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ABSTRACT
We present an approach to differentially private computa-
tion in which one does not scale up the magnitude of noise
for challenging queries, but rather scales down the contribu-
tions of challenging records. While scaling down all records
uniformly is equivalent to scaling up the noise magnitude,
we show that scaling records non-uniformly can result in
substantially higher accuracy by bypassing the worst-case
requirements of differential privacy for the noise magnitudes.

This paper details the data analysis platform wPINQ,
which generalizes the Privacy Integrated Query (PINQ) to
weighted datasets. Using a few simple operators (including a
non-uniformly scaling Join operator) wPINQ can reproduce
(and improve) several recent results on graph analysis and
introduce new generalizations (e.g., counting triangles with
given degrees). We also show how to integrate probabilistic
inference techniques to synthesize datasets respecting more
complicated (and less easily interpreted) measurements.

1. INTRODUCTION
Differential Privacy (DP) has emerged as a standard for

privacy-preserving data analysis. A number of platforms
propose to lower the barrier to entry for analysts inter-
ested in differential privacy by presenting languages that
guarantee that all written statements satisfy differential pri-
vacy [5, 6, 16, 17, 23]. However, these platforms have limited
applicability to a broad set of analyses, in particular to the
analysis of graphs, because they rely on DP’s worst-case
sensitivity bounds over multisets.

In this paper we present a platform for differentially pri-
vate data analysis, wPINQ (for “weighted” PINQ), which
uses weighted datasets to bypass many difficulties encoun-
tered when working with worst-case sensitivity. wPINQ fol-
lows the language-based approach of PINQ [16], offering a
SQL-like declarative analysis language, but extends it to a
broader class of datasets with more flexible operators, mak-
ing it capable of graph analyses that PINQ, and other differ-
ential privacy platforms, are unable to perform. wPINQ also
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exploits a connection between DP and incremental compu-
tation to provide a random-walk-based probabilistic infer-
ence engine, capable of fitting synthetic datasets to arbi-
trary wPINQ measurements. Compared to PINQ and other
platforms, wPINQ is able to express and automatically con-
firm the privacy guarantees of a richer class of analyses,
notably graph analyses, and automatically invoke inference
techniques to synthesize representative datasets.

In an earlier workshop paper [19], we sketched a proposed
workflow for DP graph analysis and presented preliminary
results showing how these techniques could be used to syn-
thesize graphs that respect degree and joint-degree distri-
butions. This paper is a full treatment of our data analysis
platform, including the wPINQ programming language and
its formal properties, as well as its incremental query pro-
cessing engine for probabilistic inference. We discuss why
wPINQ is well-suited to solve problems in social graph anal-
ysis, and present new and more sophisticated use cases re-
lated to computing the distribution of triangles and motifs
in social graphs, results of independent interest.

1.1 Reducing sensitivity with weighted data
In the worst-case sensitivity framework, DP techniques

protect privacy by giving noisy answers to queries against
a dataset; the amplitude of the noise is determined by the
sensitivity of the query. In a sensitive query, a single change
in just one record of the input dataset can cause a large
change in the query’s answer, so substantial noise must be
added to the answer to mask the presence or absence of
that record. Because worst-case sensitivity is computed as
the maximum change in the query’s answer over all possible
input datasets, this can result in significant noise, even if the
input dataset is not worst-case. This problem is particularly
pronounced in analysis of social graphs, where the presence
or absence of a single edge can drastically change the result
of a query [18, 20]. Consider the problem of counting trian-
gles in the two graphs of Figure 1. The left graph has no tri-
angles, but the addition of just one edge (1, 2) immediately
creates |V | − 2 triangles; to achieve differential privacy, the
magnitude of the noise added to the query output is propor-
tional to |V |− 2. This same amount of noise must be added
to the output of the query on the right graph, even though
it is not a “worst case” graph like the first graph.

We will bypass the need to add noise proportional to
worst-case sensitivity by working with weighted datasets.
Weighted datasets are a generalization of multisets, where
records can appear an integer number of times, to sets in
which records may appear with a real-valued multiplicity.
Weighted datasets allows us to smoothly suppress individ-

ar
X

iv
:1

20
3.

34
53

v4
  [

cs
.C

R
] 

 1
3 

Fe
b 

20
14



1 2

|V|

Figure 1: (left) Worst- and (right) best-case graphs
for the problem of privately counting triangles.

ual ‘troublesome’ records (i.e., records that necessitate extra
noise to preserve privacy) by scaling down their influence in
the output. We scale down the weight of these individual
troublesome output records by the minimal amount they
do require, rather than scale up the amplitude of the noise
applied to all records by the maximal amount they may re-
quire. This data-dependent rescaling introduces inaccuracy
only when and where the data call for it, bypassing many
worst-case sensitivity bounds, especially for graphs.

Returning to the example in Figure 1, if the weight of each
output triangle (a, b, c) is set to be 1/max{da, db, dc} where
da is the degree of node a, the presence or absence of any
single input edge can alter only a constant total amount of
weight across all output triangles. (This is because any edge
(a, b) can create at most max{da, db} triangles.) Adding the
weights of these triangles (the weighted analog of “count-
ing”) with constant-magnitude noise provides differential
privacy, and can result in a more accurate measurement than
counting the triangles with noise proportional to |V | (which
is equivalent to weighting all triangles with weight 1/|V |).
While this approach provides no improvement for the left
graph, it can significantly improve accuracy for the right
graph: since this graph has constant degree, triangles are
measured with only constant noise.

It is worth noting how this approach differs from smooth
sensitivity [18], which adds noise based on instance-dependent
sensitivity; if the left and right graphs of Figure 1 were
unioned into one graph, smooth sensitivity would still in-
sist on a large amount of noise, whereas weighted datasets
would allow the left half to be suppressed while the right half
is not. This approach also differs from general linear queries
allowing non-uniform weights [13]; these approaches apply
only to linear queries (triangles is not) and require the non-
uniformity to be explicitly specified in the query, rather than
determined in a data-dependent manner. Weighted datasets
are likely complementary to both of these other approaches.

1.2 Our platform: wPINQ + MCMC
In Section 2, we describe the design of wPINQ, a declar-

ative programming language over weighted datasets, which
generalizes PINQ [16]. While PINQ provided multiset trans-
formations such as Select, Where, and GroupBy, the limita-
tions of multisets meant that it lacked an effective implemen-
tation of the Join transformation, among others. wPINQ
extends these to the case of weighted datasets, and uses
data-dependent rescaling of record weights to enable a new,
useful, Join operator, as well as several other useful trans-
formations (e.g., Concat, SelectMany, Union, etc.).

In Section 3 we show how wPINQ operators can imple-
ment a number of new graph analyses, focusing on subgraph-
counting queries that informed the graph generator in [14].
We use a few lines of wPINQ to produce new algorithms
to count triangles incident on vertices of degrees (d1, d2, d3)
each with noise proportional to O(d2

1 + d2
2 + d2

3), as well as
length-4 cycles incident on vertices of degrees (d1, d2, d3, d4).

In Section 4 we show how wPINQ measurements can be
analyzed with Markov Chain Monte Carlo (MCMC) tech-
niques, to sample a synthetic dataset from the posterior dis-
tributions over datasets given wPINQ’s noisy observations.
This post-processing serves three purposes:

1. It can improve the accuracy of individual answers to
wPINQ queries by removing obvious inconsistencies
introduced by noise (e.g., when the noisy count of tri-
angles is a negative number, or not a multiple of six).

2. It can improve the accuracy of multiple measurements
by combining the constraints they impose on each other
(e.g., the degree distribution and joint-degree distribu-
tion constrain each other; fitting a synthetic graph to
both measurements produces more accurate results).

3. It can provide useful estimates for quantities that have
not been directly queried in wPINQ, by evaluating
them on the samples from the posterior distribution
(e.g., the joint-degree distribution constrains a graph’s
assortativity, i.e., the extent to which nodes connect to
other nodes with similar degrees, and the assortativity
on the sampled graphs should be relatively accurate).

We detail the MCMC process, and the design and imple-
mentation of our efficient incremental re-execution platform
that speeds up the iterative query re-evaluation at the heart
of the MCMC process.

Finally, as a case study of the utility of our platform,
Section 5 discusses the application of our platform to the
problem counting triangles in a graph and evaluates its per-
formance on several datasets.

2. WEIGHTED DATASETS AND wPINQ
In order to design differentially-private algorithms that

surmount worst-case sensitivity bounds by scaling down the
influence of troublesome records, it will be convenient for
us to work with weighted datasets. Section 2.1 discusses
differential privacy (DP) for weighted datasets. The re-
mainder of this section presents our design of Weighted
PINQ (wPINQ), a declarative programming language for
weighted datasets that guarantees DP for all queries writ-
ten in the language. The structure of wPINQ is very similar
to its predecessor PINQ [16]; both languages apply a se-
quence of stable transformations to a dataset (Section 2.3),
and then release results after a differentially-private aggrega-
tion (Section 2.2) is performed and the appropriate privacy
costs are accumulated. Our main contribution in the design
of wPINQ are new stable transformations operators (Fig-
ure 2) that leverage the flexibility of weighted datasets to
rescale individual record weights in a data-dependent man-
ner. We discuss these transformations in Sections 2.4–2.8.

2.1 Weighted Datasets & Differential Privacy
We can think of a traditional dataset (i.e., a multiset)

as function A : D → N where A(x) is non-negative integer
representing the number of times record x appears in the
dataset A. A weighted dataset extends the range of A to
the real numbers, and corresponds to a function A : D → R
where A(x) is the real-valued weight of record x. We define
the difference between weighted datasets A and B as the
sum of their element-wise differences:

‖A−B‖ =
∑
x

|A(x)−B(x)| .



We write ‖A‖ =
∑

x |A(x)| for the size of a dataset.
In subsequent examples, we write datasets as sets of weighted

records, where each is a pair of record and weight, omitting
records with zero weight. To avoid confusion, we use real
numbers with decimal points to represent weights. We use
these two datasets in all our examples:

A = {(“1”, 0.75), (“2”, 2.0), (“3”, 1.0)}
B = {(“1”, 3.0), (“4”, 2.0)} .

Here we have A(“2”) = 2.0 and B(“0”) = 0.0.
Differential privacy (DP) [4] generalizes to weighted datasets:

Definition 1. A randomized computation M provides ε-
differential privacy if for any weighted datasets A and B,
and any set of possible outputs S ⊆ Range(M),

Pr
M

[M(A) ∈ S] ≤ Pr
M

[M(B) ∈ S]× exp(ε× ‖A−B‖) .

This definition is equivalent to the standard definition of
differential privacy on datasets with non-negative integer
weights, for which ‖A − B‖ is equal to the symmetric dif-
ference between multisets A and B. It imposes additional
constraints on datasets with non-integer weights. As in the
standard definition, ε measures the privacy cost of the com-
putation M (a smaller ε implies better privacy).

This definition satisfies sequential composition: A sequence
of computations Mi each providing εi-DP is itself

∑
i εi-DP.

(This follows by rewriting the proofs of Theorem 3 in [16]
to use ‖ · ‖ rather than symmetric difference.) Like PINQ,
wPINQ uses this property to track the cumulative privacy
cost of a sequence of queries and ensure that they remain
below a privacy budget before performing a measurement.

Privacy guarantees for graphs. In all wPINQ algo-
rithms for graphs presented here, the input sensitive dataset
is edges is a collection of edges (a, b) each with weight 1.0,
i.e., it is equivalent to a traditional dataset. wPINQ will
treat edges as a weighted dataset, and perform ε-DP com-
putations on it (which may involve manipulation of records
and their weights). This approach provides the standard no-
tion of “edge differential privacy” where DP masks the pres-
ence or absence of individual edges (as in e.g., [7,9,18,24]).
Importantly, even though we provide a standard differential
privacy guarantee, our use of weighted datasets allow us to
exploit a richer set of transformations and DP algorithms.

Edge differential privacy does not directly provide privacy
guarantees for vertices, for example “vertex differential pri-
vacy” [2, 3, 10], in which the presence or absence of entire
vertices are masked. While non-uniformly weighting edges
in the input may be a good first step towards vertex differ-
ential privacy, determining an appropriate weighting for the
edges input is non-trivial and we will not investigate it here.

2.2 Differentially private aggregation
One of the most common DP mechanisms is the “noisy

histogram”, where disjoint subsets of the dataset are counted
(forming a histogram) and independent values drawn from
a Laplace distribution (“noise”) are added to each count [4].
wPINQ supports this aggregation with the NoisyCount(A, ε)
operator, which adds random noise from the Laplace(1/ε)
distribution (of mean zero and variance 2/ε2) to the weight
of each record x in the domain of A:

NoisyCount(A, ε)(x) = A(x) + Laplace(1/ε) .

Select : per-record transformation

Where : per-record filtering

SelectMany : per-record one-to-many transformation

GroupBy : groups inputs by key

Shave : breaks one weighted record into several

Join : matches pairs of inputs by key

Union : per-record maximum of weights

Intersect : per-record minimum of weights

Figure 2: Several stable transformations in wPINQ.

NoisyCount(A, ε) provides ε-differential privacy, where the
proof follows from the proof of [4], substituting ‖ · ‖ for
symmetric difference. Importantly, we do not scale up the
magnitude of the noise as a function of query sensitivity,
as we will instead scale down the weights contributed by
records to achieve the same goal.

To preserve differential privacy, NoisyCount must return
a noisy value for every record x in the domain of A, even if x
is not present in the dataset, i.e., A(x) = 0. With weighted
datasets, the domain of A can be arbitrary large. Thus,
wPINQ implements NoisyCount with a dictionary mapping
only those records with non-zero weight to a noisy count. If
NoisyCount is asked for a record x with A(x) = 0, it returns
fresh independent Laplace noise, which is then recorded and
reproduced for later queries for the same record x.

Example. If we apply NoisyCount to the sample dataset
A with noise parameter ε, the results for “0”, “1”, and “2”
would be distributed as

NoisyCount(A, ε)(“0”) ∼ 0.00 + Laplace(1/ε) ,

NoisyCount(A, ε)(“1”) ∼ 0.75 + Laplace(1/ε) ,

NoisyCount(A, ε)(“2”) ∼ 2.00 + Laplace(1/ε) .

The result for “0” would only be determined (and then
recorded) when the value of “0” is requested by the user.

Although this paper only requires NoisyCount, several
other aggregations generalize easily to weighted datasets, in-
cluding noisy versions of sum and average. The exponential
mechanism [15] also generalizes, to scoring functions of that
are 1-Lipschitz with respect to an input weighted dataset.

2.3 Stable transformations
wPINQ rarely uses the NoisyCount directly on a input

weighted dataset, but rather on the output of a stable trans-
formation of one weighted dataset to another, defined as:

Definition 2. A transformation T : RD → RR is stable
if for any two datasets A and A′

‖T (A)− T (A′)‖ ≤ ‖A−A′‖ .

A binary transformation T : (RD1 ×RD2)→ RR is stable if
for any datasets A,A′ and B,B′

‖T (A,B)− T (A′, B′)‖ ≤ ‖A−A′‖+ ‖B −B′‖

(This definition generalizes Definition 2 in [16], again with
‖ · ‖ in place of symmetric difference.) The composition
T1(T2(·)) of stable transformations T1, T2 is also stable. Sta-
ble transformation are useful because they can composed
with DP aggregations without compromising privacy, as shown
by the following theorem (generalized from [16]):



Theorem 1. If T is stable unary transformation and M
is an ε-differentially private aggregation, then M(T (·)) is
also ε-differentially private.

Importantly, transformations themselves do not provide dif-
ferential privacy; rather, the output of a sequence of trans-
formations is only released by wPINQ after a differentially-
private aggregation (NoisyCount), and the appropriate pri-
vacy cost is debited from the dataset’s privacy budget.

Stability for binary transformations (e.g., Join) is more
subtle, in that a differentially private aggregation of the out-
put reveals information about both inputs. If a dataset A
is used multiple times in a query (e.g., as both inputs to
a self-join), the aggregation reveals information about the
dataset multiple times. Specifically, if dataset A is used k
times in a query with an ε-differentially-private aggregation,
the result is kε-differentially private for A. The number of
times a dataset is used in a query can be seen statically from
the query plan, and wPINQ can use similar techniques as in
PINQ to accumulate the appropriate multiple of ε for each
input dataset.

The rest of this section presents wPINQ’s stable trans-
formations, and discuss how they rescale record weights to
achieve stability. We start with several transformations whose
behavior is similar to their implementations in PINQ (and
indeed, LINQ): Select, Where, GroupBy, Union, Intersect,
Concat, and Except. We then discuss Join, whose imple-
mentation as a stable transformation is a significant depar-
ture from the standard relational operator. We also dis-
cuss Shave, a new operator that decomposes one record with
large weight into many records with smaller weights.

2.4 Select, Where, and SelectMany
We start with two of the most fundamental database op-

erators: Select and Where. Select applies a function f :
D → R to each input record:

Select(A, f)(x) =
∑

y:f(y)=x

A(y) .

Importantly, this produces output records weighted by the
accumulated weight of all input records that mapped to
them. Where applies a predicate p : D → {0, 1} to each
record and yields those records satisfying the predicate.

Where(A, p)(x) = p(x)×A(x) .

One can verify that both Select and Where are stable.

Example. Applying Where with predicate x2 < 5 to our
sample datasetA in Section 2.1 gives {(“1”, 0.75), (“2”, 2.0)}.
Applying the Select transformation with f(x) = x mod 2
to A, we obtain the dataset {(“0”, 2.0), (“1”, 1.75)}; this fol-
lows because the “1” and “3” records in A are reduced to the
same output record (“1”) and so their weights accumulate.

Both Select and Where are special cases of the SelectMany
operator. The standard SelectMany operator in LINQ maps
each record to a list, and outputs the flattened collection of
all records from all produced lists. This transformation is
not stable; the presence or absence of a single input record
results in the presence or absence of as many records as the
input record would produce. To provide a stable SelectMany
operator, wPINQ scales down the weight of output records
by the number of records produced by the same input record;
an input mapped to n items would be transformed into n
records with weights scaled down by n.

Specifically, SelectMany takes a function f : D → RR

mapping each record x to a weighted dataset, which is slightly
more general than a list. For stability, we scale each weighted
dataset to have at most unit weight and then scale it by the
weight of the input record, A(x):

SelectMany(A, f) =
∑
x∈D

(
A(x)× f(x)

max(1, ‖f(x)‖)

)
.

The important feature of SelectMany is that different input
records may produce different numbers of output records,
where the scaling depends only on the number of records
produced, rather than a worst-case bound on the number.
This flexibility is useful in many cases. One example is in
frequent itemset mining: a basket of goods is transformed
by SelectMany into as many subsets of each size k as appro-
priate, where the number of subsets may vary based on the
number of goods in the basket.

Example. If we apply SelectMany to our sample dataset
A, with function f(x) = {1, 2, . . . , x} where each element in
f(x) has weight 1.0, we get

{(“1”, 0.75 + 1.0 + 0.3), (“2”, 1.0 + 0.3), (“3”, 0.3)} .

2.5 GroupBy
The GroupBy operator implements functionality similar to

MapReduce: it takes a key selector function (“mapper”)
and a result selector function (“reducer”), and transforms
a dataset first into a collection of groups, determined by
the key selector, and then applies the result selector to each
group, finally outputting pairs of key and result. This trans-
formation is used to process groups of records, for exam-
ple, collecting edges by their source vertex, so that the out-
degree of the vertex can be determined. The traditional
implementation of GroupBy (e.g., in LINQ) is not stable,
even on inputs with integral weights, because the presence
or absence of a record in the input can cause one group in
the output be replaced by a different group, corresponding
to an addition and subtraction of an output record. This
can be addressed by setting the output weight of each group
to be half the weight of the input records. This sufficient
for most of the wPINQ examples in this paper, which only
group unit-weight records.

The general case of GroupBy on arbitrarily weighted inputs
records is more complicated, but tractable. Let the key se-
lector function partition A into multiple disjoint parts, so
that A =

∑
k Ak. The result of wPINQ’s GroupBy on A will

be the sum of its applications to each part of Ak:

GroupBy(A, f) =
∑
k

GroupBy(Ak)

For each part Ak, let x0, x1, . . . , xi order records so that they
are non-increasing in weight Ak(xi). For each i, GroupBy

emits the set of the first i elements in this order, with weight
(Ak(xi)−Ak(xi+1))/2. That is,

GroupBy(Ak)({xj : j ≤ i}) = (Ak(xi)−Ak(xi+1))/2.

If all records have the same weight w, only the set of all
elements has non-zero weight and it is equals to w/2.

As an example of GroupBy, consider grouping

C = {(“1”, 0.75), (“2”, 2.0), (“3”, 1.0), (“4”, 2.0), (“5”, 2.0)} .



again using parity as a key selector. We produce four groups:

{ (“odd, {5, 3, 1}”, 0.375), (“odd, {5, 3}”, 0.125)

(“odd, {5} ”, 0.5), (“even, {2, 4}”, 1.0) }

Appendix A provides a proof of GroupBy’s stability.

Node degree. GroupBy can be used to obtain node degree:

//from (a,b) compute (a, da)
var degrees = edges.GroupBy(e => e.src, l => l.Count());

GroupBy groups edges by their source nodes, and then counts
the number of edges in each group — this count is exactly
equal to the degree da of the source node a — and outputs
the record 〈a, da〉; since all input records have unit weight,
the weight of each output record is 0.5.

2.6 Union, Intersect, Concat, and Except
wPINQ provides transformations that provide similar se-

mantics to the familiar Union, Intersect, Concat, and Except
database operators. Union and Intersect have weighted in-
terpretations as element-wise min and max:

Union(A,B)(x) = max(A(x), B(x))

Intersect(A,B)(x) = min(A(x), B(x))

Concat and Except can be viewed as element-wise addition
and subtraction:

Concat(A,B)(x) = A(x) +B(x)

Except(A,B)(x) = A(x)−B(x)

Each of these four are stable binary transformations.

Example. Applying Concat(A,B) with our sample datasets
A and B we get

{(“1”, 3.75), (“2”, 2.0), (“3”, 1.0), (“4”, 2.0)} .

and taking Intersect(A,B) we get {(“1”, 0.75)}.

2.7 The Join transformation.
The Join operator is an excellent case study in the value

of using weighted datasets, and the workhorse of our graph
analysis queries.

Before describing wPINQ’s Join, we discuss why the fa-
miliar SQL join operator fails to provide stability. The stan-
dard SQL relational equi-join takes two input datasets and a
key selection function for each, and produces all pairs whose
keys match. The transformation is not stable, because a sin-
gle record in A or B could match as many as ‖B‖ or ‖A‖
records, and its presence or absence would cause the trans-
formation’s output to change by as many records [20]. To
deal with this, the Join in PINQ suppresses matches that
are not unique matches, damaging the output to gain sta-
bility, and providing little utility for graph analysis.

The wPINQ Join operator takes two weighted datasets,
two key selection functions, and a reduction function to ap-
ply to each pair of records with equal keys. To determine
the output of Join on two weighted datasets A,B, let Ak

and Bk be their restrictions to those records mapping to a
key k under their key selection functions. The weight of
each record output from a match under key k will be scaled

down by a factor of ‖Ak‖+‖Bk‖. For the identity reduction
function we can write this as

Join(A,B) =
∑
k

Ak ×BT
k

‖Ak‖+ ‖Bk‖
(1)

where the outer product Ak ×BT
k is the weighted collection

of elements (a, b) each with weight Ak(a)×Bk(b). The proof
that this Join operator is stable appears in the Appendix A.

Example. Consider applying Join to our example
datasets A and B using “parity” as the join key. Records
with even and odd parity are

A0 = {(“2”, 2.0)} and A1 = {(“1”, 0.5), (“3”, 1.0)}
B0 = {(“4”, 2.0)} and B1 = {(“1”, 3.0)}

The norms are ‖A0‖+ ‖B0‖ = 4.0 and ‖A1‖+ ‖B1‖ = 4.5,
and scaling the outer products by these sums gives

A0 ×BT
0 / 4.0 = {(“〈2, 4〉”, 1.0)}

A1 ×BT
1 / 4.5 = {(“〈1, 1〉”, 0.3), (“〈3, 1〉”, 0.6)}

The final result is the accumulation of these two sets,

{(“〈2, 4〉”, 1.0), (“〈1, 1〉”, 0.3), (“〈3, 1〉”, 0.6)} .

Join and paths. Properties of paths in a graph are
an essential part of many graph analyses (Section 3). We
use Join to compute the set of all paths of length-two in a
graph, starting from the edges dataset of Section 2.1:

//given edges (a,b) and (b,c) form paths (a,b,c)
var paths = edges.Join(edges, x => x.dst, y => y.src,

(x,y) => new Path(x,y))

We join edges with itself, matching edges (a, b) and (b, c)
using the key selectors corresponding to “destination” and
“source” respectively. Per (1), the result is a collection
of paths (a, b, c) through the graph, each with weight 1

2db
,

where db is the degree of node b. Paths through high-degree
nodes have smaller weight; this makes sense because each
edge incident on such a vertex participates in many length
two paths. At the same time, paths through low degree
nodes maintain a non-trivial weight, so they can be more
accurately represented in the output without harming their
privacy. By diminishing the weight of each path proportion-
ately, the influence of any one edge in the input is equally
masked by a constant amount of noise in aggregation.

2.8 Shave
Finally, we introduce an transformation that decomposes

records with large weight to be into multiple records with
smaller weight. Such an operator is important in many anal-
yses with non-uniform scaling of weight, to ensure that each
output record has a common scale.

The Shave transformation allows us to break up a record x
of weight A(x) into multiple records 〈x, i〉 of smaller weights
wi that sum to A(x). Specifically, Shave takes in a function
from records to a sequence of real values f(x) = 〈w0, w1, . . .〉.
For each record x in the input A, Shave produces records



〈x, 0〉, 〈x, 1〉, . . . for as many terms as
∑

i wi ≤ A(x). The
weight of output record 〈x, i〉 is therefore

Shave(A, f)(〈x, i〉) = max(0,min(f(x)i, A(x)−
∑
j<i

f(x)j)) .

Example. Applying Shave to our sample dataset A where
we let f(x) = 〈1.0, 1.0, 1.0, ...〉 ∀x, we obtain the dataset

{(“〈1, 0〉”, 0.75), (“〈2, 0〉”, 1.0), (“〈2, 1〉”, 1.0), (“〈3, 0〉”, 1.0), } .

Select is Shave’s functional inverse; applying Select with
f(〈x, i〉) = x that retains only the first element of the tuple,
recovers the original dataset A with no reduction in weight.

Transforming edges to nodes. We now show how to
use SelectMany, Shave, and Where to transform the edges

dataset, where each record is a unit-weight edge, to a nodes

dataset where each record is a node of weight 0.5.

var nodes = graph.SelectMany(e => new int[] { e.a, e.b })
.Shave(0.5)
.Where((i,x) => i == 0)
.Select((i,x) => x);

SelectMany transforms the dataset of edge records into a
dataset of node records, i.e., each unit-weight edge is trans-
formed into two node records, each of weight 0.5. In wPINQ,
the weights of identical records accumulate, so each node x
of degree dx has weight dx

2
. Next, Shave is used convert each

node record x into a multiple records 〈x, i〉 for i = 0, ..., dx,
each with weight 0.5. Where keeps only the 0.5-weight record
〈x, 0〉, and Select converts record 〈x, 0〉 into x. The result
is a dataset of nodes, each of weight 0.5. Note that it is not
possible to produce a collection of nodes with unit weight,
because each edge uniquely identifies two nodes; the pres-
ence or absence of one edge results in two records changed
in the output, so a weight of 0.5 is the largest we could
reasonably expect from a stable transformation.

3. GRAPH ANALYSES WITH wPINQ
In [19] we showed how the built-in operators in wPINQ

can be used for differentially-private analysis of first- and
second-order graph statistics; namely, we considered degree
and joint-degree distributions, and reproduced the work of
[7] and [24] as wPINQ algorithms while correcting minor
issues in [7, 24]’s analyses (the requirement that the num-
ber of nodes be public and a flaw in the privacy analysis,
respectively. We provide a corrected privacy analysis in Ap-
pendix C.) These examples demonstrated that wPINQ is
capable of expressing and bounding the privacy cost of chal-
lenging custom analyses.

We first start by reviewing the algorithms we defined
for both degree distribution and joint-degree distribution.
Then, we present new results that use wPINQ to compute
more sophisticated third- and fourth-order graph statistics.
These algorithms suggest new approaches for counting trian-
gles and squares in differentially-private manner (Theorem 2
and Theorem 3) which may be of independent interest.

Data model. One can move to undirected edges and back
using wPINQ operators (Select and SelectMany, respec-
tively), resulting in weight 2.0 for edges in the undirected
graph. When comparing with prior work on undirected (as-
symetric) graphs, we provide equivalent privacy guarantees
by doubling the amplitude of the added Laplace noise.

3.1 Degree distributions
Hay et al. [7] show that the addition of Laplace noise to

the non-decreasing sequence of vertex degrees provides dif-
ferential privacy, if the number of nodes are publicly known.
Because the original values are known to be non-decreasing,
much of the noise can be filtered out by post-processing
via isotonic regression (regression to an ordered sequence).
However, requiring that the number of nodes is public makes
it difficult for this approach to satisfy differential privacy; we
could not apply the technique to a graph on cancer patients
without revealing the exact number of patients, for example.

We show that Hay et al.’s analysis can be reproduced in
wPINQ without revealing the number of nodes, using a pro-
gram that produces a non-increasing degree sequence rather
than a non-decreasing degree sequence. The measured de-
gree sequence continues indefinitely, with noise added to ze-
ros, and it is up to the analyst to draw conclusions about
where the sequence truly ends (perhaps by measuring the
number of nodes using differential privacy). We also show
how to make postprocessing more accurate by combining
measurements with other measurements of the degree se-
quence, namely its complementary cumulative density func-
tion (CCDF).

Degree CCDF. The degree CCDF is the functional in-
verse of the (non-increasing) degree sequence; one can be
obtained from the other by interchanging the x- and y-axes.
We start with a wPINQ query for the degree CCDF, which
we explain in detail below, and from which we build the
degree sequence query:

var degCCDF = edges.Select(edge => edge.src)
.Shave(1.0)
.Select(pair => pair.index);

var ccdfCounts = degCCDF.NoisyCount(epsilon);

The first step in the query is to apply the Select transfor-
mation, which takes a function f : D → R and applies it to
each input record, resulting in an accumulation of weighted
records. Here, Select transforms the dataset from edges
with weight 1.0 to a dataset of node names a, each weighted
by da.

The next step applies the Shave transformation which
transforms a dataset of weighted records (“a”, da) into a
collection of indexed records with equal weight (the 1.0 spec-
ified as an argument):

{(“〈a, 0〉”, 1.0), (“〈a, 1〉”, 1.0), . . . (“〈a, da − 1〉”, 1.0)} .

Finally, we apply Select to retain only the index i of the
pair 〈a, i〉, obtaining records i = 0, 1, 2, . . .. As wPINQ au-
tomatically accumulates weights of identical records, each
record i is weighted by the number of graph nodes with de-
gree greater than i. NoisyCount then returns a dictionary
of noised weights for each i.

Degree Sequence. We get the degree sequence by trans-
posing the x- and y-axis of the degree CCDF:

var degSeq = degCCDF.Shave(1.0)
.Select(pair => pair.index);

var degSeqCounts = degSeq.NoisyCount(epsilon);

Shave and Select are as in the above example, just applied
a second time. They transform the weighted set of records



i = 0, 1, . . . (degCCDF) to a set of records j = 0, 1, . . . where
the weight of record j is the number of input records i with
weight at least j, which is exactly the non-decreasing degree
sequence.

Postprocessing. We can think of the space of non-
increasing degree sequences as drawing a path P on the
two-dimensional integer grid from position (0,∞) to posi-
tion (∞, 0) that only steps down or to the right. Our goal is
to find such a path P that fits our noisy degree sequence and
noisy CCDF as well as possible. More concretely, thinking
of P as a set of cartesian points (x, y), and given the noisy
“horizontal” ccdf measurements h and the noisy “vertical”
degree sequence measurements v, we want to minimize∑

(x,y)∈P

|v[x]− y|+ |h[y]− x| . (2)

To do this, we weight directed edges in the two-dimensional
integer grid as

cost((x, y)→ (x+ 1, y)) = |v[x]− y|
cost((x, y + 1)→ (x, y)) = |h[y]− x| .

and compute the lowest cost path from (0, N) to (N, 0) for
some large N . To see how this works, notice that the cost of
taking a horizontal step from (x, y) to (x+1, y) is a function
of the “vertical” degree sequence measurement v; we do this
because taking a horizontal step essentially means that we
are committing to the vertical value y. (And vice versa
for the vertical step.) Thus, finding the lowest-cost path
allows us to simultaneously fit the noisy CCDF and degree
sequence while minimizing (2).

Computing this lowest-cost path computation is more ex-
pensive than the linear time PAVA computation. However,
our algorithm constructs edges only as needed, and the com-
putation only visits nodes in the low cost “trough” near the
true measurements, which reduces complexity of computa-
tion. Experimentally, the computation takes several mil-
liseconds.

3.2 Joint degree distribution
Sala et al. [24] investigate the problem of reporting the

JDD, i.e., number of edges incident on vertices of degree
da and db. After non-trivial analysis, (reproduced by us
in Appendix C), they determine that adding Laplace noise
with parameter 4 max(da, db)/ε to each count provides ε-
differential privacy. This result bypasses worst-case sensi-
tivity, because number of nodes |V | and maximum degree
dmax do not appear in the noise amplitude. However, [24]’s
approach had a very subtle flaw in its privacy analysis: the
count for 〈da, db〉 was released without noise if there was no
edge in the graph that was incident with nodes of degrees
da and db. If this is the case for many pairs 〈da, db〉, it
can reveal a large amount of information about the secret
graph. While [24]’s approach can be corrected by releasing
noised values for all pairs 〈da, db〉, doing this would harm
the accuracy of their experimental results.

We now write a wPINQ query that is similar in spirit
to the analysis of Sala et al., trading a constant factor in
accuracy for an automatic proof of privacy (as well as some
automatic improvement in Section 5):

// (a, da) for each vertex a
var degs = edges.GroupBy(e => e.src, l => l.Count());

// ((a,b), da) for each edge (a,b)
var temp = degs.Join(edges, d => d.key, e => e.src,

(d,e) => new { e, d.val });

// (da, db) for each edge (a,b)
var jdd = temp.Join(temp,

a => a.edge,
b => b.edge.Reverse(),
(a,b) => new { a.val, b.val });

var jddCount = jdd.NoisyCount(epsilon);

The first step uses wPINQ’s GroupBy transformation, which
takes in a key selector function (here e => e.src) and a
reducer function (here l => l.Count()), and transforms a
dataset into a collection of groups, one group for each ob-
served key, containing those records mapping to the key.
The reducer function is then applied to each group. While
GroupBy uses a more complex weight rescaling when input
records have unequal weights, when input records all have
equal weight (here 1.0) the weight of output records is simply
halved (to 0.5). Thus, each element of degs is a 0.5-weight
(key, val) pair, where the key a is the name of a (source)
vertex, and its value is its degree da.

To obtain the joint degree distribution we use Join twice,
first to combine edges with degs, and then second to bring
da and db together for each edge (a, b). After the first Join,
the dataset temp contains records of the form 〈〈a, b〉, da〉.
Per (1) each has weight

0.5× 1.0

0.5 + da
=

1

1 + 2da
.

Finally, we Join temp with itself, to match pairs of the form
〈〈a, b〉, da〉 with 〈〈b, a〉, db〉 using key 〈a, b〉. There is exactly
one match for each output record 〈da, db〉 so applying (1)
gives weight

1
1+2da

× 1
1+2db

1
1+2da

+ 1
1+2db

=
1

2 + 2da + 2db
. (3)

If we multiply the results of NoisyCount for record 〈da, db〉
by the reciprocal of (3) we get a noised count with error pro-
portion to 2 + 2da + 2db. Although this appears better than
Sala et al.’s result, this number doesn’t tell the full story.
Our approach produces measurements for both 〈da, db〉 and
〈db, da〉, giving twice the weight if we combine them before
measuring with NoisyCount. At the same time, Sala et al.
use undirected graphs, giving twice the privacy guarantee
for the same value of epsilon, canceling the previous im-
provement. We used the input dataset four times, so by the
remark in Section 2.3 our privacy cost is 4ε. Therefore, to
give a comparable privacy bound to Sala et al., we should
add noise of amplitude 8 + 8da + 8db to the true count in
each 〈da, db〉 pair, a result that is worse than Sala et al.’s
bespoke analysis by a factor of between two and four.

3.3 Triangles by degree (TbD)
We now work through an example wPINQ analysis to

count the number of triangles incident on vertices of degrees
da, db, and dc, for each triple 〈da, db, dc〉. This statistic is
useful for the graph generation model of [14]. The idea be-
hind our algorithm is that if a triangle 〈a, b, c〉 exists in the
graph, then paths abc, cab, and bca must exist as well. The
algorithm forms each path abc and pairs it with the degree
of its internal node, db. The paths are then joined together,



each time with a different rotation, so that abc matches cab
and bca, identifying each triangle and supplying the degrees
of each incident vertex.

The first action turns the undirected set of edges into a
symmetric directed graph, by concatenating edges with its
transpose.

var edges = edges.Select(x => new { x.dst, x.src })
.Concat(edges);

The implication of this transformation is that each subse-
quent use of edges will in fact correspond to two uses of the
undirected source data.

We now compute length-two paths 〈a, b, c〉 by joining the
set of edges with itself. We then use the Where transforma-
tion to discard length-two cycles (paths of the form 〈a, b, a〉).

var paths = edges.Join(edges, x => x.dst, y => y.src,
(x,y) => new Path(x, y))

.Where(p => p.a != p.c);

As in the example of Section 2.7 the weight of 〈a, b, c〉 is 1
2db

.

We next determine the degree of each vertex with a GroupBy,
producing pairs 〈v, dv〉 of vertex and degree, as in the exam-
ple in Section 2.5. We join the result with the path triples
〈a, b, c〉, producing pairs of path and degree 〈〈a, b, c〉, db〉.

var degs = edges.GroupBy(e => e.src, l => l.Count());
var abc = paths.Join(degs, abc => abc.b, d => d.key,

(abc,d) => new { abc, d.val });

The pairs degs produced by GroupBy each have weight 1/2,
and joining them with paths results in records with weight

1
2
× 1

2db
1
2

+ db(db − 1)× 1
2db

=
1

2d2
b

,

per equation (1). The number of length-two paths through
b is db(db − 1) rather than d2

b because we discarded cycles.
We next use Select to create two rotations of 〈〈a, b, c〉, db〉,

namely 〈〈b, c, a〉, db〉 and 〈〈c, a, b〉, db〉. The resulting path-
degree pairs hold the degrees of the first and third vertices
on the path, respectively. Because they were produced with
Select, their weights are unchanged.

var bca = abc.Select(x => { rotate(x.path), x.deg });
var cab = bca.Select(x => { rotate(x.path), x.deg });

We join each of the permutations using the length-two path
as the key, retaining only the triple of degrees 〈〈da, db, dc〉.

var tris = abc.Join(bca, x => x.path, y => y.path,
(x,y) => new { x.path, x.deg, y.deg })

.Join(cab, x => x.path, y => y.path,
(x,y) => new { y.deg, x.deg1, x.deg2 });

Each Join will be a unique match, since each path 〈b, c, a〉
occurs only once in the dataset. The weight of records in
the output of the first Join is therefore

1
2d2

b
× 1

2d2c
1

2d2
b

+ 1
2d2c

=
1

2d2
b + 2d2

c

.

By the same reasoning, the weight of records in the output
of the second Join (i.e., the tris datasets), reflecting all
three rotations and degrees, will be

1

2(d2
a + d2

b + d2
c)
. (4)

Finally, we sort each degree triple so that all six permu-
tations of the degree triple 〈da, db, dc〉 all result in the same

record. We use NoisyCount to measure the total weight as-
sociated with each degree triple.

var order = triangles.Select(degrees => sort(degrees));
var output = order.NoisyCount(epsilon);

Each triangle 〈a, b, c〉 contributes weight 1/2(d2
a + d2

b + d2
c)

six times, increasing the weight of 〈da, db, dc〉 by 3/(d2
a+d2

b +
d2
c). Nothing other than triangles contribute weight to any

degree triple. Dividing each reported number by (4) yields
the number of triangles with degrees da, db, dc, plus noise.

This query uses the input dataset edges eighteen times
(three permutations, each using edges three times, doubled
due to the conversion (with Concat) to a symmetric directed
edge set). To get ε-DP we must add Laplace noise with
parameter 18/ε to each count. Divided by 3/(d2

a + d2
b + d2

c),
the error associated with a triple 〈da, db, dc〉 is a Laplace
random variable with parameter 6(d2

a + d2
b + d2

c)/ε. Thus,

Theorem 2. For an undirected graph G, let ∆(x, y, z) be
the number of triangles in G incident on vertices of degree
x, y, z. The mechanism that releases

∆(x, y, z) + Laplace(6(x2 + y2 + z2)/ε)

for all x, y, z satisfies ε-differential privacy.

Section 5 discusses our experiments with this query.

3.4 Squares by degree (SbD)
Approaches similar to those used to count triangles can

be used to design other subgraph-counting queries. To illus-
trate this, we present a new algorithm for counting squares
(i.e., cycles of length four) in a graph. The idea here is
that if a square abcd exists in the graph, then paths abcd,
cadb must exist too, so we find these paths and Join them
together to discover a square.

The first three steps of the algorithm are identical to those
in TbD; we again obtain the collection abc of length-two
paths abc along with the degree db. Next, we join abc with
itself, matching paths abc with paths bcd, to obtain length-
three paths abcd with degrees db and dc. We use the Where

operator to discard cycles (i.e., paths abca).

var abcd = abc.Join(abc, x => x.bc, y => y.ab,
(x, y) =>
{ new Path(x.bc,y.ab), y.db, x.db })

.Where(y => y.abcd.a != y.abcd.d);

We then use Select to rotate the paths in abcd twice:

var cdab = abcd.Select(x =>
{ rotate(rotate(x.abcd)), x.db, x.dc });

If a square abcd exists in the graph, then record (abcd, dd, da)
will be in the rotated set cdab. We therefore join abcd with
cdab, using the path as the joining key, to collect all four
degrees da, db, dc, dd. Sorting the degrees coalesces the eight
occurrences of each square (four rotations in each direction).

var squares = abcd.Join(cdab, x => x.abcd, y => y.abcd,
(x, y) => new { y.da, x.db, x.dc, y.dd });

var order = squares.Select(degrees => sort(degrees));
var output = order.NoisyCount(epsilon);

Analysis of output weights. As in the TbD, we obtain
the tuples 〈a, b, c, db〉 with weight 1

2d2
b
. Then we Join abcdb



with itself to obtain length-three paths passing through the
edge (b,c); there are (db−1)(dc−1) length-three paths pass-
ing through this edge, of which db − 1 have weight 1

2d2
b

and

dc − 1 have weight 1
2d2c

. Each record in abcd therefore has

weight

1
2d2

b
× 1

2d2c

(db − 1) 1
2d2

b
+ (dc − 1) 1

2d2c

=
1

2(d2
b(dc − 1) + d2

c(db − 1))

(5)
In the final Join, each record matches at most one other
record (every path 〈a, b, c, d〉matches exactly one path 〈c, d, a, b〉
). The weight of the each record in squares is thus:

1

2(d2
a(dd − 1) + d2

d(da − 1) + d2
b(dc − 1) + d2

c(db − 1))
(6)

The final step orders the quadruples 〈da, db, dc, dd〉 which
increases the weight of each square incident the quadruple
by a factor of 8, because each square is discovered eight times
(i.e., all rotations of a, b, c, b and all rotations of d, c, b, a).

This time, the input dataset is used 12 times, so the pri-
vacy cost is 12ε. Adding the an additional factor of two
to account for using directed graphs rather than undirected
graphs, we obtain the following new result:

Theorem 3. For an undirected graph G, let 2(v, x, y, z)
be the number of cycles of length 4 in G incident on vertices
of degree v, x, y, z. The mechanism that releases

2(v, x, y, z) + Laplace(6(vx(v + x) + yz(y + z))/ε)

for all v, x, y, z satisfies ε-differential privacy.

3.5 Counting arbitrary motifs
Motifs are small subgraphs, like triangles or squares, whose

prevalence in graphs can indicate sociological phenomena.
The approach we have taken, forming paths and then re-
peatedly Joining them to tease out the appropriate graph
structure, can be generalized to arbitrary connected sub-
graphs on k vertices. However, the analyses in this section
were carefully constructed so that all records with the same
degrees had exactly the same weight, allowing us to mea-
sure them separately and exactly interpret the meaning of
each measurement. More general queries, including those for
motifs, combine many records with varying weights, compli-
cating the interpretation of the results. Fortunately, we in-
troduce techniques to address this issue in the next section.

4. SYNTHESIZING INPUT DATASETS
DP queries can produce measurements that are not es-

pecially accurate, that exhibit inherent inconsistencies (due
to noise), or that may not be directly useful for assessing
other statistics of interest. One approach to these problems
is the use of probabilistic inference [26], in which the precise
probabilistic relationship between the secret dataset and the
observed measurements is used, via Bayes’ rule, to produce a
posterior distribution over possible datasets. The posterior
distribution integrates all available information about the
secret dataset in a consistent form, and allows us to sam-
ple synthetic datasets on which we can evaluate arbitrary
functions, even those without privacy guarantees.

While previous use of probabilistic inference (see e.g.,
[26]) required human interpretation of the mathematics and
custom implementation, wPINQ automatically converts all

queries into an efficient Markov chain Monte Carlo (MCMC)
based sampling algorithm. This automatic conversion is
accomplished by an incremental data-parallel dataflow ex-
ecution engine which, having computed and recorded the
measurements required by the analyst, allows MCMC to ef-
ficiently explore the space of input datasets by repeatedly
applying and evaluating small changes to synthetic inputs.
Note that while this process does use the noisy wPINQ mea-
surements, it no longer uses the secret input dataset; all
synthetic datasets are public and guided only by their fit to
the released differentially private wPINQ measurements.

4.1 Probabilistic Inference
The main property required for a principled use of prob-

abilistic inference is an exact probabilistic relationship be-
tween the unknown input (e.g., the secret graph) and the
observed measurements (e.g., the noisy answers to wPINQ
queries). Although the input is unknown, we can draw infer-
ences about it from the measurements if we know how likely
each possible input is to produce an observed measurement.

For each query Q, dataset A, and measured observation
m, there is a well-specified probability, Pr[Q(A) +Noise =
m], that describes how likely each dataset A is to have pro-
duced an observation m under query Q. For example, when
adding Laplace noise with parameter ε to multiple counts
defined by Q(A) (Section 2.2), that probability is

Pr[Q(A) +Noise = m] ∝ exp(ε× ‖Q(A)−m‖1) . (7)

While this probability is notationally more complicated when
different values of ε are used for different parts of the query,
its still easily evaluated.

This probability informs us about the relative likelihood
that dataset A is in fact the unknown input dataset. Bayes’
rule shows how these probabilities update a prior distribu-
tion to define a posterior distribution over datasets, condi-
tioned on observations m:

Pr[A|m] = Pr[m|A]× Pr[A]

Pr[m]
.

Pr[m|A] is the probability m results from Q(A) + N , as in
(7). Pr[m] is a normalizing term independent of A. Pr[A]
reflects any prior distribution over datasets. The result is

Pr[A|m] ∝ exp(ε× ‖Q(A)−m‖1)× Pr[A] .

The constant of proportionality does not depend on A, so
we can use the right hand side to compare the relative prob-
abilities Pr[A|m] and Pr[A′|m] for two datasets A and A′.

The posterior distribution focuses probability mass on
datasets that most closely match the observed measure-
ments, and indirectly on datasets matching other statis-
tics that these measurements constrain. For example, while
Theorem 2 indicates that DP measurement of the TbD re-
quires significant noise to be added to high-degree tuples, the
posterior distribution combines information from the TbD
with highly accurate DP measurements of degree distribu-
tion [7, 19] to focus on graphs respecting both, effectively
downplaying TdD measurements resulting primarily of noise
and likely improving the fit to the total number of triangles.

However, the posterior distribution is a mathematical ob-
ject, and we must still compute it, or an approximation to
it, before we achieve its desireable properties.



4.2 Metropolis-Hastings
The posterior probability Pr[A|m] is over all datasets, an

intractably large set. Rather than enumerate the probability
for all datasets A, modern statistical approaches use sam-
pling to draw representative datasets. Metropolis-Hastings
is an MCMC algorithm that starts from a supplied prior over
datasets, and combines a random walk over these datasets
with a function scoring datasets, to produce a new random
walk whose limiting distribution is proportional to the sup-
plied scores. Eliding important (but satisfied) techincal as-
sumptions, namely that the random walk be reversible and
with a known statitionary distibution, the pseudo-code is:

var state; // initial state

while (true)
{

// random walk proposes new state
var next = RandomWalk(state);

// change state with probability Min(1, newScore/old)
if (random.NextDouble() < Score(next) / Score(state))

state = next;
}

The user provides an initial value for state, a random walk
RandomWalk, and a scoring function Score.

Choosing the initial state. MCMC is meant to con-
verge from any starting point, but it can converge to good
answers faster from well-chosen starting points. Although
we can start from a uniformly random dataset, we often seed
the computation with a random dataset respecting some ob-
served statistics. In the case of graphs, for example, we
choose a random ‘seed’ graph matching wPINQ measure-
ments of the secret graph’s degree distribution (Section 5.1).

Choosing the random walk. We allow the user to spec-
ify the random walk, though a natural default is to replace
a randomly chosen element of the collection with another
element chosen at random from the domain of all possible
input records. Our random walk for graphs is in Section 5.1.
More advanced random walks exist, but elided assumptions
(about reversibility, and easy computation of relative sta-
tionary probability) emerge as important details.

Choosing the scoring function. As we are interested in
a distribution over inputs that better matches the observed
measurements, we will take as scoring function

Score〈Q,m〉(A) = exp(ε× ‖Q(A)−m‖1 × pow) .

Our initial distribution over states is uniform, allowing us to
to discard the prior distribution Pr[A] in the score function,
and so when pow = 1 this score function results in a distri-
bution proportional to exp(ε× ‖Q(A)−m‖1), proportional
to the posterior distribution suggested by probabilistic in-
ference. The parameter pow allows us to focus the output
distribution, and make MCMC behave more like a greedy
search for a single synthetic dataset. Large values of pow
slow down the convergence of MCMC, but eventually result
in outputs that more closely fit the measurements m.

4.3 Incremental query evaluator
In each iteration, MCMC must evaluate a scoring func-

tion on a small change to the candidate dataset. This scor-
ing function essentially evaluates a wPINQ query on the
changed data, which can be an expensive computation to

perform once, and yet we will want to perform it repeat-
edly at high speeds. We therefore implement each wPINQ
query as an incrementally updateable computation, using
techniques from the view maintenance literature. Each MCMC
iteration can thus proceed in the time it takes to incremen-
tally update the computation in response to the proposed
small change to the candidate dataset, rather than the time
it takes to do the computation from scratch. We now de-
scribe this incremental implementation and its limitations.

To incrementally update a computation, one needs a de-
scription of how parts of the computation depend on the
inputs, and each other. This is often done with a directed
dataflow graph, in which each vertex corresponds to a trans-
formation and each edge indicates the use of one transforma-
tion’s output as another transformation’s input. As an an-
alyst frames queries, wPINQ records their transformations
in such a directed dataflow graph. Once the query is eval-
uated on the first candidate dataset, a slight change to the
input (as made in each iteration of MCMC) can propagate
through the acyclic dataflow graph, until they ultimately ar-
rive at the NoisyCount endpoints and incrementally update
‖Q(A)−m‖1 and the score function.

Each wPINQ transformation must be implemented to re-
spond quickly to small changes it its input. Fortunately,
all of wPINQ’s transformations are data-parallel. A trans-
formation is data-parallel if it can be described as a sin-
gle transformation applied independently across a partition-
ing of its inputs. For example, Join is data-parallel be-
cause each of its inputs is first partitioned by key, and each
part is then independently processed in an identical manner.
Data-parallelism is at the heart of the stability for wPINQ’s
transformations (Section 2.3): a few changed input records
only change the output of their associated parts. Data-
parallelism also leads to efficient incremental implementa-
tions, where each transformation can maintain its inputs
indexed by part, and only recomputes the output of parts
that have changed. As these parts are typically very fine
grained (e.g., an individual Join key), very little work can
be done to incrementally update transformations; outputs
produced from keys whose inputs have not changed do not
need to be reprocessed. All of wPINQ’s transformations are
data-parallel, and are either be implemented as a stateless
pipeline operators (e.g., Select, Where, Concat) or a state-
ful operators whose state is indexed by key (e.g., GroupBy,
Intersect, Join, Shave). Most of wPINQ’s transforma-
tions have implementations based on standard incremental
updating patterns, maintaining their inputs indexed by key
so that changes to inputs can quickly be combined with ex-
isting inputs in order to determine the difference between
“before” and “after” outputs. In several cases the imple-
mentations can be optimized; a standard relational Join,
for example, uses distributivity to incrementally update its
output without explicitly subtracting the old output from
the new output:

new output︷ ︸︸ ︷
(A+ a) ./ (B + b) =

old output︷ ︸︸ ︷
A ./ B +

incremental update︷ ︸︸ ︷
a ./ B +A ./ b+ a ./ b .

In contrast, wPINQ’s Join may need to change the weights
of all output records with the same key if the normalization
in equation (1) changes, still far fewer records than in the
whole output. However, in cases where the sum of the input
weights for a key are unchanged (e.g., when inputs change
from one value to another but maintain the same weight),



wPINQ’s Join is optimized to only perform as much work
as the relational Join. More details are in Appendix B.

Two limitations to wPINQ’s MCMC performance are com-
putation time and memory capacity. Incrementally updat-
ing a computation takes time dependent on the number of
weights that change; in complex graph analyses, a single
changed edge can propagate into many changed interme-
diate results. At the same time, wPINQ maintains state
in order to incrementally update a computation; this state
also scales with the size of these intermediate results, which
grow with the size of the input data size and with query
complexity. In the TbD from Section 3.3, for example, one
edge (a, b) participates in up to O(d2

a + d2
b) candidate tri-

angles, each of which may need to have its weight updated
when (a, b)’s weight changes. Also, the final Join operators
in TbD match arbitrary length-two paths, which wPINQ
stores indexed in memory; the memory required for the TbD
therefore scales as

∑
v d

2
v (the number of length-two paths)

which can be much larger than number of edges
∑

v dv.
Depending on the complexity of the query, wPINQ’s MCMC

iterations can complete in as few as 50 microseconds, though
typical times are closer to hundreds of milliseconds on com-
plex triangle queries. MCMC can require arbitrarily large
amounts of memory as the size of the data grows; we have
tested it on queries and datasets requiring as many as 64
gigabytes of memory. Distributed low-latency dataflow sys-
tems present an opportunity to scale wPINQ to clusters with
larger aggregate memory. More detail on running time and
memory footprint are reported in Section 5.3.

We plan to publicly release the implementation once we
have properly cleaned and documented the code.

5. EXPERIMENTS
We now apply our wPINQ’s query and probabilistic infer-

ence to the workflow for graph synthesis proposed in [19],
extended with further measurements. We start by using
wPINQ to produce noisy DP-measurements of a secret graph
and then use MCMC to synthesize graphs respecting these
noisy measurements. Our approach is similar to that of [14],
who identify and measure key graph statistics which con-
strain broader graph properties. However, while [14] starts
from exact degree correlation measurements, we start from
DP measurements of degree correlation that can be noisy
and inconsistent. In [19], we presented several positive re-
sults of applying our platform to this problem, generat-
ing synthetic graphs that respect degree distribution and/or
joint degree distribution of a private graph. We do not re-
produce these results here; instead, we present new results
for the more challenging problem of counting triangles.

We start by presenting experiments on symmetric directed
graphs with where the total privacy cost is a constant times
ε where ε = 0.1 and MCMC parameter pow = 10, 000 (see
Section 4.2). We investigate the sensitivity of our results to
different values of ε in Section 5.3, and then close the loop
on the discussion in Section 4.3 by experimenting with the
scalability of our platform.

5.1 A workflow for graph synthesis (from [19])
To provide necessary background, we briefly reproduce

the description of the workflow for graph synthesis that we
sketched in [19]. The workflow begins with the analyst’s
wPINQ queries to the protected graph. Once the queries

Graph Nodes Edges dmax 4 r
CA-GrQc 5,242 28,980 81 48,260 0.66
CA-HepPh 12,008 237,010 491 3,358,499 0.63
CA-HepTh 9,877 51,971 65 28,339 0.27
Caltech 769 33,312 248 119,563 -0.06
Epinions 75,879 1,017,674 3,079 1,624,481 -0.01
Random(GrQc) 5,242 28,992 81 586 0.00
Random(HepPh) 11,996 237,190 504 323,867 0.04
Random(HepTh) 9,870 52,056 66 322 0.05
Random(Caltech) 771 33,368 238 50,269 0.17
Random(Epinion) 75,882 1,018,060 3,085 1,059,864 0.00

Table 1: Graph statistics: number of triangles (∆),
assortativity (r), and maximum degree dmax.

are executed and noisy measurements are obtained, the pro-
tected graph is discarded. Graph synthesis proceeds, using
only the noisy measurements, as follows:

Phase 1. Create a “seed” synthetic graph. In [19] we
showed wPINQ queries and regression techniques that result
in a highly accurate ε-differentially private degree sequence.
We then seed a simple graph generator that generates a
random graph fitting the measured ε-DP degree sequence.
This random graph is the initial state of our MCMC process.

Phase 2. MCMC. The synthetic graph is then fit to the
wPINQ measurements, using MCMC to search for graphs
that best fit the measurements. Starting from our seed
graph, we use an edge-swapping random walk that preserves
the degree distribution of the seed synthetic graph; at ev-
ery iteration of MCMC, we propose replacing two random
edges (a, b) and (c, d) with edges (a, d) and (c, b). As MCMC
proceeds, the graph evolves to better fit the measurements.

5.2 Evaluating Triangles by Degree (TbD)
Our goal is now to combine MCMC with measurements

of third-order degree correlations in order to draw inferences
about graph properties we are not able to directly measure:
specifically, assortativity r and the number of triangles 4.
We find that it can be difficult to exactly reconstruct de-
tailed statistics like the number of triangles with specified
degrees, but that these measurements nonetheless provide
information about aggregate quantities like r and 4.

We start by considering generating synthetic graphs us-
ing our triangles by degree (TbD) query described in Sec-
tion 3.3. While this query has appealing bounds for small
degrees, it still requires each 〈da, db, dc〉 triple to have its
count perturbed by noise proportional to 6(d2

a + d2
b + d2

c)/ε.
For large degrees, many of which will not occur in the se-
cret graph, the results are almost entirely noise. Unable to
distinguish signal from noise, MCMC makes little progress.

Fortunately, the flexibility of our workflow allows for a
simple remedy to this problem: instead of counting each
degree triple individually, we first group triples into buck-
ets with larger cumulative weight. The noise added to each
bucket remains the same, but the weight (signal) in each
bucket increases, which enables MCMC to distinguish graphs
with different numbers of triangles at similar degrees.

The following modification to the code in Section 3.3 re-
places each degree by the floor of the degree divided by k,
effectively grouping each batch of k degrees into a bucket:

var degs = edges.GroupBy(e => e.src, l => l.Count()/k);

MCMC will automatically aim for synthetic graphs whose
bucketed degree triples align with the measurements, with-
out any further instruction about how the degrees relate.
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Figure 3: Behavior of the TbD query with and with-
out bucketing for CA-GrQc. The values on CA-
GrQc are r = 0.66, 4 = 48, 260 and on the sanity
check r = 0.0, 4 = 586. Bucketing substantially im-
proves accuracy.

Experiments. We experiment with our workflow using
the graph CA-GrQc [11] (see statistics in Table 1). We first
generate the ‘seed’ synthetic graph that is fit to wPINQ
measurements of (a) degree sequence, (b) degree comple-
mentary cumulative density function, and (c) count of num-
ber of nodes (see [19] for details); the privacy cost of gen-
erating the seed synthetic graph is 3ε = 0.3. MCMC then
fits the seed graph to TbD measurements with privacy cost
9ε = 0.9 for ε = 0.1, so the total privacy cost of this analysis
is 0.9 + 0.3 = 1.2.

Figure 3 shows MCMC’s progress (after 5 × 106 steps),
plotting the number of triangles 4 and the assortativity r
in the synthetic graph as MCMC proceeds. Figure 3 also
plots MCMC’s behavior when the secret graph is “Ran-
dom(GrQc)”, a random graph with the same degree dis-
tribution as CA-GrQc but with very few triangles, used to
see if MCMC can distinguish the two. The figures reveal
that MCMC is only able to distinguish the two graphs when
bucketing is used (k = 20), but still does not find graphs
respecting the input graph properties. This is likely due to
a lack of signal in the result of the TbD query, which may be
compounded by the approximate nature of MCMC or the
restricted random walk we have chosen for it to use.

Indeed, we found that for ε = 0.2 (which is what we used
in our measurements), the available signal in the TdB is
below the noise level for almost every bucket apart from the
lowest degree one. Indeed, the total weight available in the
TbD for the true GrQc graph is only ≈ 89, and when we
bucket by 20, we find that 83% of that signal is concentrated
in the lowest-degree bucket. Meanwhile, Laplace noise with
parameter ε = 0.2 has amplitude is 5, so its not surprising
that the signal is dwarfed by the noise almost everywhere.
The limited signal means that (with the exception of the
lowest-degree bucket) MCMC will find a synthetic graph
that is fitting the noise in the TbD, rather than any useful
information about triangles from the protected graph GrQc.
Moreover, as the number of signal-free buckets increases, we
have more opportunities for the zero-mean Laplace noise in
that bucket to “mislead” MCMC into thinking there are
triangles where there are none.

5.3 Evaluating Triangles by Intersect (TbI)
The TbD query of Section 3.3 has the property that the

measurements are relatively easy to interpret, but this does
not neccesarily translate into good performance. We now

CA-GrQc CA-HepPh CA-HepTh Caltech
Seed 643 248,629 222 45,170

∆ MCMC 35,201 2,723,633 16,889 129,475
Truth 48,260 3,358,499 28,339 119,563

Table 2: ∆ before MCMC, after 5 × 106 MCMC
steps using TbI, and in the original graph.

consider an alternate query, whose results are harder to in-
terpret directly, but that gives much better results when
run through our MCMC workflow. The query, Triangles
By Intersect (TbI) measures a single quantity related to the
number of total triangles, reducing the amount of noise in-
troduced. The algorithm is again based on the observation
a triangle abc exists if and only if both of the length-two
paths abc and bca exist. This time, however, we create the
collection of length two paths, and intersect it with itself
after appropriately permuting each path:

// form paths (abc) for a != c with weight 1/db
var paths = edges.Join(edges, x => x.dst, y => y.src,

(x,y) => new Path(x, y))
.Where(p => p.a != p.c);

//rotate paths and intersect for triangles
var triangles = paths.Select(x => rotate(x))

.Intersect(paths);

//count triangles all together
var result = triangles.Select(y => "triangle!")

.NoisyCount(epsilon);

The analysis of weights is as follows. As in Section 3.3,
Join creates length-two paths abc each with weight 1

2db
.

Because the graph is symmetric (i.e., both edges (a, b) and
(b, a) are present), a single triangle (a, b, c) will contribute
six records to the abc collection; paths (b, a, c) and (c, a, b)
each with weight 1

2da
, two paths with weight 1

2db
, and two

paths with 1
2dc

. Permuting the paths abc dataset to obtain
bca using Select does not alter record weights, and since
Intersect takes the minimum weight of the participating
elements, the dataset triangles now contains two records
with weight min{ 1

2da
, 1

2db
}, two with weight min{ 1

2da
, 1

2dc
},

and two with weight min{ 1
2db

, 1
2dc
} for each triangle (a, b, c)

in the graph. Finally Select aggregates all the weight to
obtain a single count with weight∑

∆(a,b,c)

min{ 1
da
, 1
db
}+ min{ 1

da
, 1
dc
}+ min{ 1

db
, 1
dc
} (8)

TbI uses the input dataset four times, incurring a privacy
cost of 4ε, which is less than the 9ε incurred by TbD.

Notice that the TbI outputs only a single noised count,
rather than counts by degree. While this single count might
be difficult for a human to interpret, it contains information
about triangles, and MCMC will work towards finding a
synthetic graph that fits it.

Experiments. In Figure 4, we plot the number of trian-
gles ∆ versus the number of iterations of MCMC (5 × 105

steps) for synthetic graphs generated from our workflow, on
both actual and random graphs. We generated the seed
graphs as in Section 5.2 with privacy cost 3ε = 0.3. The
TbI query has privacy cost 4ε = 0.4, and so the total pri-
vacy cost is 7ε = 0.7. We see a clear distinction between real
graphs and random graphs; MCMC introduces triangles for
the real graphs as appropriate, and does not for the random



0 2 4
x 105

0

0.5

1

1.5

2 x 104

Tr
ia

ng
le

s

 

CA−GrQc

0 2 4
x 105

0

2000

4000

6000

8000

 

 

CA−HepTh

0 2 4
x 105

0

5

10

15 x 105

MCMC Steps

Tr
ia

ng
le

s

 

 

CA−HepPh

0 1 2 3 4 5
x 105

0

5

10

15 x 104

MCMC Steps

 

 
Caltech

Real Random

Figure 4: Fitting the number of triangles with TbI,
5× 105 MCMC steps.

graphs. Table 2 reports the initial, final, and actual number
of triangles for an order of magnitude more MCMC steps.

There is still room to improve the accuracy of triangle
measurement using these techniques, but our results do show
that even very simple measurements like TbI, which provide
little direct information about the number of triangles, can
combine with degree distribution information to give non-
trivial insight into quantities that are not easily measured
directly. wPINQ allows us to experiment with new queries,
automatically incorporating the implications of new mea-
surements without requiring new privacy analyses for each
new query.

Different values of ε. We repeated the previous ex-
periment with different values of ε ∈ {0.01, 0.1, 1, 10} (for
total privacy cost 7ε). For brevity, we present results for the
CA-GrQc graph and the corresponding random graph Ran-
dom(GrQc) in Figure 5. We see that the choice of ε does
not significantly impact the behavior of MCMC, maintain-
ing roughly the same expected value but with increases in
variance for larger values of ε (i.e., noisier queries). MCMC
remains well-behaved because the “signal” in the TbI query
over the GrQC graph (i.e., the value of equation (8)) is large
enough to be distinguished from both random noise and the
signal in a random graph.

Scalability analysis. We now experiment with TbI us-
ing larger datasets, to provide insight into the running time
and memory requirements of our approach. The memory re-
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Figure 5: Testing TbI with different values of ε; error
bars show standard deviation based on 5 repeated
experiments. Total privacy cost for each query is
7ε. The position of the measurements on the x-axis
have been randomized for better visualization.

Graph Nodes Edges dmax ∆
∑

v∈G d2
v

Barabàsi 1 100,000 2,000,000 377 16,091 71,859,718
Barabàsi 2 100,000 2,000,000 475 18,515 77,819,452
Barabàsi 3 100,000 2,000,000 573 22,209 86,576,336
Barabàsi 4 100,000 2,000,000 751 28,241 99,641,108
Barabàsi 5 100,000 2,000,000 965 35,741 119,340,328

Table 3: Statistics of the Barabàsi-Albert graphs.
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Figure 6: Running time and MCMC step/second
for TbI computed on Barabàsi-Albert graphs with
100K nodes, 2M edges, and dynamical exponent of
β ∈ {0.5, 0.55, 0.6, 0.65, 0.7} (left). TbI behavior on the
epinions graph (right).

quirements should grow with O(
∑

v∈G d
2
v), as these are the

number of candidate triangles (Section 4.3). The running
time should increase with the skew in the degree distribu-
tion, as each edge is incident on more candidate triangles.

To verify the scaling properties of TbI, we use five syn-
thetic graphs drawn from the Barabàsi-Albert distribution.
Barabàsi-Albert graphs follow a power law degree distribu-
tion (similar to some social networks) and the generation
process uses a preferential attachment model. We fix the
number of nodes at 100, 000 and edges at 2M and change
the degree of highest-degree nodes by increasing “dynam-
ical exponent” of the preferential attachment [1] as β ∈
{0.5, 0.55, 0.6, 0.65, 0.7}. The resulting graphs are described
in Table 3.Experimental results are in Figure 6. As

∑
v∈G d

2
v

increases from about 71M (for the graph with β = 0.5) to
119M (for β = 0.7), the memory required for MCMC in-
creases. Meanwhile computation rate, i.e., MCMC steps/second,
decreases. Our platform can perform approximately 80 MCMC
steps/second on the “easiest” (β = 0.5) graph using about
25Gb of RAM. For the most difficult graph (β = 0.7), it can
perform about 25 MCMC steps/second using over 45Gb of
RAM.

We conclude the scalability analysis with a performance
evaluation of TbI on Epinions [22], see Table 1. While Epin-
ions has about half the number of edges as the most diffi-
cult Barabàsi-Albert graphs we tried (β = 0.7), the quantity∑

v∈G d
2
v = 224M for Epinions is almost double that of the

Barabàsi-Albert graph, making Epinions the most difficult
graph we tried on our platform. To work with Epinions,
we needed over 50GB of memory, and computation ran no
faster than 10 MCMC steps/second. As usual, we experi-
mented with this graph and a random graph with the same
distribution but less triangles (statistics in Table 1). We run
the MCMC for 100, 000 steps and compute the number of
triangles every 10, 000 steps (Figure 6).

6. RELATED WORK
Bypassing worse case sensitivity. Since the intro-
duction of differential privacy [4], there have been several
approaches bypassing worst-case sensitivity [2,10,18,20]. In



the smooth sensitivity framework [18], one adds noise deter-
mined from the sensitivity of the specific input dataset and
those datasets near it. While these approaches can provide
very accurate measurements, they typically require custom
analyses and can still require large noise to be added even if
only a few records in the dataset lead to worst-case sensitiv-
ity. Weighted datasets allow us to down-weight the specific
records in the dataset that lead to high sensitivity, leaving
the benign component relatively untouched.

New approaches [2, 10] have surmounted sensitivity chal-
lenges by discarding portions of the input dataset that cause
the sensitivity to be too high; for example, node-level differ-
ential privacy can be achieved by trimming the graph to one
with a certain maximum degree and then using worst-case
sensitivity bounds. Our approach can be seen as a smoother
version of this; we scale down the weights of portions of the
input dataset, instead of discarding them outright.

An alternate approach relaxes the privacy guarantee for
the portions of the input dataset that cause sensitivity to be
high. Investigating joins in social graphs, Rastogi et al. [20]
consider a relaxation of differential privacy in which more
information release is permitted for higher degree vertices.
Our approach can be seen as making the opposite compro-
mise, sacrificing accuracy guarantees for such records rather
than privacy guarantees.

In [12,13] the authors use weighted sums with non-uniform
weights to optimize collections of linear (summation) queries.
While this is a popular class of queries, their techniques do
not seem to apply to more general problems. With weighted
datasets we can design more general transformations (e.g.,
Join, GroupBy) that are crucial for graph analysis but not
supported by [12,13].

Languages. Languages for differentially private compu-
tation started with PINQ [16], and have continued through
Airavat [23], Fuzz [5,6], and GUPT [17]. To the best of our
knowledge, none of these systems support data-dependent
rescaling of record weights. Although Fuzz does draw a
uniform rescaling operator (the “!” operator) from work of
Reed and Pierce [21], the programmer is required to specify
a uniform scaling constant for all records (and is essentially
equivalent to scaling up noise magnitudes).

Privacy and graphs. Bespoke analyses for graph
queries that provide edge-level differential privacy have re-
cently emerged, including degree distributions [7], joint de-
gree distribution (and assortativity) [24], triangle count-
ing [18], generalizations of triangles [9], and clustering co-
efficient [25]. New results have emerged for node-level dif-
ferential privacy as well [2, 3, 10]. Of course, any wPINQ
analysis can be derived from first principles; our contribu-
tion over these approaches is not in enlarging the space of
differentially private computation, but rather in automating
proofs of privacy and the extraction of information.

[8] covers other graph analyses that satisfy privacy defi-
nitions that may not exhibit the robustness of DP.

Bibliographic note. As we mentioned throughout, our
earlier workshop paper [19] sketched our workflow and pre-
sented preliminary results showing how it could be used to
synthesize graphs that respect degree and joint-degree distri-
butions. This paper is full treatment of our platform, show-
ing how weighted transformation stability can form the basis
of an expressive declarative programming language wPINQ,
and presenting our incremental query processing engine for

probabilistic inference. We also present new algorithms and
experiments related to counting triangles and squares.

7. CONCLUSIONS
We have presented our platform for differentially-private

computation that consists of a declarative programming lan-
guage, wPINQ, and an incremental evaluation engine that
enables Markov chain Monte Carlo (MCMC) methods to
synthesize representative datasets. wPINQ is based on an
approach to differentially-private computation, where data,
rather than noise, is calibrated to the sensitivity of query.
Specifically, wPINQ works with weighted datasets so that
the contribution of specific troublesome records that can
harm privacy (e.g., edges incident on high-degree nodes)
are smoothly scaled down. We have specialized our plat-
form to private analysis of social graphs, and discussed how
it can simplify the process, both by automating the proofs
of privacy and the extraction of information needed for gen-
erating synthetic graphs. While we have cast a number of
analyses as queries in wPINQ and evaluated their perfor-
mance, the analyses we have shown here are by no means
the limit of what is possible with wPINQ. Indeed, we believe
wPINQ’s key benefit is its flexibility, and we therefore hope
our platform will be an enabler for future private analyses
of interesting datasets, especially social networks.
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APPENDIX
A. STABILITY OF wPINQ OPERATORS

We prove the stability of Join discussed in Section 2.7.

Theorem 4. For any datasets A,A′, B,B′,

‖Join(A,B)− Join(A′, B′)‖ ≤ ‖A−A′‖+ ‖B −B′‖ .

Proof. We will first argue that

‖Join(A,B)− Join(A′, B)‖ ≤ ‖A−A′‖ . (9)

An equivalent argument shows ‖Join(A′, B)−Join(A′, B′)‖ ≤
‖B −B′‖ and concludes the proof.

It suffices to prove (9) for any Ak, A
′
k, Bk. Writing Join

in vector notation as

Join(A,B) =
∑
k

Ak ×BT
k

‖Ak‖+ ‖Bk‖

we want to show that for each term in this sum,∥∥∥∥ Ak ×BT
k

‖Ak‖+ ‖Bk‖
− A′k ×BT

k

‖A′k‖+ ‖Bk‖

∥∥∥∥ ≤ ‖Ak −A′k‖ .

The proof is essentially by cross-multiplication of the de-
nominators and tasteful simplification. For simplicity, let a
and b be Ak×BT

k and A′k×BT
k , respectively, and let x and y

be the corresponding denominators. We apply the equality

a

x
− b

y
=
a(y − x)− (b− a)x

xy
,

followed by the triangle inequality:

‖a
x
− b

y
‖ ≤ ‖a(y − x)‖

xy
+
‖(b− a)x‖

xy
.

Expanding, these two numerators can be re-written as

‖a(y − x)‖ = (‖Ak‖ − ‖A′k‖)× (‖Ak‖‖Bk‖)
≤ ‖Ak −A′k‖ × (‖Ak‖‖Bk‖)

‖(b− a)x‖ = ‖(Ak −A′k)Bk‖ × (‖Ak‖+ ‖Bk‖)
≤ ‖Ak −A′k‖ × ‖Bk‖(‖Ak‖+ ‖Bk‖)

Assuming, without loss of generality, that ‖Ak‖ ≥ ‖A′k‖,
their sum is at most

‖Ak −A′k‖ × (‖Ak‖+ ‖A′k‖+ ‖Bk‖)× ‖Bk‖
= ‖Ak −A′k‖ × (xy − ‖Ak‖‖A′k‖) .

Division by xy results in at most ‖Ak−A′k‖. For our choice
of a, b, x, y the term ‖b − a‖x has a factor of |x − y| in it,
which we extract from both terms. If we re-introduce the
definitions of a, b, x, y and apply a substantial amount of
simplification, this bound becomes

‖Ak −A′k‖ ×
(‖Ak‖+ ‖A′k‖+ ‖Bk‖)× ‖Bk‖

(‖Ak‖+ ‖Bk‖)× (‖A′k‖+ ‖Bk‖)
.

The numerator is exactly 2‖Ak‖‖A′k‖ less than the denom-
inator, making the fraction at most one.

Next, we prove stability for GroupBy (Section 2.5).



Theorem 5. For any A,A′ and key function f ,

‖GroupBy(A, f)− GroupBy(A′, f)‖ ≤ ‖A−A′‖
Proof. We decompose each difference Ak − A′k into a

sequence of differences, each to a single record and by an
amount δ that does not change the order of records within
the group. That is, each δ satisfies For each xi, a change in
weight by δ which does not change the ordering, that is

Ak(xi+1) ≤ Ak(xi) + δ ≤ Ak(xi−1)

Each of these steps by δ causes the weight of {xj : j < i} to
increase (or decrease) by δ/2 and the weight of {xj : j ≤ i}
to decrease (or increase) by δ/2, for a total change of δ.
Each record x can be “walked” to its new position through
a sequence of such differences, equal in weight to some other
record at each intermediate step, where the accumulation of
δs is at most |Ak(x)−A′k(x)|, for a total of ‖A−A′‖.

B. wPINQ OPERATOR IMPLEMENTATION
We give the flavor of a few operator implementations,

pointing out differences from traditional incremental dataflow.

SelectMany. The SelectMany operator is linear, and
each change in input weight simply results in the corre-
sponding change in output weight, for records determined
by the supplied result selector.

Union, Intersect, Concat, and Except. Both Union

and Intersect maintain dictionaries from records to weights,
for each of their inputs. As a weight change arrives on ei-
ther input, the corresponding two weights are retrieved and
consulted to determine if the maximum or minimum weight
has changed, and the appropriate differences are emitted and
stored weights updated. Concat and Except pass through
differences from either input, with weight negated in the
case of Except’s second input.

Join. For each input, Join operators maintain a dictio-
nary from keys to a list of the records (and their weights)
mapping to that key. When changes arrive on either in-
put, the Join is tasked with emiting the differences in cross-
product weights, as in (1), which it can do explicitly by con-
structing both the old and new weighted output collection.
In the case that the term ‖Ak‖+‖Bk‖ has not changed (not
uncommon for our random walks over graphs, where edges
switch destinations rather than disappear) substantial opti-
mization can be done. For input differences ak and bk the
output difference equals

Join(Ak + ak, Bk + bk)− Join(Ak, Bk)

=
ak ×BT

k

‖Ak‖+ ‖Bk‖
+

Ak × bTk
‖Ak‖+ ‖Bk‖

+
ak × bTk

‖Ak‖+ ‖Bk‖
.

We can avoid the potentially large term Ak × BT
k , whose

denominator has remained the same. In traditional incre-
mental dataflow Join does not scale its inputs, and this
optimization would always be in effect.

Shave. Shave transforms each input record into a collec-
tion of unit weight output records paired with an index dis-
tinguishing each of the output records. To efficiently retire
input differences, Shave maintains a dictionary from records
to their weight, from which it can determine which output
differences must be produced.

GroupBy. GroupBy groups records by key, and indepen-
dently applies a reducer to each prefix of these records when

ordered by weight. When presented with input difference,
the ordering of records may change, and GroupBy operator
must determine which prefixes must be re-evaluated. Conse-
quently, GroupBy maintains a dictionary from keys to sorted
lists of records (ordered descending by weight) mapping to
that key. Input differences are retired by comparing the old
and new sorted lists, and emitting the resulting records in
difference.



C. REPRODUCTION OF SALA et al.’S RESULT: NON-UNIFORM NOISE FOR THE JDD

Claim 6. Let D be the domain of possible node degrees, i.e., D = {0, 1, ..., dmax}. The following mechanism is ε-differentially
private: for each pair (di, dj) ∈ D×D, release a count of number of edges incident on nodes of degree di and degree dj, perturbed
by zero-mean Laplace noise with parameter 4 max{di, dj}/ε.

Proof. We need to show that for two graphs G1 and G2, differing in a single edge (a, b), that the mechanism releasing all
pairs (di, dj) with Laplace noise of with parameter 4 max{di, dj}/ε satisfies ε-differential privacy.

Notation. This algorithm works on undirected edges, so that the pair (di, dj) = (dj , di). Let n(i, j) = 4 max{di, dj}. Let
t1(i, j) be the true value count of pair (di, dj) in graph G1, and respectively t2(i, j) for G2.

If we add Laplace noise n(i, j) to each true count t1(i, j), t2(i, j) the probability that we get a result where the (di, dj)-th
pair has values r(i, j) is proportional to

Pr[M(G1) = r] ∝
∏
i,j

exp (−|r(i, j)− t1(i, j)| × ε/n(i, j))

Fixing the output r, we are interested in the ratio of this probability forG1 andG2. Fortunately, the constant of proportionality
is the same for the two (because the Laplace distribution has the same integral no matter where it is centered), so the ratio
of the two is just the ratio of the right hand side above:

Pr[M(G1) = r]

Pr[M(G2) = r]
=
∏
i,j

exp((|r(i, j)− t2(i, j)| − |r(i, j)− t1(i, j)|)× ε/n(i, j))

≤
∏
i,j

exp(|t2(i, j)− t1(i, j)| × ε/n(i, j)) (triangle inequality)

= exp(ε×
∑
i,j

|t2(i, j)− t1(i, j)| /n(i, j))

Thus, it suffices to show that ∑
i,j

|t2(i, j)− t1(i, j)| /n(i, j) ≤ 1 (10)

Notice that we need only worry about cases where t2(i, j) 6= t1(i, j). Suppose that G1 contains the edge (a, b), while G2 does
not, and wlog assume that da ≥ db, where da and db are the degrees of node a and b in graph G1. The differences between t1
and t2 are as follows:

• The count of pair t1(da, db) is one higher than t2(da, db).

• Ignoring the (a, b) edge, which we already accounted for above, node a has da − 1 other edges incident on it; it follows
that there are at most da − 1 pairs (da, ∗) that are one greater in G1 relative to G2. Similarly, there are at most db − 1
pairs (db, ∗) that are one greater in G1 relative to G2.

• Furthermore, since the degree of node a in G2 is da − 1, it follows that there are at most da − 1 pairs (da − 1, ∗) that are
one greater in G2 relative to G1. Similarly, there are at most db − 1 pairs (db − 1, ∗) that are one greater in G2 relative
to G1.

Notice that the total number of differences, in terms of the degree of a, b in G1 (before the edge is removed) is 2(da − 1) +
2(da − 1) + 1 = 2da + 2db − 3. Note that if we express this in terms of the degree of a, b in G2, we replace da with da + 1 and
similarly for db, so we get a total of 2da + 2db + 1 as in [24]. It follows that the left side of (10) becomes:∑

(i,j)

|t2(i, j)− t1(i, j)|
n(i, j)

≤ 1

n(da, db)
+

da − 1

n(∗, da)
+

da − 1

n(∗, da − 1)
+

db − 1

n(∗, db)
+

db − 1

n(∗, db − 1)

≤ 1

4 max{da, db}
+
da − 1

4da
+

da − 1

4da − 4
+
db − 1

4db
+

db − 1

4db − 4
(since n(∗, da) ≥ 4da)

≤ 1

4da
+ 2

da − 1

4da
+ 2

da − 1

4da − 4
(since da ≥ db)

= 1− 1
4da

≤ 1

which is what we set out to show in (10).
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