
Real-time Optimization of Personalized Assortments

Negin Golrezaei Hamid Nazerzadeh

Marshall School of Business
University of Southern California
{golrezae,nazerzad,rusmevic}@usc.edu

February 1, 2014

Paat Rusmevichientong

Abstract

Motivated by the availability of real-time data on customer characteristics, we consider the
problem of personalizing the assortment of products for each arriving customer. Using actual
sales data from an online retailer, we demonstrate that personalization based on each customer’s
location can lead to over 10% improvements in revenue compared to a policy that treats all
customers the same. We propose a family of index-based policies that effectively coordinate
the real-time assortment decisions with the backend supply chain constraints. We allow the
demand process to be arbitrary and prove that our algorithms achieve an optimal competitive
ratio. In addition, we show that our algorithms perform even better if the demand is known
to be stationary. Our approach is also flexible and can be combined with existing methods in
the literature, resulting in a hybrid algorithm that brings out the advantages of other methods
while maintaining the worst-case performance guarantees.

1 Introduction

The availability of real-time data on customer characteristics has encouraged companies to person-
alize operational decisions for each arriving customer. For instance, the product recommendations
that Amazon.com makes to each customer dynamically change depending on recent reviews, rat-
ings, purchases of the customer herself, purchases of other customers with similar interests to hers,
and several other factors (Amazon’s Recommendation Systems, 2012). Orbitz.com, as another ex-
ample, has found that users of Apple Macintosh computers spend as much as 30% more per night on
hotels; consequently, the company can show Mac users different and more expensive assortments of
hotels and travel options, than Windows users (Mattioli, 2012). Location-based deals and coupons
are offered by Groupon, Yelp, Foursquare, and other Internet companies (Wortham, 2012). In
online advertising, the advertisements that are displayed to a user browsing a website are routinely
personalized based on the user’s browsing history, demographic information, and location (Helft
and Vega, 2010). Even brick-and-mortar grocery stores are starting to offer personalized real-time
coupons based on each customer’s purchasing history and the available products on the shelf in the
aisle where each customer is currently shopping (Clifford, 2012).

These examples raise a key question that motivates our work: Given the complexity of coordi-
nating real-time, front-end, customer-facing decisions with the back-end supply chain constraints,
what policies should companies use to take advantage of such data?
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We answer these questions by formulating a real-time, personalized, choice-based assortment
optimization problem involving multiple products with limited inventories, and arbitrary customer
types. The type of each arriving customer can be arbitrary, and it is indexed by a (possibly infinite)
set Z. Examples of types include the customer’s computer type (Mac vs PC), her current location,
her purchasing history, the average household income in her neighborhood, competitors’ current
offerings and prices, time of day, or a combination of other observable characteristics.

For an arriving customer of type z ∈ Z, the company must decide in real time, on the assortment
of products to offer. Given an assortment S, the customers make choices on which products to
buy, if any, according to a general choice model that is specific to each customer type. Our goal
is to develop a revenue-maximizing policy that determines the assortment to offer to each arriving
customer, taking into account the customer type and the current inventories.

The above formulation captures the essential features of the situation faced by companies that
sell services, products, or advertising to heterogenous customer types that require real time decision-
making, with inventory constraints.

We first observe that differentiating among customer types (even just their locations) can sig-
nificantly increase revenues. We consider the top ten DVDs with the highest national sales volumes
during the summer of 2005 and compare their sales in two locations: Urbana-Champaign, IL and
Miami, FL. Table 1 shows the sales rate of each DVD in each location, which is defined as the
proportion of the potential customers in each location1 who purchased each DVD.

Sales Rate

DVD Title Urbana-

National Miami Champaign

1 Lost–The Complete First Season 7.6% 8.9% 6.7%

2 Firefly–The Complete Series 6.9% 0.0% 12.0%

3 The Simpsons–The Complete Sixth Season 6.0% 5.0% 6.7%

4 Star Wars: Episode III–Revenge of the Sith 5.5% 7.4% 4.0%

5 Sin City 5.2% 9.5% 2.0%

6 Family Guy Presents Stewie Griffin–The Untold Story 4.8% 3.3% 6.0%

7 Batman Begins 4.3% 4.8% 4.0%

8 What the Bleep Do We Know!? 4.2% 9.8% 0.0%

9 Curb Your Enthusiasm: The Complete Fourth Season 3.8% 1.8% 5.3%

10 Seinfeld: Season Four 3.7% 3.3% 4.0%

Table 1: Top 10 DVDs nationally and the percentage of customers in each location who purchase
each DVD.

We observe that these two locations exhibit very different purchasing behaviors, which are
significantly different from the national sales pattern. Consider the sci-fi DVD Firefly–The Complete
Series, which is the second most popular DVD nationally, with a sales rate of 6.9%. None of
the customers in Miami purchased this DVD, while 12% of the customers in Urbana-Champaign,
almost twice the national rate, bought the series. On the other hand, none of the customers from
Urbana-Champaign bought What the Bleep Do We Know!?, while almost 10% of the customers in

1The potential customers in each location correspond to the people in the location who bought one of the top
200 DVDs with the highest national sales volumes during the summer of 2005. We choose 200 DVDs as the cutoff
because they account for a large proportion of the sales volumes.
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Miami bought it. In Section 7.3, we evaluate the performance of our algorithms and observe that
customizing the assortment of DVDs for each customer’s location leads to an increase in revenues
of 10%. The improvement can be as high as 21% when the sizes of the assortments are constrained.

As our main contribution, we propose a family of simple and effective algorithms,
called Inventory-Balancing, for real-time personalized assortment optimization that
do not require any forecasting: an Inventory-Balancing algorithm maintains a “discounted-
revenue index” for each product in which the (actual) revenue is multiplied by a (virtual) discount
factor that depends on the fraction of the product’s remaining inventory. Upon the arrival of each
customer, based on the customer’s type, the algorithm offers to her the assortment that maximizes
the expected discounted revenue. Each Inventory-Balancing algorithm is characterized by a penalty
function that discounts the marginal revenue of each product as the inventory level drops. By
adjusting the revenue of each product according to its remaining inventory, the algorithms hedges
against the uncertainty in the types of future customers by reducing the rate at which products
with low inventory are offered. Thus, the discounted-revenue index serves as a simple mechanism
that coordinates the front-end customer-facing decision with the back-end supply chain constraints.
Our Inventory-Balancing algorithms offer the following benefits.

No forecasting: A traditional approach for dynamic assortment optimization, both in the
literature and in practice, is to forecast demand over time by estimating the distribution of the
number of customers of each type and then finding an optimal policy based on the forecast using
re-optimization methods (Gallego and van Ryzin, 1994; Jasin and Kumar, 2012) or dynamic pro-
gramming (Bernstein et al., 2011). In our sales data, we observe large variability in the number of
customers across time and locations. Such a large variability in the demand process often makes
forecasting difficult and, not surprisingly, could lead to poor performance for the policies established
under this approach.

An alternative approach to making a real-time decision is to solve the “off-line” assortment
optimization problem repeatedly using the most up-to-date inventory levels of each product and
the latest demand forecast. This can be done by repeatedly solving a series of linear programs; see,
for example, Jasin and Kumar (2012). When the number of customers is known in advance, the
re-optimization methods work extremely well and yield nearly optimal revenue because they can
effectively ration the inventory to all customers. However, when there is significant uncertainty in
the market size, the problem becomes more challenging. In this setting, our Inventory-Balancing
algorithms perform very well, yielding 5%-11% more revenues than re-optimization methods.

Strong performance under both non-stationary and stationary demand processes:
as a performance benchmark, we compare the revenue of our algorithms to the revenue of a clairvoy-
ant optimal solution that has complete knowledge of the sequence of the types of the customers that
arrive in the future but does not know the (random) choice for each future customer.2 We prove
that Inventory-Balancing algorithms with a strictly concave penalty function always obtain more
than 50% of the optimal revenue; see Theorem 1 and Corollary 1. We also provide an Inventory-
Balancing algorithm that obtains at least (1 − 1

e ) ≈ 63% of the benchmark revenue. This implies
that, even when there are sudden shocks in the customers’ arrival patterns, either from seasonality
or other non-stationarity effects, the algorithm maintains a strong performance guarantee.

2For each future customer and an assortment, the clairvoyant algorithm knows the probability that the customer
will purchase a product from that assortment but does not know the exact choice that the customer will make. In
other words, the clairvoyant algorithm knows the choice model but does not know the realization of the random
choices of a future customer.
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The (1− 1
e ) fraction of the benchmark revenue is optimal for non-stationary stochastic arrivals

in the sense that in the worst-case, no deterministic or randomized policy can achieve a higher
competitive ratio; see Theorem 2.

When customer arrivals are stationary, our algorithms perform even better. We show that,
when the types of arriving customers are independently and identically distributed, our algorithm
is guaranteed to obtain at least 75% of the benchmark; see Theorem 3. In our numerical experiments,
presented in Section 7, our algorithms perform even better than what is predicted by the worst-case
bound, obtaining revenues that are within 96%-99% of the benchmark.

Simplicity, robustness, and flexibility: in contrast to the existing methods, our Inventory-
Balancing algorithms are extremely simple and fast. We do not need to solve any offline assortment
optimization problem, so we can compute the decision for each customer quickly. Our formulation
allows for infinite customer types, so our algorithms are robust to changing customer types over
time. In addition, under mild assumptions, our analysis and performance guarantees continue
to hold when the choice models of the customers are learned over time and the algorithm uses
estimations of the parameters of the choice models; see Proposition 1.

Our proposed algorithms are also flexible, and they can be easily combined with existing re-
optimization methods while maintaining worst-case performance guarantees; see Section 5.3 and
Proposition 2. Our numerical experiments show that such a hybrid method brings out the ad-
vantages of all methods, especially when there is uncertainty in the number of future customers.

The key messages in this paper are that personalization can increase the revenue significantly
and real-time optimization of personalized assortments can be done efficiently and robustly. Our
proposed policies maintain a simple index for each product, which balances the nominal revenue
with the value of each unit of remaining inventory. These indices are easy to implement, and
they serve as a simple mechanism that coordinates between front-end real-time decisions and the
back-end supply chain constraints. As the volumes of data on customer profiles and preferences
continue to grow, we believe that companies will consider the personalization of other operational
decisions, such as pricing or shipping options. The framework and analysis in this paper can serve
as a starting point for more complex models.

1.1 Literature Review

Our work is related to the growing literature on assortment planning. We describe a brief overview of
the area to provide a context for our work. Assortment planning problems focus on the relationships
among assortment offerings, customer choices, and inventory constraints. van Ryzin and Mahajan
(1999) introduced one of the first models that capture the tradeoffs between inventory costs and
product variety. Mahajan and van Ryzin (2001) followed up on this work with a study on the
optimal inventory levels in the presence of stockouts and substitution behavior. Since their seminal
work was published, researchers have considered a variety of choice models and studied how such
models affect the optimal assortment and the inventory level of products that should be carried.
Examples include the demand substitution model (Smith and Agrawal, 2000), the Lancaster choice
model (Gaur and Honhon, 2006), ranked-list preferences (Honhon et al., 2010; Goyal et al., 2011),
and multinomial logit models (Talluri and van Ryzin, 2004; Gallego et al., 2004; Liu and van
Ryzin, 2008; Topaloglu, 2013). Recently, Farias et al. (2013) introduced a very general class of
choice models based on a distribution over permutations and developed efficient algorithms for
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determining the optimal assortment. For a survey of the assortment planning literature, the reader
is referred to Kök et al. (2008).

Two of the most important decisions in modeling an assortment planning problem are determin-
ing the customers’ choice models and capturing the arrival process of the customers. The family of
choice models considered in our paper is quite general and includes most of the choice models used
in practice or previously studied by researchers. What distinguishes this work from the existing
literature is the fact that we do not impose any restrictions on the arrival process, and most of our
results hold even if an adversary chooses the sequence of customers. In the following, we briefly
discuss the prevalent approaches to model the arrival process.

A common approach to model customer arrivals is to assume that arrivals follow a stochastic
process. In this model, the optimal sequence of assortments can be planned by solving a multi-
dimensional dynamic program, see Appendix C. Not surprisingly, this approach suffers from the
curse of dimensionality, even for stationary processes.

Recently, Bernstein et al. (2011) studied the aforementioned assortment planning model under
the assumption that the type of customer (represented by multinomial logit choice models) is drawn
identically and independently from a stationary distribution, i.e., I.I.D. arrivals. For two products
with equal revenue, two customer types (with each type following a multinomial logit choice model),
and Poisson arrivals, they provide structural properties of the optimal solution. Interestingly, they
show that the optimal dynamic program may withhold products with low remaining inventory for
future customers that are more interested in them. Based on this observation, they propose a
heuristic that, roughly speaking, reduces the general problem with multiple products to a two-
product problem by separating the products into two groups based on their inventory to demand
ratio. They do not provide any performance guarantees for the heuristic.

In practice, we do not expect the distribution of customer types to remain constant over time
because of seasonality effects or changing popular trends. In the context of airline revenue man-
agement, the fraction of business customers tends to increase as the departure date approaches.
Prior to our work, to the extent of our knowledge, the best known performance guarantee for a
heuristic with respect to a clairvoyant optimal solution in non-stationary stochastic environments
was a ratio of 1

2 that follows from Chan and Farias (2009). When the arrivals are stochastic, with
some adjustments, the assortment planning studied in the paper would fit into the stochastic de-
pletion framework proposed by Chan and Farias (2009). They show that, in their framework, the
competitive ratio of a myopic policy is at least 1

2 .
Re-optimization policies (Jasin and Kumar, 2012) are applicable to non-stationary stochastic

environments. However, we are not aware of any results that provide a performance guarantee.3

The closest work to this line of research is by Ciocan and Farias (2013), who studied re-optimization
policies for a network revenue management problem where the distribution of the valuation of the
customer (i.e., the distribution of the types) is constant over time, but the size of the market changes
over time according to a stochastic (e.g., multi-variate Gaussian) process. They showed that a re-
optimization policy that adjusts prices of the products by solving a linear program obtains about
one-third of the optimal revenue; see also Chen and Farias (2013). In contrast to dynamic pricing
problems, where firms manage their profits and capacities by controlling prices, in assortment
planning models, product prices are exogenously determined and remain constant over the horizon,
and firms decide on the selection of the assortment to offer to each customer.

3The analysis of Liu and van Ryzin (2008) and Jasin and Kumar (2012) extends to the environment with time-
varying demand if the demand varies slowly over time, but not when the demand is volatile.
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We choose the competitive ratio as our performance benchmark because it allows for arbitrary
non-stationary and even adversarial arrivals, and it does not require any prior knowledge about
the arrival patterns. This notion has been previously applied by Ball and Queyranne (2009) to the
problem of capacity allocation. Besbes and Zeevi (2011) and Besbes and Sauré (2012) also used
similar notions of optimality when they studied revenue management problems where the demand
may change dramatically because of shocks.

The problem we study here resembles some aspects of the Adwords problem (Mehta et al., 2007;
Buchbinder et al., 2007; Goel et al., 2010; Azar et al., 2009), where the goal is to allocate a sequence
of advertising spaces associated with search queries to budget-constrained advertisers. Both the
Adwords and personalized assortment optimization problems contain the b-matching problem as
a special case (Kalyanasundaram and Pruhs, 2000). Mehta et al. (2007) proposed an algorithm
that achieves an optimal-competitive ratio for the Adwords problem by taking into account both
the bid and the budget of the advertisers; see Buchbinder and Naor (2007) and Mehta (2012) for a
survey on online algorithms and Acimovic and Graves (2011) for another application in the context
of inventory management.

Organization: In Section 2, we formally define our problem. Our algorithm and the main results
are presented in Section 3. We discuss the performance of our algorithm under stationary stochastic
arrivals in Section 4, followed by discussions of extensions of our original model in Section 5. The
proof of the competitive ratio and discussions of computational complexity are presented in Section
6. We present the numerical experiments in Section 7. The conclusion and direction for future
work are given in Section 8.

2 Preliminaries and Problem Formulation

Consider a firm that sells n products, indexed by 1, 2, . . . , n, to customers that arrive sequentially
over time. The firm obtains a revenue ri > 0 for selling each unit of product i, which has an initial
inventory of ci ∈ Z+, with no replenishment. We denote the no-purchase option as product 0, with
r0 = 0. Let Z denote the set of possible customer types. Once a customer arrives, her type, denoted
by z ∈ Z, is revealed. For instance, the type of a customer can correspond to his or her computer
type; i.e., Z = {Mac,PC}.4 As mentioned in the introduction about assortment personalization by
Orbitz.com, the type z = Mac may suggest that the user is more likely to choose expensive travel
options. If we are interested in the location of each customer, then the type of the customer can
correspond to his or her ZIP code.5 In addition, the revelation of each customer’s type can happen
when the customer logs in to the website, e.g., Amazon or eBay.

Based on the customer’s type and the remaining inventory, the firm offers an assortment S ∈ S,
where S denotes the set of all feasible assortments; we assume that {0} ∈ S; i.e., the firm has the
option to not offer any product. The set S allows us to incorporate a variety of constraints on the
assortments, such as shelf-space or size constraints; see Section 6.4.

Associated with each customer type z ∈ Z is the probability of purchasing each product under
each assortment. More specifically, each customer type z ∈ Z corresponds to a general choice

4This information is communicated to the website that the user is visiting.
5This information may be identified through each customer’s IP address or (opt-in) cellphone’s GPS signals;

see Steel and Angwin (2010).
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model that specifies the probability of purchasing each product under each assortment. We denote
by φzi (S) the probability that a customer of type z purchases product i, when assortment S is
offered. In fact, all of our results continue to hold when each customer may purchase more than
one product at a time: we define Φz : S × S → [0, 1], where Φz(S′, S) is the probability that
a customer of type z will purchase exactly the products in set S′ when assortment S is offered;
in addition, Φz(S′, S) = 0 when S′ 6⊆ S or S 6∈ S and

∑
S′⊆S Φz(S′, S) = 1. Hence, we have

φzi (S) =
∑

S′:i∈S′,S′⊆S Φz(S′, S). In the remainder of the paper, we use only the notation φzi (·).
Our goal is to design an algorithm that offers an assortment to each arriving customer to

maximize the total expected revenue. Let a vector {zt}Tt=1 = (z1, z2, · · · , zT ) represent the sequence
of the types of the arriving customers, where for each t, zt ∈ Z denotes the type of the customer
that arrives in period t.

Definition 1. For any algorithm A and any sequence of customer types {zt}Tt=1, we denote by
RevA

(
{zt}Tt=1

)
the expected revenue obtained by algorithm A from the customers {zt}Tt=1, where

the expectation is taken with respect to the choices made by each customer and possibly random
selections of the algorithm (if the algorithm is not deterministic).

We do not assume any arrival patterns, and the algorithm does not know the sequence of the
customers in advance. Therefore, we use the notion of the competitive ratio, defined below, to
measure the performance of an algorithm. The following lemma establishes an upper bound on the
expected revenue that can be obtained by any algorithm from a sequence of customers.

Lemma 1 (Revenue Upper Bound). For any sequence of customers
(
{zt}Tt=1

)
and any algorithm

A, RevA
(
{zt}Tt=1

)
is bounded by the optimal value of the linear program Primal

(
{zt}Tt=1

)
defined

below:

maximize
∑T

t=1

∑
S∈S

∑n

i=1
riφ

zt
i (S)yt(S) (Primal

(
{zt}Tt=1

)
)

subject to:
∑T

t=1

∑
S∈S

φzti (S)yt(S) ≤ ci 1 ≤ i ≤ n∑
S∈S

yt(S) = 1 1 ≤ t ≤ T

yt(S) ≥ 0 1 ≤ t ≤ T, ∀S ∈ S

In the linear program above, yt(S) corresponds to the probability that the set S is offered to
the customer of type zt in period t. With a slight abuse of notation, we denote the optimal value of
the linear program above by Primal

(
{zt}Tt=1

)
as well. The proof, given in Appendix A, follows from

the fact that Primal
(
{zt}Tt=1

)
is an upper bound on the expected revenue of the optimal clairvoyant

solution that knows the sequence of the customer types in advance. Namely, we construct a feasible
solution for the linear program above based on the optimal clairvoyant solution, taking into account
the realizations of the customers’ choice models.

According to the above lemma, no algorithm without hindsight would obtain revenue equal to
Primal

(
{zt}Tt=1

)
. However, an algorithm with no knowledge of the future types might be able to

obtain a fraction of the revenue of this clairvoyant optimal solution. Therefore, the competitive
ratio of an algorithm is defined as follows:
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Definition 2 (Competitive Ratio). An algorithm A is α-competitive if:

inf
T≥1

inf
{zt}Tt=1 : zt∈Z ∀t

RevA
(
{zt}Tt=1

)
Primal

(
{zt}Tt=1

) ≥ α .

The infimum is taken over all possible sequences of customer arrivals of arbitrary lengths. In
other words, the competitive ratio is defined as the worst-case ratio between the “expected revenues”
of an algorithm and the optimal clairvoyant solution over a (possibly infinite) sequence of customer
types, where the expectation is with respect to the customers’ choice models.6

One potential criticism of the notion of the competitive ratio could be that it compares algo-
rithms with a benchmark that is too strong. However, as we show in the following sections, in the
context of assortment planning, it leads to simple algorithms that perform very well with respect
to this benchmark. Moreover, our numerical simulations demonstrate the practical relevance of our
method and show that our algorithms outperform existing methods in the literature.

3 Inventory-Balancing Algorithms

We present a family of algorithms called Inventory-Balancing (IB), which take into account both
the revenue that would be obtained from the customer and the current inventory levels to decide
which assortments to offer. Each Inventory-Balancing algorithm is defined with a penalty function
Ψ : [0, 1]→ [0, 1], which is an increasing function with Ψ(0) = 0 and Ψ(1) = 1.

Recall that ci is the initial inventory of product i. Let Iti denote the remaining inventory of
product i at the end of period t. Note that I0

i = ci, and for t ≥ 1, Iti = max{It−1
i −Qti, 0}, where Qti

is a binary random variable that is equal to 1 if the customer has chosen product i and 0 otherwise.
We are now ready to describe the algorithm.

Inventory-Balancing with a Penalty Function Ψ

Upon the arrival of the customer in period t ∈ {1, . . . , T} of type zt, offer an assortment St:

St = argmaxS∈S
∑
i∈S

Ψ
(
It−1
i /ci

)
riφ

zt
i (S)

The assortment St can be found in polynomial time for a broad class of choice models; see
Section 6.4. In the case of ties, we choose any of the sets with the smallest number of products. We
can think of riΨ

(
It−1
i /ci

)
as the discounted revenue associated with product i, where the discount

factor Ψ
(
It−1
i /ci

)
is determined by the penalty function, and it depends on the fraction of the initial

inventory that remains. As we discuss in Section 4.1, Ψ
(
It−1
i /ci

)
corresponds to a dual solution to

Primal
(
{zt}Tt=1

)
. Namely, for each t, using Ψ

(
It−1
i /ci

)
, we can construct a feasible solution for the

6 Note that we use the upper-bound linear program Primal
(
{zt}Tt=1

)
as a proxy for the revenue of the optimal

clairvoyant algorithm. This can be interpreted as giving even more power to the clairvoyant algorithm since it can
now respect inventory constraints only in expectation. However, such additional power would be negligible with large
inventory levels, which we believe are more interesting and realistic instances of the problem.
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dual of Primal
(
{zt}Tt=1

)
, and the value of this feasible dual solution is within a “constant” factor of

Primal
(
{zt}Tt=1

)
.

The main idea behind the algorithm is simple. Sometimes it might be better to sell a product
with a lower marginal revenue but a high inventory level than to sell a product with high marginal
revenue but a small remaining inventory. This is because future customers might only be interested
in products with low (or no) inventory, and if we have already sold those products, we would lose
these profitable opportunities.7 The penalty function thus protects against uncertainty in future
customer types. The following example shows what will happen if we ignore the inventory level,
and only offer assortments with the highest revenues; see Mehta et al. (2007) and Bernstein et al.
(2011) for similar examples.

Example: Myopic Policy and Why Inventory Levels Matter Consider a myopic policy
that does not take into account any inventory level. The policy corresponds to the following penalty
function: Ψ(x) = 1l[x > 0]; i.e., Ψ(x) is equal to 1 if the remaining inventory of the product is
positive and 0 otherwise. This algorithm, at any period, offers the assortment, among products
with positive inventory, that maximizes the expected revenue. The following scenario shows that
the competitive ratio of the myopic policy is at most 1

2 . Suppose that the length of the horizon
is equal to T . There are two products with the following parameters: r1 = 1 + ε, r2 = 1, and
c1 = c2 = T

2 . We have two customer types. The first type arrives during periods 1, . . . , T2 , and
the second type arrives in periods T

2 + 1, . . . , T . For t ∈ {1, . . . , T2 }, φ
zt
1 ({1}) = φzt2 ({2}) = 1 and

φzti (S) = 0 otherwise. For t ∈ {T2 + 1, . . . , T}, φzt1 ({1}) = 1 and φzti (S) = 0 otherwise. In this
setting, a customer of the first type is interested in both products 1 and 2, while the second type
is interested only in product 1.

The myopic policy will allocate all the inventory of product 1 to the customers that arrive in pe-
riods 1, 2, . . . , T2 and obtain a revenue of T2 (1+ε). However, the optimal solution of Primal

(
{zt}Tt=1

)
allocates all the inventory of product 2 to the customers that arrive in periods 1, 2, . . . , T2 , and then
sells product 1 to customers that arrive afterwards in period T

2 + 1, . . . , T , yielding a revenue of
T
2 (2 + ε). Note that T (1+ε)

T (2+ε) ≤
1
2 + ε. Since ε can be arbitrarily small, the competitive ratio of the

myopic policy is at most 1
2 .8

The above example, though rather stylized, highlights the importance of inventory levels in
assortment planning. We will show that, by discounting the revenue of each product based on
its remaining inventory, the Inventory-Balancing algorithms obtain a better competitive ratio.
Throughout the paper, we impose the following mild assumption on the choice models.

Assumption 1 (Substitutability). For all z ∈ Z, S ∈ S, and i 6= j, φzi (S) ≥ φzi (S ∪ {j}).

The above assumption implies that adding another product to an assortment does not increase
the probability of selling other products in the assortment. It is easy to verify that the above
assumption encompasses all choice models that are consistent with random utility maximization9

7Bernstein et al. (2011) show that (under certain assumptions) the behavior of the optimal dynamic program is
similar to this intuition.

8On the other hand, it is not difficult to show that the myopic policy obtains at least 1
2

of the revenue of the
benchmark revenue. Hence, the ratio 1

2
is tight.

9This is because, under the random utility maximization (cf. Talluri and van Ryzin, 2004), φzi (S) =
Pr
{
Uzi ≥ max`∈S∪{0} U

z
`

}
where (Uz0 , U

z
1 , . . . , U

z
n) is the random utility vector that a customer of type z assigns
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including the multinomial logit choice model, the nested logit, and many others. The above as-
sumption leads to the following desirable property. The proof is relegated to the appendix.

Lemma 2. Under Assumption 1, the Inventory-Balancing algorithm never offers an assortment
that includes a product with zero remaining inventory.

In Section 5.4, we relax Assumption 1 and extend our results to a more general setting where
stockouts are allowed. We now use Lemma 2 to establish the competitive ratio. The proof is given
in Section 6.1.

Theorem 1 (Competitive Ratio). Let cmin = min
i=1,...,n

ci. Suppose that Ψ is an increasing, con-

cave, and twice-differentiable penalty function. The competitive ratio of the Inventory-Balancing
algorithm with a penalty function Ψ is at least equal to αcmin(Ψ), where

αcmin(Ψ) = min
x∈
[
0,1− 1

cmin

]
 1− x

1
cmin

+ 1−Ψ(x) +
∫ 1
x+ 1

cmin

Ψ(y)dy


We emphasize that the competitive ratio in the above theorem depends only on cmin and penalty

function Ψ, and the ratio does not depend on the length of the horizon T . Hence, the above result
holds when T increases to infinity. It also holds for any sequence of customer types of arbitrary
length, even if the sequence is chosen by an adversary.

Many of the previous results in the literature have been established for an asymptotic regime
where the size of the initial inventory cmin and the length of the horizon T tend to infinity. The
justification for the asymptotic analysis is that the initial inventory of products and the number
of customers are often large. In this asymptotic regime, we can simplify the expression for the
competitive ratio. We define:

α(Ψ) := α∞(Ψ) = min
x∈[0,1]

{
1− x

1−Ψ(x) +
∫ 1
x Ψ(y)dy

}
.

We observe that the competitive ratio of the algorithm improves slightly as cmin becomes larger.
For instance, for the polynomial penalty functions Ψ(x) =

√
x, the competitive ratio with cmin = 2, 5,

and 10 is, respectively, 0.52, 0.55, and 0.57. This ratio approaches α(
√
x) = 0.60 as cmin grows.

As a corollary of Theorem 1, we can show that the competitive ratio is at least 1
2 for any

increasing concave function. Therefore, by taking into account the remaining inventory levels, we
obtain a better performance guarantee than a myopic policy that ignores inventory.

Corollary 1. For the Inventory-Balancing algorithm with a linear penalty function (LIB), Ψ(x) =
x, the competitive ratio αcmin(x) is equal to 1

2 for any cmin ≥ 1. For any increasing strictly concave
and differentiable penalty function, the competitive ratio is strictly greater than 1

2 .

to each product. The random variables (Uz0 , U
z
1 , . . . , U

z
n) may be correlated and can have arbitrary distributions.

If j 6= i, then

φzi (S ∪ {j}) = Pr

{
Uzi ≥ max

`∈S∪{j}∪{0}
Uz`

}
≤ Pr

{
Uzi ≥ max

`∈S∪{0}
Uz`

}
= φzi (S) .

10



The proof is given in Appendix A. Note that this is a worst-case performance guarantee and
does not imply that the Inventory-Balancing algorithms outperform the myopic policy for every
sequence of customers. In practice, as suggested by our numerical simulations, we expect that the
IB algorithms and even the myopic policy often to perform better than their theoretical worst-
case bounds; see Section 7.2.

The choice of the penalty function determines the trade-offs between the revenue from selling
a product and the value of the remaining inventory. For a linear penalty function Ψ(x) = x, the
derivative is always 1, and a reduction in a unit of inventory has the same penalty, regardless
of the inventory level. On the other hand, the derivative of the exponential penalty function
Ψ(x) = e

e−1(1 − e−x) is given by e
e−1e

−x, which decreases from 1.58 at x = 0 to 0.58 at x = 1.
Under the exponential penalty function, consuming one unit of inventory incurs a higher penalty
when the inventory is scarce. In regimes with high demand and low inventory, we would expect
that the Inventory-Balancing algorithm with an exponential penalty function (EIB) to be more
conservative and hold back more products to hedge against future arrivals. As we show in the
next section, the best competitive ratio can be obtained using an exponential penalty function
Ψ(x) = e

e−1(1− e−x).

3.1 The Tight Upper Bound on the Competitive Ratio

We start this section by providing an upper bound on the competitive ratio. Then, in Theorem 2,
we show that an IB algorithm with an exponential penalty function achieves this upper bound,
showing that our proposed method achieves an optimal competitive ratio.

Lemma 3 (Upper Bound on the Competitive Ratio). For any number of products n, we can con-
struct a non-stationary stochastic process for customer arrivals where, for every deterministic algo-
rithm (including the optimal dynamic program), there exists a sequence of customer types {zt}Tt=1

such that the revenue of the algorithm is at most a fraction ρn =
(

1
n

∑n
j=1 min

{∑j
t=1

1
n−t+1 , 1

})
of Primal

(
{zt}Tt=1

)
.

For instance, for n = 2, 5, and 20, the upper bound ρn is respectively equal to 0.75, 0.69, and
0.64, and ρn approaches limn→∞ ρn = 1− 1

e ≈ 63% as the number of products n increases.
In the proof of the above lemma, given in Section 6.2.1, we construct a stochastic process

that consists of n products. The per-unit revenue from each product is equal to 1, and the initial
inventories are equal to T

n . Think of T , the length of the horizon, as a very large number (that would
tend to infinity) and a multiple of n. The number of types is equal to 2n−1. Each type corresponds
to a non-empty set Θ of products that a customer of that type equally likes; the “no-purchase”
probability for all types is equal to zero. Note that this is a special case of the multinomial logit
choice model where all the products have a weight of either 0 or 1. The arrival process is defined
as follows: customers arrive in n phases of equal length; that is, the number of customers in each
phase is T

n . All the customers in each phase have the same type. Customers in the first phase are
interested in all the products. After that, in each phase, customers randomly lose interest in one
of the products of interest in the previous phase; i.e., there are n! sequences of customer arrivals,
each with equal probability.

Now, we show that the Exponential Inventory-Balancing algorithm achieves the optimal com-
petitive ratio.

11



Theorem 2 (Exponential IB Achieves the Optimal Competitive Ratio). The competitive ratio of
the Inventory-Balancing algorithm with an exponential penalty function (EIB), Ψ(x) = e

e−1(1−e−x),

x ∈ [0, 1], approaches
(
1− 1

e

)
as cmin increases to infinity; i.e., α

(
e
e−1(1− e−x)

)
= 1− 1

e . Moreover,

no algorithm, deterministic or randomized, that does not know the sequence of customer types in
advance can obtain a competitive ratio better than 1− 1

e .

The proof is given in Section 6.2. The first part of the proof is based on Theorem 1. The second
part follows from applying Yao’s Lemma (Yao, 1977) to Lemma 3. Yao’s Lemma implies that the
competitive ratio of any randomized algorithm that does not know the input sequence in advance is
bounded by the competitive ratio of any deterministic algorithm that knows the distribution over
the input sequence.

We note that the upper bound of (1 − 1
e ) applies to all deterministic algorithms, including

the optimal dynamic programming (Bernstein et al., 2011) and re-optimization (Jasin and Kumar,
2012) policies. Thus, by the theorem above, in terms of the competitive ratio, the Inventory-
Balancing algorithm with an exponential penalty function is optimal for this problem. We remark
that this notion of optimality does not imply that the algorithm will yield the highest revenue from
every sequence of customers.

Under Theorem 1, the competitive ratio of the Exponential Inventory-Balancing algorithm with
limited inventory, such as for cmin = 5, 10, 20, and 30, is respectively equal to 0.57, 0.60, 0.61, and
0.62. The ratio approaches 0.63 rather rapidly as cmin grows. We emphasize that these ratios hold
for all values of T , including the asymptotic regime where T increases to infinity (at a possibly
faster rate than cmin).

Moreover, as shown in our numerical experiments, our algorithms often perform much better
than the worst-case guarantee bounds.

4 Stochastic I.I.D. Arrivals

The competitive ratio of our IB algorithm in Theorems 1 and 2 hold for any arbitrary, possibly
adversarially chosen sequence of customer types. It turns out that our IB algorithm performs even
better if the customer arrivals follow a stochastic process, that is, when the sequence of customers
{zt}Tt=1 is generated by a stochastic process that is known in advance. In this model, the optimal
sequence of assortments can be planned by solving a multi-dimensional dynamic program; for more
details, see Appendix C. Not surprisingly, this approach suffers from the curse of dimensionality,
even for stationary processes; see Bernstein et al. (2011).

Under stochastic models, although a dynamic programming approach may be intractable, there
is room for natural and powerful heuristics. First observe that, for any algorithm A, the expected
revenue of the algorithm, denoted by E{zt}Tt=1

[RevA
(
{zt}Tt=1

)
], is well-defined, where E{zt}Tt=1

is the
expectation with respect to the sequence of customers. Recall that, by definition, the expectation
of customers’ choices is taken into account by RevA(·). Furthermore, we can establish an upper
bound on the revenue of the algorithm. The proof is omitted due to its similarity to Lemma 1.

Lemma 4 (Revenue Upper Bound for I.I.D. Arrivals). Suppose that the types of customers are
drawn independently and identically from a known distribution. Let ηz be the expected number of
customers of type z ∈ Z. The expected revenue of any algorithm A, E{zt}Tt=1

[RevA
(
{zt}Tt=1

)
], is

12



bounded by the optimal value of the linear program Primal-S, defined below:10

maximize
∑

z∈Z
∑

S∈S
∑

i∈S η
zriφ

z
i (S)yz(S)

subject to:
∑

z∈Z
∑

S∈S η
zφzi (S)yz(S) ≤ ci 1 ≤ i ≤ n,∑

S∈S y
z(S) = ηz ∀z ∈ Z,
yz(S) ≥ 0 ∀z ∈ Z, S ∈ S

(Primal-S)

In the above linear program, yz(S) is the probability of offering the set S to a customer of type z.
As before, we also denote the optimal solution of the above linear program by Primal-S. Note that
Lemma 1 provides a stronger upper bound since it holds for every customer sequence, while the
above upper bound holds only in expectation. Theorem 1 provides a bound on the performance
of our algorithms with respect to the upper bound in Lemma 1. When we have I.I.D. arrivals
and use Primal-S as the benchmark, as stated by the theorem below, we obtain an even stronger
performance guarantee for our algorithms.

Theorem 3 (Improved Performance Guarantee in the I.I.D. Arrival Model). Suppose that, in
every period t, the type of an arriving customer is drawn independently and identically from a
common distribution over the set of types Z. In the asymptotic regime where cmin and T increase
to infinity with T

cmin
= k for some positive integer k, then with high probability, the Inventory-

Balancing algorithms with linear (LIB) and exponential (EIB) penalty functions satisfy the following
inequalities:

lim
T,cmin→∞

E{zt}Tt=1
[RevLIB

(
{zt}Tt=1

)
]

Primal-S
≥ 0.72 and lim

T,cmin→∞

E{zt}Tt=1
[RevEIB

(
{zt}Tt=1

)
]

Primal-S
≥ 0.75,

where the expectations in E{zt}Tt=1
[·] is taken with respect to the sequence of arriving customers.

The proof is given in Section 6.3. The basic idea is to construct a (factor-revealing) linear
program, denoted by FRLP. With high probability, every solution obtained by the Inventory-
Balancing algorithm corresponds to a feasible solution of FRLP, and the objective corresponds to
the ratio of the expected revenue E{zt}Tt=1

[
RevIB

(
{zt}Tt=1

)]
of the IB algorithm and Primal-S. FRLP

is parameterized by a discretization parameter ε. For each ε, we can solve the linear program to
determine the lower bound on the competitive ratio.

4.1 Motivating IB Algorithms via Dual-Based Heuristics

In this section, we provide the motivation and intuition behind our Inventory-Balancing algorithm.
The discounted revenue index in our IB algorithm is a proxy (approximation) for the dual variables.
To see this, consider the following policy for I.I.D. arrival model.

1. Observe the type of the first εT customers.11

10See Gallego et al. (2004); Liu and van Ryzin (2008) for a similar linear programming formulation in the context
of choice-based network revenue management.

11For the purpose of analysis, assume that no product is shown to this customer that is St = {0} for t ≤ εT .
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2. Solve the dual of Primal
(
{zt}Tt=1

)
for the first εT customer:

minimize
∑εT

t=1 λ
t +
∑n

i=1 θiεci

subject to: λt ≥
∑

i∈S (ri − θi)φzti (S) 1 ≤ t ≤ εT, S ∈ S,
θi ≥ 0 1 ≤ i ≤ n.

(1)

Let θ∗i (εT ), i = 1, 2, . . . , n, be the solution of the linear program above.

3. For each subsequent customer of type z ∈ Z, we offer an assortment St:

St = argmaxS∈S
∑
i∈S

(ri − θ∗i (εT ))φzi (S)

Note that the algorithm does not need to know the distribution in advance. Following from the
results of Devenur and Hayes (2009); Agrawal et al. (2009); Feldman et al. (2010), and Jaillet and
Lu (2012), we can show that this algorithm is asymptotically optimal for I.I.D. stochastic arrivals.12

Since the proof is similar to the existing literature, we omit the details.
Note that the selection rule of the above heuristic is similar to our algorithms by replacing

ri − θ∗i with ri ×Ψ
(
It−1
i /ci

)
. In our Inventory-Balancing algorithms, however, we do not assume

any patterns for the arrival of future customers. Thus, we can think of the discounted revenue
index ri × Ψ

(
It−1
i /ci

)
as the “estimate” of the dual parameters based on the current inventory

levels. This index value does not require any forecasting, and by choosing an appropriate penalty
function Ψ, we can obtain an optimal competitive ratio, as shown by Theorem 1. See Feldman
et al. (2010), who apply similar ideas to the online allocation of display advertisement.

5 Extensions

In this section, we discuss how our policies can be extended to more general settings and incorporate
additional information about the customers’ choice models or arrival patterns.

5.1 Incorporating Partial Information and Learning Customer Types

So far, we have assumed that, in each period, the algorithm knows the customer choice models.
Namely, the φzi (S) of the customer of type z is the exact value of the selection probability. However,
this may not always be the case. The firm may learn the choice model associated with each customer
type over time. For instance, in our numerical simulations, we associate the type of each customer
to his or her location. We consider the case where the firm estimates the parameters of an MNL
model for each location by learning from the purchases of the previous customers from that location.

Suppose that an arriving customer in period t is of type z. We denote by φ̄zi (S) the true selection
probability of product i when assortment S is offered to a customer of type z. In this environment,
φzti (S) represents the current estimation of the selection probabilities.13 These estimates can be

12The dual heuristic is 1−O(ε)-competitive for a real-time assortment optimization problem, with high probability

if: i) max

{
ri

Primal({zt}Tt=1)

}
≤ ε

(n+1)(ln(T )+ln(2n))
ii) 1

cmin
≤ ε3

(n+1)(ln(T )+ln(2n))
.

13Note that φ̄zi (S) does not depend on the mechanism; however, φzti (S) is a function of the mechanism since the
estimations of the mechanism for each customer type depend on the assortments offered in the past.

14



obtained using partial information or historical data. We do not require specifics about how these
estimations are made. However, a good example would be when the customer types are drawn from
a stationary distribution and the parameters of the choice model are learned from observing cus-
tomers’ choices. Under standard assumptions, we expect that the estimated selection probabilities
would converge to the true selection probabilities; see Section 5.2 for an example.

The following proposition provides a lower bound on the competitive ratio when we have esti-
mation errors.

Proposition 1 (Competitive Ratio with Estimation Errors). For each t, let εt = maxi,S |φzti (S)−
φ̄zti (S)| be the random variable corresponding to the maximum estimation error in period t. Suppose
that the Inventory-Balancing algorithm sells at least one unit of each product. Then, the competitive
ratio of the Inventory-Balancing algorithm is at least equal to

min
x∈
[
0,1− 1

cmin

]
 1− x

1
cmin

+ 1−Ψ(x) +
∫ 1
x+ 1

cmin

Ψ(y)dy + 2
cmin

E
[∑T

t=1 ε
t
]
 .

The proof is given in Appendix A. Note that, when there is no estimation error, i.e., φzti (S) =
φ̄zti (S), then the above expression is the same as the competitive ratio in Theorem 1. Furthermore,
the only assumption made on the estimation errors is that the algorithm should sell at least one
unit of each product. This assumption is made mainly for technical reasons to rule out the situation
that the estimations are so far off that the algorithm never sells the products sold by the optimal
solution (which knows the true estimations). We expect this condition to be satisfied when the
estimation errors are small or if they vanish over time as the mechanism gathers more data about
each type.

In the next section, we present an example that demonstrates how learning customer types can
be incorporated in our framework. Furthermore, in Appendix B.3, using numerical simulations,
we evaluate the performance of the IB algorithms when the selection probability for each customer
type is unknown and must be estimated from data collected in earlier periods.

5.2 Learning the Customer Types under the Multinomial Logit Model

Suppose that the choice model of each customer type is described by a multinomial logit. If we show
all products to m independent customers of type z and compute the maximum likelihood estimates
(V z

0 , . . . , V
z
n ), then it is a standard result that Pr

{
maxi,S |φzi (S)− φ̄zi (S)| > δ

}
≤ d e−δ

2m. Here,
φzi (S) = V z

i /(V
z

0 +
∑

`∈S V
z
` ) and d is a constant, see, for example, Rusmevichientong et al., 2010.

Therefore, E
[
maxi,S |φzi (S)− φ̄zi (S)|

]
≤ δ + d e−δ

2m.
Now consider the following variation of the IB algorithm: upon the arrival of the customer

in period 1 ≤ t ≤ T , of type zt, with a probability of 0 < γ < 1, we do exploration, i.e., we
show all the products to the customer and with a probability of 1 − γ, we offer an assortment
St = argmaxS∈S

∑
i∈S Ψ

(
It−1
i /ci

)
riφ

zt
i (S), where φzti (S) is the estimated selection probability, as

described above, using previous sales data.
Note that the number of observations up to period t with high probability, is approximately

θ(γt). Hence, by setting δ = 1
t(1−δ1)/2

and m = γt where 0 < δ1 < 1, we have E
[

maxi,S |φzti (S) −
φ̄zti (S)|

]
= O

(
1

t(1−δ1)/2
+e−γt

δ1
)
, which implies that E

[∑T
t=1 ε

t
]

= o (T ), i.e., limx→∞ E
[∑T

t=1 ε
t
]
/T =
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0. Observe that as cmin and T proportionally grow, E
[∑T

t=1 ε
t
]
/cmin approaches 0. Note that we

allocate γ fraction of the inventory of each product for “exploration”. Using Proposition 1 and the
fact that algorithm loses at most a γ fraction of its revenue during explorations, the competitive
ratio of the modified algorithm, as cmin and T proportionally tend to infinity, would be equal to
(1− γ)α(Ψ).

Note that the modified algorithm, because of the constant rate of sampling, will still perform
well if the choice models change slowly over time.

5.3 Incorporating (Uncertain) Information about Arrivale Pattens

The Inventory-Balancing algorithms do not rely on any forecast of future customer arrivals; how-
ever, if such a forecast exists, it could potentially be used to improve the performance of the
algorithms. Consider a heuristic L such as the linear program re-optimization, that relies on the
distribution (e.g., the estimated number) of the customers of each type. This heuristic will perform
well if the estimations are accurate, but it performs poorly when the estimate turns out to be
inaccurate or there is a high degree of uncertainty; see Section 7. We propose a family of algo-
rithms called the Hybrid algorithm that combines the solution of such heuristics and IB algorithms.
These algorithms incorporate additional information about the arrival sequence while maintaining
a reasonable competitive ratio in unpredictable scenarios; see Mahdian et al. (2007, 2012).

The Hybrid algorithm, given below, is parameterized by a number γ ≥ 1. This parameter
controls the extent to which one would rely on heuristic L.

The Hybrid Algorithm with Parameter γ

Upon the arrival of a customer in period t ∈ {1, . . . , T}, of type zt:

• Let StL be the set that heuristic L recommends in period t.

• Offer the assortment StL if:

γ

∑
i∈StL

Ψ
(
It−1
i /ci

)
riφ

zt
i (S)

 ≥ max
S∈S

{∑
i∈S

Ψ
(
It−1
i /ci

)
riφ

zt
i (S)

}

• Otherwise, offer an assortment St ∈ argmaxS∈S
∑

i∈S Ψ
(
It−1
i /ci

)
riφ

zt
i (S).

The next proposition provides a lower bound on the competitive ratio of the Hybrid algorithm.

Proposition 2 (Competitive Ratio of the Hybrid Algorithm). Suppose that Ψ is an increasing,
concave, and twice-differentiable penalty function. As cmin →∞ , the competitive ratio of the Hybrid
algorithm with a penalty function Ψ and parameter γ and for any heuristic L is at least equal to
αγ∞(Ψ), where

αγ∞(Ψ) = min
x∈[0,1]

{
1− x

γ(1−Ψ(x)) +
∫ 1
x Ψ(y)dy

}
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For example, for the exponential penalty function, αγ∞
(

e
e−1 (1− e−x)

)
, for γ = 1.5 and γ = 2,

is approximately equal to 0.48 and 0.39, respectively. The proof is very similar to the proof
of Theorem 1 and is omitted. The main idea is to assign λt = γ

(∑
i∈St riΨ

(
It−1
i /ci

)
φzti (St)

)
.

Intuitively, we are extending the feasible region of the dual problem, which allows the algorithm to
follow the heuristics on the recommendations that are considered “safe.”

In our simulation results in Section 7.2 and the appendix, we consider a Hybrid algorithm that
combines the EIB algorithm (Theorem 2) and the linear program re-optimization heuristic. We
show that the Hybrid algorithm outperforms the Inventory-Balancing algorithm, when the number
of customers is known in advance by the re-optimization policies. On the other hand, when the
number of customers is uncertain, the Hybrid algorithm outperforms the re-optimization methods.

5.4 Beyond Substitutability

In this section, we explain how we can relax Assumption 1. Recall that, according to Lemma 2,
Assumption 1 implies that our algorithm does not benefit from showing a product with no remain-
ing inventory. However, sometimes the assumption may not hold such as when the dissimilarity
parameters in the nested logit model are larger than 1 (Davis et al., 2011; Bhat, 2002) or there are
externalities among the products14.

More specifically, we assume that the choice model satisfies the following property: suppose that
a customer is offered a set S and then she chooses product i ∈ S. Then, the customer buys product
i if it has positive inventory, or she leaves without making a purchase. Under this choice model, we
can use the Inventory-Balancing algorithm exactly in the same way as before. The inventory level
of the products that are out of stock remains at 0 even if the product is shown to the customer.

In this model, the optimal revenue can be upper-bounded by the linear program below.

maximize
∑T

t=1

∑
S∈S

∑n
i=1 riφ

zt
i (S)yt(S)−

∑
i riwi

subject to:
∑T

t=1

∑
S∈S φ

zt
i (S)yt(S)− wi ≤ ci 1 ≤ i ≤ n,∑

S∈S y
t(S) = 1 1 ≤ t ≤ T,
yt(S) ≥ 0 1 ≤ t ≤ T, S ∈ S,
wi ≥ 0 1 ≤ i ≤ n.

This linear program is the same as the linear program Primal
(
{zt}Tt=1

)
given in Section 2, with a

new set of variables: wi denotes the number of times that a customer selects product i after its
inventory hits 0. In this case, the product will not be allocated to the customer.

We now argue that the algorithm obtains the same competitive ratio as before. The argument
is based on the following observation. The dual of the linear program above is as follows:

minimize
∑T

t=1 λ
t +
∑n

i=1 θici

subject to: λt ≥
∑n

i=1 φ
zt
i (S) (ri − θi) 1 ≤ t ≤ T, S ∈ S,

θi ≤ ri 1 ≤ i ≤ n,
θi ≥ 0 1 ≤ i ≤ n.

14For example, William Poundstone, in his book Priceless, documented the following case: “Williams-Sonoma
added a $429 breadmaker next to their $279 model: sales of the cheaper model doubled even though practically
nobody bought the $429 machine.” Thompson (2012).
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Note that, compared to the previous dual in Section 6, the above linear program has a new set of
constraints: θi ≤ ri. However, these constraints are satisfied by our construction of the feasible
solution in the proof of Theorem 1. Therefore, the ratio of the primal and dual solutions and the
competitive ratio of the algorithm are the same as those described in Theorem 1.

6 Analysis

In this section, we prove our main theorems.

6.1 Proof of Theorem 1

We start with the following lemma proved in Appendix A.

Lemma 5. For any increasing, concave, twice-differentiable penalty function Ψ : [0, 1]→ [0, 1], the
function x 7→ 1−x

2−x−Ψ(x) increases on [0, 1], and for any a ∈ [0, 1], the function C 7→ 1
C +

∫ 1
a+ 1

C
Ψ(y)dy

decreases on [1/(1− a),∞).

Let {zt}Tt=1 be an arbitrary sequence of customers. Note that, according to Lemma 2, the
Inventory-Balancing algorithm respects the capacity constraints of the problem. However, its solu-
tion may not correspond to a feasible solution of Primal

(
{zt}Tt=1

)
. To compare the expected revenue

of our algorithm with the upper bound given by Primal
(
{zt}Tt=1

)
, we construct a sequence of feasible

dual solutions. The dual of Primal
(
{zt}Tt=1

)
is given below:

minimize
∑T

t=1 λ
t +
∑n

i=1 θici

subject to: λt ≥
∑n

i=1 φ
zt
i (S) (ri − θi) 1 ≤ t ≤ T, S ∈ S,

θi ≥ 0 1 ≤ i ≤ n.

(Dual
(
{zt}Tt=1

)
)

Based on the realization of customers’ choices, we construct a feasible solution for the linear program
Dual

(
{zt}Tt=1

)
as follows:

θi = ri(1−Ψ
(
ITi /ci

)
) i = 1, 2, . . . , n,

λt =
∑
i∈St

riΨ
(
It−1
i /ci

)
φzti (St) t = 1, 2, . . . , T.

Note that θi and λt are random variables because they depend on the inventory levels, which
are random. However, they form a feasible solution for the dual with a probability of one because

λt =
∑
i∈St

riΨ
(
It−1
i /ci

)
φzti (St) ≥

∑
i∈St

riΨ
(
ITi /ci

)
φzti (St) =

∑
i∈St

(ri − θi)φzti (St) ,

where the inequality follows from the fact that Ψ is increasing and It−1
i ≥ ITi an the equality follows

from the definition of θi; that is riΨ(ITi /ci) = (ri − θi).
We now calculate the expected value of this dual solution, which will provide an upper bound

on the value of Primal
(
{zt}Tt=1

)
by the weak duality theorem. Since the sequence of the customers(

{zt}Tt=1

)
is fixed, the expectation is with respect to the realization of each customer’s choice. Recall

that Qti is a binary random variable that is equal to 1 if the customer chooses product i in period
t and 0 otherwise. Thus,
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E

[
T∑
t=1

λt

]
= E

 T∑
t=1

∑
S′⊆St

∑
i∈S′

riΨ(It−1
i /ci)φ

zt(S′, St)

 = E

[
T∑
t=1

n∑
i=1

riΨ(It−1
i /ci)Q

t
i

]

= E

[
T∑
t=1

n∑
i=1

riΨ(It−1
i /ci)

(
It−1
i − Iti

)]
= E

 n∑
i=1

ri

ci∑
t=ITi +1

Ψ(t/ci)

 ,

where the second equality follows from the tower property of the conditional expectation and the
fact that E

[
Qti|I

t−1
1 , . . . , It−1

n

]
= φzti (St) since St is a function of It−1

1 , . . . , It−1
n . The third equality

follows from the observation that It−1
i − Iti = Qti. The final equality follows because the kth sold

unit of product i contributes an amount of Ψ
(
(ci − k + 1)/ci

)
to the summation.

Since θi and λt are dual feasible, it follows from the weak duality theorem that

E

[
T∑
t=1

λt +

n∑
i=1

ciθi

]
= E

 n∑
i=1

ri

 ci∑
t=ITi +1

Ψ(t/ci) + ci
(
1−Ψ

(
ITi /ci

)) ≥ Primal
(
{zt}Tt=1

)
.

On the other hand, the expected revenue of the Inventory-Balancing algorithm is equal to E
[∑n

i=1 ri(ci−
ITi )
]
. Therefore, the competitive ratio is at least

E
[∑n

i=1 ri(ci − ITi )
]

Primalm
(
{zt}Tt=1

) ≥
E
[∑n

i=1 ri(ci − ITi )
]

E
[∑n

i=1 ri

(∑ci
t=ITi +1

Ψ(t/ci) + ci
(
1−Ψ

(
ITi /ci

)))] .
Note that, if ITi = ci, then the contribution of product i to both the revenue of our algorithm and
to the constructed dual solution is zero. Therefore, the competitive ratio of the algorithm is at
least

min
(ci,ITi ):ITi ≤ci−1

ci − ITi∑ci
t=ITi +1

Ψ(t/ci) + ci
(
1−Ψ

(
ITi /ci

)) = min
(ci,x):x ≤ 1− 1

ci

1− x
1
ci

∑ci
t=ITi +1

Ψ(t/ci) + (1−Ψ(x))
,

where the equality follows from the variable transformation x = ITi /ci. Because Ψ(1) = 1 and Ψ is
increasing, we have

1

ci

ci∑
t=ITi +1

Ψ(t/ci) =
1

ci

1 +

ci−1∑
t=ITi +1

Ψ(t/ci)

 ≤ 1

ci
+

∫ 1

IT
i

+1

ci

Ψ(y)dy.

Putting everything together, we have the following lower bound on the competitive ratio:

min
(ci,x)∈R+×

[
0,1− 1

ci

]
 1− x

1
ci

+ 1−Ψ(x) +
∫ 1
x+ 1

ci

Ψ(y)dy


To complete the proof, it suffices to show that the above ratio is lower bounded by αcmin(Ψ) :=

min
x∈
[
0,1− 1

cmin

] 1−x
1

cmin
+1−Ψ(x)+

∫ 1

x+ 1
cmin

Ψ(y)dy
defined in Theorem 1. Consider an arbitrary (ci, x) ∈
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R+ ×
[
0, 1− 1

ci

]
. There are two cases to consider: x ≤ 1− 1

cmin
and x > 1− 1

cmin
. In the first case,

since the function C 7→ 1
C +

∫ 1
x+ 1

C
Ψ(y)dy decreases by Lemma 3 and ci > cmin, we have

1− x
1
ci

+ 1−Ψ(x) +
∫ 1
x+ 1

ci

Ψ(y)dy
≥ 1− x

1
cmin

+ 1−Ψ(x) +
∫ 1
x+ 1

cmin

Ψ(y)dy
≥ αcmin(Ψ).

In the second case, we have x > 1− 1
cmin

. Recall that, to compute the minimum competitive ratio,

we need to consider ITi < ci; thus, (ci, x) ∈ R+ ×
[
0, 1− 1

ci

]
and as a result, we have x ≤ 1− 1

ci
or

equivalently, ci ≥ 1/(1 − x). Applying Lemma 3 once again with 1
1−x as a lower bound for ci, we

get

1− x
1
ci

+ 1−Ψ(x) +
∫ 1
x+ 1

ci

Ψ(y)dy
≥ 1− x

1− x+ 1−Ψ(x) +
∫ 1
x+(1−x) Ψ(y)dy

=
1− x

2− x−Ψ(x)

≥
1−

(
1− 1

cmin

)
2−

(
1− 1

cmin

)
−Ψ(1− 1

cmin
)
≥ αcmin(Ψ) ,

where the second inequality follows from the fact that x > 1− 1
cmin

and Lemma 5, which shows that
1−x

2−x−Ψ(x) is increasing in x. This completes the proof.

6.2 Proof of Theorem 2

From Theorem 1 we have:

α(Ψ) = min
x∈[0,1]

 1− x

1− e
e−1

(
1− e−x −

∫ 1
x (1− e−y)dy

)


= min
x∈[0,1]

{
1− x

1− e
e−1 (1− e−x − 1 + x− e−1 + e−x)

}

= min
x∈[0,1]

{
1− x

1− e
e−1 (x− e−1)

}
=

e− 1

e
= 1− 1

e
.

The second part of the theorem is followed from Lemma 3.

6.2.1 Proof of Lemma 3

Consider a setting with n products, indexed by 1, · · · , n, all with revenue equal to 1 and initial
inventory of 1

nT .15 Think of T , the length of the horizon, as a very large number (that would tend
to infinity) and a multiple of n. The number of types is equal to 2n − 1. Each type corresponds to

15The proof is built upon ideas from Mehta et al. (2007). Our analysis is different, more rigorous, and applies to
smaller number of products. For instance, theirs omits the corresponding proof of Lemma 6 which we establish via
induction, using the dynamic programming formulation of the problem.
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a set Θ 6= ∅ of products that a customer of that type equally likes; the “no-purchase” probability
for all types is equal to zero.

The arrival process is defined as follows: customer arrives in n phases of equal length, that
is, the number of customers in each phase is T

n . All the customers in each phase have the same
type. We denote the type of the customer in phase j by Θj . We have Θ1 = {1, 2, . . . n}; for
j, 2 ≤ j ≤ n, Θj = Θj−1 \ {θj−1} where θj−1 is a randomly chosen element of Θj−1. In other
words, the set of products of interest to customer during phase j is the set of products of in-
terest to customers in phase j − 1 minus one of those products and θn is the only product of
interest to customers in phase n, i.e., customers in phase j randomly lose interest in one of the
products of interest in phase j − 1. An example of sequences of customer types in n phases is{
{1, 2, . . . , n}, {1, 2, . . . , n − 1}, . . . , {1, 2}, {1}

}
. Therefore, there are n! sequences of customer

arrivals, each with equal probability.
In Lemma 6, stated below, we show that the following Inventory-Balancing policy is optimal

among all deterministic policies: offer to each customer all the products with the highest (positive)
remaining inventory that are of interest to her.16 The proof is given in Appendix A.

Lemma 6. For the arrival process described in the proof of Lemma 3, the following inventory bal-
ancing algorithm is optimal among all deterministic policies: offer to the customer all the products
with the highest (positive) remaining inventory that are of interest to her.

Each customer purchases one of the products (if any) offered to her because the no-purchase
probability is zero. Hence, the policy described above, in each phase, sells equal portion of the
remaining inventory of each product that is of interest to the customers in that phase (which are
all of the same type). For instance, in the first phase 1

n fraction of the inventory of every product is
sold. Note that the rounding error is negligible since T is large. Recall that θi denotes the product
that will be of no more interest to the customers arriving after and including phase i+ 1. Let qi,j
be the fraction of customers in phase j that bought product θi. We have

qi,j =

{
1

n−j+1 j ≤ i
0 j > i

(2)

where n − j + 1 is the number of products of interest to customers in phase j. Therefore, the

revenue obtained from product θi is 1
nT
(

min
{∑i

j=1
1

n−j+1 , 1
})

and consequently the total revenue

of the policy above is equal to 1
nT
(∑n

i=1 min
{∑i

j=1
1

n−j+1 , 1
})

. On the other hand, the optimal

clairvoyant solution that knows the customers types in advance sells all units of product θi to
customers in phase i and obtains in total a revenue of T . This completes the proof.

6.3 Proof of Theorem 3

In this section, we discuss the performance guarantee of the EIB and LIB algorithms in the random
arrival model that encompasses I.I.D. arrivals. 17 In the random arrival model the total number of

16We do not investigate that a randomized algorithm would be able to outperform the aforementioned policy, but
we are not studying that questions in the paper.

17Consider the sample space of sequences of customer types in I.I.D. model and divide it into groups such that in
each group the number of customers of each type is the same for every sequence. Since each group includes all the
equally likely permutations of some sequence, every sequence of the customers (and their types) in the I.I.D. model
can be mapped to a sequence of the customers in the random arrival model.
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the customers T and number of customers of each type are chosen by an adversary, but the order of
the arrivals is chosen uniformly at random. For this arrival model, we obtain the following result.

Proposition 3 (Performance Guarantee in the Random Arrival Model). Suppose the penalty func-
tion is exponential (EIB), Ψ(x) = e

e−1(1 − e−x), x ∈ [0, 1]. Suppose cmin → ∞ and T → ∞ and

choose the discretization parameter ε 18 such that 1
ε×cmin = O(1), 19 Then, the ratio of the expected

revenue of the EIB algorithm, E{zt}Tt=1

[
RevEIB

(
{zt}Tt=1

)]
, to the expected revenue of the optimal

solution, Primal-S, is bounded below by the solution of the following linear program.

Minimizeρ,γ,χ χ(
1

ε
)− e

e− 1

∑ 1
ε
−1

j=0
ρj,

1
ε

(
jε

e
− ejε−1 + e−1

)
(FRLP)

Subject To:
∑ 1

ε
−1

j=0
γj,k = 1 0 < k ≤ 1

ε
,

γj,k ≤ ρj,k 0 ≤ j ≤ 1− ε
ε

, 0<k ≤ 1

ε
,∑ 1

ε
−1

l=j
ρl,k+1 ≥

∑ 1
ε
−1

l=j
ρl,k 0 ≤ j ≤ 1− ε

ε
, 0<k ≤ 1− ε

ε
,∑ 1

ε
−1

j=0
ρj,k

∫ 1

y=1−jε
Ψ(y)dy ≤ χ(k) 0<k ≤ 1

ε
,

ε
∑ 1

ε
−1

j=0
γj,k+1Ψ

(
1− (j + 1)ε

)
≤ χ(k + 1)− χ(k) 0 < k ≤ 1

ε
− 1

For the linear penalty function (LIB), Ψ(x) = x, the ratio of the expected revenue of the Inventory-
Balancing algorithm, E{zt}Tt=1

[
RevLIB

(
{zt}Tt=1

)]
to Primal-S is at least equal to the solution of the

linear program FRLP with objective function χ(1
ε ) + 1

2

∑ 1
ε
−1

j=0 ρ
j, 1
ε (jε)2.

The main idea is that the objective function corresponds to the revenue of the IB algorithms
when the value of Primal-S is normalized to 1 and any solution of the IB algorithms corresponds
to a feasible solution of FRLP. The complete proof is given in Appendix A.1 and is built upon the
factor-revealing linear program proposed by Mirrokni et al. (2012), Jain et al. (2003); Mehta et al.
(2007); Mahdian et al. (2012), and Mahdian and Yan (2011). In the remaining of this section, we
present a sketch of the proof of Proposition 3.

The revenue of the IB algorithms is evaluated by potential function χ, which is an integral of the
penalty function. Roughly speaking, the IB algorithms perform well if the final value of potential
function χ(1

ε ) is high. Thus, we keep track of the increase in the potential function during the run
of the algorithms; due to discretization, we only measure the amount of increase in χ at 1

ε points.
The last set of constraints implies that the potential function, with high probability, increases after
every T

ε steps. This is established using the fact that in any period t the IB algorithm chooses
an assortment St that maximizes

∑
i∈S riΨ

(
It−1
i /ci

)
φzti (S). Hence, we can lower bound the final

value χ(1
ε ) or equivalently the overall performance of the IB algorithms, as a function of the optimal

solution, measured by γj,ks.
More precisely, for any run of the IB algorithm, we construct a solution for FRLP which is with

high probability feasible. We discretize the fraction of remaining inventory into 1
ε segments, i.e.,

segment j corresponds to interval ((1− (j + 1)ε) ci, (1− jε) ci] of the inventory. In this solution,

18That is, the horizon T is divided into 1
ε

time slots.
19We use the standard Landau notation: f(n) = O(g(n)) denotes |f(n)| ≤ d|g(n)| where d is some constant.
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ρj,k is defined as the sum of maximum achievable revenue (revenue times initial inventory) of
products which at time slot k, their remaining inventories fall into segment j. Similarly, γj,k is
equal to the total revenue obtained from product i in the optimal solution (of Primal-S), where
IkTεi
ci
∈ (1− (j + 1)ε, 1− jε]. Note that the first set of constraints implies that the value (revenue)

of Primal-S is normalized to 1. By this construction, we have χ(k) =
∑n

i=1 ri
∫ ci
y=IkTεi

Ψ(y/ci)dy.

The optimal value of the linear program FRLP for the LIB algorithm for ε = 1
20 ,

1
30 and 1

50 are,
respectively, approximately equal to 0.69, 0.71, and 0.72. The corresponding values for the EIB
algorithm are respectively 0.72, 0.74, and 0.75. We observe that as ε gets smaller, the optimal value
of FRLP becomes more accurate and converges to 0.72 and 0.75 respectively for the LIB and EIB
algorithms.

6.4 The Complexity of the Inventory-Balancing Algorithm

The complexity of the Inventory-Balancing algorithm is determined by the complexity of solving the
optimization problem maxS∈S

∑
i∈S wiφ

zt
i (S) where wi = ri Ψ(It−1/ci). As shown in the following

examples, for a broad class of choice models, that satisfy Assumption 1, this problem can be solved
efficiently.

Multinomial and Nested Logit: Under the multinomial logit (MNL) choice model,

φzi (S) =

{
vzi /(v

z
0 +

∑
`∈S v

z
` ) if i ∈ S ∪ {0},

0 otherwise
,

where for each i ∈ {0, 1, 2, . . . , n}, vzi ∈ R+ denote the preference weight parameter associated with
product i for a customer of type z. As shown in Talluri and van Ryzin (2004), the assortment
optimization problem maxS

∑
i∈S wiφ

z
i (S) can be solved efficiently by simply sorting the products

in a descending order of the marginal revenue wi, and the optimal assortment can be found among
the revenue-ordered assortments {1}, {1, 2}, . . . , {1, 2, . . . , n}. Li et al. (2013) showed that the above
assortment optimization problem can also be solved in O(dn log n) operations for a d-level nested
logit choice model, which generalizes to MNL to allow for a product taxonomy that is described by
a tree with d levels (the MNL corresponds to the special case where d = 1).

Choice Models with Constraints Our formulation automatically allows for constraints on the
assortments, through the specification of the set S of feasible assortments. For example, if we
have a budget or shelf-space constraint, we can define S =

{
S :
∑

i∈S di ≤ B
}

, where di is the cost
(or space) associated with showing product i and B is the budget. When the underlying choice
model is an MNL or a nested logit model, the assortment optimization problem can still be solved
efficiently; see, for example, Rusmevichientong et al. (2009, 2010); Gallego and Topaloglu (2012);
Farias et al. (2013).

General Choice Models Farias et al. (2013) has pioneered a novel algorithm that learns a gen-
eral nonparametric choice model from transaction data. Under their framework, for each customer
of type z, the choice model corresponds to a probability distribution ηz over the set of all permuta-
tions of {1, . . . , n} where for each i, σ(i) ∈ {1, 2, . . . , n} denote the rank of product i, with 1 be the
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highest rank (most preferred). They assume that customer chooses the product with the highest
rank. In this case,

φzi (S) =
∑
σ

ηz(σ)1l

[
σ(i) ≤ min

k∈S∪{0}
σ(k)

]
.

It is easy to verify that φzi (S) ≥ φzi (S∪{j}) for j 6= i. So, this choice model satisfies Assumption 1.
Moreover, Farias et al. (2011) described an algorithm for solving the assortment optimization
problem maxS

∑
i∈S wiφ

z
i (S) under their general choice model framework. This algorithm which

can be used as a subroutine in our Inventory-Balancing algorithm is efficient for MNL choice model.

7 Numerical Experiments

In this section, we numerically evaluate our Inventory-Balancing (IB) and Hybrid algorithms and
compare them with existing methods in the literature. The first IB algorithm is the Linear
Inventory-Balancing (LIB) with a linear penalty function Ψ(x) = x. The second algorithm is
the Exponential Inventory-Balancing (EIB) with penalty function Ψ(x) = e

e−1 (1− e−x).
In the next section, we describe the dataset and the simulation setting. Then, we compare the

revenues and running times of our IB and Hybrid algorithms with the myopic policy and existing
heuristics based on resolving linear programs. Section 7.3 shows the benefits of differentiating
customers by type. Finally, in Section 7.4, we present a synthetic simulation to compare our
algorithm with the myopic policy.

7.1 Dataset and Simulation Setting

We use the DVD sales data from a large online retailer and consider DVDs sold during a four-month
period from June 1, 2005 through September 30, 2005. During this period, the retailer sold over
5.7 million DVDs in the United States, spanning 55, 875 DVD titles.

We consider the location of each customer as her type, and for our analysis, we choose 10
different locations that would reflect the diverse purchasing patterns of the customers. Table 2
shows the list of locations and the top three DVDs with the highest sale volumes in each location.20

In our experiments, we consider a total of 73 DVD titles (n = 73), obtained by taking the union
of the top 20 DVDs in each location and removing duplicates. For each DVD i = 1, 2, . . . , 73, we
set the revenue ri as the average selling price of the DVD during this period. The DVD prices
range from $9-$81, with more than 50% of the DVDs priced less than $20, and the average and
standard deviation of the DVD selling prices are $25.2 and $12.9, respectively. We assume that all
DVDs have the same initial inventory, with no replenishment. Finally, we assume a multinomial
logit choice model for each customer type. For each type z ∈ Z, we estimate the preference weight
parameters (vz0 , v

z
1 , ..., v

z
n) ∈ R+

n by computing the maximum likelihood estimate based on the sales
data for each location.

In the simulations, each problem class is characterized by two parameters: the loading factor
(LF) and the coefficient of variation (CV) associated with the proportions of customers of each type.
Note that the coefficient of variation is the ratio of the standard deviation to the mean; that is, for
a given fixed mean, a larger CV means that there is a larger uncertainty in the type of an arriving
customer. The loading factor (LF) is the ratio between the (expected) total number of customers

20Two of the names of the DVDs in Table 2 are shortened; “Lost” and “The Simpsons,” respectively, correspond
to “Lost - The Complete First Season” and “The Simpsons - The Complete Sixth Season.”
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Location Top Three DVDs

Jersey City, NJ Lost; Sin City; The Simpsons

Manhattan NY Lost; Sin City; Bob Dylan - No Direction Home

Orlando, FL Lost; The Muppet Show: Season One; Firefly

Miami, FL What the Bleep Do We Know!?; Sin City; Lost

San Jose, CA Star Wars: Episode III; Lost; The Complete Thin Man Collection

Beverly Hills, CA The Simpsons; L’Auberge Espagnole; Sin City

Inglewood, CA Lost; Sin City; Final Fantasy VII - Advent Children

Dallas, TX My Big Fat Greek Wedding; Lost; Shark Tale

Urbana Champaign, IL Firefly; Lost; The Simpsons

Charlotte, NC Lost; Curb Your Enthusiasm; Family Guy Presents Stewie Griffin

Table 2: The locations used in the simulations and the top three best-selling DVDs in each location.

and the total number of units. For a given loading factor, we can determine the (expected) total
number of customers. The number of customers of each type is generated by multiplying the total
number of customers by a 10-dimensional Dirichlet random variable β = (β1, . . . , β10), where βi
represents the proportion of customers of type i.21 Thus, on average, each type is equally likely.22

Once the number of customers of each type is generated, the order of arrivals is random. We further
assume that a single customer arrives in each period.

7.2 Performance Evaluation

In this section, we compare the performance of our two IB algorithms to the Hybrid algorithm, the
myopic policy, and the LP-based heuristics.

The myopic policy offers the assortment with the maximum expected revenue among all assort-
ments that include only products with positive remaining inventory.23

The first LP-based algorithm, called the LP One-Shot (LPO), is a heuristic based on the
solution of the linear program Primal-S where the expected number of each customer type ηz is
equal to 0.1 × E[T ].24 This follows because each of the 10 customer types is, on average, equally
likely, and E[T ] is the expected number of customers. Although the linear program (LP) Primal-S
has exponentially many variables, we can solve it efficiently using techniques from Gallego et al.
(2004); Liu and van Ryzin (2008), and Topaloglu (2013). Under the LPO, we solve the linear
program Primal-S exactly once and denote the solution by {ȳz(S) : z ∈ Z, S ∈ S}. The LPO policy
is constructed as follows: upon the arrival of a customer of type z, offer her assortment S with the
probability ȳz(S)/

∑
S′∈S ȳ

z(S′).

21For a k-dimensional Dirichlet distribution β with parameters α1, . . . , αk, the mean and variance of βi for i =
1, 2, . . . , k are respectively given by αi

α0
and αi(α0−αi)

α2
0(α0+1)

, where α0 =
∑k
j=1 αj . Given that α1 = α2 = . . . = αk = α,

the coefficient of variation is
√

k−1
kα+1

. The parameter of the Dirichlet distribution, α, is chosen so that E [βi] = 0.1

for all i and βi has the desired coefficient of variation.
22We get similar results when each type is not equally likely.
23The myopic policy corresponds to an Inventory-Balancing algorithm with a penalty function Ψ(x) = 1l[x > 0].
24When T is known, E[T ] is replaced by T .
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We also consider an adaptive variation of this policy, called ALPO, that excludes any prod-
uct with zero remaining inventory from an offered set. Note that ALPO is an adaptive policy
because the assortment that we offer to each customer may change over time depending on the
product availability.

The second LP-based algorithm is called LP Resolving (LPR). Under this algorithm, the linear
program Primal-S is resolved periodically every h periods with the up-to-date inventory levels and
forecasts of the proportion of customers of each type. We denote this heuristic by LPRh. In this
heuristic, at the beginning of a resolving period t, ηz is replaced by ηz(t). We define ηz(t) as the
empirically estimated expected number of customers of type z that will arrive between periods t
and T , ηz(t) is equal to the fraction of customers of type z that arrived between time 1 and t− 1

multiplied by E[T−t+1|T≥t]
t−1 , where E[T−t+1|T ≥ t] is the expected number of future customers given

that t customers have already arrived.25 In addition, we set ηz(1) = 0.1. As the system evolves, the
realized number of customers of each type will differ from the expected value, and ηz(t) incorporates
these differences into the estimates. The LPR algorithm also updates the inventory level to reflect
the current remaining inventory of each product.

The Hybrid algorithm combines IB algorithms with LP based heuristics; see Section 5.3.26 In
particular, we assume that the Hybrid algorithm incorporates the solutions of the EIB algorithm
and the LPR500 heuristic with parameter γ = 1.5 and 2. For γ = 1.5 and γ = 2, the competitive
ratio of the Hybrid algorithm is at least equal to 0.48 and 0.39, respectively. Recall that parameter
γ should be greater than 1 and that, the larger γ is, the more the Hybrid algorithm applies the
LPR heuristic. We denote the Hybrid algorithm with parameter γ by Hγ .

We evaluate the aforementioned algorithms by comparing the revenue with the upper bound
given by a clairvoyant optimal solution that knows the arrival sequence of all the customers in
advance; see Lemma 1 for more details.

Simulation Parameters: We consider nine problem classes, corresponding with loading factors
1.4, 1.6, and 1.8, and coefficients of variation of 2.0, 1.0, and 0.1. We choose the loading factor
greater than 1 because we are interested in cases where demand exceeds supply. Each problem class
consists of 250 problem instances. In each problem instance, we set the initial inventory levels to
100; i.e., ci = 100, i = 1, 2, . . . , 73, and the length of the horizon is randomly and uniformly chosen
from an interval

[
T , T̄

]
.27 In Table 3, for each problem class, we present the average revenue of

each algorithm as a percentage of the upper bound, averaged over 250 instances in each problem
class. We present the results for periodic LPR with h = 50 and h = 500.

As expected, the upper bound increases as the loading factor increases and the variability
decreases. Both the LIB and EIB algorithms surpass all other policies. In addition, LPR policies
cannot obtain more than 92% of the upper bound even if we increase the frequency of resolving.28

In all cases, the H1.5 algorithm performs better than the H2 algorithm because the larger γ is,
the more the Hybrid algorithm relies on the LPR heuristic. Note that the Hybrid algorithms get

25 Note that, when the length of the horizon is known, E[T − t+ 1|T ≥ t] is simply T − t+ 1.
26 We do not present the results for the Hybrid algorithm that combines an LIB solution with the LP resolving

heuristics since its performance is very close to the one we considered here.
27We choose the interval

[
T , T̄

]
by first computing the expected number of customers E[T ] from the loading factor

and the total initial inventory of each problem class. Then, we set T = 0.5E[T ] and T̄ = 1.5E[T ].
28When the degree of uncertainty in the number of customers drops the LPR heuristic performs better; e.g., when

T̄ = 1.3×E[T ], T = 0.7×E[T ], LF=1.4 and CV=1, the LPR500 obtains 94% of the upper bound. Even in this case,
IB algorithms beat the LPR heuristic by 3%.
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Problem Upper Average Revenue under Different Policies (as % of the Upper Bound)

Class Bound, Inventory-Balancing Myopic One-shot LP LP Resolving Hybrid

LF CV (in $1000) EIB LIB Policy LPO ALPO LPR500 LPR50 H1.5 H2

1.4

2.0 165 97.0 96.9 96.4 73.6 81.4 91.3 91.3 96.5 95.8

1.0 169 96.8 96.9 95.8 84.3 88.4 89.8 90.0 96.6 96.5

0.1 172 97.5 97.5 96.4 92.8 93.5 90.9 90.8 96.8 96.7

1.6

2.0 170 97.3 97.3 96.8 66.7 73.6 88.5 88.6 96.8 95.9

1.0 174 97.5 97.6 96.5 82.5 86.2 88.1 88.1 97.2 96.2

0.1 178 98.4 98.5 97.3 91.8 92.4 89.5 89.7 98.3 97.7

1.8

2.0 174 98.0 97.9 97.2 62.9 68.8 86.9 87.0 97.9 97.2

1.0 178 98.0 98.1 97.1 78.2 81.9 86.5 86.6 98.1 97.9

0.1 178 97.8 97.9 96.7 85.1 85.2 86.1 86.3 97.8 97.5

Table 3: Revenue comparison when the length of the horizon is random. The standard errors of all
numbers are less than 0.1%.

5%-12% more revenue than the LP resolving heuristics. This highlights the benefits of combining
the solution of the IB policies and LP-based heuristics. As we will discuss later, we also consider
the worst-case performance of all policies; see Figure 1 and Appendix B.1.

In most problem classes, the LPO algorithm has the lowest revenue and its performance de-
creases by increasing CV and loading factor. The main reason for the poor performance of the LPO
algorithm is the lack of strategy adjustment. The LPO algorithm solves the linear program exactly
once and does not update its decision based on the current inventory level (it just checks whether
the product is available in the case of ALPO), nor does it consider the proportion of each customer
type. When the uncertainty in the type of arriving customers and the number of customers is
high, this lack of adjustment can result in a significant reduction in the performance of the LPO
algorithm; e.g., for CV=0.1 and loading factor of 1.4, the ALPO algorithm obtains 93.5% of the
optimal solution, while for CV = 2, it yields 81.4% of that. Note that the ALPO algorithm that
adjusts its offered set based on the product availability (offering only those with positive inven-
tories) yields a 1%-8% increase in revenue compared with the non-adaptive LPO algorithm. This
also emphasizes the need for a real-time algorithm that adjusts its strategy based on the remaining
product inventory and customers’ choices.

Explanation of LPR performance: In Appendix B.2, we show that, when the horizon length T
—corresponding to the total number of customers—is known in advance, the LPR heuristic performs
very well and beats all other policies. We also observe that the LPR revenue increases linearly over
time, which shows that the LPR method exploits the known length of the horizon to ration the
inventory to all customers effectively. However, when T is random and the length of the horizon is
less than the expectation, the LPR heuristic may end up with rather large left over inventories (of
more profitable products). On the other hand, if T is larger than the expectation, then the LPR
heuristic may run out of some the products, and customers will face stock-out.

We note that, in all problem classes, the myopic policy performs well because there is only a
small chance that a customer will not purchase a product; that is, most of the preference weight
parameters of the MNL model are positive for all customer types. Thus, if the myopic policy
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runs out of the most profitable products quickly by offering them to customers, then it can still
collect high revenues because future customers continue to like the rest of the available products.
To demonstrate this point, in Section 7.4, we conduct a simulation on synthetic data where each
customer type is interested in only a subset of products, and the preference weights are small for
most products. We observe that, in this setting, our IB algorithms can beat the myopic policy by
up to 8%.

Running Time: Although the LPR50 and LPR500 heuristics do not solve the linear program very
often, they are still 25 and 4 times slower than the Inventory-Balancing algorithms, respectively.
We note that, in the special case of the multinomial logit choice model, the linear program Primal-S
with O(2n) variables and O(|Z|) can be reduced to an equivalent LP with just O(n|Z|) variables
and O(n|Z|) constraints Topaloglu (2013). However, for the general model where this reduction is
not possible, the LPR heuristic will be even slower.

Distribution of Revenues across Problem Instances: To get more insight into the perfor-
mance of different policies, in Figure 1, we depict the Complementary Cumulative Distribution
Function (C.C.D.F.) of revenue as a percentage of the optimal clairvoyant revenues across 250
problems instances in the problem class with LF= 1.8 and CV= 2 for the myopic, LIB, EIB,
LPR500, LPO, ALPO, and H1.5 algorithms. In Figure 1, the curve for each algorithm shows, for
α ∈ [90, 100], the fraction of problem instances whose revenues are at least α% of the upper bound.
It can be seen that both IB polices almost dominate all other policies stochastically.29 In addition,
the myopic and Hybrid policies stochastically dominate the LPR500 heuristic, which demonstrates
the weak performance of LPR heuristics in the worse-case scenario, when there is uncertainty in the
number of customers. We observe that, for 80% of problem instances, the EIB and LIB algorithms
obtain more than 95.8% of the optimal clairvoyant revenue. However, the LPR500 heuristic yields
more than 95.8% of the upper bound only for about 33% of all instances.

7.3 Benefits of Personalization: The Importance of Knowing Customer Types

To quantify the benefits of personalization, we compare the revenue in two cases: multiple-type
versus single-type. We consider the same 10 locations as in Section 7.1. The total number of
DVDs is 73, corresponding to the union of the top 20 DVDs with the highest sales volumes in
each location. The initial inventory of each DVD is set at 30. The setting for the multiple-type
case is exactly the same as Section 7.1, where we estimate the parameters (vz0 , v

z
1 , . . . , v

z
n) for each

type z and customize the decision to the type of each arriving customer. On the other hand, in the
single-type case, we estimate a single parameter vector (v0, v1, . . . , vn) and use it to make decisions
for all customers. In our simulation, when we compute the revenue, we assume that each customer
makes a decision based on her own type. Since the multiple-type model is more accurate, we expect
that the multiple-type setting will yield higher revenue, but the key question is the magnitude of
the improvements.

29Policy A stochastically dominates policy B if for any x, F̄A(x) ≥ F̄B(x) where F̄A and F̄B is the complementary
cumulative distribution function of revenue (as a % of the upper bound) for policy A and B, respectively. Note
that, when policy A dominates policy B, the worst-case performance of policy A is also better (higher) than that of
policy B.
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Figure 1: The C.C.D.F. of revenues with LF= 1.8 and CV= 2. For each algorithm, the curve shows
the fractions of problem instances (out of 250) whose revenues exceed certain percentages of the
upper bound.

We impose a constraint C on the size of the assortment that we can offer to each customer,
and we consider C ∈ {10, 20}. Columns 4 and 5 in Table 4 show the revenues of the IB algorithms
in the multiple-type case for different values of the size constraints. The corresponding difference
between the revenues in the multiple-type and single-type cases is reported in columns 6 and 7. We
consider the loading factors of 1.2, 1.4, and 1.6, but set the coefficient of variation at 0.2 because
the results for the other coefficients of variations are similar.30 As expected, the revenue from the
multiple-type case exceeds that of the single-type, regardless of the algorithms we use. However,
the benefits of customization are very significant when the assortment size is small. For example,
for a loading factor of 1.6 and C = 10, using the LIB algorithm in the multiple-type case yields
an improvement of over 21%. As the size of the assortment increases, however, the benefits of
customization decreases.

7.4 Comparison to Myopic Policy

Theoretically, it is easy to show that our algorithm will perform significantly better than the myopic
policy. Using the experiment on real data (for choice models) in Section 7.2, we also observe an
improvement of 1%-2% over the myopic policies. In this section, we run a synthetic simulation
in which our algorithm can get up to 7.4% more revenue compared to th myopic policy. In this
simulation, there are 73 DVDs and 10 types. As in our simulations, for each DVD i = 1, 2, . . . , 73,
the revenue ri is the average selling price of the DVD obtained from the dataset, and the initial
inventory level ci is set to 30. We also assume that customers purchase according to the MNL model.
However, in this simulation, we do not obtain the preference weight parameters, (vz0 , v

z
1 , ..., v

z
n) for

each type z ∈ Z, from the dataset. Rather, we order the products based on their prices so that
product 1 has the highest price and product 73 has the lowest price. We assume that, for each of the

30Note that we did not use the optimal solution because it is rather challenging to solve the corresponding linear
programs with a constrained assortment size. When there is no restriction on the size of the assortment, though the
LP has exponentially many variables, we can solve it efficiently using the techniques from Topaloglu (2013).
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Assort- Revenue in the Improvements over

Loading ment Upper Multiple-type Case the Single-type Case

Factor Size Bound, (as % of the Upper Bound) (as % of the Upper Bound)

(LF) (C) (in $100 ) LIB EIB LIB EIB

1.2
10

526
82.3 82.5 17.4 15.4

20 90.8 90.7 11.6 9.8

1.4
10

546
88.0 88.0 19.3 17.5

20 95.9 95.6 11.1 10.0

1.6
10

549
95.3 94.9 21.3 19.2

20 98.9 98.7 6.5 5.6

Table 4: The average revenue for the IB algorithms in the multiple-type model and improvement
over the single-type model. All numbers are statistically significant, and the standard errors are
less than 0.1%.

first nine customer types ( z ∈ {1, 2, . . . , 9}), the customer type z is only interested in the products
indexed by Az = {1, 2, . . . , 7z}, with vzi = 1 for i ∈ Az, and vzi = 0.001 for i /∈ Az. Customers
of type z = 10 are likely interested in all products equally. We further assume that vz0 = 1 for
all 10 types. The way we construct the preference weight parameters reflects the fact that some
customers are interested only in recently released DVDs that are of course more expensive, while
some customers are less sensitive to this issue. The arrival process is exactly the same as indicated
in previous sections; namely, the number of customers of each type is computed by multiplying the
total number of customers by a 10-dimensional Dirichlet random variable. After generating the
number of customers of each type, we uniformly permute them to determine the order of arrival.

Table 5 compares different policies in this setting when the length of the horizon is drawn from
a uniform distribution with T̄ − T = E[T ] for coefficients of variations 0.5 and 1.0 and loading
factors of 1.2, 1.4, and 1.6. We observe that the both the EIB and LIB algorithms beat the myopic
policy by 4.5%-7.4%. In addition, the IB policies surpass all other policies as well.

Problem Upper Avg. Revenue under Different Policies (as % of the Upper Bound)

Class Bound, Inventory-Balancing Myopic One-shot LP LP Resolving

LF CV (in $100 ) EIB LIB Policy LPO ALPO LPR500

1.2
1.0 499 95.5 96.0 90.1 65.2 66.6 90.5

0.5 516 94.9 95.5 88.1 80.8 82.2 90.8

1.4
1.0 514 96.1 96.6 90.8 63.9 65.3 89.8

0.5 530 95.6 96.2 89.5 79.4 80.7 90.7

1.6
1.0 524 96.8 97.3 92.3 71.3 72.7 91.3

0.5 538 96.5 97.0 90.9 88.7 89.8 92.7

Table 5: Revenue Comparison. The standard errors of all numbers are less than 0.1%.
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8 Conclusion and Future Work

Motivated by the availability of instantaneous data on customer characteristics, we formulated
a real-time, personalized, choice-based assortment optimization problem with arbitrary customer
types. Our proposed Inventory-Balancing algorithms are simple, intuitive, and effective. We es-
tablish the competitive ratio for our algorithms and prove that it is the best possible for this
problem.

The managerial insight from our work is that companies can increase their revenues by personal-
izing the operational decisions for each customer using real-time information about the customer’s
characteristics. This process requires coordination between front-end customer-facing decisions
with back-end supply chain constraints. We demonstrate that such coordination can be achieved
using simple index-based algorithms that can be easily implemented. As the volume and speed
with which real-time data become available increase, the opportunity in this area will continue to
grow, and we believe that this work can serve as a starting point for more complex models.

Our proposed Inventory-Balancing algorithms maintain an index for each product in which the
marginal revenue is discounted by a penalty based on the product’s remaining inventory. The
index serves as a simple mechanism for coordinating fast-moving customer-facing decisions and the
back-end operational constraints. In addition to inventory, it would be interesting to consider other
supply chain constraints. For example, in network revenue management, each product corresponds
to an itinerary, and it uses a common pool of resources, corresponding to seats on flights. When
resources are shared among products, coordinating and valuing the benefit of each additional unit
of a resource becomes challenging. One way to extend our index-based framework is to consider an
index that depends on the inventory of all resources simultaneously.

Another exciting direction is to model explicitly the mechanism for learning the choice model of
each customer. Recent advances by Farias et al. (2013) have allowed us to model and estimate a very
rich class of choice models, and it would be interesting to understand how we can incorporate the
learning mechanism with the real-time decision-making process considered in this paper. Finally, it
would be interesting to consider the personalization of other operational decisions, such as pricing,
warranty services, or shipping options. We believe that the framework in this paper can serve as a
starting point for analyzing the personalization of these decisions.
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A Proofs

Proof of Lemma 1: Fix an arbitrary sequence
(
{zt}Tt=1

)
of customers and an algorithm A. Let the

random variables S1, . . . , ST denote the sequence of assortments offered by the algorithm A, and
let ξ1, . . . , ξT be the random variables corresponding to the customer’s choices. Note that St may
depend on S1, . . . , St−1 and ξ1, . . . , ξt−1. The expected revenue of the algorithm A is given by

E

[
T∑
t=1

∑
S∈S

∑
i∈S

ri1l [St = S, ξt = i]

]
=

T∑
t=1

∑
S∈S

∑
i∈S

riE [φzti (St)1l [St = S]]

=
T∑
t=1

∑
S∈S

n∑
i=1

riφ
zt
i (S) Pr {St = S} ,

where the first equality follows from the tower property of conditional expectation and the fact
that E

[
1l [ξt = i]

∣∣ St] = φzti (St), and the last equality follows from the fact that E [1l [St = S]] =
Pr {St = S}.

For t = 1, . . . , T and S ∈ S, let ȳt(S) = Pr{St = S}. To complete the proof, it suffices to show
that ȳt(S) satisfies the constraints of the Primal

(
{zt}Tt=1

)
. Clearly, ȳt(S) ≥ 0. Furthermore, by

definition,
∑

S∈S ȳ
t(S) = 1. Finally, since the algorithm cannot sell more than the initial inventory

of each product, for every product i, with a probability of one,

T∑
t=1

∑
S∈S

1l [St = S, ξt = i] ≤ ci,

and by taking expectation on both sides, we have
∑T

t=1

∑
S∈S φ

zt
i (S)ȳt(S) ≤ ci. This shows that(

ȳt(S) : S ∈ S
)

is a feasible solution of Primal
(
{zt}Tt=1

)
, which is the desired result. �

Proof of Lemma 2: When the customer arrives in period t, if product j has no remaining inventory,
then It−1

j = 0, which implies that rjΨ(It−1
j /cj) = 0. By Assumption 1, under our choice model,

adding product j to an assortment does not increase the probability that a customer will select
other products. Recall that in the case that both sets S and S∪{j} have the maximum discounted
revenue, we choose the set with the smaller number of products. Therefore, product j will never
be included as a part of the optimal assortment. �
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Proof of Corollary 1: First, observe that Ψ(x) ≥ x. This is because Ψ is increasing and concave,
and we have Ψ(0) = 0 and Ψ(1) = 1. By this observation, we have

αΨ(cmin) ≥ min
x∈
[
0,1− 1

cmin

]
 1− x

1
cmin

+ 1−Ψ(x) +
∫ 1
x+ 1

cmin

Ψ(y)dy


≥ min

x∈
[
0,1− 1

cmin

]
 1− x

1
cmin

+ 1− x+
∫ 1
x+ 1

cmin

dy


≥ min

x∈
[
0,1− 1

cmin

]
{

1− x
1
cmin

+ 1− x+ 1− x− 1
cmin

}

≥ 1

2
.

The second equality follows from the fact that for any x ∈
[
0, 1− 1

cmin

]
, the lower limit of integral,

x+ 1
cmin

, is less than the upper limit of integral, 1, and Ψ(x) ≤ 1.
In the following we show that the competitive ratio of the IB algorithm with an increasing,

strictly concave, and differentiable penalty function is strictly greater than 1
2 . First note that for

x = 0, the lower bound of the competitive ratio,
{

1−x
1

cmin
+1−Ψ(x)+

∫ 1

x+ 1
cmin

Ψ(y)dy

}
is greater than 1

2 .

This is because for a differentiable penally function Ψ,
∫ 1

1
cmin

Ψ(y)dy is strictly less than 1− 1
cmin

and

Ψ(0) = 0. Thus, the result holds because

min
x∈
(

0,1− 1
cmin

]
 1− x

1
cmin

+ 1−Ψ(x) +
∫ 1
x+ 1

cmin

Ψ(y)dy

 > min
x∈
(

0,1− 1
cmin

]
 1− x

1
cmin

+ 1− x+
∫ 1
x+ 1

cmin

dy

 =
1

2
.

The inequality holds because for any differentiable and strictly concave penalty function Ψ(x), we
have Ψ(x) > x for all x ∈ (0, 1). �

Proof of Lemma 6. Since the revenue from all the products is the same and no-purchase probability
is zero, by Eq. (8), to prove the lemma, it suffices to show the following Claim.

Claim 1: Consider any two products i and j and remaining inventory levels (x1, . . . , xn) such
that xi > xj . If with t periods remaining, the type of the arriving customer is z such that i ∈ z
and j ∈ z, then we have

V (t, x1, . . . , xi, . . . , xj , . . . , xn | z) ≤ V (t, x1, . . . , xi − 1, . . . , xj + 1, . . . , xn | z)

This claim implies that it would be better to equalize the inventory levels. Namely, if the inventory
for product i is higher than product j, the value (i.e., expected revenue) of the DP policy would
increase if instead we have one additional unit of product j and one less unit of product i.

We prove the claim using induction on the inventory levels, fixing product (any) two products
i and j:
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The induction basis is when xi = xj + 1 (and no restriction on the inventory of other products).
In this case, because of the symmetry in the problem, the value function does not change if we
replace one unit of product i with one unit of product j. The reason is that the current customer is
interested in both i and j and because of the symmetry in the arrival process, the probability that
a future customer is only interested in product i but not product j is the same as the probability
that a future customer is only interested in product j but not product i.

Induction Step: Consider initial inventory levels (y1, . . . , yn) such that yi > yj + 1. Assume
Claim 1 holds for any other initial inventory levels (x1, . . . , xn) such xk ≤ yk, 1 ≤ k ≤ n, and at
least one of these inequalities is strict. To prove the induction step, suppose the optimal dynamic
program starting with inventory levels (y1, y2, . . . , yn) offers set S to the arriving customer. Hence,
by conditioning on the type of the customer in the next period, denoted by z′, we have:

V (t, y1, . . . , yn | z)

=
∑
z′∈Z

Pr[next customer is of type z′|z]×
(

1 +
1

|S|
∑
k∈S

V (t− 1, yk − 1, y−{k} | z′)
)

where (yk−1, y−{k}) represents the same inventory levels as before only with one less unit of product
k. Now by applying the induction hypothesis, we get

V (t, y1, . . . , yn | z)

≤
∑
z′∈Z

Pr[next customer is of type z′|z]×
(

1 +
1

|S|
∑
k∈S

V (t− 1, yk − 1, yi − 1, yj + 1, y−{i,j,k} | z′)
)

≤ V (t− 1, yi − 1, yj + 1, y−{i,j} | z)

The last inequality follows from the properties of the optimal dynamic program — note that the
optimal policy starting with inventory levels (yi − 1, yj + 1, y−{i,j}) may find a set more profitable
than S to offer to the customer. Finally, we point out if i ∈ S and k = i is chosen by the customer,
then V (t− 1, yk − 1, yi − 1, yj + 1, y−{i,j,k} | z′) would be defined equivalent to V (t− 1, yi − 2, yj +
1, y−{i,j} | z′); note that in the induction step we assume yi ≥ yj + 2. �

Proof of Proposition 1: We prove the claim by revisiting the steps of the proof of Theorem 1. Let
{zt}Tt=1 be the sequence of the customers. By Lemma 2, we never offer any product that has no
inventory.

We now construct a solution for Dual
(
{zt}Tt=1

)
, with the true selection probabilities, as follows:

θi = ri(1−Ψ
(
ITi /ci

)
)

λt =
∑n

i=1
ri
[
Ψ
(
It−1
i /ci

)
φ̄zti (St) + 2εt

]
.

where St = argmaxS∈S
∑

i∈S riΨ
(
It−1
i /ci

)
φzti (S) is the assortment offered by the IB algorithm.

Note that we add the error term εt to the value of λt because the assortment St is computed using
the estimated selection probability φzt . This construction gives us a feasible dual solution because

λt ≥
n∑
i=1

riΨ
(
ITi /ci

) (
φzti (St)− εt

)
+ 2

n∑
i=1

riε
t ≥

n∑
i=1

riΨ
(
ITi /ci

)
φzti (St) +

n∑
i=1

riε
t
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where the first inequality follows from the fact that for all i = 1, 2, . . . , n and S ∈ S, |φ̄zti (S) −
φzti (S)| ≤ εt. The second inequality holds because Ψ is increasing and It−1

i ≥ ITi . By definition
of St,

λt ≥ max
S

{∑
i∈S

riΨ
(
ITi /ci

)
φzti (S)

}
+

n∑
i=1

riε
t

≥ max
S

{∑
i∈S

riΨ
(
ITi /ci

) (
φ̄zti (S)− εt

)}
+

n∑
i=1

riε
t

≥ max
S

∑
i∈S

(ri − θi)φ̄zti (S) ,

where the second inequality follows from the fact that for all i and S ∈ S, |φ̄zti (S) − φzti (S)| ≤ εt.
The third inequality follows from the definition of θi and the fact that Ψ

(
ITi /ci

)
is less than or

equal to 1.

It follows from the Weak Duality Theorem that

Primal
(
{zt}Tt=1

)
≤ E

[
T∑
t=1

λt +

n∑
i=1

ciθi

]

≤ E

 n∑
i=1

ri

(
ci
(
1−Ψ

(
ITi /ci

))
+

ci∑
t=ITi +1

Ψ(t/ci) + 2

T∑
t=1

εt

)
Hence,

E
[∑n

i=1 ri(ci − ITi )
]

Primal
(
{zt}Tt=1

) ≥
E
[∑n

i=1 ri(ci − ITi )
]

E
[∑n

i=1 ri

(
ci
(
1−Ψ

(
ITi /ci

))
+
∑ci

t=ITi +1
Ψ(t/ci) + 2

∑T
t=1 ε

t
)] .

where E
[∑n

i=1 ri(ci − ITi )
]

is the revenue of the Inventory-Balancing algorithm. Note that the
contribution of any product i that is not sold by the optimal solution to Primal

(
{zt}Tt=1

)
is zero.

Thus, to find the competitive ratio, we only consider products that are sold by the optimal solution.
Since it is assumed that the IB algorithm sells at least one unit of any product that is sold by the
optimal solution, the competitive ratio of the algorithm is at least

min
(ci,x):x ≤ 1− 1

ci

1− x
1
ci

∑ci
t=ITi +1

Ψ(t/ci) + (1−Ψ(x)) + 2
ci
E
[∑T

t=1 ε
t
] ,

where i is a product sold by the optimal solution. Therefore, by the same argument as in the proof
of Theorem 1, the competitive ratio is at least

min
x∈
[
0,1− 1

cmin

]
 1− x

1
cmin

+ 1−Ψ(x) +
∫ 1
x+ 1

cmin

Ψ(y)dy + 2
cmin

E
[∑T

t=1 ε
t
]
 .

�
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Proof of Lemma 5: The derivative of x 7→ 1−x
2−x−Ψ(x) is equal to −1+Ψ(x)+(1−x)Ψ′(x)

(2−x−Ψ(x))2
. The numerator

−1 + Ψ(x) + (1 − x)Ψ′(x) is equal to 0 at x = 1, and its derivative is equal to (1 − x)Ψ′′(x) ≤ 0
because Ψ is concave. Thus, −1 + Ψ(x) + (1−x)Ψ′(x) ≥ 0 for all x ∈ [0, 1]. To complete the proof,
note that the derivative of C 7→ 1

C +
∫ 1
a+ 1

C
Ψ(y)dy is equal to −(1/C)2(1−Ψ(a+ 1

C )) ≤ 0. �

A.1 Proof of Proposition 3

In the following, we prove the claim for the EIB algorithm; a similar argument can be applied to
the LIB algorithm. First, note that we divide the horizon T into 1

ε time slots such that Tε is an
integer. We only observe the remaining inventory of each product i in periods kTε, 0 < k ≤ 1

ε .
Consider the solution (allocation) of the EIB algorithm for a sequence of customers {zt}Tt=1. For
this solution, let ρj,k be the sum of revenue times capacity of any product i whose fraction of

the remaining inventory
IkTεi
ci

in the kth time slot (period kTε) is between 1 − (j + 1)ε and 1 − jε

(inclusive); that is,
IkTεi
ci
∈ (1 − (j + 1)ε, 1 − jε] where 0 ≤ j ≤ 1

ε − 1 and 0 < k ≤ 1
ε . Similarly,

let γj,k be the total revenue obtained from product i in the optimal solution (of Primal-S) where
IkTεi
ci
∈ (1− (j + 1)ε, 1− jε], i.e.,

ρj,k =
∑

i:
IkTε
i
ci
∈(1−(j+1)ε,1−jε]

rici,

γj,k =
∑

i:
IkTε
i
ci
∈(1−(j+1)ε,1−jε]

oi ,

where oi is the revenue obtained from selling product i in the optimal solution. Note that oi ≤ rici.
For any time slot k, we define

χ(k) =
n∑
i=1

ciri

∫ 1

y=
IkTε
i
ci

Ψ(y)dy =

n∑
i=1

ri

∫ ci

y=IkTεi

Ψ(y/ci)dy.

Notice that χ(k) is an increasing function of k. Using the fact that in any period t the IB algorithm
chooses an assortment St that maximizes

∑
i∈S riΨ

(
It−1
i /ci

)
φzti (S), we will bound the change in

χ function at two consecutive time slots, see the fifth sets of constraints in linear program FRLP.
Next, we will show that the objective function of FRLP is less than the total revenue of the

EIB algorithm. Since the penalty function is exponential, Ψ(x) = e
e−1(1− e−x), x ∈ [0, 1], the first

term in the objective function is given by

χ(
1

ε
) =

n∑
i=1

ciri

∫ 1

y=
IT
i
ci

Ψ(y)dy =
e

e− 1

n∑
i=1

ciri

(
1− ITi

ci
+ e−1 − e−

ITi
ci

)
.

By definition of ρj,
1
ε , the second term of the objective function is lower bounded as follows

e

e− 1

1− 1
ε∑

j=0

ρj,
1
ε

(
jε

e
− ejε−1 + e−1

)
≥ e

e− 1

n∑
i=1

ciri

1− ITi
ci

e
− e−

ITi
ci + e−1

 .

39



The inequality holds because x
e − e

x−1 is a decreasing function of x. Therefore,

χ(
1

ε
)− e

e− 1

1
ε
−1∑
j=0

ρj,
1
ε

(
jε

e
− ejε−1 + e−1

)
≤

n∑
i=1

ri(ci − ITi ),

where the left hand side is the objective function of linear program FRLP and the right hand side
is the revenue of the EIB algorithm.

The next step is to show that any solution of the EIB algorithm corresponds to a feasible solution
of linear program FRLP. Without loss of generality, we can normalize the revenue of the optimal
solution, Primal-S, to 1 which implies the first set of constraints. The second set of constraints
holds because oi ≤ rici. The third set of constraints follows from the definition of ρj,k and the fact
that IkTεi is a decreasing function of k. The forth set of constraints holds because of the definition

of χ and the fact that
∫ 1
y=x Ψ(y)dy is a decreasing function of x. Lemma 7, stated below, leads us

to the last set of constraints. This set of constraints gives a lower bound for difference of χ(k + 1)
and χ(k) as a function of the optimal solution γj,k. To prove the lower bound, we show that under
uniform permutation, the revenue obtained from product i in the optimal solution during periods
in [kTε, (k+ 1)Tε) denoted by oi,k is concentrated around its average εoi. Using this concentration
and the fact that the IB algorithm chooses a set that maximizes discounted revenue, we will get the
desired bound for the change in function χ. Hence, any solution of the EIB algorithm, corresponds
to a feasible solution of the linear program FRLP where the objective is less than the revenue
of the algorithm. Considering the fact that the optimal solution, Primal-S, is normalized to one,
the solution of the linear program FRLP is a number in [0, 1] and by minimizing the objective
function, we obtain a lower bound for the performance of the EIB algorithm, namely the ratio of
E{zt}Tt=1

[
RevEIB

(
{zt}Tt=1

)]
to Primal-S.

Lemma 7. Suppose Ψ is increasing, concave, and twice differentiable with a bounded derivative,
in [0, 1] and 1

ε×cmin = O(1), then with high probability, for any 0 < k < 1
ε ,

ε

1
ε
−1∑
j=0

γj,k+1Ψ
(
1− (j + 1)ε

)
≤ χ(k + 1)− χ(k) +O

(
1

cmin

)
.

Proof of Lemma 7: Note that the contribution of product i to χ(k+1)−χ(k) is equal to rici
∫ It0i /ci
I
t1
i /ci

Ψ(y)dy

where t0 = kTε and t1 = (k + 1)Tε. By the assumption that the derivative of Ψ is bounded, we
can substitute the integral with the sum and get

rici

∫ I
t0
i /ci

I
t1
i /ci

Ψ(y)dy = ri

∫ I
t0
i

I
t1
i

Ψ(y/ci)dy ≥ ri
I
t0
i∑

z=I
t1
i

Ψ(z/ci)−O
(

1

cmin

)
. (3)

Now let us consider the optimal solution. Let Stopt denote the set that is shown to the customer in
period t by the optimal solution. Since the Inventory-Balancing algorithm shows to each customer

an assortment that maximizes
∑

i∈S riΨ
( Iti
ci

)
φti(S), we have

n∑
i=1

ri

I
t0
i∑

z=I
t1
i

Ψ(z/ci) ≥
t1−1∑
t=t0

∑
i∈Stopt

riΨ
(
Iti/ci

)
φti(S

t
opt) ≥

t1−1∑
t=t0

∑
i∈Stopt

riΨ(It1i /ci)φ
t
i(S

t
opt). (4)
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The last inequality holds because Ψ is an increasing function. Recall that oi,k is the revenue obtained
by the optimal solution from product i during periods in [kTε, (k + 1)Tε). By this definition and
the inequality above, we have

n∑
i=1

ri

I
t0
i∑

z=I
t1
i

Ψ(z/ci) ≥
n∑
i=1

Ψ(It1i /ci)oi,k . (5)

In Lemma 8 which is borrowed from Mirrokni et al. (2012) (with some modifications), we show that
under uniform permutation, with high probability, oi,k is concentrated around its average εoi where
1
ε is the number of time slots. Note that this concentration holds under the uniform permutation
and as we will discuss below it is useful when 1

ε×cmin = O(1). By this lemma and the above equation,

n∑
i=1

ri

I
t0
i∑

z=I
t1
i

Ψ(z/ci) ≥
n∑
i=1

Ψ(It1i /ci)εoi , (6)

with high probability. Therefore, by Equation (6) and the definition of γ, we have

n∑
i=1

ri

I
t0
i∑

z=I
t1
i

Ψ(z/ci)−O
(

1

cmin

)
≥ ε

1
ε
−2∑
j=0

Ψ
(
1− (j + 1)ε

)
γj,k+1 −O

(
1

cmin

)
. (7)

The proof is completed since the left hand side is less than χ(k + 1)− χ(k). �

Lemma 8. If the customers arrive according to a random order (i.e., a permutation chosen uni-
formly at random),

∑n
i=1 oi = 1, then for any δ > 0 and 1

Tε ≤ k ≤
1
ε ,

Pr

[
n∑
i=1

|oi,k − εoi| >
5

ε× cmin × δ

]
< 1− δ.

The assumption that
∑n

i=1 oi = 1 implies that we have normalized Primal-S to 1. In this
lemma, we need 5

ε×cmin to be either constant or go to 0 which justifies the assumption 1
ε×cmin = O(1)

in Lemma 7.

B Numerical Experiments: Appendix to Section 7

B.1 Worst-Case Performance

In Section 7.2, we have compared different polices in term of their average performance. Here, we
investigate the worst-case performance of different policies. To this aim, we consider 250 random
arrival sequences. For each of them we compute the ratio of revenue collected by each policy and
the corresponding optimal clairvoyant solution. Then, the worst-case performance of any policy is
defined as the minimum of these ratios. Table 6 presents the worst-case performance of all policies
for LF= 1.4, 1.6, and 1.8 and CV= 0.1, 1, and 2 when the length of the horizon is drawn from
the uniform distribution with T̄ − T = E[T ]. Our IB polices outperform other policies in term
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of the worst-case performance, that is they can obtain at least 91% of the optimal clairvoyant
solution, which is much higher than the theoretical bounds, i.e., 63% for the EIB policy and 50%
for the LIB policy. We observe that the LP resolving heuristics perform poorly compare to IB and
Hybrid algorithms. Furthermore, One-shot LP heuristics are very sensitive to uncertainty in arrival
sequence (large CV). For instance, when LF=1.8 and CV=2 there is an arrival sequence in which
they only get 3.8% of the optimal clairvoyant solution.

Problem Worst Case Revenue under Different Policies (as % of the Upper Bound)

Class Inventory-Balancing Myopic One-shot LP LP Resolving hybrid

LF CV EIB LIB Policy LPO ALPO LPR500 LPR50 H1.5 H2

1.4

2.0 91.8 91.4 91.0 13.2 14.4 75.8 76.7 88.4 83.2

1.0 92.2 92.0 91.9 16.8 17.8 76.7 77.4 88.8 84.7

0.1 92.2 91.8 91.4 72.6 73.3 78.9 79.1 89.5 85.4

1.6

2.0 92.5 92.0 92.0 8.6 8.8 70.9 73.3 90.0 86.9

1.0 93.2 91.7 91.2 41.8 41.9 72.7 73.1 89.8 87.3

0.1 92.7 92.8 91.3 66.5 67.4 73.4 74.5 91.1 87.3

1.8

2.0 92.4 92.3 91.2 3.8 3.8 66.2 67.4 90.5 87.1

1.0 92.8 92.5 92.0 20.9 20.3 68.4 69.0 91.8 88.9

0.1 93.1 93.2 91.6 60.3 60.5 67.8 68.2 92.6 90.3

Table 6: Worst-Case Performance Comparison when the length of horizon is unknown.

B.2 Known Length of the Horizon

In this Section we compare the performance of the EIB, LIB and Hybrid algorithms to the myopic
policy and the LP-based heuristics when the length of the horizon is known in advance. We set the
initial inventory levels to 100, i.e., ci = 100, i = 1, 2, . . . , 73.

Performance Evaluation: In Table 7, we present the average revenue of each algorithm as a
percentage of the upper bound, which is averaged over all 250 problem instances, for loading factors
1.4, 1.6 and 1.8 and for coefficients of variation of 0.1, 1, and 2. As the table shows, when the
number of customers is known in advance, LPR500 algorithm can obtain more that 99% of the
optimal solution for all the considered problem classes which implies that having more resolving
periods is not necessary.

We note that both the LIB and EIB algorithms outperform the myopic and LPO algorithms.
Moreover, the revenue of the EIB and LIB algorithms is within ±2% of that of the resolving
heuristics. Comparing the performance of LPR500 in Tables 7 and 3 implies that that LPR heuristics
are sensitive to uncertainty in number of customers. Precisely, the performance of LPR heuristic
decreases significantly when it does not know the exact length of the horizon. In all problem classes,
the Hybrid algorithms yield more revenue than the IB polices since they incorporates additional
information about arrival sequence by using the LP resolving heuristic.

Again, in all cases, the LPO algorithm has the lowest revenue and its performance decreases
by increasing CV and loading factor. Observe that when CV= 0.1, One-shot LP heuristics obtain
more than 95% of the optimal clairvoyant solution. For small value of CV, the number of customers
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Problem Upper Avg. Revenue under Different Policies (as % of the Upper Bound)

Class Bound Inventory-Balancing Myopic One-shot LP LP Resolving Hybrid

LF CV (in $1000 ) EIB LIB Policy LPO ALPO LPR500 H1.5 H2

1.4

2.0 173 97.3 97.2 96.2 69.3 77.9 99.3 98.6 98.9

1.0 179 97.6 97.8 95.4 83.5 89.2 99.3 98.5 98.8

0.1 182 98.1 98.5 95.8 95.8 98.0 99.5 98.9 99.1

1.6

2.0 175 98.2 98.3 97.2 68.4 75.4 99.4 98.9 99.0

1.0 181 98.7 98.9 97.4 83.6 88.3 99.6 99.0 99.0

0.1 183 99.3 99.3 97.8 95.8 97.8 99.7 99.4 99.5

1.8

2.0 177 98.8 98.9 98.0 65.5 72.1 99.4 99.1 99.1

1.0 182 99.2 99.3 98.4 79.8 84.6 99.5 99.3 99.4

0.1 183 99.7 99.8 99.4 95.5 97.6 99.8 99.8 99.8

Table 7: Revenue comparison when the length of horizon is known in advance. The standard errors
of all numbers are less than 0.1%.

of each type is very concentrated around its average. Therefore, these heuristics do not suffer from
fixing their strategies at the beginning of the horizon. Note that even for small value of CV, our
IB algorithms perform better than One-shot LP heuristics.

Transient Behavior: Figures 2 shows the cumulative revenue over time for the myopic, LIB,
LPR500, LPO and ALPO algorithms with LF = 1.8 and CV = 2. We observe that the myopic policy
and the LIB algorithm are very aggressive during the initial periods, resulting in higher cumulative
revenues than One-shot LP and resolving heuristics. Since resolving heuristics know exactly the
number of customers in advance, they manage to earn revenue linearly over time. This implies
that knowing the true estimate of the length of the horizon (number of customers) is essential for
the resolving heuristics, that is, if the number of customers is less than its estimated value, these
heuristics will suffer from significant revenue loss, see Section 7.2.

B.3 Learning the Customer Types

Here we investigate the performance of the IB algorithms when we do not know the exact value of
the selection probability φ̄zti (S). Rather, we only have an estimate φzi (S) based on data collected in
the previous periods. Since we assume the multinomial logit choice model for each customer type, we
maintain an estimate Vz(t) = (V z

0 (t), V z
1 (t), . . . , V z

n (t)) of the preference weight parameters, where
for each product i, we set V z

i (t) to be proportional to the number of times that a customer of type
z purchases DVD during the previous t − 1 periods, and we normalize Vz(t) so that V z

0 (t) = 1.
Similar to the previous section, we have 10 customer types and 73 products with initial inventory
of ci = 30.

Table 8 shows the revenue of the IB algorithms when these algorithms only have estimates of
the preference weight parameters. In absolute terms, the IB algorithms perform well despite not
knowing the true parameter values; they obtain 83%− 98% of the upper bound, depending of the
coefficient of variations and the loading factor. We observe better performance for loading factor
of 1.6 in compare to smaller loading factors. The reason is that larger loading factor or longer the
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Figure 2: The cumulative revenue over time for LF = 1.8 and CV = 2 when the length of the
horizon is known in advance.

horizon allows the algorithms to obtain better estimates of the unknown parameters. Note that the
IB algorithms perform well even with few observations. One of the reasons is that in the setting
above, we do not impose any constraint on the size of the assortment that policies can offer to
each customer. This could compensate for the inaccuracy in estimation of choice model since the
algorithm can offer large assortments. Furthermore, by Proposition 1, we expect the IB algorithms
to be robust with respect to the preference weight parameters.

C Asymptotic Optimality of the Dynamic Programming Policy

In this section, we show asymptotic optimality of the dynamic programming (DP) policy when the
type of customers is drawn independently from a known distribution. Namely, we show that the
value obtained by the DP policy approaches Primal-S asymptotically when both the capacities and
the horizon scale proportionally.

Let ηz > 0, z ∈ Z, be the probability that in each period a customer of type z arrives.31 Let
V (t, x1, . . . , xn | z) denote the maximum expected revenue with t periods remaining, given that a
customer of type z ∈ Z arrives, and the remaining inventories are (x1, . . . , xn). Then, the dynamic
programming formulation of this problem is given by

V (t, x1, . . . , xn | z) (8)

= max
S∈S : xi≥1 ∀ i∈S

{∑
i∈S

φzi (S) [ri + V (t− 1, x1, . . . , xi − 1, . . . , xn)] + φz0(S)V (t− 1, x1, . . . , xn)

}
where V (t, x1, . . . , xn) =

∑
z∈Z η

zV (t, x1, . . . , xn | z). Also, the terminal condition is given by
V (0, ·) = 0. We denote the optimal revenue under the dynamic programming formulation by

31This is with abuse of notation and done for the sake of economy of notation, we previously used ηz as the expected
number of customers of type z, not the probability.
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Problem Class Upper Revenue

Loading Coefficient of Bound (as % of the Upper Bound)

Factor (LF) Variation (CV) (in $100) LIB EIB

1.2

0.2 526 91.3 91.4

0.5 524 89.6 89.6

0.8 522 86.2 86.4

1.4

0.2 546 95.4 95.7

0.5 544 92.9 93.2

0.8 541 89.9 90.6

1.6

0.2 549 98.6 98.5

0.5 548 96.7 96.9

0.8 546 93.8 93.9

Table 8: The average revenue for the LIB and EIB algorithms when the underlying parameters
are unknown, and each algorithm uses the estimated parameters based on data collected in the
previous periods.

V (T, c) where c is the vector of initial inventories. We note that in computing V (T, c), we take
expectation with respect to sequence of customers and the customers’ choices. For simplicity, we
assume that the policy can always offer an “empty” assortment with S = ∅. Thus, the maximum
in the dynamic programming equation is always well-defined.

The asymptotic optimality result is stated in the following Proposition.

Proposition 4 (Asymptotic Optimality of DP). Given that the type of customers is drawn inde-
pendently from a known distribution such that the probability of arriving a customer of type z ∈ Z
in any period t is ηz, then

lim
β→∞

V (βT, βc)

Primal-S(βT, βc)
= 1,

where Primal-S(βT, βc) is the linear programming Primal-S with initial inventories βc and the length
of the horizon βT .

In the above proposition, we scale both the horizon and initial inventory with a scalar β. The
corresponding problem is called β-scaled stochastic problem. Then, to see the asymptotic behavior
of dynamic programming, we let β go to infinity. We note that Proposition 4 does not imply that
the dynamic programming policy is asymptotically optimal for every sequence of customer types.
Instead it shows that it is asymptotically optimal only when take average over all sequences.

Proof of Proposition 4: By Lemma 4, V (βT, βc) ≤ Primal-S(βT, βc) for all T , c and β > 0. Now,
let {ȳz(S) : S ∈ S , z ∈ Z} denote an optimal solution for the (unscaled) Primal-S(T, c) for all T ,
c and β > 0. Then, it is easy to verify that {βȳz(S) : S ∈ S , z ∈ Z} is an optimal solution to
Primal-S(βT, βc).

To show that limβ→∞
V (βT,βc)

Primal-S(βT,βc)
= 1, we construct a deterministic policy µ for the β-scaled

stochastic problem whose expected revenue approaches Primal-S(βT, βc) as β increases toward

45



infinity. We show that this policy is admissible, that is the total sales of product i is less than its
initial inventory. Therefore, V (βT, βc) also approaches Primal-S(βT, βc) as β →∞.

The policy µ operates as follows: Offer a set S ∈ S to customers of type z for up to βηz ȳz(S)
times. The order in which the sets are offered is arbitrary. Under this policy, we will NOT accept
all of the demands generated by offering S. Rather, we will limit the sales of product i from offering
S to customers of type z to at most βηzφzi (S)ȳz(S).

Let N(βT ) = (N z(βT ) : z ∈ Z) be a multinomial random vector, where N z(βT ) denotes the
total number of customers of type z over βT periods. Note that N z(βT ) has a binomial distribution
with parameter βT and ηz. We define the random variableDz

i (S, q) as the total number of customers
of type z who select product i when S is offered under the policy µ, given that there are q customers
of type z. Since under the policy µ we do not accept all the demands, the total sales of product i
from customers of type z generated from offering S under the policy µ is given by

Saleµ,zi (S) = min {Dz
i (S,N

z(βT )) , βηzφzi (S)ȳz(S)} .

We point out that Saleµ,zi (S) is a random variable because Dz
i (S,N

z(βT )) is a random variable.
Since βȳz(S) is a feasible solution of linear program Primal-S(βT, βc), we have

β
∑
z∈Z

∑
S∈S

ηzφzi (S)ȳz(S) ≤ βci , i = 1, . . . , n ,

which implies that, with probability one,∑
z∈Z

∑
S∈S

Saleµ,zi (S) ≤ β
∑
z∈Z

∑
S∈S

ηzφzi (S)ȳz(S) ≤ βci , i = 1, . . . , n .

Therefore, the policy µ is admissible because the total sales of product i does not exceed its initial
inventory. The total revenue over βT periods under the policy µ is given by a random variable∑n

i=1 ri
∑

S∈S
∑

z∈Z Saleµ,zi (S). Then,

lim
β→∞

1

β

n∑
i=1

ri
∑
S∈S

∑
z∈Z

Saleµ,zi (S) = lim
β→∞

1

β

n∑
i=1

ri
∑
S∈S

∑
z∈Z

min {Dz
i (S,N

z(βT )) , βηz ȳz(S)φzi (S)}

=
n∑
i=1

ri
∑
S∈S

∑
z∈Z

min

{
lim
β→∞

1

β
Dz
i (S,N

z(βT )) , ηz ȳz(S)φzi (S)

}

=

n∑
i=1

ri
∑
S∈S

∑
z∈Z

ηz ȳz(S)φzi (S) = Primal-S(T, c) .

To establish the third equality above, note that

1

β
Dz
i (S,N

z(βT )) =
1

β

Mz∑
t=1

1l{Bit,z(S)=1} =
M z

β
× 1

M z

Mz∑
t=1

1l{Bit,z(S)=1} ,

where M z := min{N z(βT ) , βηz ȳz(S)} and Bi
t,z(S) = 1 denotes the event that the tth customer

of type z selects product i when S is offered, with E[1l{Bit,z(S)=1}] = φzi (S). By SLLN, we know

that limβ→∞N
z(βT )/β = ηzT almost surely (a.s.). Since under the policy µ, we only offer S up

to βηz ȳz(S) customers of type z,

lim
β→∞

M z

β
= lim

β→∞

min{N z(βT ) , βηz ȳz(S)}
β

= ηz ȳz(S) a.s.
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By a similar argument, 1
Mz

∑Mz

t=1 1l{Bit,z(S)=1} = φzi (S). Thus, with probability one,

lim
β→∞

1

β
Dz
i (S,N

z(βT )) = ηz ȳz(S)φzi (S),

which gives us the desired result. Then, by the Dominated Convergence Theorem, it follows that
limβ→∞

1
βE
[∑n

i=1 ri
∑

S∈S
∑

z∈Z Saleµ,zi (S)
]

= Primal-S(T, c). Since the policy µ is admissible,

1 ≥ lim
β→∞

V (βT, βc)

Primal-S(βT, βc)
≥ lim

β→∞

1
βE
[∑n

i=1 ri
∑

S∈S
∑

z∈Z Saleµ,zi (S)
]

1
βPrimal-S(βT, βc)

= 1,

which completes the proof. �
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