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ABSTRACT
We study the problem of finding approximate Nash equilib-
ria of two player games. We show that for any 0 < ε < 1,
there is no 1

1+ε
-approximate equilibrium with strategies of

support O( log n
ε2

).

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis Of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Economics

General Terms
Algorithm, Theory, Economics

Keywords
Nash equilibrium, Small-support Strategies, Probabilistic
methods

1. INTRODUCTION
Nash equilibrium is a central solution concept in game

theory. In a game involving two or more players, a Nash
equilibrium is a set of strategies, one for each player, such
that no player can improve his or her payoff by changing
strategy while the other players keep theirs unchanged. In
1950, Nash showed that Nash equilibria must exist for all
finite games with any number of players [8]. Since then, this
concept has been widely used for predicting the result of the
interaction of independent and selfish agents in a conflict.

However, there are still many questions left about the pre-
dictiveness of this equilibrium concept related to its com-
plexity. For a given game, how hard is it for the players to
reach an equilibrium? Are there any natural dynamics that
reach an equilibrium quickly? Are there always equilibrium
points that can be found easily, e.g. in polynomial time?
Similar questions can be asked about approximate equilib-
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ria, in which the players have a small incentive to change
their strategy.

In order to address the above problems, there has been
a lot of interest in understanding the computational com-
plexity of finding a Nash equilibrium of a game. In a series
of beautiful results, [6, 2, 3] proved that it is not possible
to find an equilibrium or give a fully polynomial time ap-
proximation scheme for finding the equilibria of even a two
person game unless PPAD is in P.

In the light of the above results, the question of finding
approximate equilibria emerges as an important open prob-
lem. The focus of this paper is on two player or bimatrix
games. In these games, there is a row and a column player
with payoff matrices R and C respectively. We assume that
the elements of R and C are non-negative. Let n and m
denote the number of rows and columns of these matrices
and assume that n ≥ m.

An α-approximate equilibrium is a pair of mixed strategies
(X, Y ) with payoffs (x, y) such that if the best response to
Y has payoff x′ and the best response to X has payoff y′

then x ≥ αx′ and y ≥ αy′.
One can use an additive notion for the approximation [7,

4]. Our results hold also for the additive notion as well.
A simple polynomial-time approximation algorithm for

computing Nash equilibrium is a linear-time algorithm that
finds a 1

2
-approximate equilibrium by examining all strate-

gies with support of size at most 2 [4]. The support of a strat-
egy is the set of pure strategies used to construct it. A nat-
ural question is whether it is possible to improve the factor
1
2

by searching over strategies with larger support. Althöfer
[1] (for zero-sum games) and Lipton et al. [7] showed that for
any 0 < α < 1, there is always an α-additive-approximate
Nash equilibrium with support of size O( log n

α2 ).
We will show that the above two results are asymptotically

optimum. We prove that it is not possible to improve the
factor 1

2
, if the support of both players are less than or equal

to log2 n−2 log2 log n. This improves the factor 1
4

given in [1,
4].

Furthermore, we prove that for any 0 < ε < 1, it is not
possible to find a 1

1+ε
-approximate equilibrium using strate-

gies of support O( log n
ε2

). We also show that it is not possible

to find a 1
2−ε

-equilibrium even if we limit the support of one

of the players to log n
1−log ε

. All our negative results apply to
symmetric games, zero-sum games and 0−1 bimatrix games
as well. We use a simple probabilistic method for proving
these Theorems. We show that a zero-one matrix whose
elements are chosen uniformly at random, has the desired
properties with high probability.



On the flip side, we give an algorithm that finds an ε-
approximate Nash equilibrium for ε slightly bigger than 1

2
.

In the solution of our algorithm, one of the players plays a
pure strategy but the support of the strategy of the other
player may be arbitrarily large. More recently, Daskalakis
et al. [5], proposed an algorithm which computes a 0.38+α-
additive-approximate equilibrium for a bimatrix game. The
size of the support of their solution can be as big as O( n

α2 ).

2. RESULTS

Theorem 1. For any large enough n and 0 ≤ ε ≤ 1, there
exists a constant-sum 0/1 game of size n such that if we limit
the column player to strategies with support of size less than

log n
1−log ε

, it is not possible to achieve an α-approximate Nash

equilibrium for α ≥ 1
2−ε

.

Proof. Let s = b log n
1−log ε

c and m = b s
ε
c. For such values

for s and m we have
`

m
s

´
< ( en

s
)s ≤ n. Hence, we can gener-

ate an n×m matrix R having all possible rows consisting of
s 1’s and m−s 0’s. Obtain C from R by exchanging 0’s and
1’s. Suppose the column player plays at most s rows. Then
some row has only 1’s in these columns in R. Thus, the best
response for column player has payoff 1. Furthermore, col-
umn player can get payoff 1− s

m
by playing uniformly on all

of the m columns, independent of the strategy of the column
player. So the sum of the payoffs of the best responses of the
players is 2− s

m
, while sum of their payoffs is 1. Therefore,

1
2− s

m
approximation is not possible.

Theorem 2. Consider a zero-sum game where R is an
n by n matrix with entries chosen uniformly at random
from {0, 1} and C is the matrix obtained from R by ex-
changing 0 and 1. Then, with high probability, for any
α > 1

2
, no pair of strategies with supports of size smaller

than log2 n − 2 log2 log n has an α-approximate Nash equi-
librium. Furthermore, for any 0 < ε < 1, with high probabil-
ity, no pair of strategies with supports of size smaller than
O( log n

ε2
) has a 1

1+ε
-approximate Nash equilibrium.

Proof. Let k = log2 n− 2 log2 log n. We show with high
probability, for any choice of k columns of R, there is a row
of R which has all 1’s in these k columns. Similarly, for any
choice of k rows of C, some row of C has all 1’s in these k
rows. Therefore with high probability, the best response of
each player has payoff 1. But the payoffs of the two players
sum up to 1, so one of the players will have payoff at most
1
2
. Hence, there is no α-approximate Nash equilibrium with

α > 1
2
.

The probability that in some row of R, some k chosen
columns will not be all 1 in that row is 1 − 2−k, so the
probability that this will be the case in all n rows of R is
(1− 2−k)

n
. Since n2−k > k log n, the probability that this

will happen in some choice of k columns is (1− 2−k)
n
nk <<

1. This proves the first part of the Theorem.
For the second part, let S be the set of the rows in the

support of row player. We first prove the theorem for the
case that the distributions of the mixed strategies of the
players are uniform over their supports and the size of the
supports is k. For column j, let sj be the sum of the entries
of column j that are in S, e.g. sj =

P
i∈S Cij . We claim

with high probability, there exists a column j such that sj ≥
(1 + ε) k

2
. Hence, the payoff of column player by choosing

column j is at least (1+ε)
2

. Similarly for row player, with

high probability, the best response has payoff at least 1+ε
2

.
But the sum of the payoffs of both players is 1. Therefore,
there is no α-approximate Nash equilibrium.

To prove the claim, consider an arbitrary column j. Let
s = d(1+ε)k/2e. By Sterling’s formula, there exist constants
c1 and c2 such that:

P [sj ≥ s] ≥ P [sj = s] =
1

2k

 
k

s

!
≥ c1√

k
e−

k
2 ((1+ε) log(1+ε)+(1−ε) log(1−ε))

≥ 1√
k

e−c2kε2

Now we can choose a constant c such that k = log n
cε2

, and

P [sj ≥ s] ≥ n−1/2. So the probability that none of the
columns has at least (1+ ε) k

2
1’s in these k rows is less than

(1 − n−1/2)n. The probability that this happens in some

choice of k columns is less than (1− n−1/2)nnk << 1. This
proves the result for uniform strategies over the support.

For nonuniform strategies, we limit the strategy space to
the strategies that the probability of playing any rows or
columns is equal to j

k2 , for some integer 0 ≤ j ≤ k2. This

gives an additive error of 1
k

in approximation of sj ’s, which
is negligible for large n. The number of such strategies can

be closely approximated by (k2)
k
. Without loss of gen-

erality, assume that rows in S are the rows 1 to k. Let
r = (r1, . . . , rk) be the distribution of the mixed strategy.
For 1 ≤ i ≤ k, the i’th cyclic permutation of r is the mixed
strategy with distribution (r1+i, . . . , rk+i) where addition is
in module k. Therefore, the payoff of column player by play-
ing column j, when the row player strategy is the i’th cyclic
permutation, is

Pk
l=1 rl+iclj . Because the average payoffs of

all of the k cyclic permutations is equal to sj , at least one
of these permutations guarantees payoff sj for the column
player. The entries of C are chosen independently at ran-

domly, so by (1), P [sj ≥ s] ≥ 1

k
√

k
e−c2kε2 . So we can choose

constant c′ such that k = log n
c′ε2 , and P [sj ≥ s] ≥ n−1/2. The

probability that the total payoff of the best responses of the
players, for all pair of the strategies be less than 1 + ε, is at
most 2(1 − P [sj ≥ s])n(k2)knk = o(1) which completes the
proof.

Theorem 3. Let R and C be arbitrary matrices of size
at most n. There exists a function f(n) = (2 + o(1))n such
that for any 0 < ε < 1

4nf(n)
there is a pure row strategy and

a mixed column strategy that gives an α-approximate Nash
equilibrium with α = 1

2
(1+ε). This approximate equilibrium

can be computed in polynomial time.

Proof. Without loss of generality, we assume r11 = 1 is
the biggest element in R and the rest of the elements are
non-negative. Let multi-set S1 = {1}. Assume that row
player chooses row 1 and column player plays the column
in S1 with probability 1

2
(1 − ε) and plays column y1 with

probability 1
2
(1 + ε) , where c1y1 is the highest entry in

the first row. This guarantees α-approximation for column
player with respect to the best response. If this pair of
strategies also gives a similar guarantee to row player then
we are done. Otherwise, there is another row, let us say row



2, which gives a payoff greater than 1
2
(1+ε) times the current

payoff. Then row player chooses this row. Now column
player chooses uniformly among the columns in multi-set
S2 = S1 ∪ y1 with probability 1

2
(1 − ε) and plays column

y2 with probability 1
2
(1 + ε) where c2y2 is the highest entry

in row 2. While there exists a row that by playing it row
player is better off by at least a factor α, she chooses this
row and column player changes her strategy accordingly.

Without loss of generality assume that row player chooses
the rows in the increasing order from 1 to n. Let µi be the
average of the entries of row i in Si, i.e. µi = 1

i

P
j∈Si

rij .

By induction, we show µi ≥ 1 − f(i)ε. The basis clearly
holds. Because row player preferred row i + 1 to row i we

have (1−ε)µi
(1−ε)µi+1+(1+ε)yi+1

< 1
2
(1 + ε). Also, yi+1 is at most 1

which implies µi+1 > 2
1+ε

µi − 1+ε
1−ε

> 1− (2 + o(1))f(i)ε.
Moreover, row player never chooses a row that she has

chosen before. Note that if row player gives up playing row
i, then µi is less than 1

2
(1 + ε). If she is currently playing

row k then

(1− ε)µk

(1− ε) iµi+k−i
k

+ (1 + ε)
≥ (1− f(k)ε)

1− i(1−ε)
2k

+ (1+ε)
(1−ε)

≥
1− 1

4n

2− 1−ε
n

+ ε2

1−ε

≥ 1

2
(1 + ε)

With this observation row player will finally stay at one
row and the players reach an α-approximate equilibrium.
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