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We study the multiperiod pricing problem of a service firm with capacity levels that vary over time. Cus-
tomers are heterogeneous in their arrival and departure periods as well as valuations, and are fully

strategic with respect to their purchasing decisions. The firm’s problem is to set a sequence of prices that max-
imizes its revenue while guaranteeing service to all paying customers. We provide a dynamic programming
based algorithm that computes the optimal sequence of prices for this problem in polynomial time. We show
that due to the presence of strategic customers, available service capacity at a time period may bind the price
offered at another time period. This phenomenon leads the firm to utilize the same price in multiple periods,
in effect limiting the number of different prices that the service firm utilizes in optimal price policies. Also,
when customers become more strategic (patient for service), the firm offers higher prices. This may lead to
the underutilization of capacity, lower revenues, and reduced customer welfare. We observe that the firm can
combat this problem if it has an ability, beyond posted prices, to direct customers to different service periods.
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1. Introduction
Dynamic pricing is one of the key tools available to a
service firm trying to match time-varying supply with
time-varying demand. It is, however, a delicate tool
to use in the presence of customers who strategically
time their purchases. As customers change the timing
of their purchases, not only might the firm lose rev-
enue, but it might also cause the firm’s capacity to be
strained in periods where a low price is offered.

We consider a general formulation of a multiperiod
pricing problem of a service firm trying to maxi-
mize its revenue while selling service to strategic cus-
tomers who arrive and depart over time. We assume
the firm is constrained by its time-varying service
capacity level and that it wishes to provide service
guarantees to its customers. More specifically, the
firm announces a sequence of prices in advance; each
customer chooses the period with the lowest price
between her arrival and departure. The sequence of
prices is chosen to maximize the revenue of the firm

while guaranteeing that each customer who is will-
ing to pay the price at a given period will obtain
service. Our main contributions are to provide algo-
rithms that compute the firm’s optimal pricing pol-
icy and to characterize the properties of such optimal
policy.

Service guarantees are an important contract fea-
ture that are often used when the customers them-
selves are businesses that rely on the service they pur-
chase to run their own operations. An example of
a setting with the aforementioned properties comes
from the cloud computing market where firms sell
computational services to their customers.1

In this market, despite demand for service vary-
ing quite significantly over time, customers typically
demand reliability from their providers, in the sense

1 Cloud computing is a large and quickly growing business. The
combined revenues of this market were estimated to be more than
$22 billion in 2010 and are expected to reach $55 billion by 2014
(see Lohr 2011).
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that they should be able to purchase service when-
ever they need it and rationing is not tolerated.
For instance, consider the case of Domino’s Pizza,
which is a client of Microsoft’s Windows Azure cloud
computing platform. As explained by Domino’s direc-
tor of eCommerce: “We have daily peaks for din-
ner rush, with Friday night being the biggest. Super
Bowl, however, has a peak 50 percent larger than our
busiest Friday night. Windows Azure allows me to
focus on customer facing functionality, and not have
to worry about whether or not I have enough hosting
capacity to support it” (Vitek 2009). For Domino’s and
many other companies, the key managerial benefit of
purchasing cloud computing services is that it per-
mits them to completely ignore the hosting capacity
needs of their online businesses. This is only the case
because the cloud computing providers go to great
lengths to ensure that their service is always available
and, therefore, companies who rely on them need not
worry about rationing risk.2

The clients of cloud computing services are also
highly heterogeneous with respect to their willingness-
to-wait for service. Although some companies utilize
cloud computing to run on-demand services and web-
sites, and thus always need immediate service, others
use the cloud to run simulations or solve large-scale
optimization problems such as the ones that arise in
financial analysis, weather forecasting, and genome
sequencing. Such clients will typically display more
strategic behavior in their purchasing of cloud ser-
vices and wait for lower prices before purchasing ser-
vice (e.g., see the AWS case study DNAnexus (Amazon
Web Services 2011)).

Currently, most cloud computing services are sold
via static pricing or via a combination of long-term
contracts and static pricing (e.g., Amazon Web Ser-
vices 2012, Windows Azure 2012). More specifically,
the customers can purchase computation capacity
(starting at around 10 cents per hour) in a pay-as-you-
go model where the per-hour price is constant over
time; this hourly rate is reduced for customers who
pay in advance, via yearly contracts, to reserve capac-
ity. The largest players in this market have mostly
shied away from selling their higher quality ser-
vices via dynamic pricing;3 this could potentially be

2 “Organizations worry about whether utility computing services
will have adequate availability, and this makes some wary of cloud
computing. 0 0 0Google Search has a reputation for being highly
available, to the point that even a small disruption is picked up
by major news sources. Users expect similar availability from new
services...” (Armbrust et al. 2010, p. 54).
3 The main exception would be Amazon’s spot market (Ama-
zon Web Services 2012), which is a secondary market run by Ama-
zon to sell the excess capacity of its main platform. Although the
spot market prices fluctuate over time, the exact manner in which
these prices are determined is not publicly available (see Ben-
Yehuda et al. 2011).

attributed to the difficulty of maintaining service level
guarantees while customers are strategically timing
their purchases. Our work provides the firm with
techniques for using dynamic pricing in such a con-
text and, therefore, giving them a tool to better man-
age their resources and revenues.

There are other examples of service firms that need
to set profit-maximizing prices while guaranteeing
service. For instance, the increasingly popular Uber
online taxi service offers a flat pricing scheme on
most days of the year, but utilizes dynamic pricing
in high demand days (see Bilton 2012). As explained
by its CEO, Uber is “aiming to provide a reliable
ride to anybody who needs one, no matter how crazy
demand is or what is going on in the city” (Kalanick
2011). Uber is able to provide such a service guarantee
by, in times of higher demand, conserving resources
by charging higher prices.

Another interesting application of our work is in
the context of electricity markets. As smart meters
(see Federal Energy Regulatory Commission 2008) are
beginning to be widely deployed, allowing customers
to immediately respond to price changes, the tech-
niques we develop in this paper will become increas-
ingly useful since electricity markets feature many of
the elements of our model: capacity, demand, and
prices are time varying, and rationing of service is
highly undesirable.

In the industries discussed above, it is mainly the
firm’s responsibility to set prices that ensure that all
service requests can be accommodated with a limited
service capacity. This is in contrast to settings such as
traditional retailing, where customers are exposed to
rationing risk. In a traditional retail setting, strategic
customers consider the risk of a stock-out and this
incentivizes them to purchase the good earlier. This
rationing risk mitigates the effect of strategic customer
behavior on the firm’s ability to set its own prices. In
our setting, the firm’s need to offer service guaran-
tees places the entire burden of matching supply and
demand over time on the firm. The intuition is that
the firm should increase its prices when demand is
high (or capacity is low) to shift some of the demand
to the time periods with enough capacity. This is simi-
lar to the pricing scheme used by the major cellphone
carriers that, in order to decongest their networks
during business hours, often charge lower prices for
making calls on nights and weekends (e.g., see AT&T
2012). The dynamic pricing tools we propose hold the
promise of helping firms in such industries improve
their resource utilization by better matching supply
and demand over time.

1.1. Our Framework and Contributions
We consider a monopolist that offers service to cus-
tomers over a finite horizon. The firm faces a (possibly
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time-varying) capacity constraint at each time period.
The firm’s objective is to implement a posted pric-
ing scheme to maximize its revenue. At time 0, the
monopolist declares—and commits to—a sequence of
prices for its service, one for each time period. Given
those preannounced prices, customers decide whether
and when to purchase service. The firm needs to solve
the constrained optimization problem of determining
the prices that maximize revenue while still fulfilling
all customer purchase requests.

Each customer is assumed to be infinitesimal and
demands an (also infinitesimal) single unit of ser-
vice. The valuation of a given customer for a unit
of service is drawn from a known distribution. She
is also associated with an arrival and a departure
time. The arrival time corresponds to the time she
enters the system and the departure time represents
her deadline for obtaining service. All customers are
fully strategic about whether and when they purchase
service from the firm. That is, each customer either
refuses to buy service (if her valuation is below any
of the prices offered while she is present) or buys ser-
vice at the period when she is offered the lowest price
among all the periods in which she is present; if two
periods have the same low price, the customer prefers
the earlier one.

First, we consider a deterministic baseline model
where the monopolist knows the total mass of cus-
tomers that arrive at each given time period as well
as their departure periods. The assumption of deter-
ministic demand is justified when the number of cus-
tomers is large and fairly predictable, which is often
the case in the market for cloud computing. This mod-
eling choice allows us to study the impact of strate-
gic customers and time-varying demand and capacity
on the optimal sequence of prices, but it deliberately
removes the element of uncertainty from the model.
The demand being deterministic also implies the opti-
mality of using a sequence of preannounced prices.
We show later in the paper that many of the insights
obtained in this simple environment naturally extend
to general settings that allow for uncertainty in the
model.

Interestingly, even the solution of this baseline
model is far from trivial. We show that because of
the presence of strategic customers, the set of feasi-
ble price vectors is neither convex nor closed. This
means no off-the-shelf software can be used to solve
this problem efficiently. Despite these challenges, we
are able to establish that the firm’s price optimization
problem is a tractable one and we provide an efficient
polynomial-time algorithm for computing the optimal
pricing policy. This result relies on two crucial ideas:
the set of prices that the firm needs to consider is

not too large, and prices can be combined into a pol-
icy via dynamic programming because strategic cus-
tomers never wait past a low price to purchase service
at a future price that is higher.

We extend our results to models where the firm
does not know its service capacity levels or the
number of arriving customers. We do so in two
distinct ways. First, we consider a robust optimiza-
tion framework (see Ben-Tal and Nemirovski 2002,
Bertsimas and Thiele 2006), where there is uncertainty
about the firm’s capacity and the size of the customer
population at any given period, and the firm only
knows that these parameters belong to given sets.
In this setting, the firm tries to maximize its worst-
case revenues while ensuring that the capacity con-
straints are not violated for any realization of demand
and capacities. Second, we study the model in a
stochastic setting where the seller knows the distribu-
tion of the uncertain parameters and is able to obtain
additional capacity at a cost; the goal is to determine a
sequence of (preannounced) prices that maximizes the
expected profit. Additionally, this model allows for
production costs and different value distributions for
customers with differing patience levels. We establish
that the insights from our baseline model carry on to
these general environments. That is, using a dynamic
programming approach similar to our baseline model,
we are able to provide algorithms that compute the
(near) optimal pricing policy in polynomial time.

We also consider a related setting where cus-
tomers do not simply choose the earliest time period
with the lowest price to receive service, but rather
the firm chooses how customers should break ties
between time periods with equal prices. In this set-
ting, customers are guaranteed to receive service at
the lowest price available to them, but the firm can
more efficiently use its capacity by scheduling cus-
tomers appropriately. Interestingly, our algorithms
can be modified to account for this additional flexi-
bility and solve the optimal pricing problem of the
firm.

Finally, we conduct numerical studies using our
algorithms and obtain further insights on the effect
of strategic customers and service guarantees on both
the firm and its customers. We show that even in
settings with high volatility in service capacity and
demand, the number of price levels that optimal
pricing policy employs is small. For instance, in a
24-period model, the optimal price sequence includes
four different price levels on average. This shows that
even in complex multiperiod settings, the customers’
strategic behavior severely constrains the firms choice
of price sequence. We also observe that if patient cus-
tomers can wait longer for service, both the revenue
of the firm and the aggregate customer welfare may
decrease. This occurs because the firm is forced to
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use higher prices to maintain its service guarantees,
and consequently the service capacity is underuti-
lized. Thus we conclude that in a phenomenon simi-
lar to Braess’s paradox (Başar and Olsder 1999), when
customers have additional freedom in choosing the
time period they purchase service, the overall perfor-
mance of the system may decrease.

1.2. Related Work
In this section, we present a brief overview of the
literature on pricing mechanisms in the presence of
customers who strategically time their purchases and
discuss how the results in the literature relate to ours.
There is also an extensive literature on dynamic pric-
ing with myopic customers (see, e.g., Lazear 1986,
Wang 1993, Gallego and Ryzin 1994, Feng and Gallego
1995, Bitran and Mondschein 1997, Federgruen and
Heching 1999). We do not provide a summary of this
line of literature here, but we refer the reader to excel-
lent surveys by Talluri and van Ryzin (2004), Bitran
and Caldentey (2003), Chan et al. (2004), Shen and Su
(2007), and Aviv et al. (2009).

The study of monopoly pricing in the presence of
strategic customers was pioneered by Coase (1972).
Coase conjectured that in a setting in which a monop-
olist sells a durable good to patient customers, if the
monopolist cannot commit to a sequence of posted
prices, then the prices would converge to the pro-
duction cost. Later, Stokey (1979, 1981), Gul et al.
(1986), and Besanko and Winston (1990) showed that
a decreasing sequence of prices is optimal for selling
durable goods when customers face the trade-off of
consuming right away versus the possibility of pur-
chasing at the lower prices in the future. They observe
that customers with high valuations buy in earlier
periods and pay higher prices compared to the low
valuation customers.

In the context of revenue management, Aviv and
Pazgal (2008) study a model where a monopolist sells
multiple items over a finite time horizon to strategic
customers who arrive over time. The authors consider
two classes of pricing strategies: contingent posted
pricing, where the firm’s prices may depend on the
remaining inventory, and preannounced posted pric-
ing. They observe that commitment (preannounced
discount) can benefit the seller when customers are
strategic. Also, ignoring the strategic customer behav-
ior can lead to significant loss of revenue. Elmaghraby
et al. (2008) and Dasu and Tong (2010) extend the
analysis to a setting where the seller can reduce the
prices multiple times over the time horizon. Other
papers that consider commitment to a pricing pol-
icy include Arnold and Lippman (2001), Levin et al.
(2010), and Cachon and Feldman (2013). These works
mainly consider markdown pricing. Su (2007) shows
that if the customers are heterogeneous regarding

their time sensitivity, then the optimal sequence of
posted prices might also be increasing.

In the aforementioned works, the service provider
uses the customers’ fear of rationing to extract
more revenue from strategic customers (see Liu and
van Ryzin 2008). In contrast, in our model the firm
ensures the customers does not face such risks and
provides service guarantees. Su and Zhang (2009)
consider the issue of rationing in the presence of
strategic customers and find that sellers have an
incentive to overinsure consumers against the risk of
stockouts, thus showing that providing service guar-
antees can be in the firm’s interest.

Another paper related to ours is the one by Ahn
et al. (2007), which considers joint pricing and produc-
tion decisions. Unlike us, they assume that customers
are myopic with respect to prices, but, similarly to
our model, they assume customers stay in the system
for a number of periods unless they make a purchase.
Interestingly, their analysis also relies on the notion
that a low price effectively separates past and future
through what they call regeneration points.

An altogether different approach to this problem
is the one taken by the dynamic mechanism design
literature. There, the firm offers a direct mechanism
that allocates its service as a function of customers
reports of their private valuations, entry period, and
departure period. See Bergemann and Said (2011) for
a survey. The paper closest to this one within this lit-
erature is Pai and Vohra (2013), where strategic cus-
tomers arrive and depart over time, but the allocation
problem they study is quite dissimilar to the one we
consider.

The model we consider here differs from many
papers in the literature in at least three key aspects:
in our model, the firm guarantees service to all pay-
ing customers; therefore, the customers do not face
rationing risk. Second, instead of having a fixed
inventory at time 0, in our model, the firm has a time-
varying service capacity, which is nonstorable. Finally,
in the previous work, the customers are either present
from the beginning of the time horizon or arrive over
time but remain until the end of the horizon (or until
they make a purchase). In our model, buyers arrive
and depart the system over time.

2. The Baseline Model
In this section, we formulate the firm’s revenue max-
imization problem, which will be studied in the sub-
sequent sections. The firm sets a vector of prices over
a finite horizon t = 11 0 0 0 1 T . The prices, denoted by
p = 4p11 0 0 0 1 pT 5, are announced up front, one price
for each period t.4 Customers arrive and depart over

4 For instance, the horizon of the problem can be chosen as a day,
with periods corresponding to different hours during the day, to
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time and are infinitesimal. We denote the population
of customers that arrive at period i and depart at
period j by ai1 j . With slight abuse of notation, we also
represent the mass of the population that arrives at
period i and departs at period j by ai1 j .

Each customer wants one unit of service5 from
which she obtains a (nonnegative) value, and cus-
tomers are strategic with respect to the timing of
their purchases. Given the vector of prices p, a cus-
tomer from population ai1 j , with value v for the ser-
vice, purchases the service at a time period with the
lowest price between times i and j , if her value is
larger than the lowest price, i.e., if v ≥ min`2 i≤`≤j8p`9.
If there is more than one period with the lowest price
in 8i1 0 0 0 1 j9, the customer chooses the earliest period
(with the minimum price) to obtain the service.6

Given a price vector p, we can assign to each pop-
ulation ai1 j a service period, denoted by �i1 j4p5. This
period has the lowest price among periods in 8i1 0 0 0 1 j9
and is the earliest one (in 8i1 0 0 0 1 j9) with this price.
Each member of population ai1 j considers purchas-
ing service at time �i1 j4p5 and will purchase service
if her value exceeds the price at that period. We call
the mass of customers that, given prices p, consider
obtaining service at period t as the potential demand at
time t and denote it by �̄t4p5. Formally, the potential
demand is given by

�̄t4p5=
∑

i1 j21≤i≤t≤j≤T

ai1 j18t =�i1 j4p591 (1)

where 1 is an indicator function.
Each customer assigns a nonnegative value for

obtaining service. The fraction of customers with
value below v is given by F 4v5. For simplicity of pre-
sentation, we assume that F is a continuous function
and v ∈ 60117 for all customers. We also assume that
customer valuations are independent of their arrival
and departure periods, an assumption that we relax in
§7. Hence, given price vector p, the demand at time t,
denoted by D̄t4p5, is equal to D̄t4p5= 41 − F 4pt55�̄t4p50

The firm’s objective is to maximize its revenue,
which is given by

∑T
t=1 ptD̄t4p5. However, the firm is

constrained by a service capacity level of ct for each
t ∈ 811 0 0 0 1 T 9. The firm provides service guarantees to
its customers, so it must set prices that ensure that
the demand D̄t4p5 does not violate the capacity ct at

capture the problem of the firm selecting prices for its next business
day. Such an approach would be reasonable when deciding day-
ahead prices for cloud computing services or electricity markets.
5 A customer that wants multiple units of service could be consid-
ered as multiple customers in our model.
6 We relax this assumption in §8.

any period t. Thus, the firm’s decision problem is
given by

sup
p≥0

T
∑

t=1

ptD̄t4p5

s.t. D̄t4p5≤ ct1 for all t ∈ 811 0 0 0 1 T 91

(OPT-1)

where p ≥ 0 is a shorthand notation for pt ≥ 0 for
all t ∈ 811 0 0 0 1 T 9. The above problem searches for the
supremum of the objective function instead of the
maximum, since the maximum of OPT-1 does not
always exist. We demonstrate the nonexistence of an
optimal solution in §3, where we also present our
technique for handling this issue.

If there were no capacity constraints, the firm could
use a single price p at all periods to maximize its rev-
enue,7 and this would result in a revenue equal to
p41 − F 4p55

∑

i≤j ai1 j . Since
∑

i≤j ai1 j is a constant, we
call p41 − F 4p55 the uncapacitated revenue function. We
make the following regularity assumption to simplify
our analysis.

Assumption 1. The uncapacitated revenue function
p41 − F 4p55 is unimodal. That is, there exists some mo-
nopoly price pM such that p41 − F 4p55 is increasing for all
p < pM and decreasing for all p > pM .

Note that this assumption implies that pM maxi-
mizes p41 − F 4p55, and it is satisfied for a wide range
of distributions, including the uniform, normal, log-
normal, and exponential distributions.

We now show, by means of an example, that the set
of feasible prices of OPT-1 is nonconvex.

Example 1. Let the time horizon be T = 3 and
assume that a single unit-mass of customers with uni-
form valuations in 60117 arrive at period 1 and depart
at period 3. Assume that c2 = 0 and c11 c3 = 1. Then the
price vectors 401001115 and 411001105 are both feasi-
ble. However, the average of these two price vectors,
4005100110055, is infeasible since all customers with
valuation above 001 seek service at period 2, violat-
ing the service capacity c2 = 0. Therefore, the set of
feasible prices of OPT-1 is nonconvex.

The above example illustrates that OPT-1 is a non-
convex optimization problem, and we cannot hope
to solve it using off-the-shelf optimization tools. We
show in §5 that despite being nonconvex, there exists
a polynomial-time algorithm that solves this opti-
mization problem. The construction of this algorithm
relies on the structural properties of this pricing prob-
lem that are explored in §§3 and 4.

7 Because customer valuations are independent of arrival and
departure periods, it can be seen from OPT-1 that if there are no
capacity constraints, setting pt = arg maxp p41 − F 4p55 for all t maxi-
mizes revenue.
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3. Optimizing over Prices and
Rankings

In this section, we show that there does not always
exist a feasible solution achieving the supremum in
the firm’s optimization problem. To address this issue,
we construct a closely related optimization problem
where the firm tries to maximize not only prices but
also rankings of the prices. We show that this opti-
mization problem always admits an optimal solu-
tion that can be used to obtain feasible solutions
arbitrarily close to the supremum of the original
problem.

We start with an example that shows that the supre-
mum of OPT-1 may not be achieved by a feasible
price vector. The main idea is that since the customers
always seek the lowest price available, the potential
demand function �̄t is a discontinuous function of p;
thus, the feasible set of OPT-1 is open.

Example 2. Consider a two-period model with cus-
tomer valuations drawn uniformly from 60117, capac-
ity levels c1 =

1
2 and c2 = �, and customer populations

a111 = a112 = 1 (and a212 = 0). Observe that solutions of
the form 4p11 p25= 4 1

21
1
2 − �5 are feasible for any � > 0:

the members of population a111 with value above 1
2

obtain service at time 1 and the members of popula-
tion a112 with value above 1

2 − � are served at time 2.
Hence, 4p11 p25 = 4 1

21
1
2 − �5 yields the revenue of 1

2 ×
1
2 + 4 1

2 −�5× 4 1
2 +�5=

1
2 −�2. The revenue is decreasing

in � and as � tends to 0 the revenue approaches 1
2 .

The uncapacitated problem provides an upper bound
on the revenue obtained, which is 1

2 . Therefore, the
supremum of OPT-1 is equal to 1

2 . However, 4p11 p25=

4 1
21

1
2 5 is not a feasible solution because under this

price vector, both populations will choose the first
period for service, and this violates the capacity con-
straints. Therefore, the feasible set of price vectors is
open and the supremum of OPT-1 is not achieved by
a feasible price vector.

The nonexistence of an optimal solution can be
addressed by finding (feasible) solutions that are arbi-
trarily close to the (infeasible) supremum. In the
remainder of this section, we introduce the notion of
rankings and an alternative optimization formulation
that allow us to obtain such solutions for OPT-1 (or
the optimal solution itself in instances where the opti-
mum is feasible).

We refer to permutations of 811 0 0 0 1 T 9 as rankings.
We use the notation Rt to denote the rank of time
period t under ranking R. We say that a ranking R is
consistent with a price vector p if periods with lower
rank have lower prices. More precisely, R is consis-
tent with p if for all t and t′, Rt < Rt′ implies that
pt ≤ pt′ .

We define the customer-preferred ranking, denoted by
RC4p5, as a ranking consistent with p, such that when
there are multiple periods with the same price, the

earlier periods are ranked lower. Namely, if pt = p′
t

and t < t′ then Rt <Rt′ . It can be seen from the defini-
tion of service period �i1 j4p5 (introduced in §2) that in
OPT-1 for a given price vector p, each population ai1 j
chooses the time period between i and j , with the low-
est customer-preferred ranking to (potentially) receive
service. Hence potential demand �̄t can be expressed
as a function of this ranking.

More formally, for any period t and ranking of
prices R we define the R-induced potential demand,
denoted by �t4R5, as

�t4R5=
∑

i≤j

ai1 j1
{

Rt = min
k2 i≤k≤j

8Rk9

}

0 (2)

Similarly, the R-induced demand, denoted by Dt4pt1R5,
is defined as

Dt4pt1R5= 41 − F 4pt55�t4R50 (3)

It follows from (1), (2), and the definition of
customer-preferred ranking that for any price vec-
tor p and customer-preferred ranking RC4p5, we have
�t4R

C4p55 = �̄t4p5 and Dt4pt1R
C4p55 = D̄t4p5. That is,

it is possible to express demand (D̄t) in terms of
the R-induced demand function (Dt) and customer-
preferred ranking (RC).

Suppose that in OPT-1 the firm could select not
only the vector of prices p but also any rank-
ing R consistent with p (potentially different from the
customer-preferred ranking), and customers decided
when to obtain service according to this ranking;
i.e., each customer chooses the period with the low-
est ranking between her arrival and departure time.
Then, the demand at any period is given by Dt4pt1R5,
and the corresponding revenue maximization prob-
lem can be formulated as

max
p≥01R∈P4T 5

T
∑

t=1

ptDt4pt1R5

s.t. Dt4pt1R5≤ ct

for all t ∈ 811 0 0 0 1 T 91

Rt <Rt′ ⇒ pt ≤ pt′

for all t1 t′ ∈ 811 0 0 0 1 T 91

(OPT-2)

where P4T 5 is the set of all possible rankings of
811 0 0 0 1 T 9. Although this problem is different from
OPT-1, the solutions of these problems are closely
related, as we explain next.

Since Dt4pt1R
C4p55 = D̄t4p5, it follows that any fea-

sible solution p of OPT-1 corresponds to a feasible
solution of OPT-2 given by 4p1RC4p55, and these solu-
tions lead to the same objective values. Additionally,
it can be seen from (1) and (2) that for a given price
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vector p and any ranking R consistent with p, the
(potential) demand levels in OPT-1 and OPT-2 are
equal except for periods where the price is equal to
the price offered at another period. Intuitively, unlike
OPT-1, in OPT-2 the firm can choose how the cus-
tomers collectively break ties between time periods
with equal price, by choosing the ranking R prop-
erly, and this may lead to a difference in demand
levels only at such time periods. These observations
can be used to show that OPT-2 always has an opti-
mal solution, and this solution can be used to con-
struct a solution of OPT-1 that is arbitrarily close to
the supremum.

Lemma 1. The following claims hold:
1. The problem OPT-2 admits an optimal solution

4p?1R?5.
2. Let 4p?1R?5 be an optimal solution of OPT-2. For any

� > 0, the price vector p? + �R? is a feasible solution of
OPT-1 and the revenue it obtains converges to the supre-
mum of OPT-1 as � tends to 0.

3. If p is an optimal solution of OPT-1, then 4p1RC4p55
is an optimal solution of OPT-2.

The proof of this lemma can be found in the online
appendix (available at http://pages.stern.nyu.edu/
∼ilobel/multiperiod-pricing-online-app.pdf). The idea
behind this lemma is that the projection of the set of
feasible solutions of OPT-2 onto the set of prices is
the closure of the feasible set of OPT-1. Therefore, the
optimal prices generated by OPT-2 can be perturbed
in a way that maintains the ranking of prices, lead-
ing to a solution of OPT-1 that is arbitrarily close to
the supremum. In the rest of the paper, we focus on
the solution of OPT-2, keeping in mind that an opti-
mal solution (or a solution arbitrarily close to optimal,
if the optimal solution does not exist) of OPT-1 with
(almost) the same prices can be constructed using this
solution.

4. Structure of the Optimal Prices
In this section, we explore the structure of optimal
prices in OPT-2. We first show that at all periods
the monopolist has incentive to keep the prices at
least as high as the monopoly price pM . Then we use
this observation to study the optimality conditions in
OPT-2. Exploiting these conditions, we construct a set
of prices that contains all the possible candidate opti-
mal prices. We show that the cardinality of this set is
polynomial in the time horizon T , a result we later use
in §5 to obtain a polynomial-time algorithm to solve
OPT-2. Proofs of the results presented in this section
can be found in the online appendix.

To gain some intuition, we first consider the opti-
mal solution in a single period setting. By Assump-
tion 1, choosing any price p < pM is suboptimal, and
the firm has incentive to increase its price to pM .

If setting the price equal to pM violates the capacity
constraints, then the firm increases its price to the
minimum price that respects the capacity constraints.
Since customers’ values are bounded by 1, such a
price exists. Thus, it follows that an optimal price
in 6pM117 can be found. The following proposition
shows that this intuition extends to multiperiod
settings.

Proposition 1. There exists an optimal solution 4p1R5
of OPT-2 such that pt ≥ pM for all t.

To prove this result, we assume that a solution
where pt < pM for some t is given, and we raise prices
that are below the monopoly price pM in a way that
maintains the ranking of the prices. This ensures that
as the prices increase to pM , the revenue increases
while the demand decreases. Thus, it is possible to
obtain a feasible solution that (weakly) improves rev-
enues and satisfies pt ≥ pM .

Note that conditioned on prices being above the
monopoly price pM , by the assumption of unimodal-
ity of the uncapacitated revenue function, the incen-
tives of the firm and the customers are aligned: both
the firm and the customers prefer lower prices over
higher ones. The firm never raises prices to obtain
more revenue, only to satisfy capacity constraints.

We next provide a further characterization of the
prices that are used at an optimal solution of OPT-2.
This characterization significantly narrows down the
set of prices that needs to be considered to find an
optimal solution.

Proposition 2. There exists an optimal solution 4p1R5
of the optimization problem OPT-2 such that for each
period t one of the following three statements is true: pt =
pM , pt = 1, or pt = pt̂ for some t̂, such that ct̂ = Dt̂4pt̂1R5
and pt̂ ∈ 6pM117.

The proof of this proposition follows by showing
that unless the conditions of the proposition hold,
the monopolist can modify the prices in a way that
increases its profits while maintaining the feasibility
of the capacity constraints.8 The third condition of the
proposition suggests that the price at time t is either
such that the capacity constraint at time t is tight or
that this price is equal to the price offered at another
time period, and the capacity constraint at this other
time period is tight. Hence, because of the presence of
strategic customers, capacity constraints at one period
may bind the prices at another period, but this requires
the prices to be identical at these two periods.

This proposition implies that for an optimal solu-
tion 4p1R5 of OPT-2, each entry of the price vector p

8 We note that if we strengthen Assumption 1 to impose concavity
on the uncapacitated revenue function, then the proposition can
be proved using the Karush–Kuhn–Tucker conditions.
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either belongs to 8pM119 or is above pM and satisfies
the equation

ct̂ =Dt̂4p1R5= �t̂4R541 − F 4p55 (4)

for some time period t̂. However, to characterize the
set of all prices that may appear at an optimal solu-
tion, we still need to consider all possible rankings.
Although there are T ! possible rankings R, there are
a significantly smaller number of prices that satisfy
equations of the form (4). To formalize this idea, we
introduce the notion of attraction range, which is a
representation of all the populations that choose the
same period for service.

Definition 1 (Attraction Range). For a given
consistent price-ranking pair 4p1R5 the attraction range
of a time period k is defined as the largest inter-
val 8 t1 0 0 0 1 t̄9⊆ 811 0 0 0 1 T 9 containing k such that Rk =

min`∈8 t10001t̄9R`.

Assume that the attraction range of time period k
for a consistent price-ranking pair 4p1R5 is 8 t1 0 0 0 1 t̄9.
Since customers choose the time period with the low-
est ranking available to them when purchasing ser-
vice, customers who arrive at the system between
periods t and k, and who can wait until time period k
but not beyond time period t̄, are exactly the ones
who will seek service at period k. Thus, the attraction
range concept can be used to identify customers who
are “attracted” to a particular time period for receiv-
ing service (see Example 3).

Example 3 (Attraction Range). Consider a prob-
lem instance with six time periods. Assume that a
consistent price-ranking pair 4p1R5 for this problem
is given and the prices at different time periods are
as in Figure 1. Since prices at all time periods are dif-
ferent, there is a unique ranking R consistent with
these prices. The attraction range of time period 4 in
this example is 821 0 0 0 159. Thus, customers who arrive
between time periods 2 and 4 (inclusive) and who
cannot wait beyond time period 5 are the ones who
seek service at period 4.

Figure 1 Attraction Range of Period 4 Is 821 0 0 0 159 in This Six-Period
Problem Instance

Periods

Prices

1 2 3 4 5 6

2 4 5

This example suggests that attraction ranges can
be used to determine R-induced potential demand
�t4R5. Assume that 4p1R5 is a consistent price-ranking
pair and consider the attraction range of some
time period k ∈ 811 0 0 0 1 T 9, denoted by 8 t4k1R51 0 0 0 1
t̄4k1R59. As discussed earlier, customers who arrive
at the system between t4k1R5 and k (inclusive) and
who can wait until time k but not beyond time t̄4k1R5
are the only ones who can request service at time k.
Thus, we obtain that �k4R5 =

∑k
i= t4k1R5

∑t̄4k1R5
j=k aij . From

this equation it follows that �k4R5 can immediately
be obtained by specifying the attraction range of
time period k. By considering all the possible attrac-
tion ranges 8 t1 0 0 0 1 t̄9 corresponding to time period k
we conclude that for any ranking R, we have
�k4R5 ∈ 8

∑k
i= t

∑t̄
j=k aij � t ≤ k ≤ t̄9. Using this observa-

tion, it follows that any p satisfying (4) for some R
and �k4R5 belongs to the set

Lk
4

=

{

max
{

pM1 F −1

(

1 −

(

ck
∑k

i= t

∑t̄
j=k aij

))}

∣

∣

∣

∣

ck ≤

k
∑

i= t

t̄
∑

j=k

aij1 and t ≤ k ≤ t̄

}

0 (5)

Here the condition ck ≤
∑k

i= t

∑t̄
j=k aij is present since

F −1 is defined over the domain 60117. The maximum
with pM is taken to make sure that all the prices in Lk

are at least equal to pM , which follows from Propo-
sition 2. By construction each element of Lk corre-
sponds to an attraction range 8 t1 0 0 0 1 t̄9. Since there
are O4T 25 attraction ranges (there are O4T 5 values t
and t̄ can take), the cardinality of Lk is O4T 25. Thus,
we reach the following characterization of optimal
prices, which is stated without proof because it imme-
diately follows from Propositions 1 and 2 and the def-
inition of Lk given in (5).

Proposition 3. Let L be defined as L
4

= 4
⋃T

k=1 Lk5 ∪

8pM 9 ∪ 819. There exists an optimal solution 4p1R5 of
OPT-2 such that pt ∈ L for all t ∈ 811 0 0 0 1 T 9. Moreover,
the cardinality of L is O4T 35.

This proposition implies that without actually solv-
ing OPT-2, it is possible to characterize a superset
of the prices that will be used at an optimal solu-
tion. Moreover, this set has polynomially-many ele-
ments, and it is sufficient for the monopolist to con-
sider these prices when making its pricing decisions.
However, finding the vector of optimal prices could
still be a computationally intractable problem even if
L has small cardinality. In the next section, we show
that this is not case, and we develop a polynomial-
time algorithm that determines the optimal sequence
of prices.
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5. A Polynomial-Time Algorithm
In this section, we use the characterization of
the optimal prices obtained in §4 to design a
polynomial-timealgorithm for computing the optimal
sequence of prices.

As shown in Proposition 3, an optimal solution of
OPT-2 can be obtained by restricting attention to set of
prices L given in Proposition 3. Thus, an optimal solu-
tion to OPT-2 can be obtained by restricting attention
to prices in L and solving the following optimization
problem:

max
p∈LT 1R∈P4T 5

T
∑

t=1

ptDt4pt1R5

s.t. Dt4pt1R5≤ ct

for all t ∈ 811 0 0 0 1 T 91

Rt <Rt′ ⇒ pt ≤ pt′

for all t1 t′ ∈ 811 0 0 0 1 T 90

(OPT-3)

We next show that it is possible to find an optimal
solution of OPT-3 by recursively solving problems
that are essentially smaller instances of itself.

Consider an optimal solution of OPT-3, denoted by
4p?1R?5. Suppose time period k has the lowest rank-
ing; i.e., R?

k = 1. In this case, the attraction range of
k is 811 0 0 0 1 T 9, and �k4R

?5 =
∑k

i=1
∑T

j=k aij . Hence, all
customers who are present in the system at time k
will seek service at time k. This implies that only
populations ak11 k2

, 1 ≤ k1 ≤ k2 < k can receive service
at time periods 811 0 0 0 1 k − 19 (similarly, only popula-
tions ak11 k2

, k < k1 ≤ k2 ≤ T can receive service at time
periods 8k + 11 0 0 0 1 T 9). Therefore, if the monopolist
knows p?k and that R?

k = 1, it can solve for optimal
prices at other time periods by solving two separate
subproblems for time periods 811 0 0 0 1 k − 19 and 8k +

11 0 0 0 1 T 9: maximize the revenue obtained from time
periods 811 0 0 0 1 k−19 assuming only populations ak11 k2

are present (with 1 ≤ k1 ≤ k2 < k) and similarly for
time periods 8k + 11 0 0 0 1 T 9. Note that in the solution
of the subproblems, we need to impose the condition
that prices are weakly larger than p?k because other-
wise p?l < p?k for some l, and we obtain a contradiction
to R?

k = 1.
The above observation suggests that given the time

period k with the lowest ranking, the pricing problem
can be decomposed into two smaller pricing prob-
lems, where the prices that can be offered are lower
bounded by the price offered at k. We next exploit
this observation and obtain a dynamic programming
algorithm for the solution of OPT-3.

Let �4i1 j1 p5 denote the maximum revenue obtained
from an instance of OPT-3 assuming (i) ak11 k2

= 0 unless

i < k1 ≤ k2 < j and (ii) restricting prices to be weakly
larger than p. That is,

�4i1j1 p5= max
p∈LT 1R∈P4T 5

j−1
∑

t=i+1

ptD
ij
t 4pt1R5

s.t. D
ij
t 4pt1R5≤ct

for all t∈8110001T 91

Rt<Rt′ ⇒pt ≤pt′

for all t1 t′ ∈8110001T 91

pt ≥ p for all t∈8110001T 9

(6)

where D
ij
t is defined similarly to (3) and denotes the

demand at time t, assuming ak11 k2
= 0 unless i < k1 ≤

k2 < j . Observe that the optimal objective value of
OPT-3 is equal to �401T + 1105.

For i+ 1 > j − 1, we assume �4i1 j1 p5 is equal to 0.
On the other hand, for any i1 j such that i+ 1 ≤ j − 1,
we have

�4i1 j1 p5= max
k∈8i+110001j−19

{

max
p∈L2p≥ p

8�4i1 k1p5+�
ij

k 4p5

+�4k1 j1 p59

}

1 (7)

where �
ij

k 4p5 is given by

�
ij

k 4p5=











































( k
∑

l=i+1

j−1
∑

m=k

alm

)

41 − F 4p55p

if
( k
∑

l=i+1

j−1
∑

m=k

alm

)

41 − F 4p55≤ ck1

−� otherwise.

(8)

To see why the recursion in (7) holds, consider a solu-
tion of (6) and assume that in this solution, k is the
time period in 8i+11 0 0 0 1 j−19 with the lowest ranking
and pk ≥ p is the corresponding price. Then all popula-
tions that are present in the system at k receive service
at this time period. The total mass of these populations
is
∑k

l=i+1
∑j−1

m=k alm, since ak11 k2
= 0 unless i < k1 ≤ k2 < j ,

as can be seen from the definition of �4i1 j1 p5. Since at
the optimal solution of (6), the capacity constraints are
satisfied, the revenue obtained from time period k is
given by �

ij

k 4pk5. Since k has the lowest ranking among
8i+ 11 0 0 0 1 j − 19, only populations ak11 k2

such that i <
k1 ≤ k2 < k can receive service before time k, and the
prices offered at those time periods should be weakly
larger than pk. It follows from the definition of � that
the maximum revenue that can be obtained from these
populations (with prices weakly larger than pk) is
given by �4i1 k1pk5. Similarly, it follows that the maxi-
mum revenue that can be obtained from time periods
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after k equals to �4k1 j1 pk5. Thus, we conclude that
�4i1 j1 p5=�4i1 k1pk5+ �

ij

k 4pk5+�4k1 j1 pk5. The recur-
sion in (7) follows since it searches for time period k
with the lowest ranking and the corresponding price
pk that maximizes the objective of (6). Note that since
�
ij

k 4p5= −� when a capacity constraint is violated, the
solution obtained by solving this recursion also satis-
fies the capacity constraints.

The following theorem shows that a solution of
OPT-2, or equivalently a solution of the alternative
formulation in OPT-3, can be obtained by solving for
prices using the dynamic programming recursion in
(7) and constructing a ranking vector consistent with
these prices.

Theorem 1. The optimal solution of OPT-2 can be
computed in time O4T 65.

This theorem, which is proved in the appendix,
suggests that firms that provide service guarantees
can effectively implement optimal pricing policies by
solving OPT-2. In the subsequent sections, we show
that this result extends to other settings where there
is uncertainty about the problem parameters and the
firm has more general objectives.

6. A Robust Optimization
Formulation

The baseline model we considered in previous sec-
tions assumes that both demand and service capacity
available over the planning horizon can be fully antic-
ipated. This assumption is motivated by our online
services application, where the planning horizon is
typically counted in hours or, at most, days. Over the
next two sections, we show how to solve the firm’s
problem when this assumption is not valid, by either
taking a robust or a stochastic view of the demand
or capacity uncertainty. In particular, in this section
we introduce a robust optimization formulation of the
firm’s pricing problem. We show that when there is
uncertainty about either the service capacity levels or
the size of the customer population, a variant of the
algorithm of §5 can be used to obtain a solution that
maximizes revenue while maintaining feasibility for
all possible values of uncertain parameters. Further-
more, we can bound the firm’s worst-case revenue
loss as a function of the uncertainty in the problem
parameters. The proofs of this section can be found in
the online appendix.

Suppose the firm does not know its service capac-
ity level ct at a given period but only knows that
it belongs to an interval Ct = 6cLt 1 c

U
t 7. Similarly, the

firm does not know the mass of customers in popu-
lation ai1 j , but instead it knows only that ai1 j ∈ Ai1 j =

6aLi1 j1 a
U
i1 j 7. We refer to a collection of population sizes

A = 8ai1 j91≤i1 j≤T as a population matrix and represent

the set of all possible capacity levels by C =
∏

t Ct

and the set of all possible population matrices by A=
∏

i1 j Ai1 j . To make dependence of the demand (defined
in Equation (3)) on population size explicit, in this
section we denote the demand at period t, when pop-
ulation matrix is given by A ∈ A, and the firm uses
price pt and ranking R ∈P4T 5 by Dt4pt1R1A5.

The problem of selecting prices and ranking that
are feasible for all capacity levels in C and popula-
tion matrices in A, and that maximize the worst-case
revenue, can be formulated as follows:

max
p≥01R∈P4T 51M

M

s.t. M ≤

T
∑

t=1

ptDt4pt1R1A5

for all A ∈A1

Dt4pt1R1A5≤ ct

for all t1 ct ∈Ct and A ∈A1

Rt <Rt′ ⇒ pt ≤ pt′

for all t1 t′ ∈ 811 0 0 0 1 T 91

(OPT-4)

Our next result shows that this robust optimization
problem is tractable.

Proposition 4. The optimal solution of OPT-4 can be
computed in time O4T 65.

The optimization problem in OPT-4 is not a special
case of OPT-2 because it uses the population matrix
AL when computing revenue and a different popu-
lation matrix AU when computing feasibility. How-
ever, with minor modifications, the structural insights
and the polynomial-time algorithm from §5 still apply,
leading to the result in Proposition 4.

The robust optimization formulation finds a conser-
vative solution that is feasible for all possible values
of uncertain parameters. We next quantify the poten-
tial revenue loss due to the uncertainty, when the
solution obtained from this formulation is used for
pricing. Assume that a solution of OPT-4 is obtained
using uncertainty sets C and A. Let V ROB4C1A1 c1A5
denote the revenue the firm achieves, using this solu-
tion, when realized parameter values are c ∈ C and
A ∈A. We denote the revenues that could be obtained
if we knew with certainty c and A by V 4c1A5. The
following proposition bounds the decrease in the rev-
enues when there is uncertainty, and the solution of
OPT-4 is used to obtain a robust pricing rule.

Proposition 5. Suppose cUt ≤ 41 + �5cLt for all t ∈

811 0 0 0 1 T 9 and aUi1 j ≤ 41 + �5aLi1 j for all i1 j ∈ 811 0 0 0 1 T 9.
Then,

sup
c∈C1A∈A

4V 4c1A5−V ROB4C1A1 c1A55≤ 3�
∑

i1 j

aUi1 j 0
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This proposition implies that when the uncertainty
in the problem parameters is small (i.e., when � is
small), the revenue loss is also small, provided that a
solution of OPT-4 is used for pricing. The proposition
also suggests that if a nominal version of the prob-
lem with parameters 4cNOM1ANOM5 is known, and the
realized parameters are between 1−� and 1+� times
the nominal ones (i.e., 1 + � = 1 + �/41 − �5), then the
maximum revenue loss due to uncertainty is equal to
446�41 + �55/41 − �55

∑

i1 j a
NOM
i1 j .

7. A General Framework and an
Approximation Scheme

In this section, we generalize our baseline model by
incorporating random customer arrivals and capacity
levels, production costs, and customer valuations that
are dependent on arrival and departure periods to the
model. Namely, the distribution of the size and valua-
tions of each population is known in advance and the
firm determines a sequence of (preannounced) prices
to maximize its expected profit. In order for the firm
to be able to satisfy its service guarantees, we consider
soft capacity constraints in the sense that the firm can
exceed the allowable capacity by paying a penalty or
purchasing more capacity.

At this level of generality, the characterization of
the set of prices in an optimal solution, presented
in §4, does not hold. However, we can extend our
algorithm to obtain a fully polynomial-time approx-
imation scheme (FPTAS) for the general model. An
FPTAS is an approximation algorithm that for any
�> 0 obtains a solution within a factor of 1 −� of the
optimal solution and is polynomial in the size of the
problem and in 1/�. Therefore, using an FPTAS, one
can obtain a solution arbitrarily close to the optimal.

Intuitively, this problem is still tractable since, simi-
lar to our baseline model, if a time instant has the low-
est price in the horizon, then all customers who are
present in the system at this time instant prefer receiv-
ing service there. Consequently, our main divide-and-
conquer approach is applicable, and we can reformu-
late the problem as a dynamic programming problem
following the approach in §5. In this section, we for-
mally explain this idea. The proofs of our results are
presented in the online appendix.

We start by introducing an abstract problem that is
the focus of this section:

max
p∈60117T 1R∈P4T 5

T
∑

t=1

gt4pt1R5

s.t. ht4pt1R5≤ 0

for all t ∈ 811 0 0 0 1 T 91

Rt <Rt′ ⇒ pt ≤ pt′

for all t1 t′ ∈ 811 0 0 0 1 T 90

(OPT-5)

We make the following assumption throughout this
section:

Assumption 2. For any ranking R and period t, the
functions gt4·1R5 and ht4·1R5 satisfy the following:

1. Each customer prefers the time period with the lowest
rank (among those during which she is present) to (poten-
tially) receive service. Hence, the dependence of functions
gt2 �×P4T 5→� and ht2 �×P4T 5→� on R is through
the attraction range of time period t. That is, there exist
functions ĝ, ĥ such that

gt4pt1R5= ĝt4pt1 bt4R51 et4R55 and

ht4pt1R5= ĥt4pt1 bt4R51 et4R55
(9)

where 8bt4R51 0 0 0 1 et4R59 is the attraction range of time
period t, when ranking R is chosen.

2. ht4pt1R5 is decreasing in pt , and gt4pt1R5 is Lips-
chitz continuous in pt with parameter lt .

The first part of the assumption implies that the
demand for service at period t and, therefore, the
profit earned at period t, depends only on the price pt
and the attraction range generated by the ranking of
prices R. That is, if we modify price pt+1 while leav-
ing the ranking of prices R intact, thus leaving the
attraction range intact, this change in the price vec-
tor p will have no effect on the demand at period t.
This excludes customer discounting, for example, but
is a generalization of the customer behavior model
assumed in earlier sections. The second part of the
assumption just implies that demand in a given
period decreases continuously in that period’s price
if we maintain a constant ranking of prices. Observe
that OPT-2 is a special case of OPT-5, when gt4pt1R5=

ptDt4pt1R5 and ht4pt1R5=Dt4pt1R5−ct , assuming that
demand Dt4pt1R5 is Lipschitz continuous in pt , for a
fixed ranking R.

For a constant � ∈ 40115, consider the set of prices
P� = 8k� � k ∈ �+1 k� ≤ 19 and assume that we seek a
solution to OPT-5 by restricting attention to the prices
that belong to this set, i.e.,

max
p∈PT

� 1 R∈P4T 5

T
∑

t=1

gt4pt1R5

s.t. ht4pt1R5≤ 0

for all t ∈ 811 0 0 0 1 T 91

Rt <Rt′ ⇒ pt ≤ pt′

for all t1 t′ ∈ 811 0 0 0 1 T 90

(OPT-6)

Note that any feasible solution of OPT-6 is feasible
in OPT-5. We next show that for small � the opti-
mal objective values of these problems are also close.
Hence, an optimal solution of OPT-6 can be used to
provide a near-optimal solution of OPT-5.
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Lemma 2. Let the optimal solutions of OPT-5 and
OPT-6 have objective values v and v�, respectively. Then,
v� ≥ v− �

∑T
t=1 lt .

We next show that a modified version of the algo-
rithm in §5 can be used to solve OPT-6. Our approach
is again based on obtaining a solution by recursively
solving smaller instances of the problem. For this pur-
pose, we first define �̂4i1 j1 p5 to be the maximum
utility that can be obtained assuming only popula-
tions ak11 k2

, i < k1 ≤ k2 < j , are present and the prices
that can be used at periods 8t � i < t < j9 are (weakly)
larger than p. It can be seen that the optimal value of
OPT-6 is equal to �̂401T + 1105.

We set �̂4i1 j1 p5= 0, for i+1 > j−1. Using the same
argument given in §5 to justify the recursion in (7), it
follows that for i + 1 ≤ j − 1, the following dynamic
programming recursion holds:

�̂4i1j1 p5 = max
k∈8i+110001j−19

{

max
p∈P� 2p≥ p

8�̂4i1k1p5+�̂
ij

k 4p5

+�̂4k1j1p59

}

1 (10)

where �̂
ij

k 4p5 denotes the utility obtained at time k
with price p, from all populations ak11 k2

that can
receive service at this period and that satisfy i < k1 ≤

k2 < j . That is, �̂ ij

k 4p5 = ĝk4p1 i1 j5, if ĥk4p1 i1 j5 ≤ 0 and
�̂
ij

k 4p5= −� otherwise.
The intuition behind (10) is similar to the intuition

of (7): to find �̂4i1 j1 p5, we search for the time period
with the lowest rank (maximization over k in (10)),
and we search for the best possible price for this time
period (maximization over p). Since all populations
that are present at the time period with the lowest
ranking (say k) receive service at this time period, the
payoff obtained from this time period can be given
by �̂

ij

k 4p5. We then solve for prices of subproblems for
time periods 8i + 11 0 0 0 1 k − 19 and 8k + 11 0 0 0 1 j − 19.
Since the time period with the lowest ranking also
has the lowest price, we impose the prices for these
subproblems to be weakly larger than p. Thus, the
payoffs of the subproblems are given by �̂4i1 k1 p5 and
�̂4k1 j1 p5. Hence, we obtain the recursion in (10) for
computing optimal prices in OPT-6.

In the following lemma, we use this dynamic pro-
gram to construct optimal prices and ranking for the
solution of OPT-6 and characterize the computational
complexity of the solution. Note that since we are
dealing with general functions gt and ht , our result
depends on the computational complexity of evaluat-
ing these functions.

Lemma 3. Assume that for any given t1 p1R, compu-
tation of gt4p1R5 and ht4p1R5 takes O4s4T 55 time. An
optimal solution of OPT-6 can be found in O44T 3s4T 55/�25
time.

Lemmas 2 and 3 imply that an approximate solu-
tion to OPT-5 can be found in polynomial time pro-
vided that gt4p1R5 and ht4p1R5 can be evaluated in
polynomial time.

Theorem 2. Assume that for any given t1 p1R, compu-
tation of gt4p1R5 and ht4p1R5 takes O4s4T 55 time. An �-
optimal solution of OPT-5 can be found in O44T 3s4T 55/�25
time.

The proof immediately follows from Lemmas 2 and
3 and is omitted. In many of the relevant cases (such as
revenue maximization subject to capacity constraints
as introduced in §§2 and 3), for given prices and rank-
ings, evaluating constraints and the objective function
(ht and gt) can be completed in O415 time. In such set-
tings, Theorem 2 implies that an approximate solution
can be obtained in O4T 3/�25 time.

We conclude this section by showing that this
general framework allows us to find approximately
optimal prices in polynomial time for problem
instances that involve random arrivals and capacity
levels, production costs, and a richer class of cus-
tomer valuations.

Correlated Valuations. Here, we relax the assumption
made before that the customers’ valuations are inde-
pendent of their arrival and departure periods. Let
Fi1 j4v5 represent the fraction of the ai1 j population that
values service at most v. We assume that all valua-
tions are in 60117 and that Fi1 j is differentiable, but we
no longer suppose that Assumption 1 holds; i.e., the
corresponding uncapacitated revenue function need
not be single peaked. Customer demand at period t
as a function of price pt and the ranking of prices R
is now given by

Dt4pt1R5=
∑

i≤j

ai1 j41−Fi1 j4pt5518Rt ≤Rk for all i≤k≤ j90

By choosing gt4pt1R5 = ptDt4pt1R5 and ht4pt1R5 =

Dt4pt1R5 − ct , the corresponding revenue maximiza-
tion problem is an instance of OPT-5. Note that for
a fixed R, denoting fi1 j4p5= dFi1 j4p5/dp and assuming
fi1 j is bounded by li1 j1 we conclude
∣

∣

∣

∣

¡Dt4pt1R5

¡pt

∣

∣

∣

∣

=
∑

i≤j

ai1 jfi1 j4pt518Rt ≤Rk for all i ≤ k ≤ j9

≤
∑

i≤j

ai1 j li1 j 0

Thus, it follows that when fi1 j is bounded for all i,
j , Dt4·1R5 is Lipschitz continuous. This implies that
gt4·1R5 is also Lipschitz continuous for all t and R.
Moreover, ht is decreasing in pt (since demand is
decreasing in pt). Furthermore, for any t1 p1R eval-
uating Dt4pt1R5 and in turn gt4p1R5 and ht4p1R5
takes O4T 25 time. Thus, Theorem 2 applies, and we
conclude that the approximate revenue maximization
problem can be solved in O4T 5/�25.



Borgs et al.: Optimal Multiperiod Pricing with Service Guarantees
Management Science, Articles in Advance, pp. 1–20, © 2014 INFORMS 13

Production Costs and Soft Capacity Constraints. We
also incorporate production costs into the model. We
assume that it costs the firm �t4d5 to provide service
to mass d of customers at period t. We make the fol-
lowing regularity assumption on the production costs:

Assumption 3. Assume that for any period t, the
production cost �t is a nonnegative, nondecreasing,
�-Lipschitz continuous function.

Along with capturing the cost of producing the ser-
vice to be delivered, the function �t can also capture
a soft capacity constraint: if c̄t represents a capacity
level above which any unit produced costs �̄, then we
can capture this by setting �t4d5 = max801 �̄4d − c̄t59.
Even with soft capacity constraints, we still assume
that the firm provides service guarantees. Whenever
the firm is incapable of providing the purchased ser-
vice itself, it contracts service delivery out to a third
party with a unit cost of �̄.

By letting gt4pt1R5 = ptDt4pt1R5−�t4Dt4pt1R55 and
ht4pt1R5 = Dt4pt1R5 − ct , we obtain an instance of
OPT-5. From Assumption 3, it follows that gt4pt1R5 is
Lipschitz continuous in pt . Since demand is decreas-
ing with price, we observe that ht4pt1R5 decreases
with price. Thus, Theorem 2 applies, and since
Dt4p1R5 (and hence gt4pt1R5, ht4pt1R5) can be eval-
uated in polynomial time for any given p and R, it
follows that an approximate solution of the problems
with production costs and soft capacity constraints
can be obtained in polynomial time.
Stochastic Arrival and Capacity Processes. Assume that

population sizes 8ai1 j9i1 j and capacities 8ct9t are ran-
dom variables with known distributions. Let E6ai1 j 7=
âi1 j and E6ct7 = ĉt . In this setting, if a monopolist
wants to guarantee that the total service request does
not exceed the capacity for any realization of the
parameters, it can use the robust optimization frame-
work in §6. On the other hand, if the firm has the
capability to contract service delivery out whenever
the capacity is exceeded (hence it has soft capacity
constraints), it can solve the following expected rev-
enue maximization problem:

max
p∈P�1R∈P4T 5

T
∑

t=1

E6ptDt4pt1R5−�t4Dt4pt1R557

s.t. Rt <Rt′ ⇒ pt ≤ pt′

for all t1 t′ ∈ 811 0 0 0 1 T 90

(OPT-7)

By choosing

ht4pt1R5= 0 and

gt4pt1R5= E6ptDt4pt1R5−�t4Dt4pt1R5571

we obtain an instance of OPT-5. Note that if �t is Lip-
schitz continuous, then so is gt4pt1R5= E6ptDt4pt1R5−
�t4Dt4pt1R557. Thus, under Assumption 3, provided

that the expectation in E6ptDt4pt1R5 − �t4Dt4pt1R557
can be evaluated in polynomial time, OPT-7 can be
solved using the dynamic programming recursion in
(10) in polynomial time.

8. Multiperiod Pricing with
Customer Scheduling

In the earlier sections, we studied the pricing problem
of a firm in a setting where the customers choose the
earliest time instant with the lowest price to receive
service. Consider an example where all customers
arrive at the initial period and can wait until the end
of the horizon to receive service, but service capac-
ity is spread over many periods. For any pricing rule,
in this example all customers receive service at the
same time instant (with the lowest price). However,
this results in inefficient use of capacity and reduced
revenues.

Motivated by this example, in this section, we con-
sider the pricing problem in a setting where the firm
can choose how customers should break ties between
time instants with equal prices. That is, the customers
still receive service at a time instant with the low-
est price, but if there are multiple such time instants,
the firm schedules how customers should be served.
Observe that in the example described above, such a
scheduling of customers would avoid the inefficiency
created by serving all customers at the same period
(and wasting the capacity in the remaining periods).

Note that it may not always be in the power of
the firm to schedule its customers as described above
since at the least this requires knowledge of the arrival
and departure times (or deadlines) of each individual
customer, which is not always available. However, in
this section we establish that if the firm has the nec-
essary means to schedule its customers, then it can
decide on the optimal prices and schedule by follow-
ing a dynamic programming approach similar to the
one discussed in §5.

In this setting, the firm’s optimization problem can
be formulated as follows:

max
p∈PT 1x

T
∑

t=1

pt

(

∑

i1 j2 i≤t≤j

xt
i1 j

)

s.t.
∑

i1 j2 i≤t≤j

xt
i1 j ≤ ct

for all t ∈ 811 0 0 0 1 T 91

xt
i1 jpt = xt

i1 j min
k2 i≤k≤j

8pk9

for all t ∈ 811 0 0 0 1 T 91

∑

t2 i≤t≤j1 F 4pt 5<1

1
41 − F 4pt55

xt
i1 j = aij

for all i1 j ∈ 811 0 0 0 1 T 90

(OPT-8)
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Here, xt
i1 j corresponds to the mass of customers that

belong to population ai1 j and receive service at time t,
and P is the set of prices that can be used by the firm.
For simplicity, in this section we assume that P is a
finite set. The first constraint suggests that the capac-
ity constraint is satisfied at all time instants, and the
second one ensures that if a fraction of population ai1 j
is scheduled to receive service at time t (i.e., xt

i1 j > 0),
then the price at time t should be equal to the mini-
mum price offered from time i up to (and including)
time j . The final constraint guarantees that all cus-
tomers that belong to some population ai1 j and have
valuation larger than the lowest price between i and
j will receive service.

It is possible to interpret our paper as a two-
stage game where the firm moves first and selects a
sequence of prices and the consumers respond in the
second stage. This two-stage game might have mul-
tiple equilibria. One equilibrium is the one we call
the baseline model—consumers break ties in favor of
buying service early. Another potential equilibrium is
the one where consumers break ties in favor of buying
at the most favorable period for the firm. The second
equilibrium is the one studied in this section.

Observe that our baseline model can be viewed as
a version of OPT-8 where the firm is restricted to
breaking ties by assigning the customers to the ear-
liest time instant with the lowest price. Hence, if the
firm has the ability to break the ties favorably, it may
obtain a higher revenue. We next show that in this
case the optimal pricing policy (i.e., the solution of
OPT-8) can be obtained by using a dynamic program-
ming approach that generalizes the one used for the
solution of our baseline model. In particular, given
a set of prices that can be used by the seller P, this
algorithm finds the optimal solution of OPT-8 in time
polynomial in T and size of P.

To compute the optimal revenue in the OPT-8, sim-
ilar to §5, define �̂4i1 j1 p5 as the maximum revenue
that can be obtained from all populations arriving
between periods i and j , using prices weakly greater
than p, with the boundary condition that all cus-
tomers who can wait until or after time j receive ser-
vice at a later time instant. In our original model, we
recursively calculated �4i1 j1 p5 by finding a period k
where it gets the lowest price and highest ranking
(see §5). In the new model, since a population can be
split into different periods, instead of finding a sin-
gle period that takes the lowest price, we find a set
of such periods. Before presenting the algorithm, we
need a couple of definitions.

Let S4i1 j5 be the set of all feasible price vectors for
subproblem 4i1 j5. Namely, S4i1 j5 is the set of all fea-
sible solutions of problem OPT-8 where the mass of
all populations except those arriving between time i
and j is assumed to be zero. Define S4i1 j1 p1 k5 to be

the set of price vectors in S4i1 j5 such that all prices
are (weakly) greater than p and k is the latest period
that has price p (i.e., all periods between time k and
j have a price (strictly) larger than p). If no such
feasible set exists, then let S4i1 j1 p1 k5= �. Addi-
tionally, we define L̂4i1 j1 p1 k5 = 8t � ∃S ∈ S4i1 j1 p1 k5
and pt4S5= p9, where pt4S5 denotes the price at
time t in price vector S. This definition suggests that
L̂4i1 j1 p1 k5 is the set of all periods that take price
p for some price vector in S4i1 j1 p1 k5. Using these
definitions, we first provide a characterization of the
optimal pricing policy when we restrict attention to
price vectors in S4i1 j1 p1 k5.

Lemma 4. Suppose S4i1 j1 p1 k5 is nonempty and p
is (weakly) larger than the monopoly price pM . Then
there exists a price vector S? ∈ S4i1 j1 p1 k5 such that
pt4S

?5 = p for all t ∈ L̂4i1 j1 p1 k5 and S? maximizes the
revenue (objective of OPT-8) among all the price vectors
S4i1 j1 p1 k5.

Now, suppose S4i1 j1 p1 k5 is nonempty, and S? ∈

S4i1 j1 p1 k5. Observe that if we remove periods in
L̂4i1 j1 p1 k5 from the set of periods between i and j ,
we will end up with some intervals (consecutive time
periods belong to the same interval and we may have
intervals with only one period). We denote the `th
such interval by 6I `i1 j1 p1k101 I

`
i1 j1 p1k117 and note that there

are fewer than 4j− i5 intervals. We also observe that in
S?, only populations that arrive after time 4Ii1 j1 p1 k10 −15
and leave before period 4I `i1 j1 p1k11 +15 receive service at
the periods in 6I `i1 j1 p1k101 I

`
i1 j1 p1k117 because the price at

periods I `i1 j1 p1k10 −1 and I `i1 j1 p1k11 +1 is equal to p. Now
we can state the recursion for computing �̂4i1 j1 p5:

�̂4i1 j1 p5 = max
k2 i<k<j

max
p2 p≥ p

{

�̂
ij

k 4p5

+
∑

`

�̂4I `i1 j1 p1k10 − 11 I `i1 j1 p1k11 + 11 p5
}

1 (11)

where, similar to §5, �̂ is given by

�̂
ij

k 4p5=



























(

∑

l1m2∃ t∈L̂4i1 j1 p1 k51 l≤t≤m

alm

)

41 − F 4p55p

if L̂4i1 j1 p1 k5 6= �1

−� if L̂4i1 j1 p1 k5= �0

(12)

Namely, �̂
ij

k 4p5 denotes revenue obtained from the
periods in L̂4i1 j1 p1 k5, by setting their prices equal to
p ≥ p, assuming only the populations between peri-
ods i and j are present in the system. Following the
same argument in §5, and using Lemma 4, it is easy to
show that the recursion calculates the optimal value
for �̂4i1 j1 p5. Note that (12) suggests that if L̂4i1 j1 p1 k5



Borgs et al.: Optimal Multiperiod Pricing with Service Guarantees
Management Science, Articles in Advance, pp. 1–20, © 2014 INFORMS 15

can be found in polynomial time, then �̂ can be com-
puted efficiently. Our next result, which is proved in
the online appendix, shows that this is the case.

Lemma 5. Set L̂4i1 j1 p1 k5 can be found in polynomial
time.

Observe that we have O4T 2�P�5 subproblems
�̂4i1 j1 p5. Therefore, by the lemma given above and
the recursion in (11), we immediately obtain the fol-
lowing theorem.

Theorem 3. The optimal solution of OPT-8 can be
found in polynomial time.

9. Numerical Insights
In this section, we consider generic instances of the
firm’s pricing problem and obtain qualitative insights
about the optimal pricing scheme introduced in §2.
We first investigate the effect of available capacity
on the optimal prices used by the firm and estab-
lish that the prices closely track the capacities; e.g.,
decreasing capacities induce increasing prices and
vice versa. Then, we focus on how patience level
of players affect the outcome and show that as cus-
tomers become more patient, the firm offers higher
prices that leads to underutilization of capacity and
lowered revenues and customer welfare. In addition,
we observe that when customers are patient, the firm
ends up using only a few different prices, thereby
considerably decreasing the complexity of the pric-
ing policy. Finally, we compare the pricing schemes
we introduce in this paper with static pricing that
is commonly employed in practice and establish that
it is possible to significantly improve the revenues
using our algorithms. We conclude by testing the run
time of our algorithms and showing that for realis-
tic scenarios optimal prices can be computed in a few
minutes.

Unless noted otherwise, we will always consider
problem instances with 36 time periods, where we
focus on the middle 24 periods to avoid potential
boundary effects.9 We let customer valuations be uni-
formly distributed between 0 and 1. We assume that
there are two types of populations arriving at each
time period: (i) impatient (or myopic) customers (who
are only interested in purchasing service at the period
they arrived), and (ii) strategic (or s-patient) cus-
tomers, who are willing to wait up to s periods to
purchase service. This is captured by setting all ai1 j
equal to 0 unless j = i (myopic customers) or j = i+ s
(strategic ones). For each i, ai1 i is generated at ran-
dom from a uniform distribution between 0 and m1,

9 We note that no significant changes are observed in our results in
any of the subsections of this section, when the entire time horizon
is used for the analysis.

whereas ai1 i+s is generated from a uniform distribu-
tion between 0 and m2, where m1 and m2 are simula-
tion parameters.

9.1. Effects of Capacity Constraints
We first consider different capacity regimes and try
to understand their impact on pricing rules. We con-
sider capacity vectors that satisfy one of the following
cases: (case 1) ct = 1 for all t ∈ 811 0 0 0 1 T 9, i.e., con-
stant capacity; (case 2) ct = 1025−0054t−15/4T −15 for
all t ∈ 811 0 0 0 1 T 9, i.e., capacity decreasing from 1025 to
0075 over the horizon; (case 3) ct = 0075 + 0054t − 15/
4T − 15 for all t ∈ 811 0 0 0 1 T 9, i.e., capacity increasing
from 0075 to 1025 over the horizon; (case 4) ct = 1025−

4t − 15/4T − 15 for all t ≤ T /2 and ct = 0075 + 4t −

1 − T /25/4T − 15 for all t > T /2, i.e., capacity first
decreasing from 1025 to 0075 and then increasing back
to the original level, with a midday minimum. The
first three cases capture the constant, decreasing, and
increasing capacity settings, respectively. The last one
captures a phenomenon that is typical in cloud com-
puting markets: during peak business hours, part of
the service capacity is usually unavailable because of
high demand on the servers due to other contracts
and obligations.

We next plot the average price vector over 100 ran-
domly generated problem instances (Figure 2). We
consider three settings in which (i) the entire popu-
lation is impatient (6m11m27 = 66107), (ii) half of the
population is patient (6m11m27= 63137), (iii) the entire
population is patient (6m11m27= 60167).

Figure 2 shows that in all four cases (and for all
population structures), prices track service capacities.
Prices are lower when service capacities are higher
and vice versa (note that the ranges of the verti-
cal axes in Figure 2 are not the same). Case 2 is to
some extent analogous to a typical revenue manage-
ment setting. As capacity dwindles toward the end
of the horizon, prices rise accordingly. An interest-
ing phenomenon occurs as we move from the graph
with impatient customers, on the left, toward the one
with patient customers, on the right: Prices become
both smoother and higher as customers become more
patient. We explore this observation more in the next
subsection.

9.2. Effects of Strategic Behavior
We now investigate how strategic behavior of cus-
tomers affects revenues, capacity usage, and customer
welfare as the parameters s (willingness to wait for
strategic customers) and m2/4m1 +m25 (fraction of cus-
tomers who are strategic) change. Our results indicate
that as customers become more patient (and strate-
gically time their purchases), the monopolist uses
fewer different prices that are on average higher. This
leads to inefficient use of the available capacity and
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Figure 2 Average Price over 24 Time Periods of Interest
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(b) Half of population is patient
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(c) Entire population is patient

reduces both the revenue of the firm and the welfare
of customers.

We assume that willingness to wait for strategic
customers s belongs to set 80111 0 0 0 189. The capac-
ities are generated independently and uniformly
between 005 and 105 for each time period. Addi-
tionally, the sizes of impatient and patient popula-
tions are characterized by the following cases: (case
1) 6m11m27 = 65117; (case 2) 6m11m27 = 63137; (case 3)
6m11m27= 61157; (case 4) 6m11m27= 60167. That is, case
1 captures the scenario, where most of the population
is impatient, whereas, case 4 captures the one where
all buyers are patient. Since parameters are generated
randomly, we present our results by averaging them
over 100 problem instances.

We first consider the average price (over the hori-
zon) offered by the monopolist for different cases and
s parameters. We also plot average number of dif-
ferent prices used by the monopolist for the optimal
solution of the pricing problems. Proposition 2 stated

Figure 3 Average Number of Different Price Levels (a) and Average Prices (b)
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that the optimal price in a given time period must
either belong to 8pM119 or be equal to the price of a
time period where the capacity is tight. This implies
that the total number of price levels used might be
smaller than the total number of periods. Our sim-
ulation in Figure 3(a) shows that this is indeed the
case. In particular, it shows that the average number
of price levels over the 24-period horizon drops both
when a higher fraction of the population is willing
to wait for service and when the customers who are
willing to wait become more patient. For example, in
case 2, while roughly 14 prices are needed when cus-
tomers are willing to wait only up to one period, this
number drops to 8 if they are willing to wait for two
periods and 5 if they are willing to wait for three peri-
ods. Moreover, this drop in the number of prices is
more significant if a larger proportion of the popula-
tion is patient. We note that when an optimal solution
for the original pricing problem OPT-1 does not exist,
Lemma 1 suggests using perturbed prices 8pt + �Rt9t
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Figure 4 Wasted Capacity, Revenue, and Customer Welfare over 24 Time Periods
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for an arbitrarily small � to obtain solutions arbitrarily
close to the optimal. In such cases, our results indicate
that the firm uses “essentially” few prices. Our first
conclusion in this set of simulations is that patient
customers lead to fewer price levels.

As customers become more patient, the firm
becomes more constrained in the prices it can offer.
Consequently, to maintain feasibility with fewer
prices and sustain its service guarantees, it may need
to increase the prices at some periods. Recall that the
prices were already at or above monopoly price to
begin with, so both the firm and the customers lose
as the prices go up. Even a small increase in cus-
tomer patience causes a fairly large increase in aver-
age prices (see Figure 3(b)) and, as expected, the effect
is more pronounced when a larger fraction of the
population is strategic. Thus, we also conclude that
patient customers lead to higher prices.

We next focus on the effect of these higher prices
on capacity usage, revenue, and customer welfare. At
first glance, the presence of customers that are more
patient would seem to lead to better use of resources.
After all, high demand and low supply in one period
followed by low demand and high supply in the next
period could be properly matched if customers are
willing to wait. Indeed this phenomenon does show
up in our numerical analysis to a small extent, when
customers switch from being completely impatient to
willing to wait for one period (see cases 1 and 2 in
Figure 4(a)). However, we mainly observe the oppo-
site effect. As customers become more patient (for
s ≥ 1), the firm is forced to use fewer and higher
prices. These prices lead to inefficient use of the firm’s
resources. The inefficiency is higher when a larger
fraction of customers is impatient (Figure 4(a)). This
phenomenon lowers the firm’s revenue and simulta-
neously reduces customer welfare (i.e., total surplus
of the customers who purchase the service, where sur-
plus is defined as the difference between the value a

customer has for the service and her payment). In Fig-
ures 4(b) and 4(c), respectively, we plot the average
revenue and customer welfare for different cases and
s parameters. We establish that as customers become
more patient, both revenue loss and customer welfare
reduction become quite significant. For instance, it can
be seen that for the case m1 = 1, m2 = 5, the revenue
and welfare for s = 8 are, respectively, 35% and 75%
lower compared to a scenario with s = 0. This phe-
nomenon analogous to Braess’s paradox that arises in
transportation problems (where opening a new road
may lead to higher overall congestion in the trans-
portation network). However, the mechanism at work
here is different from the one at Braess’s paradox since
in our setting the lower welfare is a consequence of
the firm’s price adjustment (raising prices to maintain
feasibility of solution).

9.3. Static Pricing and Multiperiod Pricing
In this subsection, we compare the performance of
our multiperiod pricing algorithms with the static
pricing that is commonly used in practice. The three
scenarios considered here are the following: (case 1)
monopolist can use multiple prices and selects the ser-
vice time of the customers, as in §8; (case 2) monop-
olist can use multiple prices, but customers receive
service in their preferred (earliest) period, as in our
base model; and (case 3) monopolist is restricted to
using a single price and customers receive service in
their preferred period, which is the case closest to
current practice in the cloud computing industry. We
assume that half the population is impatient and half
is patient with willingness-to-wait s ∈ 801 0 0 0 189.

Figure 5 shows our result. The cases where the firm
is most flexible (case 1) and least flexible (case 3) in
terms of its pricing (and scheduling) policies, respec-
tively, lead to the best and worst cases in terms of
capacity management and firm profits. The efficiency
gains from better pricing strategies are large, and thus
the customers are better off when the firm has the
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Figure 5 Wasted Capacity, Revenue, and Customer Welfare over 24 Time Periods of Interest

most tools in its arsenal. Interestingly, our base algo-
rithm that uses only pricing to direct customers to
periods performs well for low values of patience s,
but its performance degrades as s increases. If the firm
has some mechanism aside from pricing for schedul-
ing customers to periods and customers are fairly
patient, then the pricing scheme with scheduling
should be used because the performance of this alter-
native algorithm improves with customer patience.

9.4. Running Time
We conclude this section by discussing the running
time of our base algorithm. In this section, we con-
sider problem instances where the horizon length is
given by T ∈ 8241481969. We still assume that the
capacities are drawn from 600511057 uniformly at ran-
dom. We first focus on problems where there are two
populations impatient and s-patient, and s-patient
players can wait for s ∈ 80111 0 0 0 189 time instants
to receive service. Moreover, the size of impatient
and patient populations are drawn from 601m17 and
601m27, respectively, uniformly at random. We then
consider a heterogeneous setting, where all population
groups (characterized by an arrival and departure
period) are present and their sizes are drawn at ran-
dom. For each of these randomly generated prob-
lem instances, we run our simulations 100 times and
report the average running time in seconds in Table 1.

Running times increase as either s or T grows,
but our results do indicate that in instances of rea-
sonable size (up to T = 96), the optimal prices can
be found in a few minutes using a standard laptop

Table 1 Average Running Times for Random Problem Instances (in Seconds)

s= 0 s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7 s= 8 Heterogeneous

T = 24 0.99 3.55 5.88 8.48 10.24 13.23 14.23 18.77 20.10 32.74
T = 48 14.9 51.4 85.0 105.6 141.8 167.3 168.4 165.0 190.7 233.6
T = 96 193 655 868 1,102 1,232 1,304 1,501 1,489 1,550 1,802

(with 3006 GHz Intel Core 2 Duo processor and 4 GB
1,067 MHz DDR3 memory). Therefore, the algorithm
is sufficiently efficient to be implemented in practice.

10. Conclusions
We study a service firm’s multiperiod pricing prob-
lem in the presence of time-varying capacities and
heterogeneous customers that are strategic with
respect to their purchasing decisions. A distinct fea-
ture of our model is the service guarantees pro-
vided by the firm that ensure that any customer
willing to pay the announced service price will be
able to receive service. Such guarantees are quite
appealing to customers because they allow them to
ignore rationing risk, tremendously simplifying the
consumers’ decision-making process. However, pro-
viding such guarantees requires the firm to use prices
that ensure the firm has sufficient service capacity
in every period. We propose an efficient algorithm
to compute revenue-maximizing prices while main-
taining service guarantees. We show, via numerical
simulation, that in a typical instance the optimal pric-
ing policy involves only a few prices and it enables
the firm to obtain significantly more revenues than
the static pricing schemes that are common in prac-
tice. We show that such algorithms and insights
generalize to complex versions of the problem with
random arrivals, departures and capacity levels, pro-
duction costs, and customer valuations that depend
on arrival and departure periods. We also construct
an algorithm that the firm can use if it is capable
of scheduling customer service times in addition to
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using dynamic pricing and demonstrate numerically
that such an algorithm could yield even higher rev-
enues and better resource utilization for the firm.
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Appendix

Proof of Proposition 2. Note that if for a ranking R,
we have �t4R5 = 0, then, without loss of generality, we can
let pt = 1. Now, by Proposition 1, we can assume that 4p1R5
is an optimal solution of OPT-2 such that pM ≤ pt ≤ 1 and
pt = 1 if �t4R541 − F 4pt55 = 0 for all t ∈ 811 0 0 0 1 T 9. We will
prove that 4p1R5 is such that pt necessarily satisfies one of
the conditions 1–3 of the proposition for all t ∈ 811 0 0 0 1 T 9. By
contradiction, assume that for 4p1R5 none of the conditions
1–3 hold at time t0. Since conditions 1–2 do not hold 1 >
pt0 > pM . Note that pt0 6= 1 implies that �t0

4R541 − F 4pt0 55 6= 0,
and hence �t0

4R5 > 0. Since condition 3 does not hold, for t̃ ∈

S
4
= 8t ∈ 811 0 0 0 1 T 9 � pt = pt09 we have that ct̃ is not tight; i.e.,

�t̃4R541 − F 4pt̃55 < ct̃ for all t̃ ∈ S0 (13)

Let � be a constant such that

�=







pt0 − pM if pt0 ≤ pk for all k ∈ 811 0 0 0 1 T 91
pt0 − max

8t1 �pt1<pt0 9
pt1 otherwise.

Consider the price vector p̂, for which pk = p̂k for k y S, and
p̂k = pk − � otherwise, for some 0 < � < �. It follows from
the definition of � that if pi ≤ pj for some i1 j ∈ 811 0 0 0 1 T 9,
then p̂i ≤ p̂j . Hence, the price vector p̂ is also consistent with
ranking R. Moreover, since 41 − F 4p55 is a continuous func-
tion, by (13) we conclude that � can be chosen small enough
to guarantee that for time periods t ∈ S, �t4R541−F 4p̂t55 < ct .
Since 4p1R5 is feasible and pt = p̂t for t y S, it also follows
that for t y S, we have �t4R541−F 4p̂t55= �t4R541−F 4pt55≤ ct .
Consequently, 4p̂1R5 is feasible in OPT-2. The definition of
� also suggests that pM < p̂t < pt = pt0 for t ∈ S. It follows by
the definition of pM and the unimodality of the uncapaci-
tated revenue function that pt41 − F 4pt55 < p̂t41 − F 4p̂t55 for
t ∈ S. Thus, since �t0

4R5 6= 0 we conclude that the revenue
obtained from time periods t ∈ S increases under p̂; i.e.,

∑

t∈S

p̂t41 − F 4p̂t55�t4R5 >
∑

t∈S

pt41 − F 4pt55�t4R50 (14)

Since pt = p̂t for t y S, it also follows that
∑

tyS p̂t41 −

F 4p̂t55�t4R5 =
∑

tyS pt41 − F 4pt55�t4R5. Hence, we conclude
that the overall revenue improves when 4p̂1R5 is used.
Therefore, we reach a contradiction and 4p1R5 has to satisfy
one of the conditions 1–3 of the proposition.

Proof of Theorem 1. We first describe how the opti-
mal prices and ranking in OPT-2 are obtained, and then we
consider the computational complexity of the solution. As
explained in the text, given the set L, the optimal solution of
OPT-2 can be obtained by solving OPT-3. The solution of the
latter problem is identical to that of (6), with i = 0, j = T +1,

p = 0, and hence the optimal value is equal to �401T +1105.
Given �4i1 j1 p5, for 0 ≤ i ≤ j ≤ T + 1, one can construct the
optimal sequence of prices in this problem using the recur-
sion in (7): We say that k is the solution for �4i1 j1 p5 if the
right-hand side of Equation (7) takes its maximum at k and
k is the earliest time period that achieves the maximum. Let
4k∗1 pk∗ 5 be the optimal solution of �401T +1105 in (7). Then
the price of time period k∗ in the optimal solution of (6) is
pk∗ , and prices for time periods earlier and later than k∗ can
be obtained by solving for the prices in the subproblems
�401 k∗1 pk∗ 5 and �4k∗1T + 11 pk∗ 5.

We assume that at each step the leftmost subproblem is
solved first. We say that the time period k∗, which solves the
ith subproblem, has priority i (hence the time period that
solves �401T + 1105 has priority 1). Using these priorities
together with prices, we next construct the ranking vector
(consistent with the already obtained prices) that appears
in the solution of OPT-3 (or equivalently to (7) with i = 0,
j = T + 1, p = 0). Consider time periods k1 and k2. If pk1

6=

pk2
, it is clear how to rank them: the lower price will have a

smaller rank. Now suppose pk1
= pk2

; then the time period
with lower priority receives lower ranking. Note that under
this ranking, the ranking vector is consistent with prices.
Moreover, when there are multiple time periods with the
same price, the time period that has lower ranking is the one
that is used by the algorithm to solve an earlier subproblem.
This implies that the ranking is consistent with the time
period each population receives service in the solution of
the recursion (7).

We next characterize the computational complexity of
providing a solution to OPT-2. Note that by Proposition 3,
there exists an optimal solution for OPT-2 with prices that
belong to set L. It can be seen from (5) that to compute
the prices in this set we need quantities of the form zijk =
∑k

t1=i

∑j
t2=k at11t2 for all i ≤ j ≤ k. Note that there are O4T 35

values zijk can take, and each value takes at most O4T 25
to compute. Thus, all values of zijk and the set L can be
computed in O4T 55 time (the computation time can be fur-
ther reduced by exploiting the relation between different
values of zijk ; this is omitted because it does not affect our
final complexity result). Thus, in O4T 55 time we can reduce
OPT-2 to OPT-3. We characterize the computational com-
plexity of the latter problem.

Observe that the algorithm relies on characterizing
�4i1 j1 p5 for all time periods i ≤ j and p ∈ L. Since cardinal-
ity of L is O4T 35, there are O4T 55 values of �4i1 j1 p5 that
need to be characterized. These can be computed using the
condition �4i1 j1 p5 = 0 if i + 1 ≥ j − 1 and the recursion in
(7). At each step of the recursion, there are O4T 5 different
values k can take. On the other hand, for a given value of
k, the corresponding optimal pk can be computed in O415:
Since for all p ∈ L we have p ≥ pM , it follows that �

ij
k 4p5 is

decreasing in p, provided that p ∈ L. Moreover, �4i1 j1 p5 is
also decreasing in p for all i1 j since larger p corresponds
to tighter constraints in (6). Thus, the pk that solves (7)
is the smallest p ≥ pM that makes the capacity constraint
feasible. Therefore, it follows that pk = max8pM1 F −141 − ck/
∑k

l=i+1
∑j−1

m=k alm59, where the latter is the price that makes
the capacity at time k tight. Since by construction both these
prices belong to L, and elements of L were computed ear-
lier, it follows that given k, pk can be constructed in O415.
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Thus, we conclude that each step of the recursion in (7)
can be computed in O4T 5. Thus, the overall complexity of
computing all �4i1 j1 p5 is O4T 65. Finally, given all values
of �4i1 j1 p5, the construction of the prices that solve (6)
takes O4T 25 following the procedure described in the begin-
ning of the proof: to solve for each pk, an instance of the
recursion (7) needs to be solved. This takes O4T 5 time, and
there are O4T 5 prices to be solved for. Similarly constructing
priorities and rankings consistent with these prices takes
another O4T 5. Thus, the overall complexity of the algorithm
is O4T 5 + T 6 + T 2 + T 5=O4T 65.
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