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Brief Review

We congratulate Bühlmann, Rütimann, van de Geer, and Zhang (here-
after BRVZ) on their inspiring paper that addresses the important issue of
correlated covariates in the high dimensional regression model

Y = Xβ0 + ε.

Here Y is the response vector in Rn, X is an n × p matrix, β0 ∈ Rp is
the vector of coefficients, and finally ε ∈ Rn is assumed to be multivariate
normal with mean zero and covariance matrix σ2I. While it has been shown
that the lasso, and its many variants, “work” in terms of variable selection
and prediction, they work best for near orthogonal cases of X. However, if
p > n, correlation among the covariates is obviously inevitable. It is worth

pointing out that the fit of the lasso estimator β̂ always satisfies

2‖Xβ̂ −Xβ0‖22 ≤ 3nλ‖β0‖1
for λ = 8σ

√
log p/n with probability 1−2/p, under no conditions on X. See

Bühlmann and van de Geer (2011) in the regression context or Wegkamp
and Yuan (2011) in the context of sparse support vector machines. How-
ever, faster rates for the prediction error and consistent variable selection
do require (compatibility and irrepresentable) conditions on X (Bühlmann
and van de Geer, 2011; Bunea, 2008).

BRVZ propose two methods to compete with the lasso estimator. Both
use as a first step a novel agglomerative hierarchical clustering algorithm
based on the empirical canonical correlations of X. It is important to note
that the clustering is unsupervised—the vector Y of responses is not used.
Although this method is not the focus of the paper or this discussion, we
feel that this interesting method deserves more attention and may have
applications in other areas. It is guaranteed to find a partition with the
maximal empirical canonical correlation between two clusters less than a
set threshold τ . The authors advocate taking the smallest possible value
for τ . If it exists, this algorithm will find the finest clustering with this
property (τ -separation). When the rows of X are iid Np(0,Σ) and the max-
imal canonical correlation between groups is less than the minimal maximal
canonical correlation within groups and rank(ΣGr,Gr) = o(n), the algorithm
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is shown to be consistent. In the same multivariate normal setting, hierar-
chical clustering based on the sample correlations between two covariates,
consistently finds the true clusters, provided the minimal correlation within
clusters exceeds the maximal correlation between clusters and log p = o(n).
In the simulations it is shown to have poor performance in presence of a
single large cluster.

After finding q clusters, BRVZ propose two alternative methods:

CRL: Each cluster of covariates is collapsed into one vector, the average
of the covariates in that cluster, and a new n× q design matrix X̄ is
formed. Fit the lasso (Tibshirani, 1996):

min
β∈Rq

‖Y − X̄β‖22 + λ‖β‖1.

CGL: Taking the clusters as groups, fit the group lasso (Yuan and Lin,
2006):

min
β∈Rp

‖Y −Xβ‖22 + λ

q∑
r=1

√
|Gr|‖X(Gr)βGr‖2.

The authors assume the design matrix X to be fixed in the analysis of the
CGL-method but assume it to be multivariate normal in the analysis of the
CRL-method. These differing assumptions hamper direct comparison of the
two methods. For the CRL method, the reduction in dimension from p to q
is often substantial and the compatibility constant is much less. The obvious

main drawback of this method is the bias incurred: the coefficient β̂i is the
same for all covariates in the same group. In the case of Gaussian design,
it is shown that the rate is good, provided the bias is small. CGL works
well when there are many active variables within the few active groups. For
fixed design, the compatibility constant for the group lasso is oftentimes
less than that of the plain lasso. However, the established oracle inequality
seems wasteful as the rate is proportional to

∑
r∈S0

mr, the total number of
elements in the active groups, not the total number of active variables as is
the case with the plain lasso.

Related Methods and Additional Analysis

The question of how to improve upon the lasso when the features are
highly correlated is a fundamental one. One of the most well-known at-
tempts to deal with this situation is the elastic net (Zou and Hastie, 2005).
In this method, a ridge penalty (based on the squared `2 norm) is added to
the objective function:

β̂(EN) = arg min
β
‖y −Xβ‖22 + λα‖β‖1 + λ(1− α)‖β‖22.

If a group of highly correlated variables is present in the design matrix and
α < 1, the coefficients will be shrunken towards each other (whereas the
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lasso may exclude all but one of the variables). More precisely, Zou and
Hastie (2005) show that if ρjk is the correlation between the jth and kth
feature (and the response has been centered and predictors standardized),
then

|β̂(EN)
j − β̂(EN)

k | ≤ ‖y‖1
λ(1− α)

√
2(1− ρjk),(1)

provided β̂
(EN)
j β̂

(EN)
k > 0. The CRL method can be seen as a more extreme

approach, in which highly correlated variables are given exactly equal weight.
Since CRL enforces the grouping more aggressively, we might expect it to do
better when the clustering has succeeded in identifying the correct grouping
but to do worse when working with the wrong grouping.

BRVZ perform a simulation study comparing their two methods (CRL
and CGL) to the lasso. In what follows, we augment part of the simulation
study to include the elastic net and several variants of CRL and CGL. This
points to some future directions along this line of work and raises a few
interesting points. The methods we compare are as follows (we use the R
package glmnet for all lasso and elastic net fits):

• CRL: The cluster representative lasso as proposed by the authors.
• CRL+Lasso: We use CRL to select the nonzero groups and then per-

form a lasso on the remaining variables. This allows for within-group
sparsity and relaxes the constraint that all coefficients be equal.
• CGL: The cluster group lasso as proposed by the authors, which

makes use of a less common form of the group lasso known as
the “groupwise prediction penalty” or “standardized group lasso”
penalty:

∑
r wr‖X(Gr)βGr‖2 (Bühlmann and van de Geer, 2011; Si-

mon and Tibshirani, 2012). We use the R package standGL.
• CUGL: Here we perform CGL but use the “unstandardized” group

lasso penalty,
∑

r wr‖βGr‖2. We use the R package SGL for this
method and the next one.
• CSGL: Here we perform CGL but use the sparse group lasso penalty

(see, e.g., Simon et al. 2012): α‖β‖1 + (1− α)
∑

r wr‖βGr‖2.
• EN: The elastic net as discussed above. Unlike all other methods,

EN does not require first clustering the features.

All tuning parameters were selected using a validation set of size 100 to
exhibit each method’s potential. In all other details we followed the paper’s
description as closely as possible. Table 1 shows the out-of-sample test errors
for the block-diagonal and single-block models of Section 5.1.1 and 5.1.2.

Perhaps the most striking observation is the large discrepancy between
CGL’s performance and the rest of the methods (both in the paper’s simula-
tions and ours). Comparing CGL to CUGL, we conclude that the difference
must lie in the choice of group lasso penalty. Although BRVZ claim that
CGL uses “a much more appropriate penalty”, we find the “unstandard-
ized” group lasso penalty to give much better results in these simulations.
We would be particularly interested in the authors’ thoughts on this issue in
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A(a) A(b) A(c) A(d)
Lasso 12.27 (0.17) 17.34 (0.30) 12.71 (0.14) 16.70 (0.31)
CRL 11.11 (0.16) 17.28 (0.29) 13.03 (0.13) 16.81 (0.28)

CRL+Lasso 10.88 (0.11) 16.45 (0.34) 11.66 (0.16) 15.94 (0.30)
CGL 15.96 (0.29) 38.53 (0.51) 13.76 (0.29) 27.45 (1.06)

CUGL 12.65 (0.15) 17.12 (0.28) 12.84 (0.12) 16.49 (0.27)
CSGL 12.67 (0.15) 16.75 (0.28) 12.55 (0.12) 16.07 (0.27)

EN 11.87 (0.16) 17.27 (0.30) 12.66 (0.13) 16.67 (0.31)

B(a) B(b) B(c) B(d)
Lasso 12.37 (0.16) 22.11 (0.46) 12.48 (0.16) 22.45 (0.38)
CRL 15.05 (0.19) 22.89 (0.46) 13.41 (0.18) 23.34 (0.41)

CRL+Lasso 11.45 (0.13) 21.84 (0.48) 11.91 (0.17) 22.20 (0.42)
CGL 415.92 (2.99) 65.94 (1.61) 41.91 (5.40) 38.51 (1.44)

CUGL 15.55 (0.21) 22.04 (0.42) 13.35 (0.18) 22.35 (0.40)
CSGL 15.14 (0.20) 21.41 (0.40) 12.71 (0.18) 21.45 (0.36)

EN 12.00 (0.16) 22.15 (0.44) 12.40 (0.16) 22.44 (0.38)

Table 1. Average test MSE for the block-diagonal and
single-block models with σ = 3. Standard errors given in
parentheses.

light of our empirical findings. Since the theoretical oracle bounds for CGL
assume a fixed design matrix X, we also computed the in-sample errors,
shown in Table 2. In the“A” models, the in-sample errors are indeed lower
and much closer to the (out-of-sample) test errors of the other methods.
Still, in the “B” models, the errors remain far higher than those of other
methods. One potentially important difference between the “A” and “B”
scenarios is in the conditioning of X. In the “A” scenario, the clustering
method returned the correct partition, consisting of 100 groups of size 10,
with the (average) condition number of each group’s design matrix, X(Gr),
being 12.8. By contrast, in the “B” scenarios, the clustering returned one
group of size 34 containing the 30 correlated variables and 4 noise variables.
The condition number of this selected group’s design matrix is quite high:
36.5. We suspect that the poor conditioning of this matrix makes the penalty
‖X(Gr)βGr‖2 undesirable here. In further support that this penalty may not
be performing well, we find that CGL tends to select a highly regularized
model. If conditioning of X(Gr) is indeed the problem, a better alternative

to ‖X(Gr)βGr‖2 =
√
βTGr

X(Gr)TX(Gr)βGr would be to use
√
nβTGr

Σ̃(Gr)βGr ,

where Σ̃(Gr) is a better-conditioned estimate of the within group covariance

matrix, such as Σ̃(Gr) = n−1X(Gr)TX(Gr) + ρI|Gr| (Ledoit and Wolf, 2004).
This is similar to the “ridged group lasso” suggested in Simon and Tibshirani
(2012).
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A(a) A(b) A(c) A(d) B(a) B(b) B(c) B(d)
CGL 13.29 17.82 12.39 16.07 339.22 65.22 37.10 36.02

Table 2. In-sample error (using training set X) for the
block-diagonal and single-block models with σ = 3.

It appears that our proposed method CRL+Lasso performs the best. It
enjoys the group screening ability of CRL while still acting like the lasso
on individual features. Comparing CSGL to CUGL, we see that adding a
sparsity term to the group lasso may be (mildly) beneficial in these scenarios.
Finally, we observe that the elastic net, despite its simplicity, remains quite
competitive.

Analysis of the Methods in an Extreme Case

The authors imagine a situation in which the features cluster into highly
correlated groups. We take this idea to the extreme here, and consider
what the paper’s methods do when the predictors within each group of
G = {G1, . . . , Gq} are identical. That is, let

X = [x11
T
|G1| : · · · : xq1

T
|Gq |] ∈ Rn×p.

(Here 1N = (1, . . . , 1)T ∈ RN .) For simplicity, we assume that ‖xj‖2 = 1

and write X̃ = [x1 : · · · : xq] ∈ Rn×q. Suppose that the columns of X̃ are
close enough to orthogonal that canonical correlation clustering results in
the partition G. Then, for CRL, we solve

γ̂ = arg min
γ
‖y − X̃γ‖22 + λ‖γ‖1.(2)

In a slight notational departure from the paper, we define β̂CRL to be the
p-vector used with the original design matrix X. That is, the rth block of
β̂CRL is given by

β̂CRL,Gr = |Gr|−1γ̂r1|Gr|,

where the factor of |Gr| makes it so that X̃γ̂ = Xβ̂CRL.
Now, CGL does not have a unique solution in this context, but we can

describe its set of solutions:

BCGL = arg min
β
‖y −

q∑
r=1

xr1
T
|Gr|βGr‖22 + λ

q∑
r=1

wr‖xr1T|Gr|βGr‖2

= arg min
β
‖y −

q∑
r=1

xr1
T
|Gr|βGr‖22 + λ

q∑
r=1

wr|1T|Gr|βGr |,

where we have used that ‖xr‖2 = 1. It is easy to see that

BCGL = {β ∈ Rp : 1T|Gr|βGr = δ̂r},
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where

δ̂ = arg min
δ
‖y − X̃δ‖22 + λ

q∑
r=1

wr|δr|.

Notice that if w1 = · · · = wq (i.e., all groups have the same size), then
the above problem would be identical (up to λ) to (2). In this case, we

conclude that β̂CRL ∈ BCGL. Finally, we turn to what we called earlier the
unstandardized group lasso:

β̂CUGL = arg min
β
‖y −

q∑
r=1

xr1
T
|Gr|βGr‖22 + λ

q∑
r=1

wr‖βGr‖2.

We rewrite the problem as

min
β,δ

{
‖y − X̃δ‖22 + λ

q∑
r=1

wr‖βGr‖2 s.t. 1T|Gr|βGr = δr

}
.

Minimizing over β first, we get β̂Gr(δ) = |Gr|−1δr1|Gr|. Substituting in this
expression leaves a minimization over δ:

min
δ
‖y − X̃δ‖22 + λ

q∑
r=1

wr|Gr|−1/2|δr|.

Thus, taking the standard choice, wr = |Gr|1/2, we see that β̂CRL = β̂CUGL.
Finally, we consider the elastic net in this situation:

β̂EN = arg min
β
‖y −

q∑
r=1

xr1
T
|Gr|βGr‖22 + λ

q∑
r=1

[
(1− α)‖βGr‖22 + α‖βGr‖1

]
.

By (1), we have that β̂EN is constant within group. Building this fact in as
a constraint, we may reparametrize the problem using βGr = |Gr|−1δr1|Gr|
to get

min
δ
‖y − X̃δ‖22 + λ

q∑
r=1

[
(1− α)|Gr|−1δ2r + α|δr|

]
.

We see that, in contrast to the other three methods, the “grouping effect”
is applied between groups as well. This of course is to be expected since the
elastic net does not start with a set of known groups, but rather applies a
general shrinkage that has the desired grouping effect on correlated features.

This feature of the elastic net may be beneficial if X̃ itself has highly corre-
lated columns; however, if this is not the case, then the elastic net would be
shrinking the estimates unnecessarily.

Acknowledgment

Marten Wegkamp is supported in part by NSF Grant DMS-10-07444.



DISCUSSION OF “CORRELATED VARIABLES IN REGRESSION: CLUSTERING AND SPARSE ESTIMATION”7

References
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