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Abstract

Recently, there has been a surge of interest in algorithms that allocate advertisement space in an online revenue-
competitive manner. Most such algorithms, however, assume a pay-as-you-bid pricing scheme. In this paper, we study
the query allocation problem where the ad space is priced using the well-known and widely-used generalized second
price (GSP) scheme. We observe that the previous algorithms fail to achieve a bounded competitive ratio under the
GSP scheme. On the positive side, we present online constant-competitive algorithms for the problem.
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1. Introduction

Search engines run thousands of individual auctions every second to allocate the advertisement space next to their
search results. The process of choosing and charging the advertisers is a daunting algorithmic and engineering task.
The search engines typically take into consideration several factors including the search keyword, the demographics
of the user, the frequency of the keyword, as well as the bid, budget and click-through rate of the advertisers for each
of these decisions.

Modeling and analyzing these auctions have been a challenge as well: the repeated nature of the auctions as well
as budget constraints make the structure of the equilibria rich and complicated. Moreover, misconceptions of the first
designers of these mechanisms about the Vickery auction have lead to decisions that add to this difficulty. Nevertheless,
computer scientists and economists have suggested and analyzed several models each capturing a particular aspect of
these mechanisms. We start by briefly mentioning two lines of research most related to the present paper. For a more
detailed exposition see Lahaie et al. [11].

The static model focuses on a single auction in which a small number (typically less than 20) slots are being
auctioned at the same time. The higher slots are more desirable because they receive more clicks. The bid or private
information of a bidder is one dimensional and is the expected payoff from a click. The expected payoff to a bidder
from not obtaining a slot is assumed to be zero. As is the case for most search engines, the auctioneer runs what is
known as the Generalized Second Price (GSP) auction. GSP uses the same allocation rule as VCG: the bidders are
sorted based on their expected value (bid times click-through rate) and receive the slots in that order. The expected
payment of the bidder who receives a slot is the expected value of the next highest bidder for that slot. Unlike VCG,
GSP auctions are not truthful. Varian [15] and Edelman et al. [6] analyze the equilibria of this auction under some
additional assumptions, and show that GSP has an equilibrium that is revenue equivalent to the VCG outcome.

Another line of research focuses on the algorithmic aspects of the allocation problem from an online competitive
analysis point of view. In this model, the search engine receives the bids of advertisers and their maximum budget
for a certain period (e.g. a day). As users search for these keywords during the day, the search engine assigns their
ad space to advertisers and charges them the value of their bid for the impression of the ad. That model was studied
first by Mehta et al. [14] who showed that greedy achieves a competitive ratio of 1

2 and gave a 1 − 1/e competitive
algorithm. They also showed that this ratio is essentially tight. Buchbinder et al. [4] gave a primal-dual algorithm
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and analysis for this problem. Mahdian et al. [12] extended the results to scenarios in which additional information
is available, yielding improved worst case competitive ratios. See also Goel and Mehta [8, 9] for other results on this
model. It is possible to extend most of the results of these papers to a multi-slot auction but essentially only under a
pay-as-you-bid pricing scheme, and not the GSP.

The focus of this paper is on the algorithmic aspects of the online allocation problem, where the search engine
is committed to charge under the GSP scheme. We first observe that different policies for selecting advertisers to
participated in a keyword auction can significantly affect the revenue. The GSP mechanism is the current industry
standard for allocating and pricing the ad slots; however, often to optimize the allocation of the budget or to merely
smooth out the allocations throughout the day, search engines use a throttling algorithm, i.e., a mechanism that upon
the arrival of a new query, decides which advertisers will be allowed to participate in the auction for that query. Once
the subset is chosen the search engine is committed to the GSP scheme for sorting and charging the advertisers in that
set.

We consider three different models for throttling. We refer to the first and the simplest of these models as the
non-throttling model. In this model all advertisers with positive remaining budget participate in the keyword auction.
We give a simple example which shows that removing an advertiser from the auction can significantly increase the
revenue. This implies that the revenue in the non-throttling model can be arbitrary low. The reason is that in the GSP
the bid of an advertiser contributes to the revenue in two ways. First, a (fraction) of the bid is paid for the advertisement
space; In addition, the bid may set the price for another advertiser. Hence, in many cases, it would be better to keep
the advertisers with high bid, but low budget, in the system; see Section 3.

In the second model, we consider policies in which the auctioneer is allowed to exclude advertisers with positive
remaining budget from some of the auctions but it has to remove an advertiser as soon as her budget reaches zero.
We call this throttling model the strict model, and the throttling algorithms that fit this model strict algorithms. To the
best of our knowledge, all throttling algorithms used by search engines are strict. If the frequencies of the queries are
known in advance, i.e., the offline setting, the optimal strict allocation can be found using linear programming [1], see
Section 2.1. In the online setting, first we observe that both the greedy algorithm and the algorithm of Mehta et al. [14]
fail to be competitive against an optimal offline strict algorithm. In this paper, we give the first constant-competitive
online algorithm for query allocation in the strict model. Our algorithm is a greedy algorithm that at each step solves
a dynamic program as a subroutine. The competitive ratio of the algorithm is 1

3 .
We observer that allowing an allocation algorithm to give out “free impressions” can also increase the revenue.

Hence, we consider a throttling model in which the algorithm can choose any set of advertisers, whether their budget
is exhausted or not, and pass it to the GSP mechanism. However, an advertiser cannot be charged more than her
budget, so by including an advertiser whose budget is exhausted, the throttling algorithm decides to give her a free
impression. We refer to this model as the non-strict model. Policies in the strict model also belong to the non-strict
model. Therefore, the revenue under non-strict model is greater than or equal to the strict model. The idea of increasing
the revenue by giving out free impression is reminiscent of the idea of subsidizing weak bidders to increase revenue in
auctions [13, 2]. One might argue that the non-strict model is not practical because it creates wrong incentives for the
bidders. But it still provides a good benchmark for comparing the performance of various allocation algorithms. We
show that the maximum ratio between the optimal offline solution in the strict and the non-strict models is 2. We also
show that the algorithm of Mehta et al. can be combined with a dynamic programming subroutine to obtain a (1− 1

e )
competitive ratio for this model. Further, we prove that our strict greedy algorithm is 1

3 -competitive with respect to
the optimal offline solution in the non-strict algorithms.

1.1. Organization and Results

In the next section, we formally define the problem. Then, in Section 3, we compare the optimal revenues in differ-
ent throttling models and give tight lower bound and upper bound on the ratio of the optimal revenues in these models.
Our result implies that removing advertisers from the auctions (which is not allowed by non-throttling algorithms) can
significantly increase the revenue. We also show that giving free impressions (i.e., free ads), which is the advantage
of non-strict algorithms with respect to strict algorithms, is beneficial, yet its benefit is bounded. If fact, we show that
the maximum ratio between the optimal revenue in the non-strict and the strict models bounded by 2.

We also present online algorithms for each throttling model. In Section 4, we present a greedy strict algorithm
which is 1

3 -constant competitive with respect to the optimal offline strict algorithms. Surprisingly, the algorithm
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maintains the same competitive ratio with respect to the optimal non-strict algorithms. In Section 5, we show that the
algorithm of Mehta et al fails to be competitive under the strict model, but a modified version of this algorithm, which
solves a dynamic program as a subroutine, achieve a competitive ratio of (1− 1

e ) in the non-strict model.
To the extent of our knowledge, the only other work that studies the algorithmic question of advertisement alloca-

tion under GSP is by Azar et. al. [3]. The authors consider a different model in which the bid of each advertiser would
be truncated to be not more than her remaining budget (which is not the model commonly used in practice). They
show that in this model, even the offline problem is hard to approximate within a non-trivial factor. They also present
a constant competitive randomized algorithm for a special case of the problem where bids and budgets are equal to
either 0 or 1 (in practice, the budgets are usually much bigger than bids). As the authors point out [3], comparing to
our work, it is interesting to observe the dramatic effect of modeling assumptions on the results.

2. Model

We study a sponsored search setting where m advertisers are bidding to be displayed alongside the search results
for a number of different keywords. Let A be the set of advertisers, and K be the set of keywords. During the day, a
sequence Q of search queries arrive, each corresponding to one keyword in K. As a query arrives, the search engine
picks an ordered list of k ads (sometimes called a slate of ads) to be displayed in the k ad slots numbered 1, 2, . . . , k.
We follow the common assumption that slot number 1 is the “best” slot for all advertisers (typically the “top” slot),
and the value of other slots scale in the same way for all advertisers. The assumption that the value-per-impression for
different slots scales the same way for different advertisers is equivalent to the widely-used assumption of separability
of click-through rates (CTRs). Formally, this means that there are constants 1 = θ1 ≥ θ2 ≥ · · · ≥ θk such that if an
advertiser has a value of x for being displayed in the first slot, her value for being displayed in slot ` is θ`x. Therefore,
each advertiser i only needs to specify their bid bij that represents the maximum she is willing to pay to be displayed
in slot 1 for keyword j. Search engines usually charge the advertisers per click instead of per impression. However,
because of the large number queries in practice, the pay-per-click system performs similar to a pay-per-impression
system in expectation, where the value per impression is the value per click times probability of the click. Hence, in
this paper we assume that the payments are per-impression. In addition to the bids, the advertisers can specify their
total budget for a certain period (e.g. a day). We denote the daily budget of advertiser i by Bi. As in the previous
work [14, 4, 12, 8], we assume that bids are small compared to the budgets. This assumption is quite reasonable in
practice.

For the sake of transparency and also for technical reasons, search engines often commit to using a simple mech-
anism for allocating slots to advertisers and determining how much each advertiser should pay. The current industry
standard is a mechanism called the generalized second-price (GSP) auction[6, 15]. This mechanism sorts advertisers
based on their bids, and assigns the first k advertisers to the k available slots in this order. The price for the `’th
advertiser, 1 ≤ ` ≤ k, is equal to θ` times the bid of the next advertiser for this keyword (i.e., the advertiser in slot
`+ 1 if ` < k, or the first advertiser that is not displayed). The search engine charges each advertiser the minimum of
her price and her remaining budget. Given the assumption that bids are small compared to budgets, these “last query
discounts” are negligible.

To optimize the allocation of the budget or to merely smooth out the allocation of advertisers throughout the
day, search engines often use a throttling algorithm, i.e., a mechanism that upon the arrival of a new query, decides
which advertisers will be allowed to participate in the auction for that query. The output of this algorithm is a set of
advertisers. These advertisers will be sorted as in the GSP mechanism, the slots will be allocated to the advertisers in
this order, and price for the i’th advertiser in this order equal to θi times the bid of the i+ 1’st advertiser for the same
keyword (for simplicity, assume θi = 0 for i > k). The goal is to design a throttling algorithm (which we also refer to
as an allocation algorithm) that generates the maximum total revenue for the search engine.

We consider three different models for throttling. The first two models impose some restrictions on advertisers
that are allowed to participated in a keyword auction. The third model has no restrictions.

• In the non-throttling model an advertisers is removed from the auction only, and if only, her budget is exhausted.
Under the GSP scheme, the query allocation algorithm is trivial in this model: Allocate the query to the adver-
tisers with k highest bid; then, charge advertisers according to the GSP, and remove advertisers with exhausted
budget.
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• In the strict model, as soon as the amount an advertiser is charged reaches her budget, the system removes the
advertiser. However, a throttling algorithm in this model can also remove advertisers with positive budget from
the auction.

• In the non-strict model, the budget enforcement is left to the throttling algorithm. The algorithm can choose
any set of advertisers, whether their budget is exhausted or not, and pass it to the GSP mechanism. However,
an advertiser cannot be charged more than her budget, so by including an advertiser whose budget is exhausted,
the throttling algorithm decides to give her a free impression.

The main difficulty faced by the throttling algorithm is that it does not know the sequence Q of queries that arrive
during the day; rather, the sequence is revealed to the algorithm in an online fashion.

2.1. Offline setting: The LP formulation

In this section, we show how the offline allocation problem, i.e., when query volumes are known in advance, can
be formulated as a linear program. As mentioned, the query allocation algorithm is trivial in the non-throttling model.
For the strict model, Abrams et al. [1] present a linear program. In this section, we give a similar linear program for
the offline problem in the non-strict model.

Let Sj be the family of all subsets of advertisers who are interested in keyword j. For a keyword j, a set S ∈ Sj ,
and an advertiser i ∈ S, we define pGSP (i, j, S) as the price for advertiser i in a GSP auction for keyword j, when the
set of advertisers participating in the auction is S. For simplicity of notation, when it is clear that the GSP mechanism
is used, we denote the price by p(i, j, S); also let p(i, j, S) = 0 for i 6∈ S. Define π(j, S) to be the revenue of the
search engine from allocating keyword j to set S, i.e.,

π(j, S) =
∑
i∈S

p(i, j, S). (1)

Let nj be the number of the queries for keyword j that arrive during the day. For every keyword j and set S ∈ Sj ,
the linear program has a variable xj,S indicating the number of queries for keyword j to whom the set S is assigned to.
To formulate the non-strict model, we need an additional variable yi that indicates the total value of queries allocated
for free to advertiser i. The primal linear program in the non-strict model is as follows:

maximize
∑
j∈K

∑
S∈Sj π(j, S)xj,S −

∑
i yi

subject to
∑
S∈Sj xj,S ≤ nj ∀j ∈ K∑
j∈K

∑
S∈Sj p(i, j, S)xj,S − yi ≤ Bi ∀i ∈ A

xj,S ≥ 0 ∀j ∈ K, S ∈ Sj
yi ≥ 0 ∀i ∈ A

The dual of this program can be written as follows. αi and βi variables correspond to the first and second set of
constraints.

minimize
∑
j∈K njαj +

∑
i∈A βiBi

subject to αj +
∑
i∈S p(i, j, S)βi ≥ π(j, S) ∀j ∈ K, S ∈ Sj

βi ≤ 1 ∀i ∈ A
αj , βi ≥ 0 ∀i ∈ A, j ∈ K

The linear programming formulation of the strict model can be obtained from the above primal program by setting
all yi’s to zero. This corresponds to removing the βi ≤ 1 constraints from the dual.

Abrams et al. [1] proposed a solution based on the simplex algorithm and the column generation method. Alterna-
tively, one can obtain a polynomial time algorithm for this linear program using the ellipsoid method in combination
with a separation oracle based on the dynamic programming subroutine, see Section 5. Because bids are small com-
pared to the budget, the integrality gap of the LP is small.
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3. Effects of different throttling models on the revenue

We start this section with two examples. In the first example we observe that removing an advertiser from an auc-
tion can significantly increase the revenue. This implies that the revenue of the non-throttling model can be arbitrarily
low. The second example shows that sometimes giving out queries for free increases the revenue. However, as proved
in Theorem 4, the increase in the revenue is essentially bounded by 2.

Example The example consists of only one keyword and three advertisers. The first advertiser has an unlimited
budget, and a bid of $2 for each impression. The second advertiser has a bid of $1 for each impression and a budget
of $1. The third advertiser, has a bid of $ε < 1 and an unlimited budget. Assume k = 3 and θ1 = θ2 = θ3 = 1. In
the non-throttling model, at the beginning, all advertisers participate in the auction. However, after d 1ε e impressions,
the budget of the second advertiser will be exhausted and this advertiser will be removed from the auction. Therefore,
for the rest of the day, each query will bring a revenue of $ε. However, if an algorithm, from the beginning, removes
advertiser 3 from the auction, each query will bring a revenue of $1 – note that advertiser 2 pays the price of 0 for
each impression. The ratio between the revenue of the (strict) algorithm that removes the third advertiser and the
non-throttling algorithm approaches 1

ε , as the number of queries increases.

Corollary 1. The ratio between the optimal revenue in the strict and non-throttling models can be made arbitrarily
large.

The next example shows that giving out queries for free may increase the revenue.

Example For a large integer M , there are M + 2 advertisers, one keyword, and M + 2 slots. Assume θi = 1 for all
slots. The bid of advertisers 1 and 2 is equal to 1. Advertisers 3, . . . ,M + 2 bid 1

M . The budget of all advertisers
except advertiser 2 is infinite. Since the budget of advertiser 2 is limited, she will eventually run out of budget. After
that, the maximum revenue any strict algorithm can obtains from each query is 1 (by allocating the query to set {1, 2}
or set {1} ∪ {3, · · · ,M + 2}). However, the optimal non-strict algorithm keeps 2 in the auction, and obtains revenue
2− 1

M from each query. In this case advertiser 2 receives queries for free.

Corollary 2. The ratio between the optimal revenue of the non-strict and the strict models can be made as large as 2.

In the rest of this section, we provide an upper bound on this ratio.

Definition 1. Consider keyword j and set S ∈ Sj . We call advertiser i ∈ S an active advertiser if her remaining
budget is greater than p(i, j, S). Note that an advertiser might be active with respect to one set and inactive with
respect to another set. We also call set S ∈ Sj a proper set if all advertiser i ∈ S are active.

Lemma 3. Consider any keyword j and set S. Let π(A)(j, S) be the revenue from active advertisers in S, i.e., the sum
of the prices of active advertisers. There always exists a proper subset S′ ⊂ S such that π(j, S′) ≥ 1

2π
(A)(j, S).

Proof : Without loss of generality, assume S = {1, 2, 3, . . . , `}, and b1 ≥ b2 ≥ . . . ≥ b`. Let T be the set of
all active advertisers in S. If advertiser 1 is inactive, then removing that advertiser from S can only increase π(j, S);
hence, assume that advertiser 1 is active. If S is proper the claim trivially holds. Otherwise, let q be the inactive
advertiser in S with the largest bid.

Now consider two subsets T1 = {1, 2, . . . , q} and T2 = {i ∈ T |i > q}. Note that the price for q is zero in T1;
therefore T1 is proper. Also, because any subset of a proper set is proper, T2 is proper. We have

π(A)(j, S) =
∑
i∈T

p(i, j, S) =
∑
i<q

θibi+1 +
∑
i∈T2

θibi+1 = π(j, T1) +
∑
i∈T2

θibi+1 (2)

Define b`+1 to be zero.
We now show

∑
i∈T2

θibi+1 ≤ π(j, T ). Let di denote the number of inactive advertisers before advertiser i in S.
For any advertiser i ∈ T , let n(i) denote the next advertiser after i in T . The position of i in the set T will be i − di,
and hence we have: ∑

i∈T
p(i, j, T ) =

∑
i∈T

bn(i)θi−di
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Since θ is decreasing, we have θi−di ≥ θi ≥ θn(i). Therefore, we get:

π(j, T ) =
∑
i∈T

p(i, j, T ) ≥
∑
i∈T

bn(i)θn(i) ≥
∑
i∈T2

biθi ≥
∑
i∈T2

bi+1θi (3)

The last inequalities hold because T2 ⊂ T and bi+1 ≤ bi. Plugging inequality (3) into (2) we get π(A)(j, S) ≤
π(j, T1) + π(j, T ). Note that T1 and T2 are both proper subsets, hence the revenue obtain from at least one of them is
not less than 1

2π
(A)(j, S). �

Theorem 4. Let δ be the maximum ratio between the bid and the budget of an advertisers. The ratio of the revenues
of optimal offline algorithms in the non-strict and the strict models is at most 2 + δ

1−δ . Also, this ratio can be as large
as 2.

Proof : The lower bound is immediate from Corollary 2. To prove the upper bound, let OPT denote an optimal non-
strict algorithm (which knows the sequence of the queries in advance). Based on this, we construct a strict algorithm
called P (we refer to both algorithm and allocation as P). Algorithm P knows the sequence of queries as well as the
set of advertisers that OPT chooses for each query. Suppose upon the arrival of query j, OPT allocates query j to set
S. Then, algorithm P allocates j to a proper subset of S with the maximum revenue. Active advertisers, and hence
proper sets, are determined with reference to remaining budgets in P .

As proved in Lemma 3, the revenue of OPT from the active advertisers for each query is at most twice the revenue
of P . In the following we prove that the total revenue of OPT from inactive advertisers is at most a δ

1−δ fraction of the
revenue of P , which completes the proof.

Let D be the set of advertisers that have been inactive in at least one of the sets chosen by OPT. Note that the set
of advertisers that receive a query in P is a subset of advertisers allocated the query by OPT. Hence, if an advertiser
belongs to set D, she has spent at least 1 − δ fraction of her budget, both in P and OPT. Therefore, at the end of the
algorithms, the revenue of P is at least 1

1−δ of the total budget of the advertisers in D. Finally, the total revenue of
OPT from inactive advertisers is at most δ times the total budget of advertisers in D, which is less than δ

1−δ fraction of
the revenue of P . �

Given the assumption that bids are small compared to budgets, we expect that δ to be small. Therefore, the theorem
above essentially gives a tight bound on the maximum ratio between the revenue of the two throttling models.

4. An online strict algorithm

In this section, we present an online algorithm for the strict model under the GSP scheme. First observe that
the non-throttling algorithm corresponds to the greedy algorithm which allocates the queries to the set of advertisers
with the highest k bids (among advertisers with positive remaining budgets). Hence, by Corollary 1, the naive greedy
algorithm fails to get a good competitive ratio in the strict model. In the next section we also show that the algorithm
of Mehta et al is not competitive in this model. Our strict algorithm makes greedy choices at each step and achieves
competitive ratio 1

3 , even when compared to the offline non-strict optimal algorithm. Further, we will show that the
analysis of the strict greedy algorithm is tight, even against a strict offline optimal.

The strict greedy algorithm:

Upon the arrival of a new query for keyword j:

Allocate the query to a proper set S with maximum revenue.

Proper set S with maximum revenue can be found using a simple dynamic program, e.g., for any 1 ≤ l ≤ k and
advertiser i, one can find the maximium revenue among all proper sets of size l that advertiser i is ranked at the bottom
(slot l).
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Theorem 5. Let δ be the maximum ratio between the bid and the budget of an advertisers. The strict algorithm is(
1−δ
3−2δ

)
-competitive with respect to the optimal offline solution for the non-strict model which is allowed to use (but

not charge) advertisers whose budget have been exhausted.

Note that the optimal revenue in the non-strict model is greater than or equal to the revenue in the strict model.
Proof : Consider an optimal non-strict algorithm denoted by OPT. Let πG(t) and πOPT(t) denote the total revenue
obtained by the strict greedy algorithm and OPT at time t. Also, let π(A)

OPT (t) (resp. π(I)
OPT (t)) denote the total revenue

obtained by OPT from advertisers who are active (resp. inactive) at time t. In these definitions and in the rest of the
proof, when we call an advertiser active/inactive at time t, it is always with reference to the strict greedy algorithm; the
same is true for proper sets. We will relate π(I)

OPT (t) and π(A)
OPT (t) separately to the revenue of the strict greedy algorithm,

πG(t).
The strict greedy algorithm allocates the query to a proper set with maximum revenue. Hence, by Lemma 3, we

have π(A)
OPT (t) ≤ 2πG(t). Also, observe that any advertiser who contributes to π(I)

OPT (t) must have already used up a
fraction (1 − δ) of her budget in the strict greedy algorithm at time t. Hence, we have:

∑
t π

(I)
OPT (t) ≤ 1

1−δ
∑
t πG(t)

The claim immediately follows from combining these two inequalities.
�

4.1. A tight example
We will now prove that our analysis for the strict greedy algorithm is tight, even against a strict offline optimal al-

gorithm. Consider a scenario with k slots, and 3+2k advertisersA1;A2;A3;B1, B2, . . . , Bk; C1, C2, . . . , Ck. Adver-
tiserA1 has budgetN ; A2, A3 have budgetsN/k each; B1, B2, . . . , Bk have budgetsN/(k−1) each; C1, C2, . . . , Ck
have budgets N/k each. The queries arrive in three phases; each phase has N identical queries. We summarize the
queries, the bids, and the actions taken/revenue obtained by the strict greedy algorithm as well as an offline algorithm
in table 1. The total revenue earned by the online algorithm is N + O(N/k) while the total revenue of the offline
algorithm is 3N −O(N/k), giving a lower bound of 1

3 on the competitive ratio.

Phase Bids Greedy Greedy Offline Offline
ranking revenue ranking revenue

1 A2 : 2/K;A3 : 1/K A2, A3 N/k Passes 0
2 A1 : 2;A2 : 1 A1, B1 . . . Bk Nk/(k − 1) A1, A2, C1 . . . Ck−1 N(1 + k−1

k )
B1 . . . Bk : 1/(k − 1)
C1 . . . Ck : 1/k

3 B1 . . . Bk : 1/(k − 1) B1 . . . Bk N/(k − 1) B1 . . . Bk N
(if budget left)

Table 1: An example showing that the analysis of greedy is tight. Each phase has N queries. When we do not specify the bid of an advertiser for a
query, it is assumed to be 0.

5. Online algorithms for the non-strict model

In this section, we present the modified algorithm of Mehta et al. [14] for the GSP scheme. Similar to [14], we
assume bids are arbitrarily small compared to the budgets. Define function Φ : [0, 1]→ [0, e−1e ] to be Φ(x) = 1−ex−1.
Also, let fi be the fraction of the spent budget of advertiser i.

The (modified) algorithm of Mehta et al. for the GSP scheme:

Upon the arrival of a new query for keyword j:

Allocate the query to a set S ∈ argmaxS⊂Sj
∑
i∈S Φ(fi)p(i, j, S).
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In Lemma 7, we show that such set S can be find in polynomial time using dynamic programming. But first,
we analyze this algorithm by developing a primal-dual scheme which is similar to the approach proposed by Buch-
binder et al. [4, 5]. We first observe that this algorithm cannot be used under the strict model. The reason is that set S
which maximize

∑
i∈S Φ(fi)p(i, j, S) may contain advertisers with no remaining budget. For instance, consider the

first example in Section 3. In the strict model, the algorithm presented above allocates each query to the same set of
advertisers as the non-throttling algorithm. Hence, by Corollary 1, it fails to be competitive.

Theorem 6. The non-strict algorithm is (1 − 1
e )-competitive with respect to the optimal offline solution of the non-

strict model.

Proof : In the online setting, without loss of generality, we assume that there is one query from each keyword, i.e.,
nj = 1 for every keyword j. We construct a feasible solution for the primal and the dual programs of the offline
problem, see Section 2.1. We describe how to update the primal and dual variables, after arrival of each new query,
such that it maintains the feasibility; also, the ratio of the values of the primal and the dual be greater than or equal
to 1 − 1

e . Therefore, by the end of the algorithm, we have a solution which is within a ratio of 1 − 1
e of the optimal

solution of the primal linear program.
We initialize all of the variables to zero, and update them once a query shows up. In particular we let βi = efi−1

e−1 ,
which implies 1− βi = e

e−1Φ(fi).
Consider query j, and assume that the algorithm allocates it to set S? which maximizes:

S? ∈ argmax
∑
i∈S

(1− βi)p(i, j, S) (4)

Let ci = min{p(i, j, S?), (1 − fi)Bi} denote the amount that advertiser i ∈ S? is charged. Also let yi =
p(i, j, S?)− ci. Hence, the primal remains feasible; and its value is increased by

π(j, S?)−
∑
i∈S?

yi =
∑
i∈S?

ci.

After allocating j to S?, the increase in fi, i ∈ S?, is equal to ci
Bi

. Because βi = efi−1
e−1 and bids are arbitrarily

small compared to the budgets, the increase in β is equal to ci
Bi

(βi + 1
e−1 ).

Now, let αj equal to
∑
i∈S?(1−βi)p(i, j, S?). Because S? maximizes the right hand side of (4), the dual remains

feasible. The increase in the value of the dual is equal to:

αj +
∑
i∈S?

(βi +
1

e− 1
)
ci
Bi
Bi =

∑
i∈S?

(1− βi)ci +
∑
i∈S?

(βi +
1

e− 1
)ci =

e

e− 1

∑
i∈S?

ci

Therefore, the value of the primal remains within a e−1
e ratio of the value of the dual. The claim follows from

weak duality theorem. �

Lemma 7. Set S ∈ argmaxS⊂Sj
∑
i∈S Φ(fi)p(i, j, S) can be found in polynomial time using dynamic programming.

Proof : Without loss of generality, assume for i ≥ 1, bi ≥ bi+1. Define ru,l to be equal to max
∑
i∈S Φ(fi)p(i, j, S)

among all GSP-feasible allocation of advertiser to slot 1 through l when u is in the slot l + 1. We can compute ru,l
using the dynamic program below:

ru,l =

{
maxv<u{rv,l−1 + Φ(fv)buθl} l < u

0 l ≥ u or l = 1
(5)

The time complexity of this dynamic program is O(|A|2k). �

Also, note that the same linear program can be used as the separation oracle to solve the offline version of the prob-
lem by replacing Φ(fv) with 1− βv . Therefore, the linear offline program (see Section 2.1) can solved in polynomial
time using ellipsoid method [10].

Finally, we show that the greedy algorithm is essentially 1
2 -competitive in the non-strict model.
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Proposition 8. The non-strict greedy algorithm that upon the arrival of a new query allocates it to a set with the
maximum revenue is

(
1−δ
2−δ

)
-competitive with respect to the optimal non-strict offline solution.

Proof : The proof is similar to the proof of Theorem 5 so we give the sketch of the proof using the the same
notation. First observe that

∑
t π

(I)
OPT (t) ≤

∑
t πG(t)/(1 − δ), where all the variables are defined with respect to the

non-strict greedy algorithm. Because the greedy non-strict algorithm can choose the same set that is chosen by the
optimal offline algorithm at this step, we have π(A)

OPT (t) ≤ πG(t). The claim follows immediately from combining these
two inequalities. �

6. Conclusion

In this paper, we studied different models of throttling and their effects on the revenue. From algorithmic point
of view, the main open problem is to close the gap for the competitive ratio in the strict model. We provided a lower
bound of 1

3 , and an upper bound of 1
2 against the optimal non-strict algorithm. With respect to the optimal strict

algorithm, by a reduction from the single slot model, we have an upper bound of (1− 1
e ) [14].

Another big open question in this area is to combine the algorithmic problem of online ad allocation with a game-
theoretic analysis of the auction mechanism. Neither our work nor any of the predecessors of this work [14, 4, 12, 8, 9]
consider the strategic behavior of the bidders. This is mainly due to difficulties surrounding repeated auctions and the
lack of a satisfactory game theoretic analysis of such auctions. In particular, the folk theorem proves that repeated
games have a large set of equilibria, showing that the usual equilibrium concepts do not have good predictive power
for such games. The challenge is to come up with a reasonable game theoretic model which limits the range of
strategic options of the bidders to avoid running into the folk theorem, while at the same time does not ignore the
strategic behavior of the agents altogether. Recently, Feldman et al. [7] made an interesting attempt to get around these
difficulties. They proposed a truthful mechanism for the offline setting, assuming the utilities of agents is the number
of clicks (not click times value) they receive.
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