
Online Optimization with Uncertain Information∗

Mohammad Mahdian
Yahoo! Research

mahdian@yahoo-inc.com

Hamid Nazerzadeh
Microsoft Research

hamidnz@microsoft.com

Amin Saberi
Stanford University
saberi@stanford.edu

December 28, 2009

Abstract

We introduce a new framework for designing online algorithms that can incorporate addi-
tional information about the input sequence, while maintaining a reasonable competitive ratio if
the additional information is incorrect. Within this framework, we present online algorithms for
several problems including allocation of online advertisement space, load balancing, and facility
location.

1 Introduction

In many real-life optimization problems the input becomes available to the algorithm over time.
The algorithm has to make a sequence of decisions in an “online” fashion, with zero or imperfect
information about the future input. Online optimization is studied extensively [11, 1, 3]. In this
literature, the prevalent way to evaluate the performance of an algorithm is competitive analysis. In
competitive analysis, the performance of the algorithm is compared to the optimal offline solution,
which knows the input sequence in advance. The worst-case ratio between the value obtained by the
online algorithm and the optimum offline solution is called the competitive ratio of the algorithm.

In competitive analysis, one makes no assumptions about the input sequence and competes
against an adversarial input. As a result, the algorithms with the best competitive ratio are often
very conservative and not always useful in practice, see [16] for a discussion. One can try to
make various assumptions about the distribution of the input or assume that the input follows a
certain pattern. But learning the distribution or finding a pattern in real inputs is a challenging
task. Even more importantly, in several applications, there are abrupt changes in the pattern of the
input sequence. These changes may result in an extremely poor performance if the online algorithm
does not adapt to the new input.

An illustrative example is the online optimization problem search engines such as Google, Yahoo!
or Microsoft have to solve for allocating billions of dollars worth of of advertising space next to
their search results [17]. If the frequencies of search queries are known in advance, one can solve
the allocation problem optimally using linear programming. The main problem is that although
the frequency estimates are often accurate, they might turn out to be completely wrong due to
unexpected events. Examples include the sudden spike in the frequency of search for “gas mask”
right after speculations about terrorist activities, or for drug “Vioxx” after concerns about increased

∗An earlier version of this paper was presented in ACM Conference on Electronic Commerce [20].

1

risk of heart attack associated with its usage, or simply the surge in the volume of associated queries
after the release of a new successful movie or record. Such spikes are usually very valuable for
advertisers (and hence for the search engine), and at the same time they are essentially impossible
to predict. As we will show later, an allocation algorithm that decides entirely based on the
estimates might completely miss out on such revenue opportunities.

In this paper, we design online algorithms that can incorporate additional information about
the input sequence and at the same time maintain a reasonable competitive ratio in unpredictable
scenarios. We present these online algorithms for important optimization problems including load
balancing, set cover, facility location, generalized Steiner tree, and allocation of online advertisement
space.

Let us start with a more detailed description of the ad allocation problem motivated above. The
objective is to find the optimal allocation of advertisement next to the search results for the search
engine. Advertisers communicate their bids and total budgets to the search engine in advance. The
search engine should decide how to allocate these advertisement spaces every time a user searches
for a keyword.

Mehta et al. [21] first posed this problem as a generalization of the online matching problem.
They gave an algorithm with the competitive ratio of (1 − 1/e) and showed that this is the best
possible ratio an online algorithm can achieve when there is no prior information about the future
queries. Our goal is to use the critical information available to the search engine about the frequency
of the keywords without a great sacrifice in the competitive ratio. We formalize this idea in the
definition below. VA(I) denotes the value of the solution obtained by algorithm A, from instance I
of the problem.

Definition 1 (Maximization problems). Consider two algorithms P and O for a maximization
problem I. We call an algorithm H, (γp, γo)-balanced with respect to algorithms P and O if VH(I) ≥
max{γp · VP(I), γo · VO(I)}, for any instance I of the problem.

Definition 2 (Minimization problems). Consider two algorithms P and O for a minimization
problem I. We call an algorithm H, (γp, γo)-balanced with respect to algorithms P and O if VH(I) ≤
min{γp · VP(I), γo · VO(I)}, for any instance I of the problem.

The above definitions can be applied with respect to any two algorithms O and P, but we
often think of O as an “optimistic” algorithm that assumes the input sequence arrives according to
certain patterns, as predicted1. On the other hand, algorithm P is for the “pessimistic” scenario
where we do not know anything about the future. It can be an online competitive algorithm (as in
Sections 2 and 3), or, more directly, the optimum offline algorithm (as in Section 4).2 This means
that the algorithm H guarantees a value of γoVO when the estimates of the input are accurate,
while always obtaining a value of γpVP , even if the estimations turn out to be completely wrong.3

1Note that the algorithm O is assumed to work on every input. So, even if it is designed to behave optimally when
the input sequence satisfies the predicted pattern, it should still respond to every input sequence. See, for example,
Section 4.3 for a discussion of how unpredicted inputs are treated in the case of the query allocation problem.

2In the latter case, obviously, the algorithm H cannot see the output of P , whereas in the former case where both
O and P are online algorithms, we will design algorithms in Sections 2 and 3 that are balanced with respect to two
algorithms O and P they have black-box access to.

3This means that when γoVO is better than VP (i.e., it is larger in the case of a maximization problem and smaller
in the case of a minimization problem), H gives a better answer than P . For most natural problems, when O is
designed to be the optimal algorithm for a set of estimates, even when the estimates are close to the real input, the
answer that O provides is considerably better than the answer provided by an algorithm P . See, for example, the
discussion in Section 4.3 on the query allocation problem.

2

In this paper, we design algorithms controlled by a parameter that give a tradeoff between the two
factors γo and γp. We expect that as γo increases, γp decreases and vice versa.4

For the query allocation problem, for example, the online (1 − 1/e)-competitive algorithm of
Mehta et al. can be used as P, and O can be the linear program that computes the optimal
allocation for given estimates of the frequencies of the queries, see Section 4.3. A simple algorithm
for this problem, parameterized by a value γ ∈ [0, 1] is as follows: Upon the arrival of a new query,
allocate the query to the same advertiser as O if 1−γ

γ times the bid of this advertiser is greater than
the bid of the advertiser chosen by P. We analyze this algorithm in appendix B and prove that it
is (γ, 1−γ)-balanced with respect to P and O, i.e., it achieves a value at least 1−γ times the value
of the optimal solution if the estimates are accurate, while guaranteeing a value of γ · (1 − 1/e)
times the optimum offline solution on any input. We will also give a better algorithm in Section 4
that achieves a better factor with respect to the optimum offline solution directly. Our analysis for
this algorithm is based on factor-revealing linear programs [14, 13].

Another problem we study is the online load balancing problem (see [6] for a survey). The
problem is defined as follows. A sequence of n jobs arrives in an online fashion to be scheduled
on m servers. The load of a job on each server is revealed as soon as the job arrives. The job
should be allocated to one of the servers right away and it cannot be reassigned later. The goal is
to minimize the maximum load of the servers.

If the load of each job on each server is available in advance, we can solve the problem using
the algorithm of Lenstra et al. [19] for makespan minimization, which gives a 2-approximation of
the optimal solution.5 However, without prior information, no algorithm can achieve a competitive
ratio better that Ω(log n) [7]. Aspnes et al. [4] proposed a deterministic algorithm that obtains an
O(log n)-competitive ratio. We use these two algorithms as black boxes and obtain the following
somewhat surprising result. It is possible to maintain a constant factor guarantee similar to Lenstra
et al. when the estimates are accurate, while maintaining the O(log n) competitive ratio in the worst
case.

We also apply our framework to the online version of a general class of resource allocation
problems that includes set cover, facility location and generalized Steiner tree problem. We obtain
guarantees similar to the load balancing problem, with a slightly different algorithm.

The rest of the paper is organized as follows. We discuss the load balancing problem in the
next section. In section 3 we extend the results to a general class of resource allocation problems.
Finally, the query allocation problem and our solution for it are presented in section 4.

2 Online Load Balancing

The online load balancing problem is defined as follows. A sequence of n jobs arrives in an online
fashion to be scheduled on m servers. The job should be allocated to one of the servers immediately
after its arrival and it cannot be reassigned later. The load of job j on each server i, denoted by
lij , is revealed as soon as the job arrives. The load on a server is defined as the sum of the loads

4Another interpretation is to think of each of the algorithm P and O as an expert and the goal is to choose the
best of the two. There exists an extensive literature on expert algorithms (e.g., see [15]). However, in the problems
we consider the cost or reward functions may significantly change by the actions taken in the previous steps (for
example due to budget constraints in the query allocation problem). Hence, we need to develop new techniques for
these problems.

5It is easy to see that if the estimates of loads of the jobs is off by a constant factor, the algorithm is still constant
competitive.

3

of all jobs that are assigned to that server. The goal is to minimize the maximum load of the
servers. For instance, consider the problem of bandwidth allocation in communication channels. In
this problem, communication requests (jobs) arrive online and should be immediately allocated to
channels (servers). The load of a request is the percentage of the used bandwidth.

Suppose we have some estimates about the loads of the jobs. One naive approach is to com-
pute the optimal allocation with respect to these estimates and then assign jobs according to this
allocation. Not surprisingly, if the estimates are wrong, this approach can incur an arbitrary high
cost compared to the optimal solution. This is shown in the following example.

Example The example consists of two servers and two jobs. The following estimates are available
about the loads of the jobs: l11 = 10, l21 = 1, l12 = 100, and l22 = 10. Based on these estimates,
the first job should be assigned to the first server and the second job to the second server. Suppose
the load of the first job on each server matches the estimations. However, once the second job
arrives, we observe that its load on each server is 1. The cost of the solution based on (inaccurate)
estimates is at least 10. However, the optimal cost is 1.

The example above shows that the worst-case competitive ratio of the naive approach is zero.
We use the term worst-case competitive ratio to emphasize that this is the minimum competitive
ratio over all possible input sequences. In fact, it is easy to see from the example above that there is
no algorithm that achieves the optimal solution when the estimates are accurate and has a bounded
worst-case competitive ratio. A natural question is, if we allow a small increase in the cost in cases
where our estimates are accurate, would we be able to achieve a bounded worst-case competitive
ratio?

We give a positive answer to this question. Assume that we have access to two algorithms P
and O. Upon the arrival of every new job, each algorithm recommends a server to receive the job.
For any γ ≥ 1, we present an algorithm, denoted by L(γ), that is (γ, γ

γ−1)-balanced with respect
to P and O.

As mentioned before, if the load of each job on each server is available in advance, we can use the
algorithm of Lenstra et al. [19] for makespan minimization which is a factor 2-approximation algo-
rithm. On the other hand, the algorithm of Aspnes et al. [4] is Θ(log n)-competitive in worst-case.
Observe that using these algorithms as O and P, our algorithm achieves a constant competitive
ratio if the estimates are accurate, while the worst-case competitive ratio remains optimal (up to a
constant factor).

The choice of γ is left to the user who can adjust it based on the reliability of the estimates.
Algorithm L(1) gives the same assignment as P. As γ increases, the algorithm follows the recom-
mendations of O on more jobs. For example, for γ = 2, the cost of the solution found by L(2) is
at most twice of the cost of the better algorithm between P and O. Also, γ = ∞ means that L
always follows O.

Our algorithm is based on the following simple rule: Assign the job to the server recommended
by O if the total cost of following recommendations of O so far is bounded by a constant multiple
of the cost of following recommendations of P so far. In this way, the algorithm balances the cost
of O with respect to P. To explain the algorithm formally, we need some definitions. Assume that
the job arriving at time t is denoted by job t. Define wt(L(γ)) to be the maximum load of the
servers up to time t. Also, define wt(P) to be the maximum load of the servers if one follows all the
recommendations of P up to time t. Similarly, wt(O) is defined as the maximum load of the servers
achieved by following all the recommendations of O. The algorithm is presented in Figure 1.

4

Algorithm L(γ):

Upon the arrival of a new client j:

If wj(O) ≤ (γ − 1)wj(P),

Assign j to the server recommended by O.

else

Assign j to the server recommended by P.

Figure 1: A (γ, γ
γ−1)-balanced algorithm for online load balancing.

Lemma 1. For every time t, we have wt(L(γ)) ≤ γwt(P).

Proof. If the algorithm has followed all recommendations of P so far, then the claim trivially holds.
Otherwise, let k be the last job that the algorithm allocated to the server recommended by O
instead of P. By the rule of the algorithm we have

wk(O) ≤ (γ − 1)wk(P) ≤ (γ − 1)wt(P) (1)

The load on every server is due to the jobs that are recommended either by P or O. Therefore,
wt(L(γ)) ≤ wk(O) + wt(P). Therefore, by plugging (1), we get:

wt(L(γ)) ≤ wk(O) + wt(P) ≤ (γ − 1)wt(P) + wt(P) = γwt(P)

Symmetrically, we have the following lemma.

Lemma 2. For every time t, we have wt(L(γ)) ≤
γ

γ−1wt(O).

Proof. If the algorithm has followed all recommendations of O so far, then the claim trivially holds.
Otherwise, let k be the last job that the algorithm ignores the recommendation of O. We have,

(γ − 1)wk(P) < wk(O) ≤ wt(O)

Hence, for any server i, the total load of the jobs assigned to i that are not recommended by O
is bounded by 1

γ−1wt(O). Also, the total load of the jobs that are recommended by O is at most
wt(O). Hence,

wt(L(γ)) ≤ (1 +
1

γ − 1
)wt(O) ≤

γ

γ − 1
wt(O)

Now we are ready to prove the main result of this section.

5

Theorem 3. For γ ≥ 1, algorithm L(γ) is (γ, γ
γ−1)-balanced with respect to P and O. In addition,

suppose algorithm O makes its recommendation based on an optimal allocation for a given estimate.
There exists an algorithm P such that for any deterministic (γ, γ′)-balanced algorithm with respect
to P and O, we have γ′ ≥ γ

γ−1 .

Proof. The lemmas above immediately show that the algorithm is (γ, γ
γ−1)-balanced. We prove

the second part of the theorem using the example below. The example consists of two jobs and
two servers. The following estimates are available: l11 = γ − 1, l21 = 1, l12 = ∞ and l22 = γ − 1.
Based on these estimates, O assigns the first job to the first server and the second job to the second
server. When the first job arrives, its loads matches the estimates. However, P recommends the
second server for the job. Consider the following cases for an algorithm A.

1. A follows the recommendation of O and allocates the first job to the first server. However,
when the second job arrives, we observe l12 = 1 and l22 =∞. In this case, the cost of A is at
least γ, while the cost of P is 1.

2. A ignores the recommendation of O and allocates the first job to the second server. Then,
the second job arrives, and its loads matches the estimates. In this case, the cost of A is at
least γ while the cost of the solution recommended by O is γ − 1.

Hence, the claim follows.

3 Online Resource Allocation

In this section, we present algorithms for the following problems.

Online Set Cover A ground set J and a family of m of its subsets are given. A sequence of n
elements of J arrives in an online fashion. Each new element, upon arrival, should be covered by
one of the given subsets. The goal is to cover all elements appeared in the input sequence with the
minimum number of subsets. For this problem, Alon et al. [2] gave an O(log n logm)-competitive
algorithm, and showed that no deterministic algorithm can achieve a worst-case competitive ratio
better than Ω(logn logm

log logn+log logm). On the other hand, when accurate estimates of the input sequence
is available, a simple greedy algorithm achieves an O(log n)-approximation of the optimal solution,
see [22].

Online Facility Location A set of m potential locations for building facilities, and a cost for
opening a facility in each of these locations are given. A sequence of clients arrives in an online
fashion. Once a new client arrives, the algorithm should take one of the following actions: i) Open
a facility in one of the m locations and connect the client to it. ii) Connect the client to one of the
open facilities. The goal is to find an assignment of clients to opened facilities that minimizes the
cost of opening facilities plus the connection cost (given by the distances between the client and
the facility). This problem generalizes the online set cover problem. However, when the connection
costs are metric, better competitive ratios are achievable. Fotakis [12] showed that the worst-case
competitive ratio of the online metric facility location problem is Θ(logn

log logn). On the flip side, if
the sequence of clients is known in advance, one can use the algorithm of Byrka [10] which is a
1.5-approximation algorithm.

6

Online Generalized Steiner Tree We are given a graph with non-negative weights. A sequence
of pairs of vertices arrives online. The goal is to construct a subgraph with minimum weight such
that the two nodes of each pair are connected by a path in the subgraph. For this problem, Berman
and Coulston [8] proposed a O(log n)-competitive algorithm, which matches the lower bound of
Ω(log n) on the competitiveness of any online algorithm [5]. However, with accurate estimates of
the input sequence, one can solve the problem within a constant factor of the optimal solution,
see [22].

All the problems above are special cases of the online resource allocation problem defined below:

Definition 3 (Online Resource Allocation (ORA)). A set S of servers and a ground set J of jobs
are given. A sequence of jobs in J arrives in an online fashion. As a job j arrives, it should be
immediately assigned to a set of servers. Let Sj denote the family of subsets of S that job j can be
assigned to. The cost of assigning job j to a set s ∈ Sj is given by function dj : Sj → R+. Also,
the first time that any job is assigned to a server i ∈ S, an activation cost of ci ≥ 0 is incurred.
The goal is to find an assignment of jobs to active servers that minimizes the cost of activating the
servers plus the serving cost. We assume decisions taken by the algorithm are irrevocable, i.e., the
algorithm cannot reassign a job to another set of servers or deactivate a server.

In the set cover problem, elements in J correspond to jobs and subsets correspond to servers.
An element (job) j can be assigned to any subset (server) i that contains j, i.e., Sj = {s : j ∈ s}.
Activating cost ci, 1 ≤ i ≤ m is equal to 1 for all servers and there is no serving cost. Also, observe
that the facility location problem is a special case of ORA where each Sj = {{1}, . . . , {m}}, i.e.,
each job (client) can be served by any single facility. In the generalized Steiner tree problem, each
pair (a, b) of vertices corresponds to a job, and each edge corresponds to a server. Set S(a,b) is the
set of all paths in graph that connect a to b. There is no serving cost.

To apply our framework we assume that we have access to two algorithms P and O which upon
the arrival of every new job j, recommends a subset from Sj to serve j. Similar to the load balancing
problem, we present a family of algorithms, denoted by H(γ), γ ≥ 1, that are (γ, γ

γ−1)-balanced.
As mentioned, for the special cases of the ORA problem, accurate estimates can improve the

performance of algorithms by a logarithmic factor. Our algorithm can still enjoy this significant
improvement, while at the same time maintaining an optimal (up to a constant) worst-case com-
petitive ratio.

Now let us describe the algorithm. Let job t denote the job that arrives at time t. Let wt(H(γ))
be the total cost of algorithm H(γ) up to time t, i.e.,

wt(H(γ)) =
∑

i:i is active

ci +
t
∑

j=1

dj(sj)

where sj ∈ Sj denotes the set that the algorithm assigns to job t. Similarly, let wt(P) (wt(O),
respectively) be the cost of the solution one obtains by following all the recommendations of P (O,
respectively). The algorithm is essentially the same as the one used in the previous section, and
is based on the following simple rule: Assign the job to the set recommended by O if wt(O) ≤
(γ − 1)wt(P). The algorithm is presented in Figure 2.

Theorem 4. Algorithm H(γ), for γ ≥ 1, is (γ, γ
γ−1)-balanced with respect to algorithms P and

O. In addition, suppose algorithm O makes its recommendation based on an optimal allocation
for a given estimate. There exists an algorithm P such that for any deterministic (γ, γ′)-balanced
algorithm with respect to P and O, we have γ′ ≥ γ

γ−1 .

7

Algorithm H(γ):

Upon the arrival of a new job j:

If wj(O) ≤ (γ − 1)wj(P)

Let o be the set of servers recommended by O to serve j.

Activate all inactive servers in o.

Assign j to servers in o.

else

Let p be the set of servers recommended by P to serve j.

Activate all inactive servers in p.

Assign j to servers in p.

Figure 2: A (γ, γ
γ−1)-balanced algorithm for the online resource allocation problem.

The proof of the theorem is similar to Theorem 3 and is given in appendix A.

4 The Query Allocation Problem

We start this section by defining the query allocation problem first posed by Mehta et al. [21] as a
generalization of the online matching problem. In this model, the search engine receives the bids
of advertisers for each keyword and their total budget for a certain period (e.g. a day). We make
the following simplifying assumption. During the day, as a search query for a keyword arrives, the
search engine assigns one advertiser to this query, and charges this advertiser an amount equal to
their bid for the corresponding keyword.

Let A be the set of advertisers and K be the set of keywords. A sequence of queries of keywords
in K are given to the algorithm in an online fashion. We denote the budget of advertiser i by Bi,
and the bid of advertiser i for keyword j by bij. As in [21], we assume that bids are small compared
to the budgets, which is justified in practice. The goal is to maximize the revenue, i.e., the sum of
bi(q),j(q) over all queries q, where i(q) denotes the advertiser assigned to this query, and j(q) denotes
the keyword corresponding to this query, subject to charging each advertiser at most its budget.
Therefore, if we know the number of times nj a query for keyword j occurs in the input sequence,
the solution of this problem can be computed by solving the following maximization program with
integrality constraints on xij’s:

8

maximize
∑

i∈A,j∈K bijxij

subject to
∑

i∈A xij ≤ nj ∀ j ∈ K

∑

j∈K bijxij ≤ Bi ∀ i ∈ A

xij ≥ 0 ∀ i ∈ A,∀ j ∈ K

(2)

Note that the assumption that the bids are small compared to the budgets implies that relaxing
the integrality constraints in the above program does not change the solution of the program by a
significant amount.

When frequencies nj are unknown, Mehta et al. [21] give a (1− 1/e)-competitive algorithm for
this problem, and show that this is the best ratio an online algorithm can achieve.

Similar to the previous sections, in appendix B, we present a family of algorithms parameterized
by γ ∈ [0, 1] that are (γ, 1−γ)-balanced with respect to two given online algorithms P and O. This
means that if O is taken to be the algorithm that assigns the queries optimally for given estimates of
query volumes, and P is the algorithm of Mehta et al., then we have an algorithm that achieves at
least a fraction 1−γ of the optimal revenue when estimates are accurate, and a fraction γ ·(1−1/e)
when the estimates are wrong. In this section, we use techniques from the competitive analysis of
Mehta et al. to give an algorithm that achieves a better factor compared to the optimal solution
when the estimates are wrong. We take P to be the optimal offline solution, i.e., we compare
our algorithm directly against the optimal offline and not against an online competitive algorithm.
Obviously, the algorithm does not see the output of P (in contrast to previous sections where we
assumed access to O and P). As before, we assume the algorithm has access to an algorithm O
that recommends an advertiser for each query. O can be based on an algorithm that solves the
linear program above for given estimates nj of the frequencies (if such estimates are available), or
even a more complex algorithm that learns the distribution of the queries and the corresponding
optimal allocation over time.

We first briefly present the (1−1/e)-competitive algorithm of Mehta et al. At any point during
the algorithm, the discounted bid of an advertiser is defined by multiplying the bid by a factor of
(1 − ef−1) where f is the fraction of the budget of the advertiser that is spent. This means that
the more an advertiser spends her budget, the more the algorithm discounts her bids. As a new
query arrives, the algorithm assigns it to the advertiser with the maximum discounted bid.

Our algorithm is parameterized by a number α ≥ 1. This parameter controls the extent to
which one would rely on O. For f ∈ [0, 1], define Φα(f) := 1 − eα·(f−1). For ease of notation,
when it is clear from the context, we denote Φα by Φ. Also, let fi be the fraction of the budget
of advertiser i that has been spent so far. As a new query for keyword j arrives, the algorithm
finds advertiser p that maximizes Φ(fi)bij over all i ∈ A. Also, O recommends advertiser o to
receive the query. The algorithm compares αΦ(fo)boj with Φ(fp)bpj. If the former is bigger than
the latter, then the query is allocated to o; otherwise, it is allocated to p. We denote the algorithm
corresponding to a given α by Q(α). The algorithm is presented in Figure 3. We assume the search
engine charges advertisers the minimum of their bid and their remaining budget.

The intuition behind the algorithm follows from a primal-dual interpretation of the algorithm
of Mehta et al. [21], due to Buchbinder et al. [9]. The following is the dual of the linear program

9

Algorithm Q(α):

Upon the arrival of a new query for keyword j:

Let o be the advertiser recommended by O for receiving j.

Let p be the advertiser with maximum Φα(fi)bij among all i ∈ A.

If αΦα(fo)boj ≥ Φα(fp)bpj then

Allocate j to o.

else

Allocate j to p.

Figure 3: An algorithm for the query allocation problem.

for the query allocation problem. Without loss of generality, we assume that all nj ’s are equal to
1.

minimize
∑

j∈K

λj +
∑

i∈A

βjBi (3)

subject to λj ≥ (1− βi)bij ∀ j ∈ K,∀ i ∈ A

λj , βi ≥ 0 ∀ j ∈ K,∀ i ∈ A

The algorithm of Mehta et al., as interpreted by Buchbinder et al. [9], allocates query j to
advertiser i that maximizes (1−βi)bij . After the allocation, βi is updated multiplicatively such that
1− βi is proportional to 1− efi−1. In our algorithm, in order to incorporate the recommendations
of O, the feasible region of the dual linear program is extended by relaxing the dual constraint by a
factor of α. Formally, upon arrival of a new query j, Q(α) allocates j to advertiser o, recommended
by O, if αΦα(fo)boj ≥ maxi{Φα(fi)bij}. After the allocation of the query to advertiser i, dual

variable βi is updated by letting: βi ← βi(1 + α
bij
Bi

) +
αbij

(eα−1)Bi
, see also [9].

In the next subsection we show that the algorithm above is 1
α(1−

1
eα)-competitive with respect

to the optimal offline solution, independent of the accuracy of the estimations. In subsection 4.2,
we show that the algorithm would achieve a better competitive ratio if the estimations are accurate.
The theorem below summarizes these results. Its proof follows from Lemmas 7, 13 and 15, presented
in the next subsections.

Theorem 5. Algorithm Q(α) is (γopt, γO)-balanced with respect to the optimal offline solution
and O, where γopt = 1

α(1 − e
−α) and γO is defined as follows. Let α∗ ≈ 1.795 be the root of the

equation (α2 + α+ 1)e−α = 1. For α ≥ α∗,

γO =
α(1 − e−α)

(α− 1
α)(1− e

−α) + 1
, (4)

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: The trade-off between γopt (x-axis) and γO (y-axis) for the query allocation problem.
γopt is the worst-case competitive ratio of algorithm Q(α), while γO is the competitive ratio when
the estimates are accurate. The dashed line depicts the competitive ratio for the algorithm G in
Appendix B.

and for α in (1, α∗),

γO = 1−
(1− 1

α(1− e
−α))(1 − f∗)

1− 1
α(1− e

−α) + α(1− f∗)(1− e−α(f∗−1))
(5)

where f∗ ∈ [0, 1] is the solution of the equation (α(f − 1))2eα(f−1) = 1− 1
α(1− e

−α). Moreover, the
analysis is tight.

Similar to the previous sections, the above theorem gives a family of (γopt, γO)-balanced algo-
rithms parameterized by α. Figure 4 depicts the value of γO against γopt. Note that the maximum
possible value for γopt is 1− 1

e . The dashed line depicts a lower bound on the competitive ratio for
the algorithm G given in Appendix B with P taken as the algorithm of Mehta et al. This algorithm is
(γ, 1−γ)-balanced with respect to P andO. Since the algorithm of Mehta et al is (1− 1

e)-competitive
with respect to the optimal offline solution (and hence O), G is (γ ·(1−1/e),max{γ ·(1−1/e), 1−γ})-
balanced with respect to the offline optimal solution and O.

4.1 Computing γopt

In this section, we find γopt, the competitive ratio of algorithm Q(α) with respect to the optimal
offline solution. The analysis is similar to [21] and we try to be consistent with their notation. Let
k be a large number; we discretize the budgets of the advertisers into k equal parts called slabs,
numbered 1 through k. For advertiser i, let slab(i) be equal to dkfie if fi > 0 and 1 if fi = 0, i.e.,
slab(i) denotes the active slab of the budget of i. Also, let

φ(s) = 1− (1−
1

k
)α(k−s) (6)

11

We define Qk(α) as a discrete version of algorithm Q(α) in which the comparison is between
αφα(slab(o))boj and φα(slab(p))bpj (instead of αΦα(fo)boj and Φα(fp)bpj). Note that as k tends to
infinity we can approximate the function φ(s) with Φ(sk) with arbitrary high precision. Therefore,
as k tends to infinity, Qk(α) and Q(α) have the same performance.

Now we analyze Qk(α). We call an advertiser of type t, 1 ≤ t ≤ k, if at the end of the algorithm
Qk(α) she has spent within (t−1

k , t
k] fraction of her budget. The type of advertisers with no spent

budget is defined to be 1. Let st be the total budget of the advertisers of type t. Also, fix an
optimal offline solution OPT , and let rt to be the total unspent budget of advertisers of type t in
OPT . As in [21], for simplicity, we assume that advertisers of type t spend exactly a t

k fraction

of their budgets in Qk(α). Also, we assume that no query straddles a slab. If max{
bij
Bi
} ≤ 1

k2
,

then total error due to these assumptions is O(|A|
k) which is negligible as k tends to infinity. For

i = 0, 1, . . . , k, define wi to be the total amount of money spent from slab i of the budget of the
advertisers. Note that wi =

1
k

∑k
j=i sj. Also, observe that by the definition of st and rt, the revenue

of OPT is precisely
∑k

i=1(si − ri), and the revenue of Qk(α) is equal to
∑k

i=1
i
ksi. We relate these

two quantities via the following lemmas.

Lemma 6. We have:

k
∑

i=1

φ(i)(si − ri) ≤
k
∑

i=1

αφ(i)wi (7)

Proof. Suppose OPT allocates query q to advertiser i and the algorithm allocates it to advertiser
a. Let gi = slab(i) and ga = slab(a), at the time of allocation of q. By the rule of the algorithm we
have

φ(gi)biq ≤ αφ(ga)baq

Let g′i be the type of advertiser i at the end of the algorithm. Because φ is decreasing, we get

φ(g′i)biq ≤ φ(gi)biq ≤ αφ(ga)baq (8)

Note that the sum of φ(g′i)biq over all advertiser-query pairs (i, q) such that OPT allocated q to

i is equal to
∑k

i=1 φ(i)(si − ri). Similarly, the sum of φ(ga)baq over all advertiser-query pairs (a, q)

such that Q(α) allocated q to a is equal to
∑k

i=1 φ(i)wi. By Inequality (8) we have

k
∑

i=1

φ(i)(si − ri) ≤

k
∑

i=1

αφ(i)wi

Now, we are ready to prove the main result of this section.

Lemma 7. As k tends to infinity, the competitive ratio of Qk(α) with respect to the optimum
offline solution, γopt, converges to 1

α(1− e
−α).

Proof. Plugging wi =
1
k

∑k
j=i sj into (7), we get

k
∑

i=1

φ(i)(si − ri) ≤ α

k
∑

j=1

φ(j)(
1

k

k
∑

i=j

si) =
α

k

k
∑

i=1

si

i
∑

j=1

φ(i) (9)

12

In Lemma 23 in the appendix, we prove that as k tends to infinity we can approximate
1
k

∑i
t=1 φ(t) by

i
k + 1

α (φ(i)− φ(0)) + o(1). Plugging into (9) we have

k
∑

i=1

φ(i)(si − ri) ≤

k
∑

i=1

(α
i

k
+ φ(i) − φ(0) + o(1))si

Since
∑k

i=1 si is the total budget and does not increase with k, we have o(1)
∑k

i=1 si = o(1).
Rearranging the terms gives us

k
∑

i=1

φ(0)si −

k
∑

i=1

φ(i)ri ≤ α

k
∑

i=1

i

k
si + o(1).

Since φ is decreasing, we obtain

φ(0)(
k
∑

i=1

si − ri) ≤ α
k
∑

i=1

i

k
si + o(1).

Note that
∑k

i=1(si − ri) is the revenue of OPT and
∑k

i=1
i
ksi is the revenue of Qk(α). Hence,

the lemma follows.

Tight Example Consider a large integer k. Suppose there are k advertisers each with budget α
k .

A sequence of keywords shows up in k phases. In phase i, 1
kε keywords arrive for which advertiser

1, . . . , i − 1 bid 0, advertiser i bids slightly less than αε, and advertisers i + 1, . . . , k bid ε. The
algorithm, based on recommendations of O, distributes these keywords among advertisers i, . . . , k,
such that the fraction of the spent budget of these advertisers remains equal. Define ` to be the
phase in which the budget of advertiser k is exhausted. In phase i ≤ `, the total value of the queries
allocated to advertiser i is negligible. Therefore, we assume in phase i, an amount of 1

k−i+1 ×
1
αk

of the budget of every advertiser j ≥ i is spent. Hence, at the end of phase i ≤ `, an amount of
∑i

j=1
1

k−j+1
1
k of the budget of each advertiser j > i is spent. As k → ∞, we can approximate

∑i
j=1

1
k−j+1

1
k with 1

k

∫ 1−(i/k)
0

1
1−xdx = −1

k ln (1− i
k) with arbitrary high accuracy. Therefore, by

definition of `, we have 1
k ln

1
1−(`/k) =

α
k or `

k = 1− e−α. Also, the revenue of algorithm Q is equal

to ` · 1k = 1 − e−α (observe that the revenue at each phase i ≤ ` is 1
k , and for i > ` is 0). The

optimal solution spends the budget of all advertisers and obtains a revenue of α. Therefore, the
approximation ratio is equal to 1

α(1− e
−α).

4.2 Computing γO

In this section, we compute γO, the ratio of the revenue of our algorithm to the revenue that could
be obtained by following all the recommendation of O. We use the same notations and assumptions
as the previous section except for ri. Define ri to be the total remaining budget of advertisers of
type i in the allocation recommended by O.

Let C be the set of all queries for which the algorithm does not follow the recommendation
of O. We find an upper bound on the value of the queries in C. For j ≤ i, define tij to be the
total amount of budget that advertisers of type i have spent from interval (j−1

k , jk] fraction of their
budget for the keywords in Q − C, i.e., the set of keywords for which the algorithm followed the
recommendation. For simplicity, we define tij = 0 for j > i.

13

Lemma 8. For algorithm Qk(α), when k tends to infinity, we have

k
∑

i=1

i
∑

j=1

(φ(j) − αφ(i))tij ≤

k
∑

i=1

(
i

k
−

1

α
φ(0) + (

1

α
− α)φ(i))si + α

k
∑

i=1

φ(i)ri + o(1).

Proof. The proof of this lemma is similar to Lemma 6. Suppose O allocates query q ∈ C to
advertiser i and the algorithm allocates it to advertiser a. Let gi = slab(i) and ga = slab(a), at the
time of allocation of q. Recall that for each keyword q by the rule of the algorithm we have

φ(gi)biq ≤
1

α
φ(ga)baq

Let g′i be the type of advertiser i at the end of the algorithm. Because φ is decreasing, we get

φ(g′i)biq ≤ φ(gi)biq ≤
1

α
φ(ga)baq (10)

Also note that the sum of φ(g′i)biq over all advertiser-query pairs (i, q), such that O allocated

q ∈ C to i, is equal to
∑k

i=1 φ(i)(si − ri −
∑i

j=1 tij). Recall that
∑i

j=1 tij is the amount of budget
that advertisers of type i spend on the keywords in Q − C. Similarly, the sum of φ(ga)baq over

all advertiser-query pairs (a, q), q ∈ C, in the solution of our algorithm is equal to
∑k

i=1 φ(i)(wi −

−
∑k

j=i tji). Therefore, by Inequality (10) we have

k
∑

i=1

φ(i)(si − ri −
i
∑

j=1

tij) <
1

α

k
∑

i=1

φ(i)(wi −
k
∑

j=i

tji)

Plugging wi =
1
k

∑k
j=i sj and rearranging the terms we get:

1

α

k
∑

i=1

φ(i)

k
∑

j=i

tji −

k
∑

i=1

φ(i)

i
∑

j=1

tij ≤
1

α

k
∑

i=1

φ(i)(
1

k

k
∑

j=i

sj)−

k
∑

i=1

φ(i)(si − ri) (11)

For the l.h.s. and r.h.s. of (11) we have:

l.h.s. =
1

α

k
∑

i=1

φ(i)

k
∑

j=i

tji −

k
∑

i=1

φ(i)

i
∑

j=1

tij =
1

α
(

k
∑

i=1

i
∑

j=1

(φ(j) − αφ(i))tij) (12)

r.h.s. =
1

αk

k
∑

i=1

φ(i)

k
∑

j=i

sj −

k
∑

i=1

φ(i)si +

k
∑

i=1

φ(i)ri

=
1

α

k
∑

i=1

(
1

k

i
∑

j=1

φ(j) − αφ(i))si +
k
∑

i=1

φ(i)ri

=
1

α

k
∑

i=1

(
i

k
+

1

α
φ(i)−

1

α
φ(0) + o(1)− αφ(i))si +

k
∑

i=1

φ(i)ri (13)

In the last expression, we substitute 1
k

∑i
t=1 φ(t) with

i
k +

1
α(φ(i)−φ(0))+ o(1), see Lemma 23.

From (12) and (13) the lemma follows.

14

To compute γO we use the factor revealing LP technique [14, 13]. The idea is to show that
certain quantities in the algorithm (in this case, the si’s, ri’s, and tij’s) satisfy several inequalities
(in this case, the inequality given by the above lemma and several trivial inequalities), and then
bound the approximation factor of the algorithm by the solution of an optimization program that
consists of variables representing these quantities and the established inequalities. In our case,
consider the following linear program:

minimize

k
∑

i=1

i

k
si (14)

subject to

k
∑

i=1

si −

k
∑

i=1

ri = V

k
∑

i=1

(

i

k
−

1

α
φ(0) + (

1

α
− α)φ(i)

)

si + α
k
∑

i=1

φ(i)ri ≥
k
∑

i=1

i
∑

j=1

(φ(j) − αφ(i))tij

1

k
si ≥ tij ∀1 ≤ j ≤ i ≤ k

si ≥ ri ∀1 ≤ i ≤ k

si, ri, tij ≥ 0 ∀1 ≤ j ≤ i ≤ k

The value V is treated as a constant (which represents the value achieved by the algorithm O)
in the above program. The objective function of this linear program represents the revenue of the
algorithm and the linear constraints are satisfied by the quantities si, ri, and tij coming from the
algorithm, except for the missing o(1) term in the inequality of Lemma 8, which as we will argue
has a negligible effect. This means that the quantities si, ri, and tij from the algorithm constitute
an almost feasible solution for the above linear program. Therefore, if we prove that for every V ,
the value of every feasible solution of the above program is at least some factor ψ times V , it follows
that the approximation ratio of the algorithm Q(α) with respect to O is at least ψ. The rest of
this section is mainly devoted to computing the solution of the above linear program.

By LP duality, to give a lower bound on the solution of the linear program (14) (and hence on
the approximation ratio of our algorithm with respect to O), we need to give a feasible solution
to the dual of this program. Therefore, we start by writing the dual of the above linear program.
Variables x, y, z, and u correspond respectively to the first, second, third, and forth set of primal
constraints.

maximize V x (15)

subject to x+

(

i

k
−

1

α
φ(0) + (

1

α
− α)φ(i)

)

y +
1

k

i
∑

j=1

zij + ui ≤
i

k
∀1 ≤ i ≤ k

yαφ(i) − x− ui ≤ 0 ∀1 ≤ i ≤ k

(αφ(i) − φ(j))y − zij ≤ 0 ∀1 ≤ j ≤ i ≤ k

y, zij , ui ≥ 0 ∀1 ≤ j ≤ i ≤ k

The following lemma simplifies this dual program.

15

Lemma 9. The maximization program (15) is equivalent to the following:

maximize V x (16)

subject to x ≤
i

k
−





i

k
−

1

α
φ(0) + (

1

α
− α)φ(i) +

1

k

i
∑

j=1

max(0, αφ(i) − φ(j))



 y ∀1 ≤ i ≤ k

yαφ(i) ≤
i

k
−





i

k
−

1

α
φ(0) + (

1

α
− α)φ(i) +

1

k

i
∑

j=1

max(0, αφ(i) − φ(j))



 y ∀1 ≤ i ≤ k

y ≥ 0

Proof. We obtain (16) from (15) by eliminating the variables zij and ui. First, we eliminate the
variable zij . The only constraints bounding zij from below are zij ≥ 0 and zij ≥ (αφ(i) − φ(j))y.
Therefore, without loss of generality, we may set zij = max(0, (αφ(i) − φ(j))y). Given that y ≥ 0,
this can be written as zij = max(0, αφ(i) − φ(j))y. Next, we eliminate ui. The only constraint
in (15) bounding ui from above is the first inequality. Therefore, in any feasible solution of the

program we can set ui =
i
k −

(

x+
(

i
k −

1
αφ(0) + (1α − α)φ(i)

)

y + 1
k

∑i
j=1max(0, αφ(i) − φ(j))y

)

without violating feasibility or changing the value of the optimal solution. Replacing this value
into the constraints ui ≥ 0 and yαφ(i) − x − ui ≤ 0 (which are the only other constraints in the
program that involve ui) yields the first and the second constraints of the program (16).

All that remains is to “guess” a solution for the above program where x is greater than or equal
to the ratio stated in Theorem 5, and show that it is feasible. To guess a solution for the above
program, we approximate it at the limit (as k tends to infinity) with a “continuous” version, and
use standard tools of calculus to solve the resulting optimization program. We will be intentionally
sloppy in deriving the continuous program from the linear program (for example, we liberally
replace discrete terms by their limit as k → ∞ without worrying about the existence of the limit
or the error terms), since our goal in this step is to merely guess a solution, and once this solution
is derived, the formal proof will be complete by verifying the feasibility of a small perturbation of
this solution in the linear program (16).

We start by approximating the limit of the maximization program (16) as k tends to infinity
as follows: Let f ∈ [0, 1] represent i/k. The value φ(i) can be approximated by Φ(f), and the
summation 1

k

∑i
j=1max(0, αφ(i) − φ(j)) can be approximated by

∫ f

0
max(0, αΦ(f) − Φ(x))dx. (17)

We define:
`(f) = min

x≥0
{Φ(x) ≤ αΦ(f)}. (18)

Since Φ is a decreasing function, the value of ` can be written as follows:

`(f) =

{

0 f ≤ `∗

1 + 1
α ln (1− αΦ(f)) f ≥ `∗,

(19)

where

`∗ = max
f
{Φ(0) ≤ αΦ(f)} = 1 +

1

α
ln

(

1−
1

α
Φ(0)

)

. (20)

16

Therefore, the integral (17) can be written as

∫ f

0
max(0, αΦ(f) − Φ(x))dx =

∫ f

`(f)
(αΦ(f)−Φ(x))dx

= αΦ(f)(f − `(f))−

∫ f

`(f)
(1− eα(x−1))dx

= (f − `(f))(αΦ(f)− 1) +

(

1

α
eα(f−1) −

1

α
eα(`(f)−1)

)

= (f − `(f))(αΦ(f)− 1) +
1

α
(Φ(`(f))− Φ(f))

Given this, we estimate the dual linear program (16) by the following continuous optimization
problem. Note that we have omitted V in the objective, as it does not change the optimal solution.

maximize x (21)

subject to x ≤ f − h(f)y ∀f ∈ [0, 1]

(αΦ(f) + h(f)) y ≤ f ∀f ∈ [0, 1]

y ≥ 0,

where

h(f) = f −
1

α
Φ(0) + (

1

α
− α)Φ(f) + (f − `(f))(αΦ(f)− 1) +

1

α
(Φ(`(f))− Φ(f))

For f ≤ `∗, we have `(f) = 0, and therefore

h(f) = f −
1

α
Φ(0) + (

1

α
− α)Φ(f) + (αΦ(f)− 1)f +

1

α
(Φ(0)− Φ(f))

= α(f − 1)Φ(f).

For f ≥ `∗, we have Φ(`(f)) = αΦ(f), and therefore

h(f) = f −
1

α
Φ(0) + (

1

α
− α)Φ(f) + (f − `(f))(αΦ(f)− 1) +

α− 1

α
Φ(f)

= `(f)−
1

α
Φ(0) + (1− α+ αf − α`(f))Φ(f).

To summarize, the optimum value of x in the optimization problem (21) can be written as follows:

maximize min
f∈[0,1]

{f − h(f)y} (22)

subject to (αΦ(f) + h(f)) y ≤ f ∀f ∈ [0, 1]

y ≥ 0,

where

h(f) =

{

α(f − 1)Φ(f) f ≤ `∗

`(f)− 1
αΦ(0) + (1− α+ αf − α`(f))Φ(f) f ≥ `∗.

(23)

17

The following lemma simplifies the constraint of the program. The proof of this lemma is given
in Appendix C.

Lemma 10. For every f ∈ [0, 1], αΦ(f) + h(f) ≤ αΦ(0)f .

By the above lemma, the constraint of the optimization problem (22) at any f ∈ [0, 1] is
dominated by the inequality αΦ(0)fy ≤ f , or y ≤ (αΦ(0))−1. Also, taking f arbitrarily close to 0,
we obtain that any feasible solution of (22) should satisfy y ≤ (αΦ(0))−1. Therefore the problem
is equivalent to computing

max
y∈[0, 1

αΦ(0)
]
min
f∈[0,1]

{f − h(f)y} (24)

Next, we turn our attention to the function f − h(f)y, and show that the minimum of this
function can only occur in one of four possible values of f . The following lemma, whose proof is
given in Appendix C, takes care of the range of f ≥ `∗.

Lemma 11. For any value of y ≥ 0, the function f −h(f)y is a concave function of f in the range
f ∈ [`∗, 1]. In particular, we have

min
f∈[`∗,1]

{f − h(f)y} = min{`∗ − h(`∗)y, 1− h(1)y}.

Next, we consider the function f −h(f)y in the range f ≤ `∗. Recall that by (23), in this range
this function can be written as f − h(f)y = f − αy(f − 1)Φ(f). The proof of the following lemma
is given in Appendix C.

Lemma 12. For any value of y ≥ 0, the function f−h(f)y is a concave of f on [0,max(0, 1−2/α)]
and a convex function on [max(0, 1−2/α), `∗]. The minimum of this function over f ∈ [0, `∗] occurs
in one of the three points 0, `∗, or µ(y), where µ(y) is the root of the equation 1− eα(x−1) + α(1−
x)eα(x−1) = 1/(αy) in the interval [max(0, 1 − 2/α), `∗], if such a root exists.

By Lemmas 11 and 12, the minimum in the optimization problem (24) occurs in one of four
possible points, 0, 1, `∗, or µ(y). Given this and guided by numerical calculations, we are now
ready to guess a solution for (24) and therefore for the dual program (16). This is done in the
following two lemmas.

Lemma 13. Let α∗ > 1 denote the root of the equation (x2 + x + 1)e−x = 1. For α ≥ α∗, the
optimization problem (24) has a solution of value at least

x∗ :=
αΦ(0)

(α− 1
α)Φ(0) + 1

. (25)

Proof. Consider the following value for y. This is the value that makes the value of the function
f − h(f)y at 0 equal to its value at 1.

y∗ =
1

(α− 1
α)Φ(0) + 1

(26)

First, we observe that

18

αy∗ =
α2

(α2 − 1)(1− e−α) + α

=
α2

α2 + (α2 − 1)(1 − e−α) + α− α2

=
α2

α2 + (α− 1) ((α+ 1)(1− e−α)− α)

=
α2

α2 + (α− 1)e−α (eα − (α+ 1))

≤ 1 (27)

where the last inequality follows from eα > 1 + α. Therefore, y∗ ≤ 1
α ≤

1
αΦ(0) .

Next, we prove that at y = y∗, the function f − h(f)y is at least x∗ for every f ∈ [0, 1]. By
Lemmas 11 and 12, it is enough to verify this at 0, 1, `∗, and µ(y∗) (if exists). By the choice of y∗,
this inequality holds with equality at 0 and 1. We now verify this inequality for at µ(y∗), if it exists.
We calculate the derivative of the function f − h(f)y with respect to f at f = max(0, 1 − 2/α)
(assuming this value is less than `∗). Recall that by Equation (23), h(f) = α(f − 1)Φ(f) in [0, `∗],
and hence

∂(f − h(f)y∗)

∂f

∣

∣

∣

∣

f=0

= (1− αy∗(1− eα(f−1) − α(f − 1)eα(f−1)))
∣

∣

∣

f=0

= 1− αy∗(1− e−α + αe−α)

= y∗
(

(α−
1

α
)(1 − e−α) + 1− α(1 − e−α + αe−α)

)

=
y∗

α

(

−1 + e−α + α− α3e−α
)

=
y∗

α
(α− 1)

(

1− (α2 + α+ 1)e−α
)

(28)

and

∂(f − h(f)y∗)

∂f

∣

∣

∣

∣

f=1−2/α

= (1− αy∗(1− eα(f−1) − α(f − 1)eα(f−1)))
∣

∣

∣

f=1−2/α

= 1− αy∗(1 + e−2)

=
y∗

α

(

(α2 − 1)(1 − e−α) + α− (1 + e−2)α2
)

.

The derivative at 0 is zero for α = α∗, and is positive afterwards. Also, it is easy to see that the
derivative at 1 − 2/α is positive for 2 ≤ α ≤ 3. Hence, the derivative of the function f − h(f)y∗

with respect to f at f = max(0, 1 − 2/α) is non-negative for α ∈ [α∗, 3]. This, together with the
fact that this function is convex on [max(0, 1− 2/α), `∗], implies that for this range of values of α,
no root µ(y∗) of the derivative of f − h(f)y∗ in the interval [max(0, 1− 2/α), `∗] exists. For α > 3,
we argue as follows: since µ(y∗) is a root of the equation 1− eα(x−1) + α(1 − x)eα(x−1) = 1/(αy∗),
we have αy∗Φ(µ(y∗)) = 1− α2(1− µ(y∗))eα(µ(y

∗)−1)y∗. Hence

f − h(f)y∗|f=µ(y∗) = µ(y∗) + αy∗Φ(µ(y∗))(1− µ(y∗)) = 1− α2(1− µ(y∗))2eα(µ(y
∗)−1)y∗. (29)

19

Now, we note that the function 1−α2(1−x)2eα(x−1) is an increasing function of x for x ≥ 1− 2/α.
This is because the derivative of this function with respect to x is

−α2(−2(1− x) + α(1− x)2)eα(x−1) = α3(1− x)(x− 1 + 2/α)eα(x−1) ,

which is positive for x > 1− 2/α. Therefore, since µ(y∗) ≥ 1− 2/α, we have

f − h(f)y∗|f=µ(y∗) ≥ 1− α2(1− (1− 2/α))2eα((1−2/α)−1)y∗ = 1− 4e−2y∗. (30)

On the other hand, the derivative of the function 1− Φ(0)
α with respect to α is

−
αe−α + 1− e−α

α2
=
eα

α2
(eα − 1− α) ≥ 0,

and therefore 1− Φ(0)
α is an increasing function of α. Hence, for every α ≥ 3, we have

1−
Φ(0)

α
≥ 1−

1− e−3

3
> 4e−2.

Thus,

x∗ = 1− (1−
Φ(0)

α
)y∗ < 1− 4e−2y∗ (31)

Equations (30) and (31) together show that the value of the function f − h(f)y at f = µ(y∗) is at
least x∗.

Finally, we prove that the value of f − h(f)y∗ at f = `∗ is at least x∗. As we observed earlier,

1− Φ(0)
α is an increasing function of α. Therefore, for every α ≥ 1, 1− Φ(0)

α ≥ e−1, and hence

`∗ = 1 +
1

α
ln

(

1−
1

α
Φ(0)

)

≥ 1−
1

α
.

This implies that 1 − 1/α always belongs to the interval [max(0, 1 − 2/α), `∗]. Recall that by
Lemma 12, f − h(f)y∗ is convex in this interval. Furthermore, the derivative of this function at
f = 1− 1/α is equal to 1− αy∗, which by (27) is non-negative. Therefore, the value of f − h(f)y∗

over [0, `∗] cannot be minimized at `∗.

Lemma 14. For every α ≤ α∗, the equation (α(f − 1))2eα(f−1) = 1 − Φ(0)
α has a unique solution

f∗ in [0, 1].

Proof. As α ≤ α∗ < 2, the value α(f − 1) ranges in [−2, 0]. In this range, (α(f − 1))2eα(f−1) is a
decreasing function of f . At f = 1, the value of this function is 0, and at f = 0, its value is

α2e−α = 1−
Φ(0)

α
+
α3e−α + 1− e−α

α
− 1 = 1−

Φ(0)

α
+
α− 1

α
((α2 + α+ 1)e−α − 1) ≥ 1−

Φ(0)

α
,

where the last inequality follows from the fact that by the definition of α∗, for every α ≤ α∗,
(α2+α+1)e−α ≥ 1. Therefore, there must be a point f∗ in [0, 1] where the value of (α(f−1))2eα(f−1)

becomes equal to 1−Φ(0)/α. Furthermore, since this function is strictly decreasing in this interval,
this point is unique.

20

Lemma 15. For α ≤ α∗, the optimization problem (24) has a solution of value at least

x∗ := 1− (1−
Φ(0)

α
)

1− f∗

1− Φ(0)
α + α(1 − f∗)Φ(f∗)

(32)

times V , where f∗ is as defined in Lemma 14.

Proof. Consider the following value for y. This is the value that makes the value of the function
f − h(f)y equal at f = 1 and at f = µ(y).

y∗ =
1− f∗

1− Φ(0)
α + α(1− f∗)Φ(f∗)

(33)

First, we show that y∗ ≤ 1
αΦ(0) . Since x2e−x is an increasing function of x for 0 < x < 2, if

α(1 − f∗) < 1, we have (α(1 − f∗))2eα(f
∗−1) < e−1. By the definition of f∗, this means that

1 − Φ(0)
α < e−1, which contradicts the fact that 1 − Φ(0)

α is an increasing function of α and α ≥ 1.
Therefore, we must have

α(1− f∗) ≥ 1 (34)

Thus, α(1− f∗)eα(f
∗−1) ≤ (α(1− f∗))2eα(f

∗−1) = 1− Φ(0)
α . Hence, 1− Φ(0)

α +α(1− f∗)Φ(f∗) ≥
α(1 − f∗), implying that

y∗ ≤
1

α
≤

1

αΦ(0)
. (35)

Next, we prove that at y = y∗, for every f ∈ [0, 1], the function f − h(f)y∗ is at least x∗. By
Lemmas 11 and 12, we only need to verify this at four values of f : 0, µ(y∗), `∗, and 1. It is clear that
the inequality holds with equality at f = 1. It also holds with equality at f = µ(y∗) by the following
argument: first, observe that f∗ is a root of the equation 1− eα(x−1) + α(1− x)eα(x−1) = 1/(αy∗),
and hence µ(y∗) = f∗. Given this, we obtain:

µ(y∗)− αy∗(µ(y∗)− 1)Φ(µ(y∗)) = f∗ −
α(1− f∗)

1− Φ(0)
α + α(1− f∗)Φ(f∗)

(f∗ − 1)Φ(f∗)

= 1− (1− f∗)

(

1−
α(1 − f∗)Φ(f∗)

1− Φ(0)
α + α(1 − f∗)Φ(f∗)

)

= 1− (1− f∗)
1− Φ(0)

α

1− Φ(0)
α + α(1− f∗)Φ(f∗)

= x∗

Next, we prove that the value of f−h(f)y∗ at f = `∗ is at least x∗. This is done by an argument
similar to the one in the proof of Lemma 15: as proved there, 1−1/α always belongs to the interval
[max(0, 1 − 2/α), `∗], and f − h(f)y∗ is convex in this interval. Furthermore, the derivative of this
function at f = 1− 1/α is equal to 1− αy∗, which by (35) is non-negative. Therefore, the value of
f − h(f)y∗ over [0, `∗] cannot be minimized at `∗.

Finally, we need to show that f − h(f)y∗ at f = 0 is at least x∗. Consider the expression

1− x

1− Φ(0)
α + α(1 − x)Φ(x)

(36)

21

as a function of x. The derivative of this function with respect to x can be written as

−(1− Φ(0)
α + α(1− x)Φ(x)) − (1 − x)(−αΦ(x) − α2(1− x)eα(x−1))

(1− Φ(0)
α + α(1− x)Φ(x))2

The denominator of this expression is always positive, and the numerator is equal to α2(1 −

x)2eα(x−1) − (1 − Φ(0)
α). This value is zero at x = f∗, positive for 0 < x < f∗, and negative

for f∗ < x < 1. Therefore, x = f∗ maximizes the function (36) over [0, 1]. In particular, the value
of this function at x = f∗ is at least its value at x = 0. In other words,

y∗ ≥
1

1− Φ(0)
α + αΦ(0)

(37)

The derivative of the function f − h(f)y∗ with respect to f at f = 0 is 1 − αy∗(1 − e−α + αe−α).
By inequality (37) this value is not greater than

1−
α(1 − e−α + αe−α)

1− 1−e−α

α + α(1− e−α)
=

−(α−1)
α ((α2 + α+ 1)e−α − 1)

1− 1−e−α

α + α(1− e−α)

By the definition of α∗, this value is negative for α < α∗. Therefore, the derivative of f−h(f)y∗

is non-positive at f = 0. This means that f = 0 cannot be the minimum of f − h(f)y∗ over [0, 1],
thereby completing the proof.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Lemma 7 establishes that the competitive ratio of Qk(α) with respect to the
optimum offline solution is at least γopt. Also, lemmas 13 and 15 give solutions y∗ to the optimiza-
tion program (24). This can be easily turned into a solution for the dual linear program (16) as
follows: we simply subtract a small value δ from y∗. Since the coefficients of the linear program (16)
tend to the coefficients in the continuous program (24) as k tends to infinity, for any fixed δ > 0, if k
is large enough, subtracting δ from y∗ yields a solution to the linear program (16) that satisfies the
second inequality. Furthermore, since the coefficient of y in the first inequality in (16) is bounded
and tends to h(i/k) as k tends to infinity, the value x obtained for this solution is only a small
additive factor ε away from y, where ε tends to zero as k tends to infinity. Therefore, for any ε > 0,
if k is large enough, there is a feasible solution for the dual program (16) of value at least (x∗− ε)V ,
where x∗ is the factor obtained in Lemmas 13 and 15. By weak LP duality, this implies that when
k is large, any solution of the linear program (14) has a value at least (x∗ − ε)V . This means that
the competitive ratio of Q(α) with respect to O is at least γO(α).

Tight Example We first give a tight example for this analysis for α ≥ α∗. Suppose there are
two advertisers with budgets

B1 =
1

αΦ(0)

∫ 1

0
Φ(f)df =

1

αΦ(0)
(1−

1

α
(1− e−α)) =

1

αΦ(0)
(1−

1

α
Φ(0))

and B2 = 1. The sequence of keywords arrives in two phases. Consider an arbitrary small ε > 0.
In the phase one, a sequence of keywords arrives for which advertiser 1 bids Φ(f2)

αΦ(0) ε and advertiser

22

2 bids slightly more than ε. O recommends advertiser 1 for the query. However, Q(α) allocates
all these queries to the second advertiser. This continues up to the time advertiser 2 runs out
of budget. After that, the second phase starts and a set of keywords shows up that only 2 is
interested in but she has no budget left. Under this scenario, the total revenue of O is equal to

1
αΦ(0)

∫ 1
0 Φ(f)df+1 = B1+B2. However, the total revenue of the algorithm is equal to 1. Therefore,

we have

γopt ≤
B2

B1 +B2
=

α(1− e−α)

(α− 1
α)(1− e

−α) + 1

Also, this example corresponds to a feasible primal solution with s0 = B1, s1 = B2, and all other
variables equal to zero. For the case α < α∗, the optimal primal solution has a similar structure
except that sf∗ = B1 and t1j =

1
kB1 for j ≤ kf∗. The corresponding scenario is as follows: At the

beginning, a set of queries are allocated to the first advertiser, until she spent a fractionf∗ of her
budget. After that, the second sequence of of queries shows up for which b1j =

Φ(f2)
αΦ(f∗)ε and b2j is

slightly more than ε. Hence, the algorithm allocates all of the queries to the second advertisers. At
the end, the third sequence of queries shows up in which only advertiser 2 is interested. The rest
of the example and its analysis is similar to the previous case.

4.3 Almost accurate estimates

In this section, as we see below, we can get a guarantee with respect to the optimal solution. In
this section we describe an algorithm O is based on the offline problem solved on the estimates of
query frequencies. As queries in Q arrive online, O assigns them to advertisers as suggested by the
offline solution. Here we have to be careful about two points: first, if we see a frequency more than
what was predicted, the expert simply discards the query (e.g., allocates the query to an advertiser
with bid 0 for all keywords). Second, when a query of a certain type arrives, allocate the query
to the highest bid among the advertisers who are assigned this query in the offline solution. The
above definition guarantees that if our estimate of the frequency of each type of query is within a
(1± ε) factor of the actual frequency of that type of query, then the value of the solution that the
expert proposes is at least a (1 − 2ε) fraction of the optimal offline solution. Therefor algorithm
achieves a (1− 2ε)γa fraction of the optimal revenue.

5 Conclusion

We studied a new approach toward online optimization in the presence of uncertain estimates. Our
approach goes beyond competitive analysis by using the additional information available about
the input while still maintains a bounded competitive ratio in the worst-case. The power of our
framework was demonstrated by applying it to a wide range of online problems. We believe that
our framework can be useful for many other practically and theoretically important problems, and
extends the applicability of the online optimization techniques in practice.

References

[1] Susanne Albers. Online algorithms: a survey. Mathematical Programming, 2003.

[2] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set
cover problem. In STOC, pages 100–105. ACM, 2003.

23

[3] N. Ascheuer and J. Rambau M. Grotschel, SO. Krumke. Combinatorial online optimization.
Operations Research Proceedings, 1998.

[4] James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line load
balancing with applications to machine scheduling and virtual circuit routing. In STOC,
pages 623–631, 1993.

[5] Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized steiner problem. Theor.
Comput. Sci., 324(2-3):313–324, 2004.

[6] Yossi Azar. On-line load balancing. In Amos Fiat and Gerhard J. Woeginger, editors, Online
Algorithms, volume 1442 of Lecture Notes in Computer Science, pages 178–195. Springer, 1996.

[7] Yossi Azar, Andrei Z. Broder, and Anna R. Karlin. On-line load balancing. Theor. Comput.
Sci., 130(1):73–84, 1994.

[8] Piotr Berman and Chris Coulston. On-line algorithms for steiner tree problems. Proceedings
of the twenty-ninth Annual ACM Symposium on Theory of Computing, 1997.

[9] Niv Buchbinder, Kamal Jain, and Seffi Naor. Online primal-dual algorithms for maximizing
ad-auctions revenue. In Proceedings of the 15th Annual European Symposium on Algorithms,
2007.

[10] Jaroslaw Byrka. An optimal bifactor approximation algorithm for the metric uncapacitated
facility location problem. In APPROX-RANDOM, pages 29–43, 2007.

[11] Amos Fiat and Gerhard Woeginger. Online algorithms: The state of the art. Springer-Verlag,
1998.

[12] Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–57,
2008.

[13] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J.
ACM, 50(6):795–824, 2003.

[14] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In STOC, pages 731–740, 2002.

[15] Adam Kalai and Santoush Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71:291307, 2005.

[16] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis. In FOCS,
pages 394–400. IEEE, 1994.

[17] Sébastien Lahaie, David M. Pennock, Amin Saberi, and Rakesh Vohra. Sponsored search
auctions. In N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, editors, Algorithmic
Game Theory, chapter 28. Cambridge University Press, 2007.

[18] Benny Lehmann Daniel Lehmann and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 52(2), 2006.

24

[19] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Math. Program., 46:259–271, 1990.

[20] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Allocating online advertisement
space with unreliable estimates. In ACM Conference on Electronic Commerce, pages 288–294,
2007.

[21] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and
generalized online matching. J. ACM, 54(5), 2007.

[22] Vijay Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001.

A Proof of Theorem 4

The proof follows immediately from lemmas below.

Lemma 16. For any time t, wt(H(γ)) ≤ γwt(P).

Proof. Let l be the last time the algorithm follows the recommendation of O instead of P. The
activating cost plus the serving cost of the jobs that the algorithm followed O, up to time t, is
bounded by wl(O) ≤ (γ − 1)wl(P) ≤ (γ − 1)wt(P). Also, note that the activating cost plus
the serving cost of the jobs that are allocated according to P is bounded by wt(P). Therefore,
wt(H(γ)) ≤ γwt(P).

Lemma 17. For any time t, wt(H(γ)) ≤
γ

γ−1wt(O).

Proof. Let l be the last time the algorithm ignores the recommendation of O. The activating
cost plus the serving cost of the jobs that the algorithm followed P up to time t is bounded by
wl(P) <

1
γ−1wl(O) ≤

1
γ−1wt(O). Therefore, wt(H(γ)) ≤ (1 + 1

γ−1)wt(O) ≤
γ

γ−1wt(O).

Lemma 18. Suppose algorithm O makes its recommendation based on an optimal allocation for
a given estimate. There exists an algorithm P such that for any deterministic (γ, γ′)-balanced
algorithm with respect to P and O, we have γ′ ≥ γ

γ−1 .

Proof. We prove the claim for a special case of the problem, the online weighted set cover problem.
In weighted set cover each subset is associated with a weight and the goal is to cover all elements
in the input with subsets of minimum total weight. Consider the following example. There are
3 elements and two subsets S1 = {1, 2} with weight γ − 1 and S2 = {1, 3} with weight 1. The
estimated input sequence is 1, 2. Based on these estimates, O chooses the first subset. The first
element in the input is 1. However, P recommends the second subset. Consider the following cases
for an algorithm A.

1. A follows the recommendations of O and chooses the first subset. However, the second
element turns out be 3. In this case, the cost of A is at least γ, while it could achieve a cost
of 1 by following P.

2. A ignores the recommendations of O and chooses the second subset. The second element in
the input turns out to be 2. In this case, the cost of A is t γ while the cost of the solution
recommended by O is γ − 1.

Hence, the lemma follows.

25

Algorithm G(γ):

Let α = 1
γ − 1.

Upon the arrival of a new query j:

Let o be the advertiser recommended by O to receive the query.

Let p be the advertiser recommended by P to receive the query.

If αboj ≥ bpj and the budget of o is not exhausted,

Assign j to o.

else

Assign j to p.

Figure 5: A (γ, 1− γ)-balanced algorithm for the query allocation problem.

B A (γ, 1− γ)-balanced Algorithm for Query Allocation

In this section we present a family of algorithms parameterized by γ ∈ [0, 1] that are essentially
(γ, 1 − γ)-balanced with respect to given algorithms P and O. Similar to the load balancing and
resource allocation problem, we assume the algorithm has access to two algorithms P and O that
upon the arrival of every new query, each recommends an advertiser to receive it. The algorithm
corresponding to parameter γ is denoted by G(γ). The algorithm is presented in Figure 5. We
assume that the search engine charges the advertiser the minimum of his bid and the remaining
budget.

The analysis of the algorithm is similar to the online greedy algorithm for query allocation
problem, see [18]. Let ε be the maximum ratio of a bid to the budget of an advertiser.

Lemma 19. VG(γ) ≥
1

(1+ε)(1+α)VP

Proof. Let C be the set of queries that are allocated to the advertiser recommended by P. First
observe that

∑

j∈C bpj ≤ (1 + ε)VG(γ). Similarly,
∑

j 6∈C boj ≤ (1 + ε)VG(γ). Also, by the rule
of the algorithm, the sum of the bids of all advertisers that received the queries despite of the
recommendation of P (i.e.,

∑

j /∈C boj), is at least
1
α

∑

j /∈C bpj. Therefore, we have VP ≤ (1 + ε)(1 +
α)VG(γ).

Lemma 20. VG(γ) ≥
α

1+αVO

Proof. Let A1 denote the set of advertisers who exhaust their budget by the end of the algorithm
G(γ), and A2 denote the set of other advertisers. Also, let Q1 denote the set of queries that O
assigns to an advertiser in A1, Q2 denote the set of queries that O assigns to an advertiser in
A2 and G(γ) follows O’s recommendation, and Q3 denote the set of queries that O assigns to an
advertiser in A2, but G(γ) assigns to the advertiser recommended by P.

26

The total revenue that O derives from queries in Q1 is at most the total budget of the advertisers
in A1, which is the amount of revenue that G(γ) derives from these advertisers. Also, the revenue
derived by O from queries in Q2 is the same as the revenue G(γ) derives on these queries, which
is at most the total revenue G(γ) derives from advertisers in A2. Therefore, the total revenue of O
on queries in Q1 ∪Q2 is at most VG(γ).

Consider a query j ∈ Q3 that O assigns to an advertiser o ∈ A2, but P and G(γ) assign to p.
Since the budget of o is not exhausted even until the end of the algorithm, we must have

bpj > αboj ⇒ boj <
1

α
bpj.

Summing this inequality for all j ∈ Q3, we obtain that the total revenue of O on queries in Q3

is less than 1
α of the total bid on such queries by the advertiser G(γ) assigns them to, which is at

most 1
αVG(γ).

Therefore, the total revenue of O is at most (1 + 1
α)VG(γ).

Lemmas above immediately lead to the following theorem.

Theorem 21. For 0 ≤ γ ≤ 1, and α = 1
γ − 1 we have

VG(γ) ≥ max{
1

1 + α(1 + ε)
V (P),

α

1 + α
V (O)}

Corollary 22. By the assumption that bids are small compared to the budget, algorithm G(γ) is
essentially a (γ, 1 − γ)-balanced algorithm with respect to P and O.

C Skipped Proofs from Section 4

Lemma 23. For every i, j, as k →∞, we have6

1

k

i
∑

t=j

φ(t) =
i− j + 1

k
+

1

α
(φ(i)− φ(j − 1)) + o(1).

Proof. Plugging (6) we get,

i
∑

t=j

φ(t) =

i
∑

t=j

(

1− (1−
1

k
)α(k−t)

)

= i− j + 1− (1−
1

k
)α(k−i)

i−j
∑

t=0

(1−
1

k
)α(t)

Substituting the geometric sum,

i
∑

t=j

φ(t) = i− j + 1− (1−
1

k
)α(k−i) 1− (1− 1

k)
α(i−j+1)

1− (1− 1
k)

α
= i− j + 1 +

φ(i)− φ(j − 1)

1− (1− 1
k)

α

Now note that limk→∞ k(1− (1− 1
k)

α) = α. Therefore, we have

1

k

i
∑

t=j

φ(t) =
i− j + 1

k
+
φ(i) − φ(j − 1)

α+ o(1)
=
i− j + 1

k
+

1

α
(φ(i) − φ(j − 1)) + o(1).

6Note that in this lemma we are not assuming that i and j are constants.

27

Lemma 10. For every f ∈ [0, 1], αΦ(f) + h(f) ≤ αΦ(0)f .

Proof. Let W = αΦ(f) + h(f)− αΦ(0)f . We have

W =

{

α(Φ(f)− Φ(0))f f ≤ `∗

`(f)− 1
αΦ(0) + (1 + αf − α`(f))Φ(f)− αΦ(0)f f ≥ `∗.

For f ≤ `∗, the lemma follows from the fact that Φ(.) is decreasing. For f ≥ `∗, let Z := Φ(f) ∈

[0, Φ(0)
α]. We have f = 1 + 1

α ln(1− Z) and `(f) = 1 + 1
α ln(1− αZ), and therefore

W = 1 +
1

α
ln(1− αZ)−

Φ(0)

α
+ (1 + α+ ln(1− Z)− α− ln(1− αZ))Z

− αΦ(0)

(

1 +
1

α
ln(1− Z)

)

Taking the derivative of the above expression with respect to Z, we obtain

∂W

∂Z
= −

1

1− αZ
+ (1 + ln(1− Z)− ln(1− αZ)) +

(

−1

1− Z
−
−α

1− αZ

)

Z +
Φ(0)

1− Z

= 1− ln

(

1− αZ

1− Z

)

+
Φ(0)− 1

1− Z

≥ 2−
1− αZ

1− Z
−

e−α

1− Z

=
(α− 2)Z + 1− e−α

1− Z
, (38)

where the inequality follows from ln(x) ≤ x − 1. The value (38) is a monotone function of Z.

Therefore, for Z ∈ [0, Φ(0)
α], we have

∂W

∂Z
≥ min{1− e−α,

(α− 2)Φ(0)/α + 1− e−α

1− Φ(0)/α
} = min{1− e−α,

(α− 2 + α)Φ(0)/α

1− Φ(0)/α
} ≥ 0

This shows that W is an increasing function of Z. Thus, it takes its maximum at Z = Φ(0)/α.
At this point, we have ln(1− αZ) = −α and therefore

W = −
Φ(0)

α
+

(

1 + ln(1−
Φ(0)

α
) + α

)

Φ(0)

α
− αΦ(0)

(

1 +
1

α
ln(1−

Φ(0)

α
)

)

=
Φ(0)

α

(

ln(1−
Φ(0)

α
) + α− α2 − α ln(1−

Φ(0)

α
)

)

= Φ(0)(1 − α)`∗

≤ 0

This completes the proof of the lemma.

Lemma 11. For any value of y ≥ 0, the function f −h(f)y is a concave function of f in the range
f ∈ [`∗, 1]. In particular, we have

min
f∈[`∗,1]

{f − h(f)y} = min{`∗ − h(`∗)y, 1− h(1)y}.

28

Proof. All the derivatives in this proof are with respect to f . First observe that

Φ′(f) = −αeα(f−1)

Φ′′(f) = −α2eα(f−1) = αΦ′(f)

We also have

`(f) =
1

α
ln(1− αΦ(f)) + 1

`′(f) =
−Φ′(f)

1− αΦ(f)

`′′(f) =
−Φ′′(f)

1− αΦ(f)
−

α(Φ′(f))2

(1− αΦ(f))2
= α`′(f)− α(`′(f))2 (39)

And for the second derivative of f − h(f)y we have

∂2

∂f2
(f − h(f)y) = −y

(

`′′(f) + (α(f − `(f)− 1) + 1)Φ′′(f) + 2α(1 − `′(f))Φ′(f)− α`′′(f)Φ(f)
)

= −y
(

(1− αΦ(f))`′′(f) + (α(f − `(f)− 1) + 3− 2`′(f))Φ′′(f)
)

(40)

On the other hand

(1− αΦ(f))`′′(f) = −Φ′′(f)−
α(Φ′(f))2

1− αΦ(f)
= −Φ′′(f) +

−Φ′(f)

1− αΦ(f)
(αΦ′(f)) = Φ′′(α)(−1 + `′(f))

Plugging into (40), we get

∂2

∂f2
(f − h(f)y) = −y

(

(α(f − `(f)− 1) + 2− `′(f))Φ′′(f)
)

Note that Φ′′(f) is negative. Thus, in order to complete the proof we need to show that

T := α(f − `(f)− 1) + 2− `′(f) < 0 (41)

Taking the first derivative, by (39), we have

T ′ = α(1− `′(f))− `′′(f)

= α(1− `′(f))− (α`′(f)− α(`′(f))2)

= α(1− 2`′(f) + (`′(f))2)

= α(1− `′(f))
2

> 0

Therefore, T is increasing, and hence its value on f ∈ [`∗, 1] is bounded by its value at 1.

T (f = 1) = α(1 − `(1)− 1) + 2− `′(1) = α(1 − 1− 1) + 2− αeα(1−1) = 2(1 − α) < 0

Therefore T is negative for f ≤ 1, which completes the proof.

29

Lemma 12. For any value of y ≥ 0, the function f−h(f)y is a concave of f on [0,max(0, 1−2/α)]
and a convex function on [max(0, 1−2/α), `∗]. The minimum of this function over f ∈ [0, `∗] occurs
in one of the three points 0, `∗, or µ(y), where µ(y) is the root of the equation 1− eα(x−1) + α(1−
x)eα(x−1) = 1/(αy) in the interval [max(0, 1 − 2/α), `∗], if such a root exists.

Proof. The second derivative of the function f − h(f)y in [0, `∗] can be written as

∂

∂f
(f − h(f)y) = 1− αy

(

Φ(f) + (f − 1)Φ′(f)
)

∂2

∂f2
(f − h(f)y) = −αy

(

2Φ′(f) + (f − 1)Φ′′(f)
)

= −αy
(

−2αeα(f−1) − (f − 1)α2eα(f−1)
)

= α3yeα(f−1)

(

2

α
+ f − 1

)

Clearly, this expression is negative (i.e., the function is concave) for f ≤ 1 − 2/α and is positive
(i.e., the function is convex) for f ≥ 1−2/α. To obtain the minimum of the function in the interval
where it is convex, we set the derivative to zero:

∂

∂f
(f − h(f)y) = 0⇒ Φ(f) + (f − 1)Φ′(f) = 1/(αy)⇒ 1− eα(f−1) − (f − 1)αeα(f−1) = 1/(αy)

Therefore, f is the root of the equation 1− eα(x−1) + α(1 − x)eα(x−1) = 1/(αy).

30

	Introduction
	Online Load Balancing
	Online Resource Allocation
	The Query Allocation Problem
	Computing opt
	Computing O
	Almost accurate estimates

	Conclusion
	Proof of Theorem 4
	A (,1-)-balanced Algorithm for Query Allocation
	Skipped Proofs from Section 4

