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Abstract. We study a general framework for decentralized search in
random graphs. Our main focus is on deterministic memoryless search
algorithms that use only local information to reach their destination in a
bounded number of steps in expectation. This class includes (with small
modifications) the search algorithms used in Kleinberg’s pioneering work
on long-range percolation graphs and hierarchical network models. We
give a characterization of searchable graphs in this model, and use this
characterization to prove a monotonicity property for searchability.

1 Introduction

Since Milgram’s famous “small world” experiment [14], it has generally been
understood that social networks have the property that a typical node can reach
any other node through a short path (the so-called “six degrees of separation”).
An implication of this fact is that social networks have small diameter. Many
random graph models have been proposed to explain this phenomenon, often by
showing that adding a small number of random edges causes a highly structured
graph to have a small diameter (e.g., [3,16]). A stronger implication of Milgram’s
experiment, as Kleinberg observed [8], is that for most social networks there are
decentralized search algorithms that can find a short path from a source to a
destination without a global knowledge of the graph. As Kleinberg proved, even
many of the random graph models with small diameter do not have this property
(i.e., any decentralized search algorithm in such graphs can take many steps to
reach the destination), while in certain graph models with a delicate balance
of parameters, decentralized search is possible. Since Kleinberg’s work, there
have been many other models that provably exhibit the searchability property
[5,7,9,10,12,15]; however, we still lack a good understanding of what contributes
to this property in graphs.

In this paper, we look at a general framework for searchability in random
graphs. We consider a general random graph model in which the set of edges
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leaving a node u is independent of that of any other node v 6= u. This frame-
work includes models such as the directed variant of the classical Erdős–Rényi
graphs [6], random graphs with a given expected degree sequence (e.g., [4]),
long-range percolation graphs [8], hierarchical network models [9], and graphs
based on Kronecker products [11,13], but not models such as preferential attach-
ment [2] in which the distribution of edges leaving a node is dependent on the
other edges of the graph. It is worth noting that, in a random graph model where
edges can have arbitrary dependencies, the search problem includes arbitrarily
difficult learning problems as special cases, and therefore one cannot expect to
have a complete characterization of searchable graphs in such a model.

Throughout most of this paper, we restrict the class of decentralized search
algorithms that we consider to deterministic memoryless algorithms that suc-
ceed in finding a path to the destination with probability 1. This is an impor-
tant class of search algorithms, and includes the decentralized search algorithms
used in Kleinberg’s work on long-range percolation graphs and hierarchical net-
work models. For this class, we give a simple characterization of graphs that are
searchable in terms of a node ordering property. We will use this characterization
to show a monotonicity property for searchability: if a graph is searchable in our
model, it stays searchable if the probabilities of edges are increased.

The rest of this paper is organized as follows: Section 2 contains the descrip-
tion of the model. Section 3 presents a characterization of searchable random
graphs. The monotonicity theorem is presented in Section 4.

2 The Model

Given a positive integer n and an n × n matrix P with entries pi,j ∈ [0, 1],
we define a directed random graph G(n,P) with the node set V = {1, . . . , n}
and with a directed edge connecting node i to node j with probability pij ,
independently of all other edges. As we will see later (Remark 1), our results
hold for a more general random graph model where the edges originating from a
node i can be dependent on each other but are independent of the edges leaving
other nodes. However, for the sake of simplicity, we state and prove our results
in the G(n,P) model.

We fix two nodes s, t ∈ V of G(n,P) as the source and the destination. For
v ∈ V , let Γ (v) denote the set of out-neighbors of u in G. We investigate the
existence of a decentralized search algorithm that finds a path from s to t of at
most a given length d in expectation.1 We restrict our attention to deterministic
memoryless algorithms. A deterministic memoryless algorithm can be defined
as a partial function A : V × 2V → V . Such an algorithm A defines a path
v0, v1, v2, . . . on a given graph G as follows: v0 = s, and for every i ≥ 0, vi+1 =
1 Alternatively, we could ask for which graphs a decentralized search algorithm can

find a path between every pair of nodes s and t, or between a random pair of nodes s
and t. Our techniques apply to these alternative formulations of the problem as well.
The only point that requires some care is that the orderings in the characterization
theorem can depend on s and t.



A(vi, Γ (vi)). The length of this path is defined as the smallest integer i such that
vi = t. If no such i exists, we define the length of the path as infinity.

We are now ready to define the notion of searchability. For a given matrix P,
source and destination nodes s and t, and a number d, we say that G(n,P) is d-
searchable using a deterministic memoryless algorithm A if the expected length
of the path defined by A on G(n,P) is at most d. Note that this definition
requires that the algorithm find a path from s to t with probability 1.

3 A Characterization of Searchable Random Graphs

In this section, we provide a complete characterization of searchable random
graphs. We begin by defining a class of deterministic memoryless search algo-
rithms parameterized by two orderings of V , and then prove that if a graph is
d-searchable, it is also d-searchable using an algorithm from this narrow class.

Definition 1. Let σ, π be two orderings (i.e., permutations) of the node set V .
We define a deterministic memoryless algorithm Aσ,π corresponding to these
orderings as follows: for every u ∈ V , Aσ,π(u, Γ (u)) is defined as the maximum
element according to π of the set {v ∈ Γ (u) : σ(v) > σ(u)} ∪ {u}.

In other words, algorithm Aσ,π never goes backwards according to the or-
dering σ, and, subject to this restriction, makes the maximum possible progress
according to π.

We are now ready to state our main theorem.

Theorem 1 For a given probability matrix P, source and destination nodes s
and t, and number d, if G(n,P) is d-searchable using a deterministic memoryless
algorithm A, then there exist two orderings σ and π of V such that G(n,P) is
d-searchable by using Aσ,π.

To prove this theorem, we will first construct the ordering σ using the struc-
ture of the search algorithm A. Next, we define an ordering π using σ. Finally,
we use induction with respect to the ordering σ to show that the expected length
of the path defined by Aσ,π on G(n,P) is not more than the one defined by A.

We assume, without loss of generality, that for every set S ⊆ V , A(t, S) = t.
In other words, we assume that A never leaves t once it reaches this node.

Define a graph H with the node set V as follows: for every pair u, v ∈ V ,
the edge (u, v) is in H if and only if this edge is on the path from s to t defined
by A on some realization of G(n,P) (i.e., on some graph that has a non-zero
probability in the distribution G(n,P)). We have the following important lemma.

Lemma 1. The graph H is acyclic.

Proof. Assume, for contradiction, that H contains a simple cycle C. Note that
by the definition of H, if an edge (u, v) is in H, then u must be reachable from s
in H. Therefore, every node of C must be reachable from s in H. Let v∗ be a
node in C that has the shortest distance from s in H, and s = v0, v1, . . . , v` = v∗



be a shortest path from s to v∗ in H. Also, let v∗ = v`, v`+1, . . . , vk, vk+1 = v∗

denote the cycle C. Therefore, v0, v1, . . . , vk are all distinct nodes, and for every
i ∈ {0, . . . , k}, there is an edge from vi to vi+1 in H.

By the definition of H, for every i ∈ {0, . . . , k}, there is a realization of
G(n,P) in which A traverses the edge (vi, vi+1). This means that there is a
realization of G(n,P) in which the set Γ (vi) of out-neighbors of vi is S∗i , for some
set S∗i such that A(vi, S

∗
i ) = vi+1. Recall that in G(n,P), all edges are present

independently at random, and thus the random variables Γ (u) are independent.
Hence, since vi’s are all distinct and for each i, there is a realization satisfying
Γ (vi) = S∗i , there must be a realization in which Γ (vi) = S∗i for all i. In this
realization, the algorithm A falls in the cycle C, and therefore will never reach t.
Thus the path found by A in this realization is infinitely long, and therefore the
expected length of the path found by A is infinite. This is a contradiction. ut

By Lemma 1, we can find a topological ordering of the graph H. Furthermore,
since by assumption t has no outgoing edge in H, we can find a topological
ordering that places t last. Let σ be such an ordering, i.e., σ is an ordering of V
such that (i) t is the maximum element of V under σ; (ii) for every edge (u, v)
in H, we have σ(v) > σ(u); and (iii) all nodes not in H precede s and are ordered
arbitrarily, i.e., σ(s) > σ(v) for any such node v. By the definition of H, these
conditions mean that the algorithm A (starting from the node s) never traverses
an edge (u, v) with σ(u) > σ(v).

Given the ordering σ, we define numbers ru for every u ∈ V recursively as
follows: rt = 0, and for every u 6= t,

ru =

1 +
∑

S⊆Tu,S 6=∅

qu,S ·min
v∈S

{rv} if qu,∅ = 0

∞ if qu,∅ > 0,

(1)

where Tu := {v : σ(v) > σ(u)} and, for a set S ⊆ Tu, we write

qu,S :=

(∏
v∈S

puv

) ∏
v∈Tu\S

(1− puv)


to denote the probability that the subset of nodes of Tu that are out-neighbors
of u is precisely S. Note that the above formula defines ru in terms of rv for
σ(v) > σ(u), and therefore the definition is well founded.

We can now define the ordering π as follows: let π(u) > π(v) if ru < rv. Pairs
u, v with ru = rv are ordered arbitrarily by π.

The final step of the proof is the following lemma, which we will prove by
induction using the ordering σ. To state the lemma, we need a few pieces of
notation. For a search algorithm B, let d(B, u) denote the expected length of the
path that the algorithm B, started at node u, finds to t. Also, let V0 denote the
set of non-isolated nodes of H—i.e., V0 is the set of nodes that the algorithm A
(started from s) has a non-zero chance of reaching.



Lemma 2. Let σ and π be the orderings defined as above. Then for every node
u ∈ V0, we have that d(A, u) ≥ d(Aσ,π, u) = ru.

Proof (sketch). We prove this statement by induction on u, according to the
ordering σ. The statement is trivial for u = t. We now show that for u ∈ V0 \{t}
if the statement holds for every node v ∈ V0 with σ(v) > σ(u), then it also holds
for u. Observe that for any deterministic memoryless algorithm B,

d(B, u) = 1 +
∑

S⊂V,S 6=∅

q′u,S · d(B,B(u, S)), (2)

where q′u,S := (
∏

v∈S puv)(
∏

v∈V \S(1 − puv)) is the probability that the set of
out-neighbors of u in G(n,P) is precisely S. This statement follows from the
fact that the algorithm B is memoryless, and the fact that q′u,∅ = 0 since u ∈ V0.
Applying Equation (2) to Aσ,π and using the fact that, by definition, Aσ,π(u, S)
only depends on u and S ∩ Tu, we obtain

d(Aσ,π, u) = 1 +
∑

S⊆Tu,S 6=∅

qu,S · d(Aσ,π, Aσ,π(u, S)). (3)

We have that d(Aσ,π, Aσ,π(u, S)) = rAσ,π(u,S) by the induction hypothesis. Also,
by the definition of Aσ,π and π, we have that rAσ,π(u,S) = minv∈S{rv}. Combined
with Equation (3) and the definition of ru, this shows d(Aσ,π, u) = ru, as desired.

To prove d(A, u) ≥ ru, note that since A(u, S) ∈ S ∩ Tu ∩ V0, we have

d(A,A(u, S)) ≥ min
v∈S∩Tu∩V0

{d(A, v)}.

By the induction hypothesis, we have that d(A, v) ≥ rv for every v ∈ Tv ∩ V0.
Therefore, we have that d(A,A(u, S)) ≥ minv∈S∩Tu∩V0{rv}. Substituting this in
Equation (2), we obtain

d(A, u) ≥ 1 +
∑

S⊂V,S 6=∅

q′u,S · min
v∈S∩Tu∩V0

{rv}

= 1 +
∑

S⊆Tu,S 6=∅

qu,S · min
v∈S∩Tu∩V0

{rv}

≥ ru.

This completes the proof of the induction step. ut

Proof (of Theorem 1). Define the graph H, the ordering σ, the values ru, and
the ordering π as above. By Lemma 2, we have that d(Aσ,π, s) ≤ d(A, s). Since
G(n,P) is d-searchable using A by assumption, we have that d(A, s) ≤ d. Hence
we have d(Aσ,π, s) ≤ d, as desired. ut

Remark 1. It is not hard to see that the only property of G(n,P) that was
used in the above proof was the fact that the random variables Γ (u) (the set
of out-neighbors of u) are independent. Therefore, the above proof (with minor
modifications in the definitions of qu,S and q′u,S) also works for a more general
model of random graphs. This includes the directed ACL graphs [1] and the
long-range percolation graphs.



Note that in the above proof, the second ordering π was defined in terms
of the first ordering σ and P. Therefore, the condition for the searchability of
G(n,P) can be stated in terms of only one ordering σ as follows:

Corollary 2 G(n,P) is d-searchable if and only if there is an ordering σ on the
nodes for which rs ≤ d, where r is defined as in (1).

It is not hard to see that even though the expression on the right-hand side
of (1) has exponentially many terms, given σ, the value of ru can be computed
in polynomial time for every u. Therefore, the above corollary reduces the prob-
lem of d-searchability of G(n,P) to a node-ordering property with a tractable
objective function.

4 The Monotonicity Property

Armed with the characterization theorem of the previous section, we can now
prove the following natural monotonicity property for searchability.

Theorem 3 Let P, P′ be two n × n probability matrices such that for every i
and j, we have pij ≤ p′ij. Fix the source and destination nodes s and t. Then, if
G(n,P) is d-searchable for some d, so is G(n,P′).

Proof (sketch). By Corollary 2, since G(n,P) is d-searchable, there is an order-
ing σ such that the value rs defined using Equation (1) is at most d. To show
d-searchability of G(n,P′), we apply the same ordering σ. Let {r′u} denote the
values computed using Equation (1), but with P replaced by P′. All we need
to do is to show that r′s ≤ d and then use Corollary 2. To do this, we prove by
induction that for every u ∈ V0, we have r′u ≤ ru. This statement is trivial for
u = t. We assume it is proved for every v ∈ V0 with σ(v) > σ(u), and prove it
for u.

We have

r′u = 1 +
∑

S⊆Tu,S 6=∅

∏
v∈S

p′uv

∏
v∈Tu\S

(1− p′uv) ·min
v∈S

{r′v}

≤ 1 +
∑

S⊆Tu,S 6=∅

∏
v∈S

p′uv

∏
v∈Tu\S

(1− p′uv) ·min
v∈S

{rv}

Let 1, 2, . . . , k be the nodes of Tu, ordered in such a way that r1 ≥ r2 ≥ · · · ≥ rk.
It is not hard to see that the above expression can be written as follows.

r′u ≤ 1 + r1 −
k−1∑
i=1

PrG(n,P′)[Γ (u) ∩ {i + 1, . . . , k} 6= ∅] · (ri − ri+1)

The coefficient of (ri − ri+1) in the above expression is the probability of the
event that the set of nodes that have an edge from u in G(n,P′) contains at least
one of the nodes i+1, . . . , k. This event is monotone; therefore the probability of



this event under G(n,P) is less than or equal to the probability under G(n,P′).
Therefore,

r′u ≤ 1 + r1 −
k−1∑
i=1

PrG(n,P)[Γ (u) ∩ {i + 1, . . . , k} 6= ∅] · (ri − ri+1).

This completes the proof of the induction step, since the right-hand side of the
above inequality is precisely ru. ut

Note that, simple as the statement of Theorem 3 sounds, we do not know
whether a similar statement holds for randomized memoryless algorithms. On
the other hand, we proved the monotonicity property for randomized algorithms
with memory; the proof can be found in [13].
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