−1) ,

3 Trading volumes reported in Table I are those during the holding period, while the filter
requiring five consecutive days of positive volume is applied to the five days prior to the holding
period. The spreads reported in the table are at the start of the holding period. Spreads on the end
of the holding period are almost identical.

4 As highlighted by French (1984), interest accrues on a calendar-time basis.
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where Ct is the option price, St is the stock price, and �t is the Black and
Scholes (1973) delta. Delta-hedged excess returns are therefore defined as

Ct − Ct−1

Ct−1
− rt−1NDt−1,t − �tSt−1

Ct−1

(
St − St−1

St−1
− rt−1NDt−1,t

)
,

where rt is the riskless return per day and NDt−1,t is the number of calendar
days between date t − 1 and t. This may be viewed as the excess return on
a portfolio that combines one option contract with a zero-cost position in �t
shares worth of single-stock futures.

For each delta-hedged option portfolio, there is a corresponding hedge port-
folio that consists of all the equity positions taken to eliminate delta. This
portfolio has weights proportional to

−�tSt−1

Ct−1
,

which is negative for calls and positive for puts. We examine these portfolios
briefly to rule out the possibility that nontrading effects arise from the under-
lying stock returns.

The bottom panel of Table I reports moments on value-weighted portfolios
of puts and calls, both separately and combined in a 50/50 portfolio. Sev-
eral stylized facts are immediately apparent. First, portfolios of unhedged
call options have positive average returns, while unhedged puts have nega-
tive average returns, which is consistent with calls having positive market
betas and puts having negative betas. Delta-hedging makes all average re-
turns negative, consistent with the vast literature (e.g., Coval and Shumway
(2001) and Bakshi and Kapadia (2003)) documenting a negative variance risk
premium.

A second observation is that delta-hedging dramatically reduces the stan-
dard deviations and betas of put and call portfolios. Delta-hedging reduces the
standard deviation of the put portfolio by over 80% and reduces the beta of
that portfolio from −7.08 to −0.53. Slightly smaller reductions are observed for
the call portfolio. In contrast, little reduction in standard deviation is observed
for the combined portfolio of puts and calls, and the beta of that portfolio is
actually larger in absolute value as a result of hedging. This is because a 50/50
portfolio of puts and calls is already approximately delta-neutral, so additional
delta-hedging is not particularly effective.

Third, portfolios of unhedged option positions have returns that display posi-
tive skewness and substantial excess kurtosis. Delta-hedged option returns are
even more fat-tailed, the result of delta-hedging being more effective for small
changes in stock prices. Large changes in stock prices, which are often the
source of extreme option returns, cannot be hedged due to the convexity of op-
tion payoffs. Tails thicken as a result of a relative decrease in the low-volatility
returns, for which delta-hedging is effective.

In the remainder of our paper, we focus on the delta-hedged call portfolio,
the delta-hedged put portfolio, and the unhedged 50/50 portfolio of puts and
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calls. Because all three of these portfolios are approximately delta-neutral, our
analysis focuses on the component of option prices that is orthogonal to the
underlying stocks. This is desirable given that prior literature shows that the
nontrading effect has vanished in equities during our sample period, a result
that we confirm below in our own sample.

We view our use of the Black and Scholes (1973) model as relatively benign.
Even if the delta we use to compute hedged returns is somewhat misspecified,
the hedged returns nevertheless represent the returns on a feasible investment
strategy (abstracting from transaction costs). Delta-hedging, while not perfect,
can be expected to remove at least the majority of an option’s exposure to the
underlying stock. Indeeed, Hull and Suo (2002) find that Black-Scholes work
about as well as any other model in this regard. Any remaining concerns should
be lessened when we combine unhedged calls and puts into a single portfolio
in a way that is model-free.

II. Nontrading Effects in Option Markets

A. Main Results

Our main finding is that returns in delta-neutral option positions are signif-
icantly lower over nontrading periods than trading periods. We define a non-
trading period as any period in which the interval between subsequent closing
prices is longer than one calendar day. The vast majority of these nontrading
periods are regular weekends, with a smaller number consisting of midweek
holidays and long weekends. We begin by pooling all types of nontrading periods
together. Later, we examine them separately.

We present our main results in Tables II and III. Table II reports results
for value-weighted portfolios of all puts and all calls, while Table III reports
results for value-weighted portfolios of puts and calls formed on the basis of
maturity and delta.

When we examine the unhedged put-call portfolio in Table II, we observe an
average nontrading excess return of −0.76% and an average trading return of
−0.08%. The difference between the two, which we define as the nontrading
effect, is equal to −0.68% and under any convention is highly significant.5 For
delta-hedged puts, the average nontrading excess return is −0.82%, relative
to an average trading return of 0.03%. The difference, −0.86%, is even more
highly significant. For calls, the difference between nontrading and trading
returns is −0.51% and again statistically significant. The smaller effect for
calls relative to puts is notable but is driven largely by the fact that put and

5 Here and elsewhere in the paper, standard errors for mean and difference-in-mean estimates
are obtained by regressing returns on a constant and a nontrading dummy, then applying the
Newey-West (1987) procedure with 22 lags to account for possible autocorrelation. We have also
computed p-values for all of our key results using the block bootstrap, and we find these results to
be very close.
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Table III
Differences between Returns Following Nontrading Days and

Trading Days for Portfolios Sorted by Delta and Maturity
This table reports the average excess returns on nontrading days minus the average excess returns
on trading days for single- and double-sorted portfolios formed on the basis of delta and maturity.
Corresponding Newey-West (1987) t-statistics are also shown in parentheses. Portfolios of both
unhedged and delta-hedged equity options are considered, though the former are only single-
sorted by maturity. All methods are identical to Table II except for the classification into more
disaggregated portfolios.

All 11 to 53 54 to 118 119 to 252
Maturities Days Days Days

Unhedged puts and calls
All deltas −0.0068 −0.0103 −0.0059 −0.0026

(−7.86) (−9.55) (−8.25) (−3.34)
Hedged puts

All deltas −0.0086 −0.0117 −0.0069 −0.0043
(−11.93) (−12.66) (−11.34) (−7.06)

−0.90 > delta ≥ −0.99 −0.0020 −0.0020 −0.0007 −0.0007
(−5.90) (−5.51) (−2.09) (−1.93)

−0.75 > delta ≥ −0.90 −0.0040 −0.0041 −0.0020 −0.0015
(−9.39) (−9.28) (−4.05) (−3.82)

−0.50 > delta ≥ −0.75 −0.0066 −0.0083 −0.0047 −0.0026
(−10.81) (−11.50) (−9.43) (−5.50)

−0.25 > delta ≥ −0.50 −0.0104 −0.0158 −0.0080 −0.0049
(−11.75) (−11.60) (−11.62) (−7.01)

−0.10 > delta ≥ −0.25 −0.0173 −0.0273 −0.0121 −0.0074
(−10.59) (−10.21) (−10.03) (−6.96)

−0.01 > delta ≥ −0.10 −0.0245 −0.0328 −0.0163 −0.0065
(−7.04) (−7.30) (−6.20) (−2.82)

Hedged calls
All deltas −0.0051 −0.0076 −0.0051 −0.0031

(−5.11) (−5.57) (−5.57) (−3.44)
0.01 < delta ≤ 0.10 −0.0358 −0.0436 −0.0151 −0.0160

(−4.94) (−5.56) (−2.70) (−2.85)
0.10 < delta ≤ 0.25 −0.0230 −0.0312 −0.0162 −0.0097

(−7.08) (−7.48) (−6.44) (−3.28)
0.25 < delta ≤ 0.50 −0.0106 −0.0159 −0.0087 −0.0051

(−7.25) (−7.54) (−7.15) (−4.50)
0.50 < delta ≤ 0.75 −0.0043 −0.0065 −0.0034 −0.0023

(−5.63) (−5.93) (−5.43) (−3.60)
0.75 < delta ≤ 0.90 −0.0014 −0.0017 −0.0011 0.0000

(−3.19) (−3.02) (−2.96) (−0.01)
0.90 < delta ≤ 0.99 0.0000 −0.0002 0.0001 −0.0001

(−0.06) (−0.59) (0.25) (−0.35)

call portfolios weight in-the-money and out-of-the-money options differently, as
we show below.6

6 Even in an equal-weighted portfolio, differences between average call and put returns are
possible and do not suggest any violation of put-call parity, which would imply similar effects on
the prices of puts and calls rather than on their returns.
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To gauge the extent to which the nontrading portfolio is present in the un-
derlying stocks, Table II reports average excess returns over trading and non-
trading periods for the portfolios of underlying stocks used to delta-hedge the
put and call portfolios. The put portfolio is hedged by going long the underlying
stocks, and we see that the long stock portfolio experienced somewhat higher
returns during nontrading periods, though the difference is not significant.
Calls are hedged by shorting stocks, so the hedge portfolio for calls earned
lower returns over nontrading periods. Given that the difference between trad-
ing and nontrading returns in stocks is insignificant and that any difference
has opposite effects on puts and calls, it is unlikely that the nontrading effect
in options is driven by a nontrading effect in stocks.

Table II also reports averages of unhedged put and call portfolios separately.
From Table I, we know that these portfolios are several times more volatile
than the corresponding hedged portfolios given their large betas. Because of
this, the nontrading effect is much more difficult to detect and is statistically
significant only in puts.

The right side of the table summarizes average returns by day of the week,
where the day given is the day at the end of the holding period. Mondays natu-
rally represent the vast majority of nontrading-period ends, with Tuesdays and
Fridays being the next most frequent (typically following three-day weekends
and Thanksgiving holidays, respectively). Overall, delta-hedged excess returns
are lowest on Mondays, consistent with previous results. Smaller negative re-
turns on other days are consistent with a variance risk premium, though the
positive average returns observed on Wednesdays and Thursdays are some-
what anomalous. In the Internet Appendix, we show that robust estimators,
which downweight large outliers, eliminate these positive average returns,
while the nontrading effect is robust to a variety of alternative estimators and
to the use of block bootstrap standard errors.

Table III examines the nontrading effect, or the difference between non-
trading and trading returns, for disaggregated portfolios. We form unhedged
call/put portfolios on the basis of maturity, measured as the number of trading
days until option expiration, and delta-hedged call and put portfolios based on
maturity and moneyness, where we use lagged option deltas to measure mon-
eyness.7 In 59 of the 60 portfolios, average nontrading returns are less than
average trading returns, with 54 of these differences statistically significant.
One difference is positive but insignificant.

Several patterns emerge from the table. First, the nontrading effect is
stronger for shorter term options, being several times higher for options in
the 11- to 53-day range relative to the 119- to 252-day range. Second, the effect
is much larger for out-of-the-money options (deltas close to zero) than it is for
in-the-money options (deltas close to −1 or +1). Both of these patterns suggest
a possible relation between the nontrading effect and one or more of the Black

7 We do not double-sort the unhedged put-call portfolio because this would result in portfolios
with large negative or positive deltas whose returns were dominated by their underlying stock
exposures.
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Figure 1. Average unhedged put and call portfolio returns in each calendar year. This
graph depicts the average return on the unhedged put and call portfolio in each year of our sample.
The solid line denotes the average, and the two dashed lines denote the upper and lower bounds of
a 95% confidence interval constructed using Newey-West (1987) standard errors. The shaded area
shows the average three-month LIBOR rate within each calendar year.

and Scholes (1973) Greeks, which measure the sensitivity of option values to
various factors and are highly affected by maturity and moneyness. We return
to this issue in Section III.C, where we directly examine the relation between
option characteristics and the nontrading effect.

A final result from Table III is that, for the same absolute delta, which is a
measure of option moneyness, there is little tendency for the nontrading effect
in puts to exceed that of calls. This confirms that the greater nontrading effect
found for the aggregated put portfolio in Table II was primarily a composition
effect, driven by the fact that open interest in out-of-the-money options is larger
for puts than calls.

To gauge the consistency of our results, we recompute the nontrading effect
for each year of our sample. Figure 1 plots the yearly estimates for the unhedged
call/put portfolio along with asymptotic 95% confidence intervals. In each of the
19 years of our sample, the nontrading effect is negative. In 11 out of the 19
years, the effect is statistically significant. We observe similar results in the
delta-hedged portfolios, where 18 out of 19 years are negative for puts and 16
out of 19 are negative for calls.

We do see that the nontrading effect in the second half of the sample is
substantially more volatile and slightly smaller on average relative to that
in the first half of the sample. Some of these changes are likely driven by
the extreme volatility of the recent financial crisis. It is also possible that the
attenuation of the effect is related to the rise of algorithmic trading and the
replacement of traditional market makers by high-frequency trading firms,
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both of which followed the 2003 creation of Options Linkage, which connected
all option exchanges in the United States (see Muravyev and Pearson (2016)).
It is notable, however, that the last year of the sample displays an above-
average effect, indicating that the effect has survived these changes to market
structure.

The figure also shows the average three-month London Interbank Offered
Rate (LIBOR) in each year of the sample to alleviate the concern that non-
trading effects arise through an interest rate channel. Ex ante, such an effect
is unlikely for several reasons. First, our returns are in excess of the riskless
rate, with the correct adjustment for the number of calendar days in the hold-
ing period. Any residual effect of interest rates can therefore arise only through
risk premia. One might be concerned, for instance, that unhedged risks (vega
and gamma) become larger over nontrading periods when interest rates are
high. However, at least under the Black and Scholes (1973) model, the effects
of interest rates on Greeks such as vega and gamma are small for most options,
and negligible for options with one month till expiration, where our results are
strongest. Second, prior literature, including French (1984), Scott (1997), and
Bakshi, Cao, and Chen (1997, 2015), generally finds a limited role for interest
rates in the pricing of equity or equity index options, in that the precise speci-
fication of the interest rate process has little effect on option prices or returns.
In any case, it is evident from Figure 1 that there is no relation between the
two series plotted, which confirms that nontrading effects do not arise through
an interest rate channel.

As discussed in Section I, a potential concern is that our returns are cal-
culated assuming no early exercise. Since we eliminated observations on and
immediately prior to dividend ex-days, early exercise will never be optimal for
calls, though it could be optimal for some in-the-money puts. For such puts,
the value of early exercise comes from accelerating the fixed option premium
forward in time. While this can have a significant effect on option value, the
loss in value that results from delaying exercise by one day should be small, as
it is at most the loss of one day of interest on the strike price. Thus, for these
options, our computed returns should at most slightly understate the returns
of a strategy in which exercise decisions are made optimally.

More importantly, early exercise cannot explain our results because it is
never optimal for call and put options that are out of the money. Since we
find large nontrading effects across all moneyness levels, early exercise due to
dividends or any other factor cannot explain our findings.

B. Robustness to Portfolio Construction and Subsamples

In Table IV, we examine nontrading effects in different samples to determine
whether our main results are sensitive to the choice of empirical approach.
Panel A reports results using a number of alternative methods for computing
option portfolio returns. We first replicate our main results using ask-to-bid
and bid-to-ask returns in addition to the midpoint-based returns that we con-
sider throughout the paper. All three methods for calculating returns lead
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Table IV
Nontrading Effects in Other Portfolios and Samples

This table reports nontrading effects, defined as a nontrading mean minus a trading mean, for
alternative portfolio constructions and for changes in the implied volatility of at-the-money options.
Unless noted otherwise, all portfolios are constructed from the main sample (S&P 500 stocks, five
days of positive volume); are weighted by dollar open interest; are based on quote midpoints;
and impose filters for dividends, arbitrage violations, price reversals, and maximum spreads.
In Panel A, we compute option returns as either midpoint-to-midpoint, ask-to-bid, or bid-to-ask.
Results based on midpoints are identical to those in Table II. We also compute equal-weighted
portfolios and portfolios weighted by open interest measured in terms of contracts rather than
dollars. Panel B shows results for the following alternative data samples: options on all stocks (not
just S&P 500 stocks, no trading volume requirement); the main sample but without filters; a more
restricted sample of options with five consecutive days of trading 100 or more contracts; and a more
restricted sample of options with relative bid-ask spreads of 5% or less. Panel C shows results for
S&P 500 Index options, including deep-out-of-the-money options with Black-Scholes deltas below
0.1 in absolute value. Panel D reports nontrading effects for different types of nontrading periods,
namely, regular weekends, midweek holidays, and long weekends with three or more days of
market closure. Newey-West (1987) t-statistics are in parentheses. Data are daily from January 4,
1996 through August 28, 2014.

Panel A: Nontrading Effects Using Alternative Return Constructions and Portfolio Weights

Dollar Open Interest Weighted

Midpoints Ask to Bid Bid to Ask
Equal

Weighted
Contract
Weighted

Unhedged puts and calls −0.0068 −0.0060 −0.0079 −0.0197 −0.0184
(−7.86) (6.99) (8.38) (−14.75) (−13.32)

Hedged puts −0.0086 −0.0075 −0.0100 −0.0213 −0.0173
(−11.93) (9.95) (11.02) (−14.54) (−11.06)

Hedged calls −0.0051 −0.0045 −0.0059 −0.0162 −0.0160
(−5.11) (3.98) (5.91) (−7.25) (−5.80)

Panel B: Alternative Data Samples

Main Sample

Options on
All Stocks

Zero Volume
Contracts

Only No Filters
Five Days of
Volume>100

Maximum
5% Spread

Unhedged puts and calls −0.0043 −0.0027 −0.0072 −0.0101 −0.0044
(−8.50) (−8.08) (−8.52) (−6.72) (−4.69)

Hedged puts −0.0061 −0.0042 −0.0085 −0.0112 −0.0063
(−15.38) (−16.31) (−12.45) (−8.42) (−9.24)

Hedged calls −0.0037 −0.0018 −0.0053 −0.0074 −0.0029
(−5.32) (−4.49) (−5.04) (−4.73) (−4.00)

Panel C: Nontrading Effects in S&P 500 Index Options

Value Weighted Equal Weighted Equal Weighted, Deep OTM

Puts and calls −0.0073 −0.0250 −0.0471
(−3.87) (−4.93) (−4.70)

Puts −0.0107 −0.0315 −0.0519
(−4.56) (−5.34) (−4.95)

Calls −0.0030 −0.0155 −0.0453
(−0.91) (−1.66) (−2.41)

(Continued)
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Table IV—Continued

Panel D: Nontrading Effects in Different Nontrading Periods

Regular Midweek Long
Weekends (A) Holidays (B) Weekends (C) (B)−(A) (C)−(A)

Puts and calls −0.0079 −0.0032 −0.0071 0.0048 0.0009
(−8.06) (−0.83) (−3.39) (1.21) (0.40)

Puts −0.0087 −0.0062 −0.0056 0.0025 0.0031
(−10.20) (−2.96) (−2.79) (1.04) (1.45)

Calls −0.0052 −0.0065 −0.0016 −0.0013 0.0036
(−5.03) (−1.82) (−0.53) (−0.33) (1.11)

Number of observations 851 44 122

to similar conclusions about the strength and significance of the nontrading
effect.

We next compute portfolio returns using equal weighting instead of weight-
ing by the dollar value of open interest. Equal weighting has several effects.
First, it puts relatively more weight on less liquid contracts that do not trade
as frequently and that hold little open interest. Second, it likely increases the
measurement error bias identified by Blume and Stambaugh (1983), though
this should affect both trading and nontrading returns and hence possibly wash
out when computing their difference. Finally, and most importantly, it puts rel-
atively more emphasis on lower priced contracts, which are typically shorter
term and deeper out of the money. Since we previously found that the nontrad-
ing effect is most pronounced for short-term deep-out-of-the-money contracts,
equal weighting should increase the size of the nontrading effect. Consistent
with this conjecture, we find that equal weighting causes the nontrading effect
to more than double.

When we instead weight by the open interest in terms of the number of con-
tracts rather than the dollar value, we obtain results that are very similar to
those for the equal-weighted portfolios. This suggests that the larger nontrad-
ing effects in the equal-weighted portfolio are not a result of overweighting
thinly traded options, but are instead due to the equal-weighted portfolio’s
greater emphasis on low-priced deep out-of-the-money contracts.

In Panel B of Table IV, we consider different option samples. We start by
examining options on all U.S.-listed equities rather than limiting attention
to those that are members of the S&P 500, and we do not require that con-
tracts trade for five consecutive days. The resulting sample is much larger but
substantially less liquid. In this sample, the nontrading effect is reduced by
roughly one-third across the three portfolios, but it remains highly statistically
significant. To see if the effect holds in even the most illiquid contracts, we
further reduce liquidity by restricting the sample to include only those options
with zero trading volume on the portfolio formation day. The effect is again
slightly smaller but still highly significant.

We also examine whether our use of filters (dividends, reversals, etc.) has any
effect on our results. We find that dropping these filters has almost no effect on
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our main results, though they are likely more important when we analyze less
aggregated portfolios.

In addition, we examine whether samples that are even more liquid than the
one we focus on also show nontrading effects. We construct one such sample
by requiring option contracts to have five consecutive days of trading at least
100 contracts, which reduces the sample by about 85% relative to our primary
sample (S&P 500 firms, five days of positive volume).8 The result is that the
nontrading effect is amplified, roughly 40% larger for each of the three portfolios
considered. Overall, it appears that the effect we document in this paper is
perhaps twice as large for the most heavily traded options as it is for the least
traded ones.

We also analyze a subsample of options with bid-ask spreads no greater than
5% of the quote midpoint, which should further minimize concerns regarding
our reliance on bid-ask midpoints in computing returns. For these portfolios,
the size of the nontrading effect is about two-thirds that of the baseline portfo-
lios, which would appear to go against other results suggesting that the effect is
larger in more liquid contracts. The explanation is that low-percentage spreads
are more common among in-the-money contracts, where the nontrading effect
is weaker. Liquidity, in this case, is proxying for moneyness.

Panel C examines the presence of a nontrading effect in S&P 500 Index
options, where we impose all filters used to construct our primary sample except
for the one eliminating dividends. Intuitively, one might expect index options
to be driven by the same systematic risk factors that affect individual equity
options. However, the two differ significantly in that index options are options
on a portfolio rather than a portfolio of options. They are therefore affected by
correlations as well as volatilities. Risk factors that drive correlations, as in the
model of Driessen, Maenhout, and Vilkov (2009), should therefore affect only
options on the index.

In contrast, systematic movements in average idiosyncratic volatility will
affect portfolios of individual options but will have little effect on options on
the index. Such systematic movements have been documented by Campbell
et al. (2001) and have been found by Goyal and Santa-Clara (2003) to drive
aggregate risk premia. If the risk premium on this factor has a weekly seasonal
pattern, then this will lead to a weekend effect only in individual equity options.

Table IV shows that the average nontrading effects for the value-weighted
unhedged put-call portfolio and the delta-hedged put portfolio are both slightly
larger than the effects measured from equity options, though the t-statistics are
somewhat lower. We find no significant effect in delta-hedged calls, though the
point estimate in index call options is negative and sizable. The reason for the
weak results on index calls appears to be related to differences in the levels of
open interest of calls and puts across various levels of maturity and moneyness.

8 Requiring 1,000 contracts per day reduces the sample much further still. Doing so has little
impact on the nontrading effect, raising the effect slightly for calls and lowering it slightly for
puts. However, standard errors are larger due to a smaller sample, reducing the significance of the
effect.
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For example, deep-out-of-the-money puts (deltas greater than −0.1), which are
commonly used to obtain portfolio insurance against market risk, comprise
about 3% of the total dollar value of puts traded, on average. Deep-out-of-the-
money calls (deltas below 0.1) comprise only 0.6% of the total amount of calls.
Since out-of-the-money contracts exhibit the largest nontrading effects, the
average nontrading effect for calls is reduced.9

If we instead form portfolios that are equal weighted, which gives relatively
more weight to out-of-the-money contracts, all nontrading effects rise substan-
tially, but the effect is still insignificant for S&P 500 Index calls. However,
if we focus solely on calls with deltas less than 0.1, the effect is statistically
significant and, at around −4.5%, extremely large in economic magnitude.10

Panel D of Table IV reports estimates of the nontrading effect for different
types of nontrading periods, all of which have been included in our analysis
thus far. For each type, the values reported are the average returns on the non-
trading period described (e.g., midweek holidays) minus the average returns
over all trading days. If what we are documenting is truly a nontrading effect
rather than a weekend effect, then we should also see negative option returns
over midweek holidays, and we might also expect the effect to be stronger over
long weekends.

In our sample, there are only 44 midweek holidays, so the average returns
over these periods are estimated imprecisely. Nevertheless, this small sub-
sample shows a highly significant nontrading effect for hedged puts and a
marginally significant result for hedged calls, which supports the view that
our findings represent a nontrading effect rather than weekend effect. On the
other hand, the nontrading effect for unhedged options in this small sample
is negative but insignificant. The table also reports results on the difference
between the nontrading effect over midweek holidays and that of regular week-
ends. No significant difference is observed, but this may again be attributable
to the small sample of midweek holidays.

Long weekends, with three or more days of nontrading, are somewhat more
common. During these periods, we find significant nontrading effects for un-
hedged options and hedged puts, though not for hedged calls. As with midweek
holidays, there is no significant difference between the nontrading effect over
long weekends and that of regular weekends. Still, the effects appear weaker
rather than stronger over long weekends relative to regular weekends. While
the weaker nontrading effect over these periods should be taken with a grain
of salt given the small number of long weekends, it may also be the case that
some options traders are aware of the nontrading effect and try to write options
to benefit from it in more conspicuous cases, such as long weekends. As indirect

9 We explore the relation between option moneyness and the strength of the nontrading effect
in Section III.C, where we provide evidence that the relation is due to a greater amount of excess
time decay in out-of-the-money options.

10 The Internet Appendix examines S&P 500 Index options in more detail. In short, the evidence
is statistically weaker than that for the equity option sample that we focus on in the paper, but
point estimates of the effect for different maturities and deltas are generally similar to those found
in equity options.
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evidence of this interpretation, we find that average hedged put and call re-
turns are −0.53% and −0.37%, respectively, on the day before a long weekend,
compared to just −0.04% and −0.07% on the day before a regular weekend.
These differences are statistically significant at the 5% level.

Taken together, the results in Table IV show that the nontrading effect is
extremely robust but more pronounced in liquid contracts. While the effect is
insignificant in S&P 500 Index calls, it is large and significant in puts. This
is notable because the markets for index and equity options are different in
many respects. For instance, as Garleanu, Pedersen, and Poteshman (2009)
observe, the “end users” presumed responsible for variation in option demand
are on average buyers of index options but writers of equity options. The fact
that both types of options exhibit nontrading effects of the same sign and
similar magnitude appears to challenge demand-based option pricing as an
explanation for our findings. Furthermore, we find a strong effect even when
there is no apparent change in demand, namely, in contracts with zero trading
volume. This does not necessarily rule out the demand-based option pricing
model as an explanation for the nontrading effect, considering that Garleanu,
Pedersen, and Poteshman show that option prices should be affected by trades
in other contracts. Nevertheless, the strength of the effect in untraded contracts
is surprising.

C. Implied and Realized Variances

In this section, we assess the significance of nontrading effects in implied
variances. Specifically, we ask whether the variance of returns over nontrading
periods that is implicit in option prices matches the realized variance from stock
returns.

Define the quadratic variation between times u and v as

QVu,v =
∫ v

s=u
σ 2

s ds,

where σt is the instantaneous volatility of the log stock price process. Now
define the time-t implied variance of an option with fixed expiration date T as

IVt,T = EQ
t

[
QVt,T

] = EQ
t

[
QVt,t′ + QVt′,T

]
.

Note that we are measuring the total amount of variance remaining over the
option’s lifetime rather than dividing by the time to expiration, which would
result in a variance rate.

The change, from time t to time t′, in implied variance remaining until expi-
ration is

IVt′,T − IVt,T = EQ
t′

[
QVt′,T

] − EQ
t

[
QVt,T

]
.

This change is on average negative as a result of moving closer to expiration,
as the quadratic variation between times t and t′ is eliminated from implied
variance at time t′. In studies of earnings announcements, Patell and Wolfson
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(1981) and Dubinsky and Johannes (2006) use this change to estimate the
announcement-day variance for a sample of stocks.

If we add the realized quadratic variation of the underlying asset over the
same period to offset the effect of moving closer to expiration, we get a variance
“differential,”

Dt,t′ ≡ IVt′,T − IVt,T + QVt,t′ , (1)

which measures the difference between the actual variance and the decline
in implied variance remaining until expiration. This differential can be reex-
pressed as

Dt,t′ =
(
EQ

t′
[
QVt′,T

] − EQ
t

[
QVt′,T

]) +
(
QVt,t′ − EQ

t

[
QVt,t′

])
. (2)

The first term represents the change in the risk-neutral expectation of future
variance over the interval (t′, T ), which is equal to the price appreciation on a
forward start variance swap. Without a variance risk premium, forward prices
are martingales, so this term should be zero in expectation. The second term
represents the difference between actual and implied variance. Again, the ab-
sence of a variance risk premium should make this term zero in expectation.
Thus, if there is no variance risk premium, that is, if implied variance is an un-
biased forecast of future-realized variance, then the expectation of Dt,t′ should
be zero. This statement holds regardless of the length of time between t and t′

and regardless of whether that interval includes a nontrading period.
To determine whether options embed an expectation of future variance over

nontrading periods that is larger than the actual variance over nontrading
periods, we measure the variance differential Dt,t+1 for each stock and for the
S&P 500 Index on each day in our sample. For the equity option sample, we
average these values across stocks to obtain a single value on each day. If the
nontrading variance implicit in option prices exceeds that present in actual
returns, then Dt,t+1 should be negative on average over nontrading periods.

We measure the variance differential using two different methods for comput-
ing implied variances, which are based on either the Black and Scholes (1973)
formula applied to at-the-money options or model-free implied variances. In
the former case, the implied variance is the average of the values computed
from the call and put with deltas closest to 0.5 and −0.5, respectively. In the
latter case, we apply the interpolation method of Hansis, Schlag, and Vilkov
(2010) to the calculations proposed in Bakshi, Kapadia, and Madan (2003). In
both cases, the implied variances we compute are “to term,” meaning that they
are not annualized by dividing by the time remaining until expiration.

As is standard (e.g., Andersen et al. (2001)), we proxy for quadratic variation
with a realized variance measure computed as the daily sum of all squared five-
minute returns along with the squared overnight return.11 Intraday returns

11 We have also examined robustness to using squared daily returns to proxy for quadratic
variation. Doing so produces equivalent results for the equity option sample but somewhat weaker
results for the S&P 500 Index option sample, though most significant coefficients remain so.
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on individual equities are computed using the NYSE Trades and Quotes (TAQ)
database, where we use the last recorded transaction price within each five-
minute interval between 9:30 am and 4:30 pm EST, a total of 84 observations
per day for each firm.12 Realized variances for the S&P 500 Index are from the
Oxford-Man Realized Library, to which we add the squared overnight return.

We assess the impact of nontrading and risk premia using the following
regression:

Dt,t+1 = a + bNTt+1 + c VRPt + dNTt+1VRPt + et,t+1, (3)

where Dt,t+1 now represents the average volatility differential computed from
time t to t + 1. In this regression, NT represents a nontrading indicator, which
is equal to 1 on nontrading days and 0 otherwise, and VRP represents a vari-
ance risk premium proxy similar to that proposed by Bollerslev, Tauchen, and
Zhou (2009). Specifically, VRP represents the demeaned difference between the
square of the VIX Index, which is a model-free measure of implied variance,
and the 22-day moving average of daily realized variances computed from five-
minute index returns. Demeaning has no effect on the c or d coefficients, but
it does affect the estimates of a and b in the specifications in which VRP is
included.13

The results of these regressions are in Table V. In short, we observe a highly
significant nontrading effect (the b coefficient) for both equity options and index
options. This indicates that the decrease in implied volatility remaining until
expiration is too large over nontrading periods, implying that option prices
embed an assumption of nontrading-period variance that is significantly higher
than what is actually realized. To gauge how much higher, we can compare the
estimated b coefficient, which measures the size of the nontrading effect on
variance differentials, to the average stock-level realized variance.

In our sample, the average stock-level realized variance is 0.00082, which is
equivalent to an average daily volatility of 2.87%. For the same equities, esti-
mates of the nontrading effect for variance differentials (b) ranges from around
0.0006 to 0.0009 (note that the b coefficients in Table V have been multiplied by
1,000), numbers that are approximately equal to the average realized variance.
This indicates that, during the average nontrading period, the excess decline
in implied variance is around one full day of realized variance. Similar results
obtain for index options. While the b coefficient is smaller for those options, the
average realized variance for the S&P 500 Index is only 0.00012 (an average
volatility of 1.08%). Estimated b coefficients from index options are all larger

12 TAQ data are filtered before the five-minute returns are computed. Specifically, we exclude
observations with zero price or zero size, corrected orders, and trades with condition codes B, G, J,
K, L, O, T, W, or Z. Trades on all exchanges are included. We also eliminate observations that result
in transaction-to-transaction return reversals of 25% or more and observations that are outside the
CRSP daily high-low range. Finally, we compute size-weighted median prices for all transactions
with the same time stamp.

13 Demeaning the variance risk premia (VRP) is done to eliminate collinearity between the
nontrading indicator and its interaction with the VRP. Without detrending, neither regressor
would be significant in the unrestricted specifications.
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Table V
The Differential between Elapsed Actual and Implied Variance

This table examines the daily differentials (Dit) between elapsed realized variance (RVit) and
elapsed implied variance (−�IVit). RVit is the sum of all squared returns computed over five-
minute intervals within a day plus the squared overnight return. −�IVit, which measures the
one-day reduction in risk-neutral variance remaining until the option’s expiration, is computed
as the τ -day implied variance on day t − 1 minus the τ−1-day implied variance on day t, where
implied variance is computed on a cumulative nonannualized basis. As described in Section II.C, we
use both the Black-Scholes model (BSIV) and the model-free approach (MFIV) of Bakshi, Kapadia,
and Madan (2003) with the interpolation scheme of Hansis, Schlag, and Vilkov (2010) to compute
these implied variances. In the top panel, we regress the average Dit across all stocks in the S&P
500 Index on a nontrading indicator, a measure of the variance risk premium, and an interaction
term. In the lower panel, we regress the S&P 500 Index differential on the same variables. The
variance risk premium is equal to the square of the VIX Index, converted to represent a daily
value, minus the 22-day moving average of realized variances on the S&P 500 Index, which are
themselves the sum of all squared five-minute returns plus the overnight return. Estimates of the
intercept and the nontrading indicator have been multiplied by 1,000. Values in parentheses are
t-statistics computed from Newey-West (1987) standard errors with 22 lags. Data are daily from
February 2, 1996 through August 28, 2014.

Panel A: Individual Equities

Dit Based on BSIV Dit Based on MFIV

Intercept 0.1100 0.1091 0.1078 0.1520 0.1505 0.1498
(2.53) (2.56) (2.58) (3.53) (3.60) (3.62)

Nontrading indicator (NT Ind) −0.9128 −0.9086 −0.9253 −0.5858 −0.5792 −0.5887
(−8.76) (−8.73) (−8.39) (−7.37) (−7.28) (−7.07)

Variance risk premium (VRP) 0.8451 2.0608 1.3423 2.0399
(0.84) (1.36) (1.30) (1.43)

NT Ind × VRP −5.8610 −3.3646
(−1.36) (−1.16)

R2 0.0326 0.0342 0.0463 0.0166 0.0214 0.0264

Panel B: S&P 500 Index

Intercept −0.4428 −0.4400 −0.4406 −0.0611 −0.0586 −0.0590
(−10.99) (−10.94) (−11.06) (−2.85) (−2.58) (−2.68)

Nontrading indicator (NT Ind) −0.2964 −0.3092 −0.3172 −0.1443 −0.1555 −0.1608
(−3.46) (−3.68) (−3.64) (−2.38) (−2.63) (−2.57)

Variance risk premium (VRP) −2.7161 −2.0983 −2.4489 −2.0367
(−1.78) (−1.25) (−3.75) (−2.83)

NT Ind × VRP −2.9820 −1.9906
(−1.21) (−0.87)

R2 0.0033 0.0180 0.0210 0.0023 0.0387 0.0426

than this value, meaning that the decline in index implied volatilities is at least
as excessive on a relative basis. Thus, it appears as if option prices embed a
full extra day of variance over each nontrading period.

Controlling for variance risk premia has little effect on the nontrading co-
efficient, though in some cases, it is a highly significant predictor of variance
differentials for the S&P 500 Index. The addition of an interaction term also
has very little effect. Were the nontrading effect compensation for variance
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risk, one might expect that it would increase when risk premia were larger.
The insignificance of the interaction term therefore suggests that nontrading
effects do not stem from an aversion to variance risk. Nevertheless, we explore
this possibility more thoroughly in the following section.

III. Risk and Risk Aversion

Having established a nontrading effect in option portfolios of all types, we
now address whether the differential between trading and nontrading peri-
ods is likely the result of differences in risk or risk aversion. In the results to
follow, we document that risk is indeed somewhat higher over nontrading pe-
riods, which raises the possibility that the nontrading effect is attributable to
risk. Unfortunately, risk adjustment for option returns is notoriously difficult,
mainly due to the fact that option returns are highly non-Gaussian. We there-
fore employ a number of techniques for risk adjustment that, while individually
imperfect, together make a compelling case that risk cannot ultimately explain
our findings.

We proceed by first analyzing the behavior of option trading volume and open
interest around nontrading periods, motivated by the idea that differences
in risk or risk aversion over nontrading periods should lead to predictable
patterns in trading and open interest as traders rebalance their positions. We
then assess the risk of option returns, first by analyzing the time series, then
by examining the cross section. We find no patterns in volume or open interest
that would indicate that traders or market makers wish to reduce exposure
prior to nontrading periods. In the time series, we document that, while risk is
higher over nontrading periods, various measures of risk-adjusted performance
are in agreement that the greater risk is not sufficient to justify the size of
the nontrading returns. There is also no apparent time series variation in
liquidity. Finally, in the cross section, we find that only certain types of option
risk are rewarded in terms of more negative nontrading returns. These results
undermine any explanation based on the Chen and Singal (2003) hypothesis
that aversion to downside risk is higher over nontrading periods. Instead,
we show that the nontrading effect is consistent with the particular type of
mispricing considered by French (1984).

A. Patterns in Volume and Open Interest

If option writers are averse to holding their positions over nontrading peri-
ods, then it should be reasonable to expect their positions to shrink prior to
those periods. Because options are in zero net supply, a reduction in written
positions means a decrease in the overall open interest in the options market.
Furthermore, if option writers are particularly averse to maintaining written
positions in some types of contracts, say, those that are riskier in some sense,
then we might expect the decline to be largest in those contracts.

To examine the behavior of open interest around nontrading periods, we
compute daily open interest, in terms of the number of option contracts, for
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each of the portfolios analyzed in Table III.14 In doing so, we do not impose data
filters, such as the requirement of five consecutive days of trading activity. We
find that open interest is not prone to measurement error, making these filters
unnecessary. More importantly, the variables on which filters are based (i.e.,
volume) are too closely related to the open interest series we are tracking. The
only filter we impose is that contracts have more than five days remaining until
expiration. This eliminates option contracts in their final week, which would
artificially induce a nontrading effect due to the fact that expiring contracts
have zero open interest on the last day of their expiration week.

We compute two weekly open interest series for each portfolio formed by
moneyness and maturity. One is the average open interest over all days just
prior to a nontrading period, which most often is simply the open interest on the
Friday of that week. The other is the average open interest over all other days
(usually Monday through Thursday). We then take the ratio of these two series
within each week and compute the time series median, which is not sensitive
to occasional outliers in the open interest ratio that are due to denominators
near zero.15 This median tells us how open interest rises or falls for a particular
portfolio prior to nontrading periods.

The top panel of Figure 2 plots these medians, on the horizontal axis, against
the estimated nontrading effects from Table III. If option writers are averse to
keeping positions open over nontrading periods, we would expect to see two re-
sults. One is that open interest should decline prior to nontrading periods. The
other is that open interest should decline more in contracts that are particu-
larly undesirable to write, which presumably are those with the most negative
nontrading effects. However, the figure shows no evidence favoring either pre-
diction. Open interest tends to be higher just prior to nontrading periods, by
around 2% on average. Furthermore, there is no relation between open interest
and the size of the nontrading effect. Thus, if the nontrading effect is the result
of a desire to avoid risk over weekends and holidays, no attempt to avoid that
risk by trimming positions is evident.

The bottom panel of Figure 2 plots the results of a similar examination of
trading volume. Since these ratios are all below one, it does not appear that
investors are motivated to reduce positions prior to nontrading periods. Fur-
thermore, there is no clear relation between volume patterns and nontrading
returns.

It seems more likely that the decline in option trading is driven by the same
forces that have caused equity market volume to decline prior to weekends
and holidays for a number of decades (see Lakonishok and Maberly (1990)).
Interestingly, the nontrading effect in equities documented by French (1980)
has vanished in recent decades, while the volume pattern has not, making
it somewhat implausible that there is a causal relation between volume and
nontrading returns in stocks either.

14 Results are robust to using dollar open interest instead.
15 For most portfolios, there are no such outliers, and there is little difference between means

and medians.
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Figure 2. Volume, open interest, and the nontrading effect. The plots show the relation
between the estimated nontrading effect and volume and volatility. For each of the maturity and
moneyness-sorted portfolios analyzed in Table III, we compute the median ratio of either volume
or open interest on days prior to nontrading periods to the same variable on all other days. These
ratios appear on the horizontal axis. On the vertical axis, we show the nontrading effect estimates
from Table III.

B. Risk and Liquidity of Option Strategies

Table VI reports a variety of statistics describing the risk and risk-adjusted
returns corresponding to the main strategies examined thus far. One subtle
change is that we now examine excess returns from the perspective of the op-
tion writer, whose returns are positive when option values decline. Flipping
the sign of the option returns is necessary for the validity of some of the perfor-
mance adjustments we consider, which account for asymmetries in the return
distribution.

The first few rows of the table describe the first four moments of the three
strategies we focus on. Since option writers are short options, the nontrading
effect is shown in the table as a positive number, but the magnitudes are the
same as those reported in Table II. We now see that these higher means are as-
sociated with moderately higher standard deviations, somewhat more negative
skewness, and substantially higher excess kurtosis. Few of these differences
are statistically significant, with the exception of the standard deviation and
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kurtosis of the hedged call portfolio, but they nevertheless raise the possibility
of a relation between risk and return.16

When we undertake the kind of risk adjustment that would be appropriate in
a Gaussian setting or for investors with mean-variance preferences, we see that
the greater risks associated with nontrading returns have little effect on the
relative attractiveness of writing options over nontrading rather than trading
periods. Sharpe ratios, CAPM alphas, and information ratios are all signifi-
cantly higher over nontrading periods, with magnitudes that are economically
large. The Sharpe ratio of the unhedged put-call strategy, for example, is 0.301.
This daily value corresponds to an annualized figure of 4.9.17

It is well understood, however, that measures such as the Sharpe ratio are
generally inappropriate when returns are highly non-Gaussian. This is cer-
tainly the case in options, where a nonlinear dependence on the underlying
asset will induce nonnormality even when the underlying is Gaussian. A num-
ber of alternatives have been proposed, and we consider two. The first involves
specifying a utility function and measuring the certainty-equivalent return,
which is defined as the value c such that E[U(1 + R)] = U(1 + c), where R is
the return on the risky asset. We implement this approach using power utility
with relative risk aversion γ of 1 (log utility), 3, or 10.

The second approach is based on recent work by Kadan and Liu (2014),
who show how to evaluate investment performance in a way that accounts
for higher moments by using the generalized risk measures of Aumann and
Serrano (2008) and Foster and Hart (2009). The performance indexes they
construct, PAS and PFH, are the solutions to

E[exp(−PAS(1 + R))] = 1

and

E[log(1 + PFH(1 + R))] = 0.

As with the other statistics in the table, we estimate them using the generalized
method of moments (GMM). Higher values indicate superior performance.

The result of this analysis is that non-Gaussian risk adjustment still cannot
explain the nontrading effect. For all three levels of γ , we find that risk-adjusted
returns are higher over nontrading periods. The sole exception is in the hedged
call portfolio when γ = 10. In this case, risk-adjusted returns are lower over
nontrading periods, though by a statistically insignificant amount. Based on
the PAS and PFH indexes, risk-adjusted performance over nontrading periods is

16 Throughout Table VI, estimates and t-statistics are the result of exactly identified GMM
estimation. t-statistics for nontrading minus trading differences are obtained by estimating a
system that includes both trading and nontrading returns and that parameterizes the nontrading
parameter (e.g., kurtosis or alpha) as the trading parameter plus a “delta” term.

17 It is important to note that none of the calculations in the table factor in the effects of
transaction costs, both commissions and bid-ask spreads. Therefore, the returns are not feasible
as a stand-alone trading strategy. Instead, they represent the additional return that would result
from holding previously written options for another day.
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generally significantly better than that over trading periods. The only exception
is for the PFH index for unhedged options, where nontrading performance is
better but not significantly so.

Overall, the results reported in Table VI suggest that no measure of risk
varies enough between trading and nontrading periods to explain the differ-
ences in average returns. It is possible that, due to the existence of unobserved
low-probability events, true risk over nontrading periods is higher than we
have measured, and if the increase is severe enough, it might justify a substan-
tial risk premium. As an informal check for the unhedged put-call portfolio, we
randomly replace 20 nontrading returns with the worst one-day return in the
full sample (−20.3%). Since the sample contains only 16 nontrading periods
with returns lower than −10%, this represents an extremely large increase in
the left tail of the return distribution. Yet, even with this magnified tail risk,
both PAS and PFH remain reliably positive.

C. Risk and Return in the Cross Section

Thus far in this section, we have analyzed differences between trading and
nontrading periods in highly aggregated portfolios of options. We now turn
to disaggregated portfolios and further explore some of the patterns related to
moneyness and maturity that we observe in Table III. Our goal is to see whether
those patterns in the size of the nontrading effect are related to cross-sectional
patterns in risk.

Option market participants and option researchers often identify three major
varieties of price risk in an option contract. The first, delta (� ≡ ∂C/∂S), is the
sensitivity of the option price to small movements in the underlying security.
This risk can be hedged away by taking the appropriate position in the un-
derlying. The second, vega (V ≡ ∂C/∂σ ), measures the sensitivity of the option
price to changes in volatility. This risk can be eliminated only by combining
purchased and written options on the same underlying, though it can be di-
versified somewhat by buying or writing options on multiple underlyings. The
last risk, gamma (� ≡ ∂2C/∂S2), measures the sensitivity of the option price to
larger movements in the price of the underlying security. Like vega, gamma is
reduced mainly by buying and writing options on the same underlying, though
diversification across underlyings should also provide some benefit.

These so-called Greeks are the coefficients of the following Taylor expansion
of option prices:

Ct+1 ≈ Ct + �t (St+1 − St) + 1
2

�t (St+1 − St)2 + Vt (σt+1 − σt) + �t,

where S is the price of the underlying, σ is its volatility, and �t ≡ ∂Ct/∂t is the
rate of time decay, or theta. This expansion can be rearranged to produce an
approximate expression for delta-hedged option returns:

Ct+1 − Ct

Ct
− �tSt

Ct
Rt+1 ≈ �tS2

t

2Ct
R2

t+1 + Vt

Ct
(σt+1 − σt) + �t

Ct
, (4)
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where Rt+1 is the return on the stock.18 Expression (4) shows how delta-hedged
returns depend on “larger” movements in prices (R2

t+1) and changes in volatility
(σt+1 − σt). Specifically, this expression shows that these variables affect delta-
hedged returns through normalized versions of gamma and vega.

The risk of a diversified option portfolio therefore depends, in general, on
both option contract-level characteristics (the normalized Greeks) and stock-
level risk exposures (the systematic risk in squared returns and volatilities).
However, in the current exercise, we examine portfolios formed only on the
basis of maturity and moneyness, which are both option-level characteristics,
so all portfolios will include essentially the same set of underlying firms. Thus,
the cross-sectional variation in the risk of the portfolios we consider will be
determined largely by option-level characteristics rather than stock-level risk
exposures.

Table VII reports results of Fama-Macbeth (1973) regressions in which the
dependent variable is the return, squared return, or cubed return of a portfolio
of delta-hedged option positions. The independent variables include the portfo-
lio’s normalized gamma (0.5 �tS2

t /Ct), vega (Vt/Ct), and theta (�t/Ct), which are
computed by averaging the corresponding contract-level measures. As before,
we weight by the lagged dollar value of open interest when computing portfolio
returns. The same weights are also used to calculate portfolio-level normalized
Greeks.

Because of the close connection between gamma and theta, which we discuss
below, these two regressors are highly collinear and are not included in the
same regression. Gamma and vega are also related and, in fact, are perfectly
proportional to each other for a given expiration date. Since our option portfolios
include both short-dated and long-dated contracts, gamma and vega are not
collinear, and we are able to distinguish between their effects as two individual
predictors.

In our regressions, independent variables are included alone and are also
interacted with a nontrading dummy variable that takes the value of zero
during trading periods and one during nontrading periods. Since all indepen-
dent variables are interacted with the nontrading dummy, the Fama-Macbeth
(1973) regression coefficients are estimated by running the regression with no
interaction terms separately on the trading and nontrading subsamples. The
interaction term’s coefficient is then estimated as the difference between the
nontrading and trading coefficients.

Our first set of cross-sectional results focuses on risk. Regressions (1) to (3) in
Table VII examine the cross section of risk by regressing squared delta-hedged
portfolio returns, which represent price changes regardless of their sign, on
normalized gammas and vegas. When we include only gamma (by itself and
interacted with the nontrading dummy), we see a significant tendency of higher
gamma options to exhibit greater risk, though there is no significant evidence

18 For simplicity, in this section, we use regular returns rather than excess returns, which would
introduce an additional term into the return decomposition. Results are extremely similar when
excess returns are used.
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that gamma-related risk rises over nontrading periods. The relation between
risk and normalized vega appears to be much stronger and more significant,
with a notably higher cross-sectional R2, indicating that vega (i.e., volatility)
risk is more important than gamma risk in our sample.19 Including both gamma
and vega terms in regression (3) leads to a modest improvement in overall fit
relative to the vega-only specification in (2). Thus, overall, it appears that vega
rather than gamma is more responsible for portfolio variance.

In columns (4) to (6) of the table, we repeat the same regressions with cubed
returns as the dependent variable. The rationale for using cubed returns is
that Chen and Singal’s (2003) hypothesis suggests that it is specifically the un-
bounded downside risk that option sellers are averse to holding over nontrading
periods, and this may be reflected more in third moments than in second mo-
ments. The results show a tendency of higher gamma and higher vega options
to exhibit greater positive skewness, which for the option writer becomes neg-
ative skewness. However, there is no evidence that this effect changes over
nontrading periods.

In regressions (4) and (5), which include either gamma or vega terms, but
not both, we see approximately the same goodness of fit and similar statistical
significance of the slope coefficients. When both gamma and vega terms are
included in regression (6), vega is significant but gamma is not, suggesting
that volatility risk may also be the more relevant determinant of the option
writer’s downside risk.

The last five columns of Table VII examine whether the same variables also
drive average returns. Regressions (7) to (9) replace the dependent variable
with signed delta-hedged portfolio returns. Distinct from the other regressions,
we now see a clear difference between the importance of gamma and vega, with
the former turning out to be the more important determinant by far. In regres-
sion (7), which does not include vega, we obtain a cross-sectional R2 of 0.80. In
contrast, regression (8) shows that vega by itself performs relatively poorly in
terms of explaining average returns, with an R2 of just 0.22. When gamma and
vega terms are both included, as in regression (9), we continue to see a large
and highly significant coefficient on the interaction between the nontrading
dummy and the normalized gamma, and just a slight improvement in over-
all fit relative to the gamma-only specification.20 Furthermore, the nontrading
interaction with vega is insignificant.

In the demand-based option pricing theory of Garleanu, Pedersen, and
Poteshman (2009), fluctuations in demand impact option prices only to the

19 The cross-sectional R2 is defined as 1 − [ 1
N

∑N
i=1(Ȳi − ¯̂Y i)2]/[ 1

N
∑N

i=1(Ȳi − ¯̄Y )2], where Ȳi is

the average value of the dependent variable for portfolio i, ¯̂Y i is the average fitted value for that
portfolio, and ¯̄Y is the cross-sectional average of Ȳi .

20 The relevance of vega in explaining average returns is not new. Volatility risk has been shown
by Bakshi, Cao, and Chen (1997) and others to be an important determinant of expected returns
on S&P 500 Index options. However, evidence tying volatility risk to the expected returns on
individual equity options is less clear-cut (see, e.g., Driessen, Maenhout, and Vilkov (2009) and
Christoffersen, Fournier, and Jacobs (2016)). Controlling for a nontrading effect may be useful in
uncovering this risk premia.
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extent that the option contract cannot be perfectly hedged. Thus, regardless
of whether the nontrading effect is driven by greater aversion to risk over
nontrading periods or by an uptick in net option demand, we would expect
riskier option contracts to display more negative nontrading returns. In con-
trast, regressions (1) to (9) show that, while the risk of a diversified portfolio of
delta-hedged options on individual equities is determined more by its average
vega than its average gamma, the nontrading effect in average returns is re-
lated only to gamma. This result undermines the hypothesis put forth by Chen
and Singal (2003) that aversion to downside risk over nontrading periods drives
nontrading effects in average returns. Nevertheless, we cannot completely rule
out the possibility that, for some reason, one type of risk (gamma) is priced
over nontrading periods, while another type (vega) is not.

Another interpretation of these results is that they reflect mispricing caused
by an incorrect treatment of the difference between trading and nontrading
volatilities. As shown in Section II.C, options appear to be priced as if nontrad-
ing periods contained, on average, an extra day’s worth of variance, raising
the possibility that some investors are pricing options as though variance was
proportional to calendar time rather than trading time. As demonstrated by
French (1984), if this is, in fact, the error being made, then its effects will
depend strongly on the moneyness and maturity of the contract.

To gain some intuition about what effects this mistake might have, assume
that stock prices are instantaneously lognormal with deterministic volatility.
Assuming no dividends, the price Ct of an option therefore solves the following
partial differential equation:

σ 2
t S2

t

2
�t + �t + rSt�t = rCt.

If the interest rate were equal to zero, this equation implies an exact relation
between theta and gamma, namely,

�t = −σ 2
t S2

t

2
�t.

In other words, time decay would be due solely to the loss in stock price variance
(σ 2

t S2
t ) remaining until expiration, the value of which is determined by the

amount of curvature (�t) in the option price.
When interest rates are nonzero, theta includes an additional component,

which we discuss below. Although we do not assume zero interest rates in
our empirical analysis and therefore include this component, the low levels of
interest rates observed during our sample period means that this component
is in general extremely small. In theory, therefore, we should see little if any
relation between the theta of an option and its risk-neutral drift, since theta is
offset by a gamma effect that is approximately equal in expected value but of
the opposite sign.

Intuitively, theta comes largely from the fact that the total volatility remain-
ing until expiration decreases from one trading day to the next, and with less



894 The Journal of Finance R©

volatility remaining over the life of the contract, there is a less of a chance to
benefit from positive convexity. By definition, however, the total variance until
expiration is reduced exactly by the variance that is realized between these
two dates, which, due to positive gamma, tends to lead to higher option values.
These effects should cancel out.

In practice, however, theta and gamma will not offset each other if the op-
tion pricing model used is inconsistent with actual stock price dynamics. This
would occur, for instance, if volatility is assumed constant in calendar time.
As French (1984) shows theoretically, an option trader using a calendar-time
model implicitly assumes that three days of time decay occur between a given
Friday and the following Monday. Because actual variance over this three-day
period is much lower than the variance of three trading days, the convexity
effect induced by the option’s positive gamma will be muted and will only par-
tially offset the high amount of time decay. The result is a predictable decline
in option values over the weekend or any other multiday period that includes
one or more nontrading days.

Because theta is driven almost entirely by gamma effects rather than interest
rates, normalized gamma and theta are highly collinear in our sample. We find
an average cross-sectional correlation between normalized gamma and theta
of −0.95 at the portfolio level. Thus, the evidence in regressions (7) to (9),
which shows that gamma appears solely responsible for the nontrading effect,
is also consistent with nontrading effects being the result of excess time decay.
Nevertheless, to verify that the nontrading effect can be attributed to theta, we
include a regression with only the normalized theta and its interaction with
the nontrading dummy as independent variables.

The results, reported in column (10) of the table, show that about 76% of the
variation in average returns can be attributed to theta. The interaction term
on theta is highly significant, more so than any other interaction term in the
table. Thus, the nontrading effects that we document appear closely related to
theta, suggesting that excess time decay over nontrading periods is a primary
cause of our main findings. That is, market prices embed a rate of time decay
that is too large over nontrading periods because option traders do not account
sufficiently for the difference in stock volatility when the market is open or
closed.

The finding that nontrading effects are closely tied to theta helps explain
the patterns observed in Table III, namely, the tendency of the nontrading
effect to be stronger in options that are further out of the money and closer
to expiration. In the Black and Scholes (1973) model, gamma shrinks as an
option moves more out of the money. However, the option’s price shrinks even
faster. The result is that the normalized theta (�t/Ct) is largest for out-of-
the-money contracts. Intuitively, these contracts only have value if the un-
derlying price moves significantly, which rapidly becomes less likely as time
to maturity declines. Normalized theta also tends to be larger for options
with short maturities. This is driven by the fact that the passage of a fixed
amount of time represents a larger fraction of the total time remaining until
maturity.
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Finally, to rule out the possibility that the results in these regressions are
driven by an omitted interest rate effect, we estimate a final regression in
which we include the interest rate component of theta along with our main
regressors. As discussed above, when interest rates are nonzero (still assuming
no dividends), time decay (�t) is the sum of two components,

�t = −σ 2
t S2

t

2
�t − rt exp(−rtτ )K	(d2)

Ct
≡ �σ

t + �r
t , (5)

where rt is the instantaneous riskless rate. The first component, as discussed
above, captures convexity effects. It depends very little on interest rates, only
indirectly through the option’s gamma.21 The second component, �r

t , can be
interpreted as a pure interest rate component, as it reflects the cost of borrow-
ing in the option’s replicating portfolio. It is not collinear with gamma, so in
regression (11), we add this “interest rate theta” to the gamma and vega terms
already considered.

The results of this last regression show that including interest rate effects
has little bearing on our findings. Coefficients on normalized gamma and vega,
alone and interacted with the nontrading indicator, are relatively unchanged
from their values in regression (9). Vega continues to play a role in explaining
trading-period returns, while gamma drives all significant nontrading effects.
This tells us that the role of gamma in explaining the nontrading effect is not
due to a failure to account for differences in the cost of leverage between trading
and nontrading periods.

Interestingly, while the extremely limited variation in �r
t makes precise in-

ference difficult, the magnitude of the coefficients on �r
t and its nontrading

interaction are consistent with the treatment of interest over trading and non-
trading periods. Specifically, the coefficient on the interest component over
trading periods is insignificantly different from 1.0, consistent with one day of
interest accruing over these periods. Over nontrading periods, the coefficient
on the interest component of theta is larger by approximately 2.0. Although
this estimate is insignificant, the magnitude is consistent with the fact that
most nontrading periods, being regular weekends, result in the payment or
receipt of two additional days of interest.

IV. Conclusion

The evolution of modern option markets has paralleled the development of
option pricing models. While no existing model is capable of explaining all
observed patterns in option prices, models are irreplaceable tools for options
hedging and market making activities. Yet, periodically, these models turn out

21 Under Black and Scholes (1973), the sensitivity of gamma to interest rates is fairly low for
most options and negligible for short-term options, where nontrading effects are largest. In our
data sample, the variation in portfolio-level �σ

t is driven largely by the absolute value of option
moneyness, with a smaller role for option maturity. Interest rates, in contrast, explain essentially
no variation.
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to be wrong, as was the case for Black and Scholes (1973) in the October 1987
crash.22 Although the sophistication of option markets has advanced tremen-
dously since then, there is no guarantee that the models in use today are free
from such potential shortcomings.

We believe that our results suggest a somewhat less dramatic but neverthe-
less quantitatively important model misspecification. At the end of our sample
period, the total dollar open interest in exchange-traded equity option con-
tracts was about $300 billion, which is just slightly larger than the average
value over our entire sample. Assuming an average alpha of about 0.50% over
a single nontrading period, the average dollar transfer from option buyers to
option writers is likely close to $1.5 billion over the course of a single weekend.
For many option contracts, particularly those that are out of the money and
relatively short dated, the alpha is likely much larger.23

The finding of a nontrading effect is highly significant and pervasive among
puts and calls of nearly every combination of maturity and moneyness. This
finding is robust to the choice of sample period, method of portfolio construc-
tion, sampling method, and weighting scheme. We find strong evidence of a
nontrading effect in S&P 500 Index put returns and weaker evidence in index
call returns. Implied volatilities of both equity and index options embed an
excessively high expectation of variance over nontrading periods.

Option portfolio risk appears to be moderately higher over nontrading pe-
riods, but after risk adjustment, we find that written option positions offer
nontrading returns that are still extremely attractive and significantly better
than trading-period returns. We interpret these results as evidence against a
risk-based explanation for our main findings.

In the cross section, options with higher gammas show stronger nontrading
effects. Since the risk of hedging an option portfolio rises with gamma, this
relation seems to suggest that greater aversion toward risk by option writers
over nontrading periods could explain why nontrading returns are low. Hedging
risk also rises with vega, but we find no evidence that higher vegas are related
to average nontrading returns. Thus, our findings appear to contradict the
Chen and Singal (2003) hypothesis that investors have greater aversion to
downside risk over weekends or other nontrading periods, and also appear
inconsistent with a shift in option demand, as in Garleanu, Pedersen, and
Poteshman (2009).

The alternative hypothesis that we test is that some option traders rely
on models that do not account for differences in the behavior of stock prices
over trading and nontrading periods. Following French (1984), option prices
computed in calendar time based on the assumption that volatility is constant
will mechanically fall over nontrading periods given that actual volatility drops
significantly when markets are closed. This will appear in the data as an

22 See Coval, Pan, and Stafford (2014) for a compelling account of this episode.
23 As an admittedly unfair comparison, large-cap stocks with positive momentum comprised

roughly $6 trillion in value at the start of our sample and produced an alpha of roughly one basis
point per day, implying a daily dollar alpha of $0.6 billion.



Option Mispricing around Nontrading Periods 897

excessive rate of time decay. We find in our sample that the nontrading effect
is indeed strongly related to the rate of time decay.

Since bid-ask spreads are often large, it is not feasible to capture the entire
nontrading effect in a stand-alone trading strategy based on market orders.
That said, Muravyev and Pearson (2016) show that transaction costs by some
traders who take liquidity (i.e., trade with market rather than limit orders)
may be far smaller than the posted bid-ask spread because of superior trade
timing. These traders, who most likely use automated execution algorithms,
pay costs only one-fifth as large as those implied by the bid-ask quotes.

Regardless of trading costs, nontrading effects have important implications
for quote-setting by market makers or other traders and are a determinant of
optimal trade timing. Our findings suggest that setting aggressive ask prices
and conservative bid prices would be optimal prior to nontrading periods as a
means to reduce inventory ahead of declining option values. For an investor who
has already written an option, the nontrading effect represents an additional
return that would result from keeping the position open for another day. For an
option buyer, the nontrading return is the benefit from delaying the purchase by
one day. Thus, our results should be useful in improving option-based trading
strategies.

Our results also imply that it is important to control for nontrading effects
in event studies of option returns, such as Cao, Chen, and Griffin (2005) or
Xing and Zhang (2013), if events have a tendency to occur on a certain day
of the week. Controlling for nontrading effects could also improve the re-
search design of studies that seek to explain option pricing regularities such as
upward-sloping term structures and smile-shaped cross sections in Black and
Scholes (1973) implied volatilities. To maximize power and to best approximate
continuous-time theoretical models, this literature commonly analyzes option
data on a daily basis (e.g., Bakshi, Kapadia, and Madan (2003) or Broadie,
Chernov, and Johannes (2007)). At a daily frequency, the effects we document
are likely larger than any risk premia for stochastic volatility or jump risk, for
example. It is therefore possible that controlling for nontrading effects explic-
itly or by analyzing data at a lower frequency could have a material effect on
the results reported by previous studies.

Moreover, we believe that our results should encourage researchers to con-
sider market inefficiency as a potential explanation for option pricing anoma-
lies. Though there are notable exceptions, including the behavioral papers of
Stein (1989), Poteshman (2001), and Han (2008), empirical shortcomings of a
particular option pricing model are almost always taken as motivation for an
improved stochastic process for the underlying price. While this progression
makes sense in many cases, our results suggest that an alternative approach
is sometimes called for.

If the effects we document are due to the widespread use of a misspecified
model, there will be no quick fixes. Indeed, recognition of the issue that we
empirically document appears to go back at least 30 years to the publication of
French (1984). Nevertheless, in the options market, a relatively small number
of highly influential entities provide a large amount of information to market
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participants, and if the current practices of these market leaders were changed,
a more efficient market might obtain.

As an example, the current VIX Index, which is computed by the Chicago
Board Options Exchange (CBOE, 2009), is based on a calendar time convention
that causes a predictable drop in the level of the index on Mondays. This is
despite the fact that the original VIX, now known as the VXO, was based on
trading time. In fact, Whaley (2000, p. 14), who was retained by the CBOE to
develop the VIX, noted in a paper that

the VIX is based on trading days. If the time to expiration is measured in
calendar days, the implied volatility is a volatility rate per calendar day.
This means, among other things, that the return variance of the OEX
index over the weekend (from Friday close to Monday close) should be
three times higher than it is over any other pair of adjacent trading days
during the week (say, Monday close to Tuesday close). Empirically, this is
not true.

Surprisingly, this insight seems to have been lost in the 2003 revision of the
VIX methodology.

Standard academic databases (Optionmetrics IvyDB) and industry data
feeds (ISE/Hanwick) currently report option-implied volatilities and Greeks
on a calendar time basis or do not specify the convention used for measuring
time to expiration. French’s (1984) work shows that measuring time in trading
days, while not perfect, is far superior to the use of calendar days. We believe
that adopting this standard and highlighting the issues involved could improve
the efficiency of the options market in a meaningful way.
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