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We consider revenue management problems with heterogenous resources, each with unit capacity. An arriving

customer makes a booking request for a particular interval of days in the future. We offer an assortment

of resources in response to each booking request. The customer makes a choice within the assortment to

use the chosen resource for her desired interval of days. The goal is to find a policy that determines an

assortment of resources to offer to each customer to maximize the total expected revenue over a finite selling

horizon. The problem has two useful features. First, each resource is unique with unit capacity. Second, each

customer uses the chosen resource for a number of consecutive days. We consider static policies that offer

each assortment of resources with a fixed probability. We show that we can efficiently perform rollout on

any static policy, allowing us to build on any static policy and construct an even better policy. Next, we

develop two static policies, each of which is derived from linear and polynomial approximations of the value

functions. We give performance guarantees for both policies, so the rollout policies based on these static

policies inherit the same guarantee. Lastly, we develop an approach for computing an upper bound on the

optimal total expected revenue. Our results for efficient rollout, static policies, and upper bounds all exploit

the aforementioned two useful features of our problem. We use our model to manage hotel bookings based on

a dataset from a real-world boutique hotel, demonstrating that our rollout approach can provide remarkably

good policies and our upper bounds can significantly improve those provided by existing techniques.

1. Introduction

Revenue management problems focus on managing limited service capacities to serve booking

requests that arrive randomly over time. Serving a booking request generates a certain amount of

revenue and consumes the availability of multiple types of service capacities. These problems appear

in airlines, hospitality, retail, railways, and broadcasting, where the meanings of a service capacity

and a booking request take different forms depending on the specific industry setting. The main

tradeoff is between serving a current booking request to generate immediate revenue and reserving

the service capacities for a more profitable booking request that may arrive in the future. Different

booking requests consume different types of service capacities, so computing an optimal policy

requires keeping track of all types of remaining service capacities simultaneously, resulting in the

curse of dimensionality as the number of different types of service capacities increases.

We study revenue management problems with unique resources, each with unit capacity. An

arriving customer makes a booking request for a particular interval of days in the future. We offer

* The first three authors are listed alphabetically. The last author mainly contributed to computational experiments.
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an assortment of resources in response to each booking request. The customer makes a choice

within the assortment to use the chosen resource for her desired interval of days and returns the

resource after her use. The goal is to find a policy for determining an assortment of resources to

offer to each customer to maximize the total expected revenue. Dynamic programming formulation

of the problem has a high-dimensional state variable to keep track of the availability of resources

on each day in the booking horizon, so it is computationally difficult to find the optimal policy. We

give efficiently computable policies with performance guarantees and upper bounds on the optimal

total expected revenue. As we discuss in our contributions below, all of our results exploit the fact

that the resources have unit capacity and the customers use resources over consecutive days.

The class of revenue management problems that we consider in this paper appears in a number

of applications. Market places for lodging, such as Airbnb and Vrbo, as well as boutique hotels and

bed-and-breakfasts, offer unique rooms, apartments or houses. Customers make booking requests to

use such lodging options for a number of consecutive days. Matching platforms for freelancers, such

as Upwork and Fiverr, recommend differentiated workers with unique characteristics. Employers

seek to make use of the skills of the workers for certain durations of time. When the projects

are intensive enough that each freelancer can work on one project at a time, the problem of

offering differentiated workers to employers also has the characteristics of our revenue management

problem. With these applications in mind, our work is partly motivated by the boutique hotel

Villa Mahal (2020) in Kalkan province of Turkey. The hotel offers six rooms: Moonlight Room,

Moonlight Deluxe, Sunset Deluxe, Sunset Suite, Pool Room, and Cliff House. Each room is unique,

as it is decorated differently, has different views, and offered at a different price. During the booking

process, the customers are shown the available rooms for their desired days of stay, and they choose

a specific room. Boutique Homes (2020) lists 150 boutique hotels with a similar setup.

Main Contributions: Our technical results focus on policies with performance guarantees,

efficient rollout on such policies, and a novel upper bound on the optimal expected revenue.

Efficient Rollout of Static Policies: A static policy offers a (possibly random) assortment of

resources without paying attention to the current state of the system. Letting n be the number

of resources and T be the number of days in the booking horizon, to compute the value functions

associated with a static policy, we need to solve a dynamic program with O(2nT ) possible states

that keep track of the availability of each resource on each day. We show that we can compute the

value functions of a static policy by using n separate dynamic programs, each with O(T 2) possible

states (Theorem 3.1). Intuitively speaking, this result is based on the following observation. Because

each resource has unit capacity and customers use resources over consecutive days, if a resource is

not available on day `, then we cannot use this resource to serve a booking request for an interval
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that starts on or before day `− 1 and ends on or after day `+ 1. In our dynamic program, we

keep track of the availability of each resource over uninterrupted intervals of days and use the fact

that we cannot serve booking requests that straddle disjoint intervals. Thus, using our dynamic

program, we can compute the value functions of a static policy in a number of operations that is

polynomial in the number of resources and the number of days in the booking horizon.

Once we compute the value functions of a static policy, we can perform rollout on the static

policy. Rolling out a static policy yields a policy that is guaranteed to perform at least as well

as the static policy on hand; see Section 6.4.1 in Bertsekas (2017). Because the static policy does

not consider the current state of the system, it may offer an unavailable resource in response

to a booking request. We show that the rollout policy, in contrast, never offers an unavailable

resource. The benefits from rolling out a static policy can be substantial. In our experiments,

rolling out a static policy improves the performance of the static policy by up to 15%. In most

rollout applications, the value functions of the static policy are approximated by using Monte Carlo

simulation, but we can exactly compute the value functions of our static policies, precisely because

each resource has unit capacity and customers use resources over consecutive days. Therefore, our

results on computing the value functions of a static policy and performing rollout on a static policy

both exploit the special structure of our revenue management problem.

Static Policies via Linear Approximations: By the discussion in the two previous paragraphs, if

we have a static policy with a performance guarantee, then we can efficiently perform rollout on this

static policy to obtain another policy that is at least as good. Letting Dmax be the maximum number

of days of resource usage in a booking request, we use linear approximations of the value functions to

give a static policy that is guaranteed to obtain 1
2Dmax

fraction of the optimal total expected revenue

(Theorem 4.1). Our result uses a characterization of feasible booking requests that holds under unit

resource capacities. Earlier performance guarantees for linear value function approximations are in

an asymptotic regime, where the resource capacities and the expected demand increase at the same

rate; see, for example, Talluri and van Ryzin (1998). Our result does not require an asymptotic

regime. Indeed, such an asymptotic regime is not relevant to us at all, because each resource is

unique, so resource capacities are always one. Before our work, it was not known whether linear

approximations could yield performance guarantees without asymptotic regimes.

Static Policies via Polynomial Approximations: Letting Dmin be the minimum number of days in

a booking request, we use polynomial approximations of the value functions to give a static policy

that is guaranteed to obtain 1
2+d(Dmax−1)/Dmine

fraction of the optimal total expected revenue. To

establish this result, corresponding to each possible interval of days in a booking request, we

designate a so-called intersection preserving subset of days with the following property. If we do
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not have capacity on a day in the intersection preserving subset, then we can immediately conclude

that we cannot accommodate a booking request for the corresponding interval. As a function of the

number of days in the intersection preserving subsets, we give a performance guarantee for the static

policy from the polynomial value function approximations (Theorem 6.1). Next, using the fact that

resources have unit capacities and customers request resources over consecutive days, we bound

the number of days in the intersection preserving subsets by 1+d(Dmax − 1)/Dmine (Theorem 6.2).

Putting these two results together yields the desired performance guarantee. Surprisingly, if all

booking requests are for the same duration (Dmax = Dmin), then our policy yields a constant 1/3

performance guarantee. Our linear approximations have a looser guarantee than our polynomial

ones, but the practical performance of both policies, especially after rollout, is competitive.

Upper Bound on the Optimal Policy Performance: We give an efficiently computable upper

bound on the optimal total expected revenue. To assess the optimality gap of a policy, we can

compare its total expected revenue with such an upper bound. Our upper bound is based on

allocating the revenue from a booking request over different resources and solving a separate

dynamic program to control the capacity of each resource. We show that this approach yields an

upper bound on the optimal total expected revenue (Proposition 7.1). A common approach to

obtain an upper bound is to formulate a linear programming approximation under the assumption

that the choices of the customers take on their expected values; see Gallego et al. (2004). We show

how to choose our revenue allocations such that the upper bound from our approach is at least as

tight as that from such a linear program (Theorem 7.2). The dynamic program that we solve for

each resource still has O(2T ) states, keeping track of the availability of the resource on each day.

We give an equivalent dynamic program with only O(T 2) state variables (Theorem 7.3).

One motivation for using a linear program to construct an upper bound is that such upper bounds

are tight in the asymptotic regime discussed earlier. This asymptotic regime does not apply to our

problem because our resource capacities are always one, irrespective of the number of resources.

In our experiments, the upper bounds from the linear program are substantially looser than our

upper bounds, with gaps reaching 29%. Another approach to obtain an upper bound is based

on decomposing the dynamic program for the problem by resources; see Topaloglu (2009). This

approach constructs piecewise linear value function approximations that are separable by resources.

In our problem, the capacity of each resource is one, so such a piecewise linear approximation is no

different from a linear approximation. In our experiments, the upper bound from the decomposition

approach was almost as poor as that from the linear program.

Validation on Real-World Hotel Data: We test our policies on a dataset from an actual boutique

hotel, as well as randomly generated datasets. Our policies can handle real problem sizes. Policies
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based on our linear and polynomial approximations outperform strong benchmarks. Moreover,

rolling out a static policy can significantly improve the static policy on hand.

Literature Review: Rollout is a general approach to improving the performance of any policy;

see Section 6.4.1 in Bertsekas (2017). The idea is to compute the value functions of the initial policy

on hand and use the greedy policy with respect to the value functions. The policy from rollout is

guaranteed to perform at least as well as the initial policy on hand. The difficulty of performing

rollout is in computing the value functions of the initial policy. Computing these value functions

can be as difficult as computing the optimal policy, so the value functions are often estimated

by using simulation. We exploit the unit capacities of the resources and the interval structure of

the booking requests to exactly compute the value functions of a static policy and to perform

rollout on the static policy. The rollout approach has been used in combinatorial optimization,

scheduling, vehicle routing, and revenue management, but most existing work uses approximations

or simulations to estimate the value functions of the initial policy; see Bertsekas et al. (1997),

Bertsekas and Castanon (1999), Secomandi (2001), and Bertsimas and Popescu (2003).

There is work on managing resources that possess reusable characteristics. In Manshadi and

Rodilitz (2020), volunteers are asked to perform tasks, each volunteer becoming inactive for a

random duration of time after she is tapped for a task. In Rusmevichientong et al. (2020), products

are rented by customers for random durations of time and become available to be used by others

once returned. In both papers, the authors give policies with performance guarantees. A critical

differentiating factor of our problem is that a customer arriving into the system makes a booking

request to use a resource on a future day. In other words, our problem setting involves advance

reservations, which is, naturally, critical when working with lodging market places, hotels and

freelancer matching platforms. In Manshadi and Rodilitz (2020), if a volunteer is tapped for a task,

then her inactivity period immediately starts. In Rusmevichientong et al. (2020), if a customer

arriving into the system rents a product, then the product is immediately checked out. As far as

we are aware, it is not possible to incorporate advance reservations into these models.

For revenue management problems with non-unit resource capacities and booking requests not

necessarily over intervals of days, letting L be the maximum number of resources used by a booking

request, Baek and Ma (2019) and Ma et al. (2020) both give policies with a performance guarantee

of 1
1+L

. The problem considered by these authors is more general than ours, but exploiting the

special structure of our problem, we can improve the performance of their policies both theoretically

and practically. In particular, because the authors consider non-unit resource capacities, it is not

possible to perform rollout efficiently on their policies. In our experiments, rollout provides dramatic

improvements in policy performance, reaching 15%. Also, the policies proposed by the authors,
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when applied to our problem, provide a performance guarantee of 1
1+Dmax

. For Dmin > 1, we have

1
2+d(Dmax−1)/Dmine

> 1
1+Dmax

, so if Dmin > 1, then our policy with the polynomial value function

approximations has a better theoretical performance guarantee. The improvement provided by our

policy is practically relevant because platforms may indeed impose minimum use requirements, so

Dmin > 1. For example, in addition to its six rooms, Villa Mahal offers three villas: Ying Yang,

Gunbatimi, and Ruya. These villas require a minimum stay of seven days. Our stronger theoretical

performance guarantees translate into practical benefits. Our policies can improve the revenue

performance of the policies in Baek and Ma (2019) and Ma et al. (2020) by 20%.

Some papers focus on building linear programming approximations for revenue management

problems and characterize the optimality gaps of the policies derived from such approximations;

see Talluri and van Ryzin (1998), Cooper (2002), and Jasin and Kumar (2012, 2013). These papers

focus on the asymptotic regime discussed earlier in this section, but such a regime, once again,

is not relevant to our setting because the capacities of our resources are always one. The policies

derived from the linear programming approximations are often characterized by bid prices, where

one attaches a bid price to each resource to capture the opportunity cost of a unit of resource. The

decision for accepting a booking request is made by comparing the revenue from the booking request

with the total opportunity cost of the resources used by the booking request; see Adelman (2007),

Topaloglu (2009), Tong and Topaloglu (2013), Kirshner and Nediak (2015), Vossen and Zhang

(2015a,b), and Kunnumkal and Talluri (2016a). The policies in this last set of papers do not have

performance guarantees. There is work on incorporating customer choice into revenue management

problems, where the customers choose among the offered booking options; see Gallego et al. (2004),

Liu and van Ryzin (2008), Kunnumkal and Topaloglu (2008), Bront et al. (2009), and Meissner

et al. (2012). Some papers focus on approximating the value functions under customer choice; see

Zhang and Cooper (2005, 2009), Zhang and Adelman (2009), Kunnumkal and Topaloglu (2010),

and Kunnumkal and Talluri (2016b). Others use stochastic approximation to compute booking

limits and bid prices; see van Ryzin and Vulcano (2008), Topaloglu (2008), and Chaneton and

Vulcano (2011). These papers do not give performance guarantees either.

Organization: In Section 2, we give a dynamic programming formulation for our problem. In

Section 3, we show how to perform rollout efficiently on a static policy. In Section 4, we give a

static policy using linear value function approximations. In Section 5, we establish a performance

guarantee for this policy by showing that we can use our approximations to bound the performance

of the optimal and static policy. In Section 6, we give a static policy using polynomial value function

approximations. The performance guarantee for this policy also uses a bounding approach, but the

specifics are different. In Section 7, we give a method to get an upper bound on the optimal total

expected revenue. In Section 8, we give computational experiments. In Section 9, we conclude.
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2. Problem Formulation

We have n unique resources indexed by N = {1, . . . , n}. The resources are available for use during

the days indexed by T = {1,2, . . . , T}. Let F = {[s, f ] : 1≤ s≤ f ≤ T} denote the set of possible

intervals of use, where the interval [s, f ] corresponds to a use over days {s, . . . , f}. The revenue

from booking resource i over interval [s, f ] is ri,[s,f ]. The booking requests arrive over the time

periods indexed by Q= {1,2, . . . ,Q}. Each time period is a small enough interval of time that there

is at most one booking request at each time period. At time period q, we have a booking request

for using a resource over interval [s, f ] with probability λq[s,f ]. With probability 1−
∑

[s,f ]∈F λ
q
[s,f ],

there is no booking request at time period q. Given that we offer assortment S ⊆N of resources

at time period q, the customer making a booking request at time period q chooses resource i with

probability φqi (S). The choice probability φqi (S) is governed by a general choice model, as long as

the choice probabilities of the resources in an assortment decrease as we add more resources into

the assortment; that is, φqi (S ∪{j})≤ φ
q
i (S) for all i∈ S and j 6∈ S.

Our goal is to find a policy for deciding which assortment of resources to make available for the

customer arriving at each time period to maximize the total expected revenue from all booking

requests. We formulate a dynamic program to compute an optimal policy. We use the vector

x= (xi,` : i∈N , `∈ T )∈ {0,1}n×T to capture the state of the system at a generic time period,

where we have xi,` = 1 if and only if resource i is available for use on day `. To accommodate a

booking request to use resource i over the interval [s, f ], we need to have this resource available

on days {s, . . . , f}. In other words, given that the state of the system is x, we can accommodate a

booking request to use resource i over the interval [s, f ] if and only if
∏f

`=s xi,` = 1. Let Jq(x) be the

optimal total expected revenue over time periods {q, . . . ,Q} given that the state of the system at

time period q is x. Using ei,[s,f ] ∈ {0,1}n×T to denote the vector with ones only in the components

corresponding to resource i and days {s, . . . , f}, we can find the optimal policy by computing the

value functions {Jq : q ∈Q} through the dynamic program

Jq(x) =
∑

[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)

( f∏
`=s

xi,`

)[
ri,[s,f ] + Jq+1(x− ei,[s,f ])

]

+

[∑
i∈N

φqi (S)

(
1−

f∏
`=s

xi,`

)
+ 1−

∑
i∈N

φqi (S)

]
Jq+1(x)

}
+

[
1−

∑
[s,f ]∈F

λq[s,f ]

]
Jq+1(x),

with the boundary condition that JQ+1 = 0. In this case, letting e ∈ {0,1}n×T be the vector of all

ones, the optimal total expected revenue is given by J1(e).

In the dynamic program above, if we offer the assortment S of resources to a customer with

a resource request over the interval [s, f ], then she chooses resource i with probability φqi (S). If
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`=s xi,` = 1, so that resource i is available to accommodate a booking over the interval [s, f ],

then we generate a revenue of ri,[s,f ] and resource i becomes unavailable over days {s, . . . , f}. With

probability
∑

i∈N φ
q
i (S) (1−

∏f

`=s xi,`), the customer chooses a resource that is not available on

some day over the interval [s, f ]. With probability 1−
∑

i∈N φ
q
i (S), the customer does not choose

any of the resources in the offered assortment. In either case, we do not consume capacity of any

of the resources. Lastly, with probability 1−
∑

[s,f ]∈F λ
q
[s,f ], we do not have a booking request, in

which case, we do not consume capacity of any of the resources either. In our dynamic program,

we assume that if we have a customer making a booking request for the interval [s, f ], then we

may offer a resource that is not available on one of the days {s, . . . , f}. If the customer chooses

this resource, then she leaves without making a booking. This assumption is innocuous because,

as we argue shortly, there exists an optimal policy that never offers an unavailable resource for a

booking request. The dynamic program above can be unwieldy, but arranging the terms on the

right side, we can write this dynamic program equivalently as

Jq(x) =
∑

[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)

(
f∏
`=s

xi,`

)[
ri,[s,f ] + Jq+1(x− ei,[s,f ])− Jq+1(x)

]}
+ Jq+1(x). (1)

Given that the state of the system at time period q is x, we interpret Jq+1(x)−Jq+1(x−ei,[s,f ]) as

the opportunity cost of the capacities used by booking resource i for days {s, . . . , f}.

Using the dynamic program above, we can argue that there exists an optimal policy that

never offers an unavailable resource for a booking request. In particular, given that the state of

the system at time period q is x and we have a booking request for the interval [s, f ], we can

compute the optimal assortment of resources to offer by solving the maximization problem on the

right side of (1). This maximization problem is of the form maxS⊆N
∑

i∈N φ
q
i (S) pqi,[s,f ](x), where

pqi,[s,f ](x) = (
∏f

`=s xi,`) [ri,[s,f ] +J
q+1(x−ei,[s,f ])−Jq+1(x)]. In Appendix A, we consider the problem

maxS⊆N
∑

i∈N φ
q
i (S)pi and show that there exists an optimal solution S∗ to this problem that

satisfies S∗ ⊆ {i ∈ N : pi > 0}. In other words, if p∗i ≤ 0, then S∗ does not offer resource i. This

result follows from the assumption that the choice probabilities satisfy φqi (S ∪{j})≤ φ
q
i (S) for all

i ∈ S and j 6∈ S. If resource i is not available for some day over the interval [s, f ], then we have∏f

`=s xi,` = 0, which implies that pqi,[s,f ](x) = 0. Therefore, there exists an optimal solution to the

maximization problem on the right side of (1) that does not offer resource i when this resource is

unavailable for a booking request over the interval [s, f ].

The state variable x in (1) has O(2nT ) possible values, making an optimal policy difficult to

compute. Thus, we focus on developing policies with performance guarantees.
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3. Efficient Rollout of Static Policies

In this section, we show that we can compute the value functions of a static policy efficiently, which

ultimately allows us to perform rollout on the static policy. A static policy µ is a collection of offer

probabilities {µq[s,f ](S) : S ⊆N , [s, f ]∈F , q ∈Q} such that if we have a booking request for interval

[s, f ] at time period q, then the policy offers the assortment S of resources with probability µq[s,f ](S).

Naturally, we require
∑

S⊆N µ
q
[s,f ](S) = 1. Because the offer probabilities do not depend on the state

of the system, a static policy may offer an unavailable resource. If a customer chooses an unavailable

resource, then she leaves without making a booking. Nevertheless, we will ensure that, just like the

optimal policy, the rollout policy based on a static policy never offers an unavailable resource. To

compute the value functions of the static policy µ, we define ψqµ,i,[s,f ] =
∑

S⊆N µ
q
[s,f ](S) φqi (S), which

is the probability that a customer arriving at time period q with a booking request for interval [s, f ]

chooses resource i under the static policy µ. Let Jqµ(x) be the total expected revenue obtained by

the static policy µ over time periods {q, . . . ,Q} given that the state of the system at time period

q is x. We compute the value functions {Jqµ : q ∈Q} through the dynamic program

Jqµ(x) =
∑

[s,f ]∈F

λq[s,f ]

{∑
i∈N

ψqµ,i,[s,f ]

(
f∏
`=s

xi,`

)[
ri,[s,f ] + Jq+1

µ (x− ei,[s,f ])− Jq+1
µ (x)

]}
+ Jq+1

µ (x), (2)

with the boundary condition that JQ+1
µ = 0. In this case, the total expected revenue obtained by

the static policy µ is given by J1
µ(e).

The dynamic program in (2) is similar to that in (1), but when computing the value functions of

a static policy, the assortment that we offer is determined by the static policy, rather than being a

decision variable. In particular, under the static policy µ, if we have a booking request for interval

[s, f ] at time period q, then the customer chooses resource i with probability ψqµ,i,[s,f ]. The state

variable x in (2) has O(2nT ) possible values, just like the state variable in (1), but two properties of

static policies allow us to compute the value functions of a static policy efficiently. First, under the

static policy µ, given that we have a booking request for interval [s, f ] at time period q, resource

i receives a booking with fixed probability ψqµ,i,[s,f ]. Therefore, intuitively speaking, each resource

faces an exogenous stream of booking requests, allowing us to focus on each resource separately.

Second, if resource i is available on days {a, . . . , b− 1} and days {b+ 1, . . . , c}, but not on day b,

then this resource can never accommodate a booking request for an interval that starts before day

b− 1 and ends after day b+ 1. Thus, we can separately compute the total expected revenue from

each uninterrupted interval of available days for a resource.

Motivated by the discussion above, to compute the value functions of the static policy µ, we

let V q
µ,i(a, b) be the total expected revenue collected by the static policy µ from resource i over
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Figure 1 Maximal available intervals for xi (top) and maximal intervals for xi − e[8,9] (bottom).

time periods {q, . . . ,Q} given that resource i is available for all the days in the interval [a, b]. We

compute the value functions {V q
µ,i : q ∈Q} by solving the dynamic program

V q
µ,i(a, b) =

∑
[s,f ]⊆[a,b]

λq[s,f ]

{
ψqµ,i,[s,f ]

[
ri,[s,f ] +V q+1

µ,i (a, s− 1) +V q+1
µ,i (f + 1, b)−V q+1

µ,i (a, b)
]}

+V q+1
µ,i (a, b),. (3)

with the boundary condition that V Q+1
µ,i = 0. Given that resource i is available on all days in

the interval [a, b], to compute the total expected revenue collected by the static policy µ from

this resource over time periods {q, . . . ,Q}, we consider the booking requests only for the intervals

within the interval [a, b]. With probability λq[s,f ], the customer arriving at time period q makes a

booking request for interval [s, f ]. Under the static policy µ, this customer chooses resource i with

probability ψqµ,i,[s,f ], in which case we generate a revenue of ri,[s,f ]. Furthermore, resource i becomes

no longer available on all days in the interval [a, b], but it is still available for the intervals [a, s−1]

and [f + 1, b]. Given that resource i is available on all days in the interval [a, b] at time period q,

we can interpret V q+1
µ,i (a, b)− V q+1

µ,i (a, s− 1)− V q+1
µ,i (f + 1, b) in (3) as the opportunity cost of the

capacities used by booking resource i for the days {s, . . . , f}. If s= a, then we set V q+1
µ,i (a, s−1) = 0,

whereas if f = b, then we set V q+1
µ,i (f + 1, b) = 0 in (3).

The state variable (a, b) in (3) has O(T 2) possible values. Therefore, we can solve the dynamic

program in (3) efficiently. Our main result in this section shows that we can compute the value

functions {Jqµ : q ∈ Q} in (2) by using the value functions in {V q
µ,i : q ∈ Q} in (3). In particular,

we use xi = (xi,1, . . . , xi,T ) ∈ {0,1}T to denote the state of resource i, where xi,` = 1 if and only if

resource i is available for use on day `. We refer to the interval [a, b] as a maximal available interval

with respect to xi if and only if resource i is available on all days in the interval [a, b], but not

available on days a− 1 and b+ 1; that is,
∏b

`=axi,` = 1, xi,a−1 = 0 and xi,b+1 = 0. Let I(xi) be the

collection of maximal available intervals with respect to xi. In the top portion of Figure 1, we show

the collection I(xi) for a specific value of xi with T = 14. Each circle in the top portion corresponds

to a day with xi,` = 1 for the black circles and xi,` = 0 for the white circles. The collection of

maximal available intervals is I(xi) = {[2,4], [6,10], [13,14]}.

We use two properties of maximal available intervals. First, we have
∏f

`=s xi,` = 1 if and only if

there exists a maximal available interval [a, b] ∈ I(xi) such that [s, f ] ⊆ [a, b]. In the top portion
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of Figure 1, for example, we have
∏9

`=7 xi,` = 1, so there must exist a maximal available interval

[a, b]∈ I(xi) such that [7,9] ⊆ [a, b]. This maximal available interval is [6,10]. Second, using

e[s,f ] ∈ {0,1}T to denote the vector with ones only in the components corresponding to the days

{s, . . . , f}, if [a, b] is the maximal available interval that includes the interval [s, f ], then we have

the identity I(xi− e[s,f ]) =
(
I(xi) \ [a, b]

)
∪
{

[a, s− 1], [f + 1, b]
}

. In this identity, if s= a, then we

omit the interval [a, s − 1]. Similarly, if f = b, then we omit the interval [f + 1, b]. In the top

portion of Figure 1, for example, we have I(xi) = {[2,4], [6,10], [13,14]} for the specific value of xi.

Considering the interval [8,9], the maximal available interval that includes this interval is [6,10].

In the bottom portion of Figure 1, we have I(xi− e[8,9]) = {[2,4], [6,7], [10,10], [13,14]}, which is

indeed equal to (I(xi) \ [6,10])∪{[6,7], [10,10]}.

In the next theorem, we use these properties to show that we can compute the value functions

{Jqµ : q ∈Q} in (2) by using the value functions in {V q
µ,i : q ∈Q} in (3)

Theorem 3.1 (Efficient Rollout) If the value functions {Jqµ : q ∈Q} are computed through (2)

and the value functions {V q
µ,i : q ∈Q} are computed through (3), then we have

Jqµ(x) =
∑
i∈N

∑
[a,b]∈I(xi)

V q
µ,i(a, b).

Proof: We show the result by using induction over the time periods. At time period Q+ 1, we have

JQ+1
µ = 0 = V Q+1

µ,i , so the result holds at time period Q+ 1. Assuming that the result holds at time

period q + 1, we show that the result holds at time period q as well. By the first property just

before the theorem, we have
∏f

`=s xi,` = 1 if and only if there exists a maximal available interval

[a, b] ∈ I(xi) such that [s, f ] ⊆ [a, b]. Thus, using 1l{·} to denote the indicator function, we have∏f

`=s xi,` = 1 if and only if
∑

[a,b]∈I(xi)
1l{[s,f ]⊆[a,b]} = 1. Furthermore, by the second property just

before the theorem, if [a, b] is the maximal available interval that includes the interval [s, f ], then

we have I(xi−e[s,f ]) = (I(xi) \ [a, b])∪{[a, s− 1], [f + 1, b]}. In this case, considering the maximal

available interval [a, b]∈ I(xi), for each interval [s, f ] ⊆ [a, b], using the induction hypothesis, we

obtain the chain of equalities

Jq+1
µ (x)− Jq+1

µ (x− ei,[s,f ]) =
∑

[c,d]∈I(xi)

V q+1
µ,i (c, d) −

∑
[c,d]∈I(xi−e[s,f ])

V q+1
µ,i (c, d)

=
∑

[c,d]∈I(xi)

V q+1
µ,i (c, d) −

( ∑
[c,d]∈I(xi)

V q+1
µ,i (c, d)−V q+1

µ,i (a, b) +V q+1
µ,i (a, s− 1) +V q+1

µ,i (f + 1, b)

)
= V q+1

µ,i (a, b)−V q+1
µ,i (a, s− 1)−V q+1

µ,i (f + 1, b), (4)

where the first equality holds because we have Jq+1
µ (x) =

∑
i∈N

∑
[c,d]∈I(xi)

V q+1
µ,i (c, d) by the

induction hypothesis, whereas the second equality holds because, for all [a, b] ∈ I(xi) and
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[s, f ]⊆ [a, b], we have the identity I(xi−e[s,f ]) = (I(xi) \ [a, b])∪{[a, s− 1], [f + 1, b]}. Thus, using

the fact that
∏f

`=s xi,` = 1 if and only if
∑

[a,b]∈I(xi)
1l{[s,f ]⊆[a,b]} = 1, by (2), we obtain

Jqµ(x) =
∑

[s,f ]∈F

λq[s,f ]

{∑
i∈N

ψqµ,i,[s,f ]

( ∑
[a,b]∈I(xi)

1l{[s,f ]⊆[a,b]}

)[
ri,[s,f ] + Jq+1

µ (x− ei,[s,f ])− Jq+1
µ (x)

]}
+Jq+1

µ (x)

(a)
=
∑
i∈N

∑
[a,b]∈I(xi)

∑
[s,f ]⊆[a,b]

λq[s,f ]

{∑
i∈N

ψqµ,i,[s,f ]

[
ri,[s,f ] + Jq+1

µ (x− ei,[s,f ])− Jq+1
µ (x)

]}
+Jq+1

µ (x)

(b)
=
∑
i∈N

∑
[a,b]∈I(xi)

∑
[s,f ]⊆[a,b]

λq[s,f ]

{∑
i∈N

ψqµ,i,[s,f ]

[
ri,[s,f ]−V q+1

µ,i (a, b) +V q+1
µ,i (a, s− 1) +V q+1

µ,i (f + 1, b)
]}

+
∑
i∈N

∑
[a,b]∈I(xi)

V q+1
µ,i (a, b)

(c)
=
∑
i∈N

∑
[a,b]∈I(xi)

V q
µ,i(a, b),

where (a) follows by reordering the three sums on the left side of (a), (b) holds because (4) holds

for all [a, b]∈ I(xi) and [s, f ]⊆ [a, b], along with the induction hypothesis, and (c) holds by (3).

The rollout policy from the static policy µ makes its decisions by replacing {Jq : q ∈Q} in (1)

with {Jqµ : q ∈Q}. We discuss the rollout policy from the static policy µ.

Rollout Policy Based on a Static Policy:

Given that the state of the system at time period q is x and we have a booking request for

interval [s, f ], the rollout policy from the static policy µ offers the assortment of resources

SRollout,q
µ,[s,f ] (x) = arg max

S⊆N

{∑
i∈N

φqi (S)

(
f∏
`=s

xi,`

)[
ri,[s,f ] + Jq+1

µ (x− ei,[s,f ])− Jq+1
µ (x)

]}
. (5)

The problem above is identical to the maximization problem on the right side of (1) after replacing

{Jq : q ∈Q} with {Jqµ : q ∈Q}. By the same argument that we give just after (1), there exists an

optimal solution SRollout,q
µ,[s,f ] (x) to the problem above such that i 6∈ SRollout,q

µ,[s,f ] (x) for each i ∈ N with∏f

`=s xi,` = 0. Thus, the rollout policy never offers an unavailable resource for a booking request. It

is a standard result that the total expected revenue obtained by the rollout policy from the static

policy µ is at least as large as the total expected revenue obtained by the static policy µ, so the

rollout policy from the static policy µ is guaranteed to be at least as good as the static policy µ;

see Section 6.4.1 in Bertsekas (2017). Thus, if we have a performance guarantee for a static policy,

then the same performance guarantee holds for the rollout policy based on this static policy as

well. Our computational experiments indicate that the rollout policy based on the static policy µ

can perform significantly better than the static policy µ itself.

Next, we give static policies with performance guarantees. By the discussion above, these

performance guarantees hold for the corresponding rollout policies.
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4. Resource Based Static Policy with Linear Approximations

We develop a static policy based on linear approximations of the value functions. In particular, we

use linear value function approximations {ĴqL : q ∈Q} of the form

ĴqL (x) =
∑
i∈N

∑
`∈T

ηqi,` xi,`.

In the approximation above, we interpret the coefficient ηqi,` as the opportunity cost of the capacity

of resource i on day ` given that we are at time period q.

We use the following algorithm to compute the coefficients {ηqi,` : i ∈N , ` ∈ T , q ∈Q}. For all

i∈N and t∈ T , we set ηQ+1
i,` = 0. For each q=Q,Q− 1, . . . ,1, we execute the two steps.

• Construct Ideal Assortments: For each [s, f ] ∈ F , compute the ideal assortment to offer

to a customer with a booking request for interval [s, f ] as

Aq[s,f ] = arg max
S⊆N

∑
i∈N

φqi (S)
[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]
. (6)

• Compute Opportunity Costs: For all i ∈ N and ` ∈ T , compute the opportunity cost of

the capacity of resource i on day ` as

ηqi,` =
∑

[s,f ]∈F

λq[s,f ] φ
q
i (A

q
[s,f ])

1l{`∈[s,f ]}
f − s+ 1

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]
+ ηq+1

i,` . (7)

This algorithm fully specifies the parameters {ηqi,` : i ∈N , ` ∈ T , q ∈Q}, which in turn specify

our value function approximations. We give some intuition for the algorithm above.

In (6),
∑f

`=s η
q+1
i,` is the total opportunity cost of the capacities consumed by booking resource i

for interval [s, f ] at time period q. Thus, ri,[s,f ] −
∑f

`=s η
q+1
i,` gives the revenue from booking

resource i for interval [s, f ], net of the opportunity cost of the capacities consumed. In this case,

Aq[s,f ] is the assortment that maximizes the net expected revenue from a customer making a booking

request for interval [s, f ] at time period q. In (7), we compute the opportunity costs of the capacity

of resource i on day ` by using a recursion similar to that in (3). With probability λq[s,f ], we have

a customer arriving at time period q with a booking request for interval [s, f ]. If we offer the ideal

assortment Aq[s,f ], then this customer chooses resource i with probability φqi (A
q
[s,f ]). At time period

q, if we book resource i over interval [s, f ], then we obtain a net revenue of ri,[s,f ] −
∑f

h=s η
q+1
i,h , but

by doing so, we consume the capacity of resource i on each day `∈ {s, . . . , f}. Noting the fraction
1l{`∈[s,f ]}
f−s+1

, we spread the net revenue evenly over each day `∈ {s, . . . , f}.

The discussion in the previous paragraph provides only rough intuition for the algorithm we

use to construct our linear value function approximations. Nevertheless, we will be able to use
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this algorithm to develop a static policy with a performance guarantee that we can precisely

quantify. In particular, noting the ideal assortments {Aq[s,f ] : [s, f ]∈F , q ∈Q} computed through

(6), we consider a static policy that always offers the assortment Aq[s,f ] of resources to a customer

making a booking request for interval [s, f ] at time period q. We refer to this static policy as the

resource based static policy because our linear value function approximations have one component

for each resource and day combination. In our problem context, the total number of resource and

day combinations corresponds to the amount of resource capacity we have available. In the next

theorem, we give a performance guarantee for the resource based static policy. In this theorem and

throughout the rest of the paper, we let Dmax = max[s,f ]∈F {f − s+ 1}, which corresponds to the

maximum use duration for any possible booking request.

Theorem 4.1 (Performance of Resource Based Static Policy) The resource based static

policy obtains at least 1/(2Dmax) fraction of the optimal total expected revenue.

We give a proof for the theorem above in Section 5. The proof explicitly uses the fact that each

resource is unique so that we have one unit of capacity for each resource on each day. When the

resource capacities are not all one, it is unclear if we can use linear value function approximations

to develop policies with performance guarantees. Being a static policy that offers each assortment

of resources with fixed probabilities, the resource based static policy may end up offering an

unavailable resource for a booking request, so it may not be appropriate to use this policy in

practice. However, as discussed at the end of Section 3, the rollout policy from the resource based

static policy never offers an unavailable resource. Furthermore, the rollout policy from the resource

based static policy is guaranteed to perform at least as well as the resource based static policy, so

the rollout policy inherits the performance guarantee of 1/(2Dmax).

The coefficients {ηqi,` : i∈N , `∈ T , q ∈Q} capture the opportunity costs of the capacities of

different resources on different days, providing a natural interpretation of our linear value function

approximations. Ma et al. (2020) use nonlinear value function approximations to give a policy

with a performance guarantee of 1/(1 +Dmax), which is stronger than the performance guarantee

of 1/(2Dmax) in Theorem 4.1. In our computational experiments, the practical performance of

our linear value function approximations turns out to be comparable to that of nonlinear value

function approximations. The competitive practical performance of our linear value function

approximations, coupled with their interpretability, can make them particularly appealing. In

Section 6, we will use nonlinear value function approximations to give another static policy that

improves the performance guarantee in Ma et al. (2020) even further.

In the next section, we give a proof for Theorem 4.1.
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5. Performance Guarantee for Resource Based Static Policy

The proof of Theorem 4.1 is based on giving an upper bound on the performance of the optimal

policy and a lower bound on the performance of the resource based static policy.

5.1 Preliminary Lemmas

We will need three lemmas. Resource i is available for booking over interval [s, f ] if and only if∏f

`=s xi,` = 1. In the next lemma, we give a lower bound on
∏f

`=s xi,` that is linear in x.

Lemma 5.1 (Linear Proxy for Resource Availability Condition) For each x ∈ {0,1}n×T ,

i∈N , and [s, f ]∈F , we have
f∏
`=s

xi,` ≥
(∑f

`=s xi,`
)
− (f − s)

1 + f − s
.

Proof: First, assume that
∏f

`=s xi,` = 1. Thus, we have xi,` = 1 for all ` = s, . . . , f , so that∑f

`=s xi,` = f − s+ 1. In this case, the left side of the inequality in the lemma is one, whereas the

right side is 1
1+f−s . Because 1≥ 1

1+f−s , the inequality holds whenever
∏f

`=s xi,` = 1. Second, assume

that
∏f

`=s xi,` = 0. Thus, we have xi,` = 0 for some `= s, . . . , f , so that
∑f

`=s xi,` ≤ f − s. In this

case, noting that
∑f

`=s xi,`− (f−s)≤ 0, the left side of the inequality in the lemma is zero, whereas

the right side is at most zero, so the inequality holds whenever
∏f

`=s xi,` = 0.

The above lemma requires every resource to be unique so that x ∈ {0,1}n×T . The next lemma

shows that the contribution of each resource to the objective value in (6) is nonnegative.

Lemma 5.2 (Nonnegative Contribution of Each Resource) For each i∈N , [s, f ]∈F , and

q ∈Q, we have φqi (A
q
[s,f ])

[
ri,[s,f ]−

∑f

h=s η
q+1
i,h

]
≥ 0.

Proof: For notational brevity, fixing [s, f ] ∈ F and q ∈ Q , let pi = ri,[s,f ]−
∑f

h=s η
q+1
i,h for each

i ∈ N . Suppose on the contrary that we have φqk(A
q
[s,f ]) pk < 0 for some k ∈ N . Then, we have

pk < 0 and φqk(A
q
[s,f ])> 0. Noting φqk(A

q
[s,f ])> 0, since the booking probability of a resource that is

not offered is zero, it must be the case that k ∈ Aq[s,f ]. We partition the assortment of resources

Aq[s,f ] into A+ = {j ∈ Aq[s,f ] : pj ≥ 0} and A− = {j ∈ Aq[s,f ] : pj < 0}. Using the fact that we have

k ∈A− and φqk(A
q
[s,f ]) pk < 0, we have the chain of inequalities∑

i∈N

φqi (A
q
[s,f ]) pi =

∑
i∈A+

φqi (A
q
[s,f ]) pi +

∑
i∈A−

φqi (A
q
[s,f ]) pi <

∑
i∈A+

φqi (A
q
[s,f ]) pi

(a)

≤
∑
i∈A+

φqi (A
+) pi,

where (a) uses the assumption that φqi (S ∪ {j}) ≤ φ
q
i (S) for all i ∈ S and j 6∈ S. The chain of

inequalities above contradicts the fact that Aq[s,f ] is an optimal solution to problem (6).

In the next lemma, we give an inequality that will become useful to lower bound the total

expected revenue obtained by the resource based static policy.



16 Rusmevichientong, Sumida, Topaloglu, and Bai: Revenue Management with Heterogenous Resources

Lemma 5.3 (Upper Bound on Net Expected Revenue) Letting {Aq[s,f ] : [s, f ] ∈ F , q ∈ Q}
and {ηqi,` : i∈N , `∈ T , q ∈Q} be computed through (6) and (7), we have

∑
[s,f ]∈F

λq[s,f ]
∑
i∈N

φqi
(
Aq[s,f ]

) f − s
f − s+ 1

[
ri,[s,f ]−

f∑
h=s

ηq+1
i,h

]
≤ Dmax− 1

Dmax

(ĴqL (e)− Ĵq+1
L (e)).

Proof: Because x/(x+ 1) is increasing in x ∈ R+ and f − s+ 1 ≤ Dmax, we have f−s
f−s+1

≤ Dmax−1
Dmax

.

Noting that φqi (A
q
[s,f ])

[
ri,[s,f ]−

∑f

h=s η
q+1
i,h

]
≥ 0 for all i∈N and [s, f ]∈F by Lemma 5.2, we get

∑
[s,f ]∈F

λq[s,f ]
∑
i∈N

φqi
(
Aq[s,f ]

) f − s
f − s+ 1

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]

≤ Dmax− 1

Dmax

∑
i∈N

∑
[s,f ]∈F

λq[s,f ] φ
q
i (A

q
[s,f ])

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]
(a)
=

Dmax− 1

Dmax

∑
i∈N

∑
`∈T

∑
[s,f ]∈F

λq[s,f ] φ
q
i (A

q
[s,f ])

1l{`∈[s,f ]}
f − s+ 1

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]
(b)
=

Dmax− 1

Dmax

∑
i∈N

∑
`∈T

(ηqi,`− η
q+1
i,` )

(c)
=

Dmax− 1

Dmax

(ĴqL (e)− Ĵq+1
L (e)),

where (a) holds by the identity
∑

`∈T
1l{`∈[s,f ]}
f−s+1

= 1, (b) follows by (7), and (c) follows because we

have ĴqL (x) =
∑

i∈N
∑

`∈T η
q
i,` xi,`.

We focus on the first part of the proof of Theorem 4.1, which constructs an upper bound on the

optimal total expected revenue.

5.2 Upper Bound on the Optimal Total Expected Revenue

Letting the value functions {Jq : q ∈Q} be computed through (1), it is a standard result that if,

for all x∈ {0,1}n×T and q ∈Q, the value function approximations {J̃q : q ∈Q} satisfy

J̃q(x) ≥
∑

[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)

(
f∏
`=s

xi,`

)[
ri,[s,f ] + J̃q+1(x− ei,[s,f ])− J̃q+1(x)

]}
+ J̃q+1(x), (8)

then we have J̃q(x) ≥ Jq(x) for all x ∈ {0,1}n×T and q ∈Q; see Section 5.3.3 in Bertsekas

(2017). This result is known as the monotonicity of the dynamic programming operator. Note that

the inequality above is the version of (1) in the greater than or equal to sense. Thus, if the value

function approximations {J̃q : q ∈ Q} satisfy (1) in the greater than or equal to sense, then they

form an upper bound on the optimal value functions {Jq : q ∈Q} that satisfy (1) in the equality

sense. In the next proposition, we use this result to show that 2Ĵ1
L (e) provides an upper bound on

the optimal total expected revenue. Thus, we can use our linear value function approximations to

come up with an upper bound on the optimal total expected revenue.
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Proposition 5.4 (Upper Bound on Optimal Performance) Noting that the optimal total

expected revenue is J1(e), we have J1(e)≤ 2 Ĵ1
L (e).

Proof: Using our linear value function approximations {ĴqL : q ∈Q} computed through (6) and (7),

let J̃q(x) = ĴqL (e) + ĴqL (x). We show that {J̃q : q ∈Q} satisfies (8). In particular, we have∑
[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)

(
f∏
`=s

xi,`

)[
ri,[s,f ] + J̃q+1(x)− J̃q+1(x− ei,[s,f ])

]}

=
∑

[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)

(
f∏
`=s

xi,`

)[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]}
(a)

≤
∑

[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)
[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]}
(b)
=

∑
[s,f ]∈F

λq[s,f ]
∑
i∈N

φqi (A
q
[s,f ])

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]
(c)
=
∑
i∈N

∑
[s,f ]∈F

λq[s,f ] φ
q
i (A

q
[s,f ])

∑
`∈T 1l{`∈[s,f ]}

f − s+ 1

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]

=
∑
i∈N

∑
`∈T

∑
[s,f ]∈F

λq[s,f ] φ
q
i (A

q
[s,f ])

1l{`∈[s,f ]}
f − s+ 1

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]
(d)
=
∑
i∈N

∑
`∈T

(
ηqi,`− η

q+1
i,`

) (e)

≤
∑
i∈N

∑
`∈T

(
ηqi,`− η

q+1
i,`

)
(1 +xi,`) = J̃q(x)− J̃q+1(x).

The inequality (a) holds because Lemma A.1 in Appendix A implies that if ri,[s,f ]−
∑f

h=s η
q+1
i,h ≤ 0,

then there exists an optimal solution to the problem on the left side of (a) such that resource i is not

offered. So, if ri,[s,f ]−
∑f

h=s η
q+1
i,h ≤ 0, then we can drop resource i from consideration in this problem,

but if ri,[s,f ]−
∑f

h=s η
q+1
i,h > 0, then we have

(∏f

`=s xi,`
)

[ri,[s,f ] −
∑f

h=s η
q+1
i,h ] ≤ ri,[s,f ] −

∑f

h=s η
q+1
i,h .

Moreover, (b) follows from the definition of Aq[s,f ] in (6), (c) uses the fact that
∑

`∈T 1l{`∈[s,f ]} =

f − s + 1, and (d) follows from the definition of ηqi,` in (7). Lastly, (e) holds because we have

φqi (A
q
[s,f ])

[
ri,[s,f ]−

∑f

h=s η
q+1
i,h

]
≥ 0 by Lemma 5.2, which implies that ηqi,` ≥ η

q+1
i,` by (7).

The chain of inequalities above shows that {J̃q : q ∈Q} satisfies (8). Thus, we have J̃q(x)≥ Jq(x)

for all x∈ {0,1}n×T and q ∈Q, so J1(e)≤ J̃1(e) = 2 Ĵ1
L (e).

We focus on the second part of the proof of Theorem 4.1, which constructs a lower bound on

the total expected revenue of the resource based static policy.

5.3 Lower Bound on the Performance of the Static Policy

We give a dynamic program to compute the total expected revenue of the resource based static

policy. Let U q
L (x) be the total expected revenue obtained by the resource based static policy over
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time periods {q, . . . ,Q} given that the state of the system at time period q is x. We can compute

the value functions {U q
L : q ∈Q} through the dynamic program

U q
L (x) =

∑
[s,f ]∈F

λq[s,f ]

{∑
i∈N

φqi (A
q
[s,f ])

(
f∏
`=s

xi,`

)[
ri,[s,f ] +U q+1

L (x− ei,[s,f ])−U q+1
L (x)

]}
+U q+1

L (x), (9)

with the boundary condition that UQ+1
L = 0. The dynamic program above is similar to that in (2),

but under the resource based static policy, a customer making a booking request for interval [s, f ]

at time period q chooses resource i with probability φqi (A
q
[s,f ]). In the next proposition, we use

the linear value function approximations {ĴqL : q ∈ Q} to give a lower bound on the performance

of the resource based static policy. Lemma 5.1 plays an important role in the proof of the next

proposition. Thus, the lower bound on the performance of the resource based static policy explicitly

uses the fact that the resources are unique so that each has a capacity of one.

Proposition 5.5 (Lower Bound on Static Policy Performance) Letting the value functions

{U q
L : q ∈Q} be computed through (9), for each x∈ {0,1}n×T and q ∈Q, we have

U q
L (x) ≥ ĴqL (x) − Dmax− 1

Dmax

ĴqL (e).

Proof: We give an inequality that will be useful later in the proof. Because
∏f

`=s xi,` ≥
∑f

`=s
xi,`−(f−s)

1+f−s

by Lemma 5.1 and φqi (A
q
[s,f ])

[
ri,[s,f ]−

∑f

h=s η
q+1
i,h

]
≥ 0 by Lemma 5.2, we have

∑
[s,f ]∈F

λq[s,f ]
∑
i∈N

φqi
(
Aq[s,f ]

)( f∏
`=s

xi,`

)[
ri,[s,f ] + Ĵq+1

L (x− ei,[s,f ])− Ĵq+1
L (x)

]

=
∑

[s,f ]∈F

λq[s,f ]
∑
i∈N

φqi
(
Aq[s,f ]

)( f∏
`=s

xi,`

)[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]

≥
∑

[s,f ]∈F

λq[s,f ]
∑
i∈N

φqi
(
Aq[s,f ]

) ∑
`∈T 1l{`∈[s,f ]} xi,`− (f − s)

f − s+ 1

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]
(a)

≥
∑
i∈N

∑
`∈T

xi,`

{ ∑
[s,f ]∈F

λq[s,f ] φ
q
i (A

q
[s,f ])

1l{`∈[s,f ]}
f − s+ 1

[
ri,[s,f ] −

f∑
h=s

ηq+1
i,h

]}
− Dmax− 1

Dmax

(ĴqL (e)− Ĵq+1
L (e))

(b)
=
∑
i∈N

∑
`∈T

xi,` (ηqi,`− η
q+1
i,` )− Dmax− 1

Dmax

(ĴqL (e)− Ĵq+1
L (e))

(c)
= ĴqL (x)− Ĵq+1

L (x)− Dmax− 1

Dmax

(ĴqL (e)− Ĵq+1
L (e)),

where (a) follows by arranging the terms on the left side of (a) and using Lemma 5.3, (b) uses (7),

and (c) uses the fact that ĴqL (x) =
∑

i∈N
∑

`∈T ηi,` xi,`.

In the rest of the proof, we show the inequality in the proposition by using induction over the

time periods. At time period Q+1, because we have UQ+1
L = 0 = ĴQ+1

L , the inequality holds at time
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period Q+ 1. Assuming that the inequality holds at time period q+ 1, we show that the inequality

holds at time period q as well. Arranging the terms, the coefficient of U q+1
L (x) on the right side of (9)

is 1−
∑

[s,f ]∈F λ
q
[s,f ]

∑
i∈N φ

q
i (A

q
[s,f ])

∏f

`=s xi,`. Because
∑

[s,f ]∈F λ
q
[s,f ] ≤ 1 and

∑
i∈N φ

q
i (A

q
[s,f ])≤ 1,

this coefficient is nonnegative. Letting αq = Dmax−1
Dmax

ĴqL (e) for notational brevity. By the induction

assumption, we have U q+1
L (x)≥ Ĵq+1

L (x)−αq+1 for all x∈ {0,1}n×T . In this case, replacing U q+1
L (x)

and U q+1
L (x−ei,[s,f ]) on the right side of (9) with their corresponding lower bounds Ĵq+1

L (x)−αq+1

and Ĵq+1
L (x− ei,[s,f ])−αq+1, respectively, the right side of (9) gets smaller, so we get

U q
L (x)≥

∑
[s,f ]∈F

λq[s,f ]

{∑
i∈N

φqi (A
q
[s,f ])

(
f∏
`=s

xi,`

)[
ri,[s,f ] + Ĵq+1

L (x− ei,[s,f ])− Ĵq+1
L (x)

]}
+ Ĵq+1

L (x)−αq+1

(d)

≥ ĴqL (x)− Ĵq+1
L (x) − (αq −αq+1) + Ĵq+1

L (x)−αq+1 = ĴqL (x)−αq,

where (d) uses the chain of inequalities earlier in the proof, along with Dmax−1
Dmax

(ĴqL (e)− Ĵq+1
L (e)) =

αq −αq+1. Thus, the inequality in the proposition holds at time period q.

Finally, we can use Propositions 5.4 and 5.5 to give a proof for Theorem 4.1.

Proof of Theorem 4.1:

By Proposition 5.4, we have Ĵ1
L (e) ≥ 1

2
J1(e). Using Proposition 5.5 with x = e and q = 1, we

have U 1
L (e)≥ Ĵ1

L (e)− Dmax−1
Dmax

Ĵ1
L (e) = 1

Dmax
Ĵ1
L (e), so we get U 1

L (e)≥ 1
Dmax

Ĵ1
L (e)≥ 1

2Dmax
J1(e).

When we compute the ideal assortments {Aq[s,f ] : [s, f ]∈F , q ∈Q} through (6) and (7), we need

to solve a problem of the form maxS⊆N
∑

i∈N φ
q
i (S)pi for fixed {pi : i∈N}. Viewing pi as the net

revenue contribution from booking resource i, this problem finds an assortment of resources to offer

to a customer to maximize the expected net revenue contribution. Such an assortment optimization

problem is of combinatorial nature, but there are a variety of choice models characterizing the

choice probabilities {φqi (S) : i∈ S, S ⊆N , q ∈Q}, under which we can give efficient algorithms to

solve the assortment optimization problem. For example, there are polynomial time algorithms

to solve this problem under the multinomial logit, mixture of independent and multinomial logit,

nested logit, preference list, and Markov chain choice models; see Talluri and van Ryzin (2004),

Davis et al. (2014), Blanchet et al. (2016), Aouad et al. (2020), and Cao et al. (2020). Using

Assort to denote the number of operations needed to solve the assortment optimization problem

and noting that O (|F|) = O(Dmax T ), we can compute the ideal assortments through (6)-(7) in

O (AssortDmax T Q + nD2
max T Q) operations, because in (7), the number of intervals containing

` ∈ T is O(D2
max). Once we compute the ideal assortments, we can compute the value functions

{Jqµ : q ∈Q} of the rollout policy through (3) in O (nDmax T
3Q) operations.

Next, we give a static policy using nonlinear value function approximations.
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6. Itinerary Based Static Policy with Polynomial Approximations

We develop a static policy based on polynomial approximations of the value functions. In particular,

we use polynomial value function approximations {ĴqP : q ∈Q} of the form

ĴqP(x) =
∑
i∈N

∑
[s,f ]∈F

γqi,[s,f ]

f∏
`=s

xi,`.

Here, we have one component for each resource and interval pair. The component for resource i

and interval [s, f ] is a function of the availability of resource i over interval [s, f ]. To choose the

coefficients {γqi,[s,f ] : i∈N , [s, f ]∈F , q ∈Q}, we will use a succinct representation of whether two

intervals overlap. We refer to the subset of days C[s,f ] ⊆T as the intersection preserving subset for

the interval [s, f ] if it satisfies the following two properties. (i) We have C[s,f ] ⊆ [s, f ]. (ii) For all

[a, b] ∈ F , if [s, f ] ∩ [a, b] 6= ∅, then we have C[s,f ] ∩ [a, b] 6= ∅. By the first property, the subset

C[s,f ] includes only days in the interval [s, f ]. By the second property, if the interval [s, f ] overlaps

with the interval [a, b], then the subset of days C[s,f ] preserves this relationship and overlaps with

the interval [a, b] as well. A trivial way to construct the intersection preserving subset C[s,f ] is

to set C[s,f ] = {s, . . . , f}. Using intersection preserving subsets with fewer elements will allow

us to obtain better performance guarantees. Later in this section, we elaborate on finding the

smallest intersection preserving subsets. Let C = {C[s,f ] : [s, f ]∈F} be a collection that includes an

intersection preserving subset for each interval [s, f ]∈F .

Using this collection, we compute the coefficients {γqi,[s,f ] : i∈N , [s, f ]∈F , q ∈Q} as follows. For

all i∈N and [s, f ]∈F , set γQ+1
i,[s,f ] = 0. For each q=Q,Q− 1, . . . ,1, we execute the two steps.

• Construct Ideal Assortments: For all [s, f ]∈F , compute the ideal assortment to offer to

a customer with a booking request for interval [s, f ] as

Bq
[s,f ] = arg max

S⊆N

{∑
i∈N

φqi (S)
[
ri,[s,f ] −

∑
[a,b]∈F

∣∣∣ [s, f ]∩C[a,b]

∣∣∣ γq+1
i,[a,b]

]}
. (10)

• Compute Coefficients: For all i ∈N and [s, f ] ∈ F , compute the coefficient corresponding

to resource i and interval [s, f ] as

γqi,[s,f ] = λq[s,f ] φ
q
i (B

q
[s,f ])

[
ri,[s,f ] −

∑
[a,b]∈F

∣∣∣ [s, f ]∩C[a,b]

∣∣∣ γq+1
i,[a,b]

]
+ γq+1

i,[s,f ]. (11)

The algorithm above fully specifies the coefficients {γqi,[s,f ] : i ∈N , [s, f ] ∈ F , q ∈Q}, so it also

specifies our value function approximations. We can give some intuition for the algorithm.

Given that all resources are available on all days at time period q, Jq(e) corresponds

to the optimal total expected revenue obtained from the booking requests arriving over
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time periods {q, . . . ,Q}. Our approximation of this optimal total expected revenue is

given by ĴqP(e) =
∑

i∈N
∑

[s,f ]∈F γ
q
i,[s,f ]. Thus, we interpret γqi,[s,f ] as an approximation of the optimal

total expected revenue over time periods {q, . . . ,Q} obtained from booking requests for resource i

over interval [s, f ]. In (10), by the definition of an intersection preserving subset, if [s, f ]∩ [a, b] 6=∅,

then [s, f ]∩C[a,b] 6= ∅ as well. Furthermore, if [s, f ]∩ [a, b] 6= ∅, then accepting a booking request

for resource i over interval [s, f ] prevents us from accepting a booking request for the same resource

over interval [a, b]. Therefore, the expression
∑

[a,b]∈F

∣∣∣ [s, f ]∩C[a,b]

∣∣∣γq+1
i,[s,f ] captures the opportunity

cost of booking requests that we can no longer accept by booking resource i for interval [s, f ]. In

this case, Bq
[s,f ] is the assortment that maximizes the net expected revenue from a customer making

a booking request for interval [s, f ] at time period q. In (11), we accumulate our approximation

to the optimal total expected revenue obtained from the booking requests for resource i over

interval [s, f ]. On the right side of (11), the first term captures the net expected revenue obtained

at time period q given that we offer the ideal assortment Bq
[s,f ], whereas the second term captures

the total expected revenue over time periods {q+ 1, . . . ,Q}.

Although the preceding discussion gives only rough intuition for the algorithm, we can use this

algorithm to give a static policy with a performance guarantee. It turns out that this performance

guarantee holds for any collection of intersection preserving subsets that we can possibly use

in the algorithm. In particular, noting the ideal assortments {Bq
[s,f ] : [s, f ]∈F , q ∈Q} computed

through (10), we consider a static policy that always offers the assortment Bq
[s,f ] of resources to a

customer making a booking request for interval [s, f ] at time period q. In revenue management,

each resource and interval of use combination that can be booked by a customer is referred to as an

itinerary. Our polynomial value function approximations have one component for each resource and

interval of use combination, so we call this static policy the itinerary based static policy. In the next

theorem, we give a performance guarantee for the itinerary based static policy. For the collection

of intersection preserving subsets C = {C[s,f ] : [s, f ] ∈ F}, we define the norm of this collection as

‖C‖ = max[s,f ]∈F |C[s,f ]|. The performance guarantee that we give for the itinerary based static

policy depends on the norm of the collection of intersection preserving subsets that we use in the

algorithm. The performance guarantee favors using a collection with a smaller norm.

Theorem 6.1 (Performance of Itinerary Based Static Policy) The itinerary based static

policy obtains at least 1/(1 + ‖C‖) fraction of the optimal total expected revenue.

Similar to the proof of Theorem 4.1, the proof of the theorem above is based on using the

value function approximations {ĴqP : q ∈ Q} to give an upper bound on the performance of the

optimal policy and a lower bound on the performance of the itinerary based static policy, but
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the specifics of proof uses the properties of intersection preserving subsets. We give the proof in

Appendix B. Recall that setting C[s,f ] = [s, f ] trivially yields an intersection preserving subset for

the interval [s, f ]. For this intersection preserving subset, we have |C[s,f ]|= f − s+ 1≤Dmax, which

implies that there exists a collection of intersection preserving subsets whose norm is at most

Dmax. By Theorem 6.1, the itinerary based static policy that we obtain by using such a trivial

collection of intersection preserving subsets has a performance guarantee of 1/(1 + Dmax). In the

next theorem, letting Dmin = min[s,f ]∈F{f − s+ 1} to capture the minimum use duration for any

possible booking request, we show that there exists a collection of intersection preserving subsets

whose norm does not exceed 1 + d(Dmax − 1)/Dmine. Furthermore, we can find this collection by

solving a linear program. In particular, noting that the norm of the collection C = {C[s,f ] : [s, f ]∈F}

is given by ‖C‖ = max[s,f ]∈F |C[s,f ]|, using the decision variables {C[s,f ] : [s, f ] ∈ F} and t, to find

the collection of intersection preserving subsets with the smallest norm, we can solve

min
{
t : t ≥

∣∣∣C[s,f ]

∣∣∣ ∀ [s, f ]∈F ,∣∣∣C[s,f ] ∩ [a, b]
∣∣∣ ≥ 1 ∀ [s, f ] and [a, b]∈F such that [s, f ]∩ [a, b] 6= ∅,

C[s,f ] ⊆ [s, f ] ∀ [s, f ]∈F , t≥ 0
}
. (12)

By the first constraint, we have t= max[s,f ]∈F |C[s,f ]| in an optimal solution to problem (12). The

second and third constraints ensure that C[s,f ] is an intersection preserving subset.

Theorem 6.2 (Smallest Norm Collection) The optimal objective value of problem (12) is at

most 1 + d(Dmax − 1)/Dmine. Furthermore, we can obtain an optimal solution to this problem by

solving a linear program with O(D2
max T ) decision variables and O(D3

max T ) constraints.

We give the proof of the above theorem in Appendix C. Thus, by Theorem 6.2, we can solve

problem (12) to obtain a collection of intersection preserving subsets whose norm is at most

1 + d(Dmax − 1)/Dmine, in which case, by Theorem 6.1, the corresponding itinerary based static

policy has a performance guarantee of 1
2+d(Dmax−1)/Dmine

. Ma et al. (2020) use nonlinear value

function approximations to give a policy with a performance guarantee of 1/(1 +Dmax). Because

Dmin ≥ 1, we have 1
2+d(Dmax−1)/Dmine

≥ 1/(1 +Dmax), so the performance guarantee of the itinerary

based static policy is at least as good as that of the policy proposed by Ma et al. (2020). As discussed

in the introduction, Villa Mahal offers rooms with minimum length of stay requirements, in which

case, Dmin strictly exceeds one. The performance guarantee for the itinerary based static policy can

be significantly better than 1/(1+Dmax) when Dmin is larger than one. Closing this section, we note

that the rollout policy from the itinerary based static policy inherits the performance guarantee of

1
2+d(Dmax−1)/Dmine

from the itinerary based static policy.
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7. Upper Bound on the Optimal Policy Performance

We give an approach to computing an upper bound on the optimal total expected revenue. Such

an upper bound becomes useful for assessing the optimality gaps of different policies.

7.1 Resource Based Problems Through Revenue Allocations

One approach to obtaining an upper bound on the optimal total expected revenue is based on

solving a linear programming approximation that is formulated under the assumption that the

arrivals and choices of the customers take on their expected values; see Gallego et al. (2004), Liu

and van Ryzin (2008), and Kunnumkal and Topaloglu (2008). To formulate such an approximation,

we use two sets of decision variables. First, we use the decision variable hq[s,f ](S) to capture the

probability of offering the assortment S of resources to a booking request for interval [s, f ] at time

period q. Second, we use the decision variable yqi,[s,f ] to capture the expected number of bookings

for resource i at time period q by a customer interested in making a booking for interval [s, f ]. In

this case, we consider the linear programming approximation

Z∗LP = max
∑
q∈Q

∑
i∈N

∑
[s,f ]∈F

ri,[s,f ] y
q
i,[s,f ] (13)

st
∑
q∈Q

∑
[s,f ]∈F

∑
S⊆N

1l{`∈[s,f ]} φ
q
i (S) hq[s,f ](S) ≤ 1 ∀ i∈N , `∈ T∑

S⊆N

hq[s,f ](S) = λq[s,f ] ∀ [s, f ]∈F , q ∈Q∑
S⊆N

φqi (S)hq[s,f ](S) = yqi,[s,f ] ∀ i∈N , [s, f ]∈F , q ∈Q

hq[s,f ](S) ≥ 0 ∀ [s, f ]∈F , S ⊆N , q ∈Q,

where we do not explicitly impose a nonnegativity constraint on the decision variable yqi,[s,f ] because

the third and fourth constraints above already ensure this constraint.

In the objective function above, we accumulate the total expected revenue from the bookings. By

the first constraint, noting that
∑

S⊆N φ
q
i (S) hq[s,f ](S) is the expected number of bookings for

resource i by a customer arriving at time period q interested in making a booking for interval [s, f ],

the total expected capacity consumption of each resource on each day does not exceed one. By the

second constraint, the total probability that we offer an assortment to a customer arriving at time

period q with an interest in making a booking for interval [s, f ] is equal to the arrival probability

of such a customer. By the third constraint, we compute the expected number of bookings of

resource i at time period q by a customer interested in making a booking for interval [s, f ]. Linear

programming approximations are commonly used in the revenue management literature to obtain
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upper bounds on the optimal expected revenue. Such upper bounds are known to be asymptotically

tight as the capacities of the resources and the expected number of customer arrivals increase

linearly at the same rate. This kind of asymptotic tightness result is particularly relevant in airline

network revenue management problems, in which the capacities of the flights and the volume of

demand served are generally large. In our problem, however, the capacities of all resources are

invariably one, even when the number of different resources under consideration is large. In our

computational experiments, the upper bound provided by the linear programming approximation

can indeed be quite loose. We give a different upper bound that is at least as tight as the one

from the linear programming approximation. In our computational experiments, the new upper

bound provided by our approach can improve that from the linear programming approximation

by as much as 29%. Recall that we refer to each resource and interval of use combination as an

itinerary. Thus, for each i∈N and [s, f ]∈F , we have an itinerary (i, [s, f ]). Our approach is based

on allocating the revenue associated with an itinerary to the different resources.

Let βqi,[s,f ]→j be the portion of the revenue associated with itinerary (i, [s, f ]) allocated to resource

j at time period q. We do not yet specify how we choose the revenue allocations, but if we add the

revenue allocations of an itinerary over all resources then we should get the revenue of the itinerary,

so the revenue allocations satisfy
∑

j∈N β
q
i,[s,f ]→j = ri,[s,f ]. In our approach, we solve a separate

revenue management problem for each resource and collect the value functions for each resource to

get an upper bound. In the revenue management problem for resource j, we have limited capacity

only for resource j, but infinite capacity for all other resources. Moreover, if we accept a booking

request at time period q for itinerary (i, [s, f ]), then the revenue we collect is the revenue allocation

of this itinerary over resource j, which is βqi,[s,f ]→j. We capture the state of resource j by using the

vector xj = (xj,1, . . . , xj,T ) ∈ {0,1}T , where xj,` = 1 if and only if resource j is available for use on

day `. Noting that e[s,f ] ∈ {0,1}T is the vector with ones in the components corresponding to days

{s, . . . , f}, we can find the optimal policy in the revenue management problem for resource j by

computing the value functions {V q
β,j : q ∈Q} through the dynamic program

V q
β,j(xj) =

∑
[s,f ]∈F

λq[s,f ] max
S⊆N

{
φqj(S)

(
f∏
`=s

xj,`

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
+V q+1

β,j (xj), (14)

with the boundary condition that V Q+1
β,j = 0. In the value functions {V q

β,j : q ∈Q}, we make their

dependence on β= {βqi,[s,f ]→j : i, j ∈N , [s, f ]∈F , q ∈Q} explicit.

To interpret the dynamic program above, at time period q, if we offer the assortment S of

resources to a customer making a booking request for interval [s, f ], then the customer chooses
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resource j with probability φqj(S). In this case, if we have capacity for resource j to accommodate

the booking request, then we make the revenue of βqj,[s,f ]→j. The opportunity cost of the capacities

that we consume is V q+1
β,j (xj)−V q+1

β,j (xj−e[s,f ]). Because we have infinite capacity for all resources

other than resource j, if the customer chooses some other resource i, then we make the revenue of

βqi,[s,f ]→j, but the opportunity cost of the capacities that we consume is zero. In the next proposition,

we show that we obtain an upper bound on the value functions {Jq : q ∈Q} in (1) by solving the

dynamic program in (14). We defer the proofs of all results in this section to Appendix D.

Proposition 7.1 (Decomposition Upper Bound) For any revenue allocations β that satisfy∑
j∈N β

q
i,[s,f ]→j = ri,[s,f ] for all i∈N , [s, f ]∈F and q ∈Q, letting the value functions {V q

β,j : q ∈Q}

be computed through (14), for each x= (xj : j ∈N )∈ {0,1}n×T and q ∈Q, we have∑
j∈N

V q
β,j(xj) ≥ Jq(x).

Next, we consider the question of choosing the revenue allocations such that our upper bound

compares favorably against that from the linear programming approximation.

7.2 Choosing the Revenue Allocations

In problem (13), duplicating the decision variable hq[s,f ] for each resource j to obtain the decision

variables {hq[s,f ]→j : j ∈N}, we consider a variant of this problem given by

max
∑
q∈Q

∑
i∈N

∑
[s,f ]∈F

ri,[s,f ] y
q
i,[s,f ] (15)

st
∑
q∈Q

∑
[s,f ]∈F

∑
S⊆N

1l{`∈[s,f ]} φ
q
i (S) hq[s,f ]→i(S) ≤ 1 ∀ i∈N , `∈ T∑

S⊆N

hq[s,f ]→j(S) = λq[s,f ] ∀ j ∈N , [s, f ]∈F , q ∈Q∑
S⊆N

φqi (S)hq[s,f ]→j(S) = yqi,[s,f ] ∀ i, j ∈N , [s, f ]∈F , q ∈Q

hq[s,f ]→j(S) ≥ 0 ∀ j ∈N , [s, f ]∈F , S ⊆N , q ∈Q.

In Lemma D.1 in Appendix D, we show that the problem above has the same optimal objective

value as the linear programming approximation in (13). Intuitively speaking, although problem

(15) duplicates the decision variable hq[s,f ] in problem (13) for each resource j, it does not duplicate

the decision variable yqi,[s,f ]. Because the objective functions of both of these two problems depend

only on the decision variables {yqi,[s,f ] : i ∈N , [s, f ] ∈ F , q ∈Q}, the two problems end up having

the same optimal objective value. We use the dual solution to problem (15) to choose the revenue

allocations. Associating the dual variables {βqi,[s,f ]→j : i, j ∈ N , [s, f ] ∈ F , q ∈ Q} with the third
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constraint in problem (15), in the dual of problem (15), the constraint associated with the decision

variable yqi,[s,f ] is
∑

j∈N β
q
i,[s,f ]→j = ri,[s,f ]. Thus, letting β̂ = {β̂qi,[s,f ]→j : i, j ∈N , [s, f ] ∈ F , q ∈ Q}

be the optimal values of the dual variables associated with the third constraint in problem (15),

we use these optimal values as our revenue allocations. In the next theorem, we show that if we

use these revenue allocations in the dynamic program in (14), then we obtain an upper bound on

the optimal total expected revenue that is at least as tight as that from the linear program in (13).

In this theorem, we use e′ ∈ {0,1}T to denote the vector of all ones.

Theorem 7.2 (Choice of Revenue Allocations) Letting β̂ be the optimal values of the dual

variables associated with the third constraint in problem (15) and the value functions {V q

β̂,j
: q ∈Q}

be computed through (14) with the revenue allocations β̂, we have∑
j∈N

V 1
β̂,j

(e′) ≤ Z∗LP.

Noting Proposition 7.1, we get Z∗LP ≥
∑

j∈N V
1
β̂,j

(e′)≥ J1(e), so
∑

j∈N V
1
β̂,j

(e′) is an upper bound

on the optimal total expected revenue, and this upper bound is at least as tight as that provided

by the optimal objective value of the linear programming approximation in (13).

7.3 Computing the Upper Bound

In (14), although we focus only on one resource, the state variable is still high-dimensional, so

it is not clear whether we can solve this dynamic program efficiently. We will give an equivalent

formulation for this dynamic program by using intervals of days as the state variable, which we will

be able to solve efficiently. We use xj = (xj,1, . . . , xj,T ) ∈ {0,1}T to denote the state of resource j,

where xj,` = 1 if and only if resource j is available for use on day `. We refer to the interval [a, b]

as a maximal unavailable interval with respect to xj if and only if resource j is unavailable on all

days in the interval [a, b], but available on days a−1 and b+1; that is, xj,` = 0 for all j ∈ {a, . . . , b},

xj,a−1 = 1, and xj,b+1 = 1. In the revenue management problem for resource j, given that resource

j is not available on all days over the maximal unavailable interval [a, b], let Γqβ,j(a, b) be the total

expected revenue obtained over time periods {q, . . . ,Q} from the booking requests for intervals

that start in the interval [a, b]. We can compute the value functions {Γqβ,j : q ∈Q} as

Γqβ,j(a, b) =

Q∑
k=q

∑
[s,f ]∈F

1l{s∈[a,b]} λ
k
[s,f ] max

S⊆N\{j}

{ ∑
i∈N\{j}

φki (S) βki,[s,f ]→j

}
. (16)

To interpret (16), in the revenue management problem for resource j, we have infinite capacity

for all resources other than resource j. Thus, given that resource j is not available on all days over

the interval [a, b], if a customer makes a booking request for an interval [s, f ] that starts in the
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interval [a, b], then we can offer only assortments not including resource j. If the customer makes

a booking for resource i, then the revenue that we obtain is the revenue allocation of itinerary

(i, [s, f ]) to resource j. Because resources other than resource j have infinite capacity and we do

not offer resource j, we simply accumulate the expected revenue over time periods {q, . . . ,Q}. On

the other hand, recall that we refer to the interval [a, b] as a maximal available interval with respect

to xj if and only if resource j is available on all days in the interval [a, b], but unavailable on days

a−1 and b+1. In the revenue management problem for resource j, given that we do have capacity

for resource j over the maximal available interval [a, b], let Θq
β,j(a, b) be the total expected revenue

obtained over time periods {q, . . . ,Q} from the booking requests for intervals that start in the

interval [a, b]. We can compute the value functions {Θq
β,j : q ∈Q} as

Θq
β,j(a, b) =

∑
[s,f ]∈F

λq[s,f ] 1l{s∈[a,b], [s,f ]⊆[a,b]} max
S⊆N

{ ∑
i∈N\{j}

φqi (S)βqi,[s,f ]→j

+φqj(S)
[
βqj,[s,f ]→j + Θq+1

β,j (a, s− 1) + Θq+1
β,j (f + 1, b) + Γq+1

β,j (s, f) − Θq+1
β,j (a, b)

]}

+
∑

[s,f ]∈F

λq[s,f ] 1l{s∈[a,b], [s,f ] 6⊆[a,b]} max
S⊆N\{j}

{ ∑
i∈N\{j}

φqi (S)βqi,[s,f ]→j

}
+ Θq+1

β,j (a, b). (17)

To interpret (17), given that we have capacity for resource j over the interval [a, b], if we have a

booking request for an interval [s, f ] that starts in [a, b] and the interval [s, f ] is included in [a, b],

then we have capacity for resource j to serve this booking request. If the customer books resource

i 6= j, then the revenue that we obtain is the revenue allocation of itinerary (i, [s, f ]) to resource j,

but because the resources other than resource j have infinite capacity, we do not account for the

opportunity cost of the capacities that we lose. If, however, the customer books resource j, then

we lose the capacity on days {s, . . . , f}, so the intervals [a, s− 1] and [f + 1, b] become maximal

available intervals and the interval [s, f ] becomes a maximal unavailable interval. Lastly, if the

interval [s, f ] is not included in [a, b], then we do not have capacity for resource j to serve a booking

request for the interval [s, f ], so we can offer only an assortment not including resource j.

Recall that I(xj) is the collection of maximal available intervals with respect to xj. Let H(xj)

be the collection of maximal unavailable intervals with respect to xj. In the top portion of Figure 1,

for example, for the value of xj in this figure, we have H(xj) = {[1,1], [5,5], [11,12]}. In the next

theorem, we show that we can solve the dynamic program in (17) to get a solution for (14).

Theorem 7.3 (Interval Formulation) Letting the value function {V q
β,j : q ∈ Q} be computed

through (14), for each xj ∈ {0,1}T and q ∈Q, we have

V q
β,j(xj) =

∑
[a,b]∈I(xj)

Θq
β,j(a, b) +

∑
[a,b]∈H(xj)

Γqβ,j(a, b).

Next, we give computational experiments to test the quality of our policies and bound.
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8. Computational Experiments

We give two sets of computational experiments. The first set is on synthetic datasets that we

generate. The second set is on a dataset from an actual boutique hotel.

8.1 Results on Synthetic Datasets

Our experiments are for a boutique hotel. Thus, the set of resources corresponds to a set of unique

rooms. Booking resource i over interval [s, f ] corresponds to booking room i over days {s, . . . , f}.

Experimental Setup: We generate our test problems as follows. We have n = 5 rooms. The

rooms are available for stay during the days indexed by T = {1, . . . ,70}, so we have 10 weeks in the

booking horizon. Customers arrive over time periods Q= {1, . . . ,700}. The set of possible intervals

of stay is F = {[a, b] : a≤ b≤ a+Dmax−1}, where Dmax is the maximum duration of stay parameter

we vary. To come up with the revenue ri,[s,f ] for stay in room i over interval [s, f ], for each i∈N ,

we sample a base revenue ψi from the uniform distribution over [0,10]. Letting pi,` be the price of

stay in room i on day `, if day ` is Friday, Saturday, or Sunday, then we set pi,` =ψi, whereas if day

` is Monday, Tuesday, Wednesday, or Thursday, then we set pi,` = δ×ψi, where δ is the discount

parameter. The revenue for stay in room i over interval [s, f ] is ri,[s,f ] =
∑f

`=s pi,`.

To come up with the arrival probabilities {λq[s,f ] : [s, f ]∈F , q ∈Q}, for each [s, f ]∈F and q ∈Q,

we sample a weight βq[s,f ] from the uniform distribution over [0,U
q

[s,f ]] and normalize the weights by

setting γq[s,f ] =
β
q
[s,f ]∑

[a,b]∈F β
q
[a,b]

. In this case, using {γq[s,f ] : [s, f ]∈F , q ∈Q} as the arrival probabilities,

if we always offer all rooms, then the total expected demand for the capacity in all rooms on all days

is Demand =
∑

i∈N
∑

q∈Q
∑

[s,f ]∈F γ
q
[s,f ] φ

q
i (N ) (f − s+ 1). Noting that the total capacity available

in all rooms on all days is nT , we set the arrival probability for a booking request for interval [s, f ]

at time period q as λq[s,f ] = ργq[s,f ]
nT

Demand
, where ρ is the load factor parameter we vary. In this case,

if we offer all rooms at all time periods, then the ratio between the total expected demand for the

capacity and the total available capacity is given by ρ.

Splitting the 700 time periods into three roughly equal segments, we use U
q

[s,f ] = Dmax− (f − s)
for q= 1, . . . ,233, U

q

[s,f ] = 1 for q= 234, . . . ,466 and U
q

[s,f ] = f −s+1 for q= 467, . . . ,700. Thus, the

requests for shorter intervals tend to have larger arrival probabilities at the earlier time periods,

so we need to carefully reserve the capacity for the requests for longer intervals that tend to

arrive later. In this way, we generate test problems that require carefully allocating the available

capacity to obtain good performance. Choices of the customers are governed by the multinomial

logit model. Thus, using vi to denote the preference weight of room i and v0 to denote the preference

weight of the no-purchase option, if we offer the assortment S of rooms, then a customer arriving at

time period q chooses room i with probability φqi (S) = vi
v0+

∑
j∈S vj

. To come up with the preference
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weights, for each i∈N , we sample vi from the uniform distribution over [0,1] and set v0 = 1
9

∑
i∈N vi,

so if we offer all rooms, then a customer leaves without a booking with probability 0.1.

Varying the parameters Dmax ∈ {6,8,10}, ρ ∈ {1.2,1.6,2.0}, and δ ∈ {0.7,0.9}, we obtain 18

parameter configurations for our test problems.

Benchmark Policies: Our benchmark policies are based on the linear and polynomial value

function approximations, as well as the linear programming approximation.

Linear Approximations (LIN1, LIN5, LINR). We use three benchmark policies based on the linear

value function approximations presented in Section 4. By Theorem 4.1, the resource based static

policy has a performance guarantee of 1/(2Dmax), but as a static policy, the resource based static

policy may offer an unavailable resource for a booking request, which may not be appropriate

in practice. To overcome this difficulty, we use the greedy policy with respect to the linear

approximations. Replacing Jq+1(x) on the right side of (1) with Ĵq+1
L (x) =

∑
i∈N

∑
`∈T η

q+1
i,` xi,`, if

the state of the system at time period q is x and there is a booking request for interval

[s, f ], then the greedy policy with respect to the linear approximations offers the assortment of

resources ŜqL(x) = arg maxS⊆N
∑

i∈N φ
q
i (S)

(∏f

`=s xi,`
) (
ri,[s,f ]−

∑f

`=s η
q+1
i,`

)
. By the discussion given

immediately after (1), this policy never offers an unavailable resource. Using the same outline in the

proof of Theorem 4.1, we can show that the greedy policy with respect to the linear approximations

also has a performance guarantee of 1/(2Dmax). The key is to observe that an analogue of the chain

of inequalities in the proof of Proposition 5.5 still holds when we replace Aq[s,f ] with ŜqL(x).

We use LIN1 to refer to the greedy policy with respect to the linear approximations, where we

emphasize the fact that this policy computes the opportunity costs {ηqi,` : i∈N , `∈ T , q ∈Q} once

at the beginning of the selling horizon. We also use a version of LIN1 that splits the selling horizon

into five equal segments to recompute the opportunity costs at the beginning of each segment based

on the state of the system at the beginning of the segment. In particular, if the state of the system

at the beginning of the segment is x, then we set ηqi,` = 0 for all i ∈ N , ` ∈ T , and q ∈ Q such

that xi,` = 0. We compute the other opportunity costs using the algorithm in Section 4. We refer

to this policy as LIN5. Lastly, we use the rollout policy from the resource based static policy. We

refer to this policy as LINR. By the discussion at the end of Section 3, this policy inherits the

performance guarantee of 1/(2Dmax) from the resource based static policy. Furthermore, this policy

never offers an unavailable resource for a booking request. Observe that LIN1 and LIN5 are greedy

policies with respect to linear approximations {JqL : q ∈Q}, whereas noting that {Jqµ : q ∈Q} in (5)

is not separable, LINR does not necessarily use a separable approximation.

Polynomial Approximations (POL1, POL5, POLR). The benchmark policies POL1, POL5, and

POLR are the analogues of LIN1, LIN5, and LINR, but they use the polynomial value function
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approximations in Section 6. As in LIN1, POL1 is the greedy policy with respect to the polynomial

approximations. We can show that it shares the guarantee of 1
2+d(Dmax−1)/Dmine

with the itinerary

based static policy. In POL5, when recomputing the coefficients {γqi,[s,f ] : i ∈N , [s, f ] ∈ F , q ∈Q}

at the beginning of a segment, if the state of the system is x, then we set γqi,[s,f ] = 0 for all i ∈N ,

[s, f ]∈F , and q ∈Q such that
∏f

`=s xi,` = 0. We compute the other coefficients using the algorithm

in Section 6. Lastly, POLR is the rollout of the itinerary based static policy.

Linear Programming Approximation (LP1, LP5, LPR). We use three benchmark policies based on

the linear program in (13). The first constraint in problem (13) ensures that the total expected

capacity consumption of each resource on each day does not exceed the capacity of one. Letting

{θi,` : i∈N , `∈ T } be the optimal values of the dual variables associated with the first constraint,

we use θi,` as the opportunity cost of the capacity of resource i on day `, yielding the value function

approximations {ĴqLP : q ∈Q} with ĴqLP(x) =
∑

i∈N
∑

`∈T θi,` xi,`. Similar to LIN1, if the state of the

system at time period q is x and we have a booking request for interval [s, f ], then we offer the

assortment of resources ŜqLP(x) = arg maxS⊆N
∑

i∈Nφ
q
i (S)

(∏f

`=s xi,`
)(
ri,[s,f ] −

∑f

`=s θi,`
)
. We refer

to this policy as LP1. Thus, LP1 corresponds to the greedy policy with respect to the linear

approximations {ĴqLP : q ∈Q}, but the opportunity costs in these linear approximations are obtained

from the dual solution to the linear programming approximation.

We also use a version of LP1 that splits the selling horizon into five equal segments to recompute

the opportunity costs at the beginning of each segment. If the segment starts at time period q with

the state x, then we solve problem (13) after replacing the set of time periods Q with {q, . . . ,Q}

and the right side of the first constraint with {xi,` : i ∈ N , ` ∈ T }. Letting {θi,` : i ∈ N , ` ∈ T }

be the optimal values of the dual variables associated with the first constraint, we use θi,` as the

opportunity cost of the capacity of resource i on day `. We use LP5 to refer to this policy. Lastly,

we extract a static policy from problem (13) and use the rollout policy from this static policy. In

our static policy, letting {ĥq[s,f ](S) : [s, f ]∈F , S ⊆N , q ∈Q} and {ŷqi,[s,f ] : i∈N , [s, f ]∈F , q ∈Q}

be an optimal solution to problem (13), if we have a booking request for interval [s, f ] at time

period q, then we offer the assortment S of resources with probability ĥq[s,f ](S)/λq[s,f ]. We use the

rollout policy from this static policy and refer to the resulting rollout policy as LPR.

Dynamic Programming Decomposition (DEC). This benchmark policy is the standard dynamic

programming decomposition method in the revenue management literature; see, for example,

Liu and van Ryzin (2004). In this policy, we heuristically decompose the dynamic programming

formulation in (1) by each resource and day combination. Note that each resource has

one unit of capacity on each day. Therefore, this policy constructs linear value function

approximations {ĴqDec : q ∈Q} of the form ĴqDec(x) =
∑

i∈N
∑

`∈T ζ
q
i,` xi,` for some opportunity costs
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Params. % Gap in
(Dmax, ρ, δ) Bounds

(6,1.2,0.9) 15.38
(6,1.2,0.7) 11.99

(6,1.6,0.9) 20.10
(6,1.6,0.7) 24.53

(6,2.0,0.9) 24.90
(6,2.0,0.7) 22.86

Avg. 19.96

Params. % Gap in
(Dmax, ρ, δ) Bounds

(8,1.2,0.9) 25.62
(8,1.2,0.7) 15.53

(8,1.6,0.9) 29.73
(8,1.6,0.7) 23.35

(8,2.0,0.9) 25.84
(8,2.0,0.7) 16.09

Avg. 22.69

Params. % Gap in
(Dmax, ρ, δ) Bounds

(10,1.2,0.9) 13.82
(10,1.2,0.7) 12.93

(10,1.6,0.9) 26.50
(10,1.6,0.7) 28.08

(10,2.0,0.9) 26.75
(10,2.0,0.7) 26.33

Avg. 22.40

Table 1 Percent gap between the upper bounds for the synthetic datasets.

{ζqi,` : i∈N , `∈ T , q ∈Q}, in which case, we can use the greedy policy with respect to these linear

value function approximations. We refer to this policy as DEC.

Lastly, the policy in Baek and Ma (2019) was not competitive to our linear or polynomial

approximations. We give detailed comparisons with Baek and Ma (2019) in Appendix E.

Comparison of Upper Bounds: The optimal objective value Z∗LP of the linear programming

approximation in (13) provides an upper bound on the optimal total expected revenue. By

Proposition 7.1, we can solve the dynamic program in (14) to also obtain an upper bound on

the optimal total expected revenue. Furthermore, by Theorem 7.2, we can use the optimal dual

solution to problem (15) to choose the revenue allocations such that the upper bound we obtain is

at least as tight as that provided by Z∗LP. In particular, letting β̂ be the optimal values of the dual

variables associated with the third constraint in problem (15),
∑

j∈N V
1
β̂,j

(e′) is an upper bound on

the optimal total expected revenue, and this upper bound is at least as tight as Z∗LP. In Table 1,

we compare the upper bounds Z∗LP and
∑

j∈N V
1
β̂,j

(e′). In the table, the first column shows the

parameter configuration for each test problem. The second column shows the percent gap 100×
Z∗LP−

∑
j∈N V 1

β̂,j
(e′)∑

j∈N V 1
β̂,j

(e′)
between the two upper bounds.

Our results indicate that the upper bounds from our approach can dramatically improve those

from the linear programming approximation. The gaps can reach 29.73%. In our approach, once we

allocate the revenue associated with each itinerary over different resources, the revenue management

problem that we solve for each resource incorporates the uncertainty in the customer arrivals and

choices, giving our approach an edge over the linear programming approximation. It is known

that DEC also provides an upper bound on the optimal total expected revenue. In our test

problems, the upper bounds from DEC were virtually identical to those from the linear programming

approximation. The upper bound from DEC is based on decomposing the problem by each resource

and day combination, whereas the upper bound from our approach is based on decomposing the

problem by each resource. Therefore, intuitively speaking, our approach captures the interactions

between the different days more faithfully than DEC.

Policy Performance: Considering the performance of the benchmark policies given earlier

in this section, we estimate the total expected revenue obtained by each policy by simulating
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Param. Total Exp. Revenue
(Dmax, ρ, δ) LIN1 POL1 LP1 LIN5 POL5 LP5 LINR POLR LPR DEC

(6,1.2,0.9) 79.23 75.19 76.99 80.89 75.34 78.03 81.05 80.29 81.11 77.27
(6,1.2,0.7) 70.17 68.57 68.53 71.27 69.81 69.67 73.00 73.04 73.97 67.65
(6,1.6,0.9) 74.94 67.84 72.44 77.10 68.53 74.56 78.60 75.96 77.92 70.58
(6,1.6,0.7) 80.52 72.77 76.25 82.78 75.25 82.24 85.02 83.07 84.52 80.59
(6,2.0,0.9) 79.14 70.24 75.93 81.44 72.63 80.30 85.04 82.84 84.14 78.76
(6,2.0,0.7) 77.16 67.61 69.50 79.28 69.34 74.21 80.85 77.39 79.28 73.91

(8,1.2,0.9) 75.27 66.18 73.88 78.14 69.27 75.91 78.23 77.84 79.29 75.79
(8,1.2,0.7) 70.39 65.71 67.03 72.16 66.50 68.56 71.07 71.09 73.44 68.41
(8,1.6,0.9) 80.24 67.56 77.76 83.06 69.40 82.51 84.64 81.96 84.82 79.77
(8,1.6,0.7) 76.84 67.39 73.59 80.14 68.72 77.55 79.75 78.52 81.57 77.08
(8,2.0,0.9) 80.54 66.96 73.47 81.41 68.68 78.11 84.26 81.37 81.56 79.38
(8,2.0,0.7) 73.90 60.85 71.99 77.28 62.89 74.74 79.21 73.62 77.22 75.12

(10,1.2,0.9) 68.61 62.56 66.24 70.72 63.42 67.95 73.89 71.43 74.33 70.04
(10,1.2,0.7) 69.95 66.56 67.02 69.90 68.48 68.98 73.09 72.90 75.02 68.76
(10,1.6,0.9) 73.74 63.60 72.25 76.37 67.13 74.55 79.11 74.98 78.40 72.09
(10,1.6,0.7) 77.31 62.45 73.58 79.96 65.11 78.69 82.22 78.10 81.86 78.61
(10,2.0,0.9) 78.43 63.80 75.57 81.09 65.45 78.78 83.65 79.14 81.83 78.43
(10,2.0,0.7) 78.72 62.28 73.18 81.39 63.77 80.55 83.93 75.64 82.01 80.84

Avg. 75.84 66.56 72.51 78.02 68.32 75.88 79.81 77.18 79.57 75.17

Table 2 Total expected revenues obtained by the benchmark policies for the synthetic datasets.

the decisions of the policy over 100 sample paths. In Table 2, we compare the total expected

revenues obtained by the benchmark policies. In the table, the first column shows the parameter

configuration for each test problem. In the second to fourth columns, we focus on the performance

of LIN1, POL1, and LP1, which compute the coefficients of the value function approximations once

at the beginning of the selling horizon. In the fifth to seventh columns, we focus on the performance

of LIN5, POL5, and LP5, which compute the coefficients of the value function approximations five

times over the selling horizon. In the eighth to tenth columns, we focus on the performance of LINR,

POLR, and LPR, which use a rollout policy from a static policy. In the eleventh column, we focus

on the performance of DEC. For each benchmark policy, we express its total expected revenue as a

percentage of the upper bound on the optimal total expected revenue. In other words, using Rev

to denote the total expected revenue of a benchmark policy and UB to denote the upper bound,

we report 100× Rev
UB

. We use the upper bound obtained from the dynamic program in (14), along

with the revenue allocations provided by an optimal dual solution to problem (15).

Regarding the benchmark policies LIN1, POL1, and LP1, which compute the coefficients of the

value function approximations once at the beginning of the selling horizon, our results indicate that

LIN1 consistently provides better performance than the other two policies. When we compute the

coefficients of the value function approximations five times over the selling horizon, on average, the

total expected revenues obtained by LIN5, POL5, and LP5 improve those obtained by LIN1, POL1, and

LP1, respectively, by 2.86%, 2.66%, and 4.61%. The performance of LIN5 is still noticeably better

than that of POL5 and LP5. When we use the rollout policies, on average, the total expected revenues

obtained by LINR, POLR, and LPR improve those obtained by LIN5, POL5, and LP5, respectively, by
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2.30%, 13.08%, and 4.96%. Noting the performance of improvement of POLR over POL5, even if

the static policy that we use is not a superior policy, performing rollout on the static policy can

dramatically improve the performance of the static policy. Overall, irrespective of whether the static

policy is obtained by constructing value function approximations or by using an optimal solution

to a linear programming approximation, our rollout approach can be quite effective in obtaining

even better policies. The performance of DEC lags behind all rollout policies, which is encouraging,

because dynamic programming decomposition is known to be one of the strongest benchmarks for

revenue management problems. So, rollout policies, such as LINR, can perform noticeably better

than the strongest benchmark, while having a performance guarantee. In Appendix E, we compare

our policies with the policy in Baek and Ma (2019). On average, LINR, POLR, and LPR improve on

the policy in Baek and Ma (2019), respectively, by 20.83%, 18.19%, and 20.63%.

Another useful feature of rollout policies is that we can perform ensemble rollout on a collection

of static policies. In particular, letting {µk : k = 1, . . . ,K} be a collection of K static policies,

we define the value function approximations {Ĵqmax : q ∈ Q} as Ĵqmax(x) = maxk=1,...,K J
q
µk

(x),

where {Jqµk
: q ∈ Q} are the value functions of the static policy µk computed through (2). In

this case, the total expected revenue from the greedy policy with respect to the value function

approximations {Ĵqmax : q ∈ Q} is at least as large as the total expected revenue from each of the

static policies {µk : k= 1, . . . ,K}; see Example 2.3.2 in Bertsekas (2012). Thus, we can obtain a

policy that is at least as good as each of the static policies. We performed such an ensemble rollout

on the collection of resource based static policy, itinerary based static policy, and static policy from

problem (13). In our test problems, the performance of the ensemble rollout policy was statistically

indistinguishable from the best rollout policy in Table 2 for each test problem.

We carry out all of our computational experiments in Java 1.8.0 with 16 GB of RAM and 2.8

GHz Intel Core i7 CPU. For our largest test problems with Dmax = 10, the average CPU time

to compute the linear and polynomial value function approximations are, respectively, 16.12 and

30.04 seconds. The average CPU time to compute our upper bound is 4.02 hours. The average

CPU time to perform rollout on a static policy is 5.12 minutes.

8.2 Results on a Boutique Hotel Dataset

We test the performance of our benchmark policies and upper bounds by using the reservation

data from an actual boutique hotel.

Experimental Setup: We have access to the booking data from a boutique hotel for

reservations made between May 13, 2020 and September 8, 2020. The bookings are for stays from
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June 1, 2020 to October 31, 2020. The hotel has six unique rooms. The price of each room and day

pair is pre-fixed, but the hotel changes the availability of rooms based on real-time information

on booked capacities. In total, the dataset contains 157 bookings. With the exception of three

bookings, all bookings are for one to eight days. We dropped those three bookings in our estimation

procedure. We estimate the parameters of our model as follows.

There are 119 days between May 13 and September 8, so the customers arrive over a selling

horizon of 119 days. We divide each day into 10 time periods. In this case, the set of time periods

is Q= {1, . . . ,1190}. For each q ∈Q, we use day(q) to denote the calendar date corresponding to

time period q. On the other hand, there are 153 days between June 1 and October 31, so we use

T = {1, . . . ,153} to index the days of stay. For each `∈ T , we use day(`) to denote the calendar date

corresponding to day `. To estimate the arrival probabilities for the booking requests, we proceed

with the following two assumptions. First, at each time period, there is a fixed probability that we

have a request for a booking for a certain number of days into the future. Second, given that we

have a booking request, there is a fixed probability that the booking is for a certain length of stay.

In particular, we let θk be the probability that we have a booking request for k days into the future.

Given that we have a booking request, we let ηd be the probability that this booking request is for

d days. In this case, the probability that we have a booking request for interval [s, f ] at time period

q is given by λq[s,f ] = θday(s)−day(q)× ηf−s+1. Because there are 171 days between May 13 and October

31, a customer can make a booking as many as 171 days in advance. Thus, we need to estimate the

parameter θk for all k= 1, . . . ,171. Noting that the dataset contains only 157 bookings, we divide

the interval {1, . . . ,171} into the seven subintervals [1,3], [4,7], [8,14], [15,28], [29,42], [43,56], and

[57,171], assuming that the value of θk is constant when k takes values in each of these intervals.

When estimating the parameters {θk : k = 1, . . . ,171}, we impose the constraint that
∑171

k=1 θk ≤ 1,

in which case we have
∑

[s,f ]∈F λ
q
[s,f ] ≤ 1 for all q ∈ Q. We use the multinomial logit model to

capture the choice process among rooms. Thus, letting vi be the preference weight of room i and

normalizing the preference weight of the no-purchase option to one, the choice probability of room

i within the assortment S is φqi (S) = vi
1+

∑
j∈S vj

.

We use maximum likelihood estimation to estimate the parameters of our model. In Appendix F,

we give the details of our estimation procedure.

Computational Results: To broaden our experimental setup, we scaled the arrival

probabilities {λq[s,f ] : [s, f ]∈F , q ∈Q} by a constant to obtain test problems with load factors taking

values in {0.8,1.2,1.6,2.0}. We measure the load factor in the same way we do for our test problems

on the synthetic datasets. We give our results in Table 3. In this table, the first column shows the

load factor. The second column shows the percent gap between the upper bounds obtained by using
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Load Gap in Total Exp. Revenue
Fact. Bounds LIN1 POL1 LP1 LIN5 POL5 LP5 LINR POLR LPR DEC

0.8 12.25 81.50 83.69 81.41 82.59 83.33 82.05 83.96 84.43 83.00 82.10
1.2 10.10 85.76 87.73 85.69 87.34 87.75 86.69 88.18 88.70 87.16 86.43
1.6 8.15 87.19 89.35 87.47 88.16 89.44 87.58 90.18 89.69 88.85 87.40
2.0 6.65 88.90 90.82 88.79 89.96 90.85 88.78 91.03 91.22 90.53 88.80

Avg. 9.29 85.84 87.90 85.84 87.01 87.84 86.28 88.34 88.51 87.38 86.18

Table 3 Computational results for the boutique hotel datasets.

the dynamic program in (14) and the linear programming approximation in (13). The remaining

columns give the total expected revenues obtained by our benchmark policies, each expressed as a

percentage of the upper bound on the optimal total expected revenue. Our results indicate that the

upper bounds provided by our approach significantly improve those from the linear programming

approximation. The gaps in the upper bounds can exceed 12%. When compared with our results

on the synthetic datasets, LIN5, POL5, and LP5 obtain more modest improvements in the total

expected revenues by recomputing the coefficients of the value function approximations five times

over the selling horizon, instead of once. On the other hand, similar to our results on the synthetic

datasets, the rollout policies, especially LINR and POLR, perform noticeably better than DEC. There

are test problems in which the total expected revenue improvements over DEC provided by our

rollout policies can reach 3.08%. Thus, our rollout approach continues to provide effective policies

for the datasets based on actual boutique hotel bookings.

9. Conclusion

We developed policies with performance guarantees by exploiting two features of the underlying

problem. First, each resource is unique, so we have one unit of capacity for each resource. Second,

customers book resources for consecutive days. We hope our study inspires other research on

leveraging features of the underlying problem. In our model, a customer makes a booking request

for an interval, in response to which we offer an assortment of resources. This model is consistent

with the booking systems of many boutique hotels and freelancer matching platforms, but it would

be interesting to develop a model that also allows customers to specify a window of possible use. In

this case, the decision would be assortments of resources to offer over different possible intervals of

use. Our analysis of the itinerary based static policy goes through, but our efficient rollout result

does not readily extend and more work is needed. Lastly, the performance guarantee of 1/(1+‖C‖)

for the itinerary based static policy reveals a relationship between policy performance and pattern

of resource usage. It would be interesting to explore such relationships in other problems.
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Online Appendix
Revenue Management with Heterogenous Resources: Unit Resource
Capacities, Advance Bookings, and Itineraries over Time Intervals

Appendix A: Offering Itineraries Only with Positive Contributions

We establish a lemma that we use throughout the paper to argue that some of our policies never

offer an unavailable resource. In the next lemma, for fixed {pi : i∈N}, we focus on the problem

max
S⊆N

{∑
i∈N

φqi (S)pi

}
. (18)

Lemma A.1 (Offering Only Positive Contributions) There exists an optimal solution S∗ to

problem (18) such that S∗ ⊆ {i∈N : pi > 0}.

Proof: Letting S∗ be an optimal solution to problem (18), we define the assortment Ŝ ⊆ S∗ as

Ŝ = {i ∈ S∗ : pi > 0}. By the assumption that φqi (S ∪ {j})≤ φ
q
i (S) for all i ∈ S and j 6∈ S, we have

φqi (S
∗)≤ φqi (Ŝ) for all i ∈ Ŝ. In this case, using the fact that pi ≤ 0 for all i ∈ S∗ \ Ŝ, along with

pi > 0 for all i∈ Ŝ, we obtain the chain of inequalities

∑
i∈S∗

φqi (S
∗)pi =

∑
i∈Ŝ

φqi (S
∗)pi +

∑
i∈S∗\Ŝ

φqi (S
∗)pi ≤

∑
i∈Ŝ

φqi (S
∗)pi ≤

∑
i∈Ŝ

φqi (Ŝ)pi.

Thus, the chain of inequalities above shows that Ŝ is also an optimal solution to problem (18).

Furthermore, we have Ŝ ⊆ {i∈N : pi > 0}.

Appendix B: Performance Guarantee for Itinerary Based Static Policy

In this section, we give a proof for Theorem 6.1. We need two preliminary lemmas. The next lemma

is the analogue of Lemma 5.2. Its proof is identical to that of Lemma 5.2 and omitted.

Lemma B.1 (Nonnegative Contribution of Each Resource) For each i∈N , [s, f ]∈F and

q ∈Q, we have φqi (B
q
[s,f ])

[
ri,[s,f ]−

∑
[a,b]∈F

∣∣ [s, f ]∩C[a,b]

∣∣ γq+1
i,[a,b]

]
≥ 0.

In the next lemma, we give an upper bound on the opportunity cost of the capacities consumed

by using resource i to serve a request for interval [s, f ] under the polynomial approximations.

Lemma B.2 (Upper Bound on Opportunity Cost) For each i ∈ N , [s, f ] ∈ F and

x∈ {0,1}n×T such that
∏f

`=s xi,` = 1, we have ĴqP(x)− ĴqP(x−ei,[s,f ])≤
∑

[a,b]∈F

∣∣ [s, f ]∩C[a,b]

∣∣γqi,[a,b].
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Proof: Using the previous lemma, by (11), we have γqi,[s,f ] ≥ 0 for all i∈N and [s, f ]∈F . Using the

fact that ĴqP(x) =
∑

i∈N
∑

[s,f ]∈F γ
q
i,[s,f ]

∏f

`=s xi,`, the difference ĴqP(x)− ĴqP(x− ei,[s,f ]) is

ĴqP(x)− ĴqP(x− ei,[s,f ]) =
∑

[a,b]∈F

γqi,[a,b] 1l{[a,b]∩[s,f ] 6=∅}

( b∏
`=a

xi,`

)
≤

∑
[a,b]∈F

γqi,[a,b] 1l{[a,b]∩[s,f ] 6=∅} ≤
∑

[a,b]∈F

∣∣ [s, f ]∩C[a,b]

∣∣ γqi,[a,b],
where the last inequality holds because C[a,b] is intersection preserving, so if [a, b]∩ [s, f ] 6= ∅, then

[s, f ]∩C[a,b] 6=∅. In this case, we have 1l{[a,b]∩[s,f ]6=∅} ≤
∣∣[s, f ]∩C[a,b]

∣∣.
In the next proposition, we show that we can use the value function approximations {ĴqP : q ∈Q}

to come up with an upper bound on the optimal total expected revenue.

Proposition B.3 (Upper Bound on Optimal Performance) Noting that the optimal total

expected revenue is J1(e), we have J1(e)≤ (1 + ‖C‖) Ĵ1
P(e).

Proof: Letting βqi,` =
∑

[a,b]∈F 1l{`∈C[a,b]}γ
q
i,[a,b] for notational brevity, we define the linear value

function approximations {V̂ q
P : q ∈Q} as V̂ q

P (x) = ĴqP(e) +
∑

i∈N
∑

`∈T β
q
i,` xi,`. We have

∑
[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)

(
f∏
`=s

xi,`

)[
ri,[s,f ] + V̂ q+1

P (x− ei,[s,f ])− V̂ q+1
P (x)

]}

=
∑

[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)

(
f∏
`=s

xi,`

)[
ri,[s,f ] −

f∑
h=s

βq+1
i,h

]}
(a)

≤
∑

[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)
[
ri,[s,f ] −

f∑
h=s

βq+1
i,h

]}
(b)
=
∑

[s,f ]∈F

λq[s,f ] max
S⊆N

{∑
i∈N

φqi (S)
[
ri,[s,f ]−

∑
[a,b]∈F

∣∣∣C[a,b] ∩ [s, f ]
∣∣∣γq+1

i,[a,b]

]}
(c)
=
∑

[s,f ]∈F

λq[s,f ]
∑
i∈N

φqi (B
q
[s,f ])

[
ri,[s,f ]−

∑
[a,b]∈F

∣∣∣C[a,b] ∩ [s, f ]
∣∣∣γq+1

i,[a,b]

]
(d)
=
∑
i∈N

∑
[s,f ]∈F

(γqi,[s,f ]− γ
q+1
i,[s,f ]) = ĴqP(e)− Ĵq+1

P (e)

(e)

≤ ĴqP(e)− Ĵq+1
P (e) +

∑
i∈N

∑
`∈T

(βqi,`−β
q+1
i,` )xi,` = V̂ q

P (x)− V̂ q+1
P (x).

Here, (a) follows from the same argument that we use to obtain the inequality (a) in the

proof of Proposition 5.4. In (b), we use the definition of βqi,` and use the interchange of sums∑f

h=s

∑
[a,b]∈F 1l{h∈C[a,b]} =

∑
[a,b]∈F

∑f

h=s 1l{h∈C[a,b]} =
∑

[a,b]∈F |C[a,b] ∩ [s, f ]|. Also, (c) follows from

(10), and (d) follows from (11). To see that (e) holds, note that Lemma B.1, along with (11), implies

that γqi,[s,f ] ≥ γ
q+1
i,[s,f ], in which case, we also have βqi,` ≥ β

q+1
i,` . The chain of inequalities above shows
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that the value function approximations {V̂ q
P : q ∈ Q} satisfy (8), in which case, by the discussion

that follows (8), we have V̂ q
P (x)≥ Jq(x) for all x∈ {0,1}n×T and q ∈Q. Thus, we have

J1(e) ≤ V̂ 1
P (e) = Ĵ1

P(e) +
∑
i∈N

∑
`∈T

β1
i,` = Ĵ1

P(e) +
∑
i∈N

∑
[a,b]∈F

∑
`∈T

1l{`∈C[a,b]} γ
1
i,[a,b]

= Ĵ1
P(e) +

∑
i∈N

∑
[a,b]∈F

∣∣C[a,b]

∣∣γ1
i,[a,b] ≤ Ĵ1

P(e) + ‖C‖
∑
i∈N

∑
[a,b]∈F

γ1
i,[a,b] = (1 + ‖C‖) Ĵ1

P(e),

where the last inequality holds because ‖C‖= max[a,b]∈F |C[a,b]|, and the last equality follows from

the fact that ĴqP(e) =
∑

i∈N
∑

[a,b]∈F γ
q
i,[a,b].

Let U q
P(x) be the total expected revenue obtained by the itinerary based static policy over time

periods {q, . . . ,Q} given that the state of the system at time period q is x. We can compute

the value functions {U q
P : q ∈ Q} through the dynamic program in (9) after replacing the ideal

assortments {Aq[s,f ] : [s, f ] ∈F , q ∈Q} with {Bq
[s,f ] : [s, f ] ∈F , q ∈Q}. In the next proposition, we

lower bound the performance of the itinerary based static policy.

Proposition B.4 (Lower Bound on Policy Performance) Letting {U q
P : q ∈Q} be the value

functions of the itinerary based static policy, for each x∈ {0,1}n×T and q ∈Q, U q
P(x) ≥ ĴqP(x).

Proof: We show the result by using induction over the time periods. At time period Q+ 1, since

we have UQ+1
P = 0 = ĴQ+1

P , the inequality holds at time period Q+ 1. Assuming that the inequality

holds at time period q + 1, we show that the inequality holds at time period q as well. By the

induction hypothesis, U q+1
P (x) and U q+1

P (x− ei,[s,f ]) are, respectively, lower bounded by Ĵq+1
P (x)

and Ĵq+1
P (x− ei,[s,f ]), so by (9), we get

U q
P(x) ≥

∑
[s,f ]∈F

λq[s,f ]

{∑
i∈N

φqi (B
q
[s,f ])

(
f∏
`=s

xi,

)̀ [
ri,[s,f ] + Ĵq+1

P (x− ei,[s,f ])− Ĵq+1
P (x)

]}
+ Ĵq+1

P (x)

(a)

≥
∑

[s,f ]∈F

λq[s,f ]

{∑
i∈N

φqi (B
q
[s,f ])

(
f∏
`=s

xi,

)̀ [
ri,[s,f ] −

∑
[a,b]∈F

∣∣∣ [s, f ]∩C[a,b]

∣∣∣γq+1
i,[a,b]

]}
+ Ĵq+1

P (x)

(b)
=
∑
i∈N

∑
[s,f ]∈F

(γqi,[s,f ] − γq+1
i,[s,f ])

(
f∏
`=s

xi,

)̀
+ Ĵq+1

P (x)
(c)
= [ĴqP(x) − Ĵq+1

P (x)] + Ĵq+1
P (x) = ĴqP(x),

where (a) follows from Lemma B.2, (b) holds by (11), and (c) holds by the definition of ĴqP(x). The

chain of inequalities above establishes the result.

We can use Propositions B.3 and B.4 to give a proof for Theorem 6.1.

Proof of Theorem 6.1:

By Proposition B.3, we have Ĵ1
P(e)≥ 1

1+‖C‖J
1(e). Using Proposition B.4 with x= e and q = 1,

we have U 1
P(e)≥ Ĵ1

P(e). So, we get U 1
P(e)≥ Ĵ1

P(e)≥ 1
1+‖C‖ J

1(e).
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Appendix C: Norm of a Collection of Intersection Preserving Subsets

In this section, we give a proof for Theorem 6.2. To see that the first statement holds, we construct

a feasible solution to problem (12) that provides an objective value of 1 + d(Dmax − 1)/Dmine. In

particular, we set t̂= 1 + d(Dmax− 1)/Dmine. Furthermore, for each [s, f ]∈F , we set

Ĉ[s,f ] =

{
s+ kDmin : k= 0,1,2, . . . ,

⌈
f − s
Dmin

⌉
− 1

}
∪{f}. (19)

The solution {Ĉ[s,f ] : [s, f ] ∈ F} and t̂ provides an objective value of t̂= 1 + d(Dmax− 1)/Dmine

for problem (12). We proceed to arguing that this solution is feasible for problem (12). Using

the fact that f − s+ 1 ≤ Dmax for all [s, f ] ∈ F , we have
∣∣Ĉ[s,f ]

∣∣≤ ⌈ f−s
Dmin

⌉
+ 1≤

⌈
Dmax−1
Dmin

⌉
+ 1 = t̂.

Thus, the first constraint is satisfied. The smallest element of Ĉ[s,f ] is s. Noting that

s+
(⌈

f−s
Dmin

⌉
− 1
)
Dmin ≤ s+ f−s

Dmin
Dmin = f , none of the elements of Ĉ[s,f ] exceeds f , so Ĉ[s,f ] ⊆ [s, f ].

Thus, the third constraint is satisfied. To check the second constraint, consider any [a, b]∈F such

that [s, f ]∩ [a, b] 6=∅. We show that Ĉ[s,f ] ∩ [a, b] 6=∅. We consider three cases.

First, consider the case [s, f ]⊆ [a, b]. Because Ĉ[s,f ] ⊆ [s, f ] by the earlier discussion in the proof,

we get Ĉ[s,f ] ⊆ [s, f ]⊆ [a, b], so Ĉ[s,f ] ∩ [a, b] 6=∅, as desired.

Second, consider the case [s, f ] 6⊆ [a, b] and [s, f ] 6⊇ [a, b]. Because [s, f ]∩ [a, b] 6=∅, we must have

f ∈ [a, b] or s∈ [a, b]. Noting that s∈ Ĉ[s,f ] and f ∈ Ĉ[s,f ], we get Ĉ[s,f ] ∩ [a, b] 6=∅, as desired.

Third, consider the case [s, f ] ⊇ [a, b]. To get a contradiction, suppose, on the contrary, that

Ĉ[s,f ] ∩ [a, b] = ∅. Since [s, f ]⊇ [a, b], we have s≤ a≤ b≤ f , but noting that Ĉ[s,f ] ∩ [a, b] = ∅ and

s, f ∈ Ĉ[s,f ], there are two successive days c1, c2 in Ĉ[s,f ] such that c1 <a≤ b < c2. Thus, there are at

least b−a+1 days in between days c1 and c2. Because b−a+1≥Dmin, there must be at least Dmin

days in between days c1 and c2. On the other hand, by our construction of Ĉ[s,f ] in (19), there are

at most Dmin−1 days in between two successive days in Ĉ[s,f ], which is a contradiction! Therefore,

the first statement in the theorem holds.

To see that the second statement holds, we write the second constraint in problem (12) as

|C[s,f ] ∩ [a, b] | ≥ 1l{[s,f ]∩[a,b] 6=∅} for all [s, f ], [a, b]∈F . Define the constant Z∗[s,f ] as

Z∗[s,f ] = min
{∣∣∣C[s,f ]

∣∣∣ :
∣∣∣C[s,f ] ∩ [a, b]

∣∣∣ ≥ 1l{[s,f ]∩[a,b]6=∅} ∀ [a, b]∈F , C[s,f ] ⊆ [s, f ]
}
, (20)

where the only decision variable is C[s,f ]. In this case, problem (12) becomes equivalent to

min{t : t≥ Z∗[s,f ] ∀ [s, f ]∈F}, which has the optimal objective value max[s,f ]∈F Z
∗
[s,f ].

In the rest of the proof, we will show that we can compute Z∗[s,f ] in (20) by solving a minimization

linear program with O(Dmax) decision variables and O(D2
max) constraints. Thus, letting χ∗ be the
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optimal objective value of problem (12), by the discussion in the previous paragraph, we have

χ∗ = max[s,f ]∈F Z
∗
[s,f ], so χ∗ is the maximum of the optimal objective values of |F| = O(Dmax T )

minimization linear programs, each having O(Dmax) decision variables are O(D2
max) constraints. In

this case, it immediately follows that we can compute the maximum of the optimal objective values

of these linear programs by solving a single linear program with O(|F|Dmax) =O(D2
max T ) decision

variables and O(|F|D2
max) = O(D3

max T ) constraints. To compute Z∗[s,f ] in (20) by solving a linear

program, we use the decision variables {x` : `= s, . . . , f} ∈ {0,1}f−s+1, where x` = 1 if and only if

day ` is included in the intersection preserving subset C[s,f ]. We write problem (20) as

min

f∑
`=s

x`

st

f∑
`=s

1l{`∈[a,b]} x` ≥ 1l{[s,f ]∩[a,b]6=∅} ∀ [a, b]∈F

x` ∈ {0,1} ∀ `= s, . . . , f.

Each row of the constraint matrix above includes only consecutive ones. Such a matrix is called an

interval matrix and it is totally unimodular; see Corollary 2.10 in Chapter III.1 in Nemhauser and

Wolsey (1988). Thus, we can relax the integrality requirements without an integrality gap. Also,

the problem above has a covering constraint and the right side of the constraint never exceeds one,

which implies that even if we did not have an upper bound of one on the decision variables, these

decision variables would never take a value greater than one. Thus, we can drop the constraints

x` ≤ 1 for all `= s, . . . , f . Lastly, the right side of the constraint is nonzero for all [a, b]∈F such that

[s, f ]∩ [a, b] 6= ∅ and there are only O(D2
max) such constraints. Thus, the problem above actually

has f − s+ 1 =O(Dmax) decision variables and O(D2
max) constraints.

Appendix D: Upper Bound on the Optimal Policy Performance

In this section, we give the proofs of the three results in Section 7, along with Lemma D.1 that we

use in that section. Here is the proof of Proposition 7.1.

Proof of Proposition 7.1:

We will use a simple manipulation in the proof. In particular, for fixed values {ϕi : i ∈N}, we

have the chain of equalities∑
j∈N

ϕj
∑

i∈N\{j}

βqj,[s,f ]→i =
∑
i∈N

∑
j∈N\{i}

ϕj β
q
j,[s,f ]→i =

∑
j∈N

∑
i∈N\{j}

ϕi β
q
i,[s,f ]→j, (21)

where the first equality holds by interchanging the order of sums and the second equality holds

by interchanging the roles of i and j. We show the proposition by using induction over the time
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periods. At time period Q + 1, we have JQ+1 = 0 =
∑

j∈N V
Q+1
β,j , so the result holds at time

period Q+ 1. Assuming that the result holds at time period q+ 1, we show that the result holds

at time period q as well. Fixing x ∈ {0,1}n×T and q ∈ Q, let S∗[s,f ] be an optimal solution to the

maximization problem on the right side of (1). By the induction hypothesis, Jq+1(x− ej,[s,f ]) ≤∑
i∈N\{j} V

q+1
β,i (xi) +V q+1

β,j (xj − e[s,f ]) and Jq+1(x)≤
∑

j∈N V
q+1
β,j (xj). Using (1), we get

Jq(x) =
∑

[s,f ]∈F

λq[s,f ]
∑
j∈N

φqj(S
∗
[s,f ])

(
f∏
`=s

xj,

)̀ [
rj,[s,f ] + Jq+1(x− ej,[s,f ]))− Jq+1(x)

]
+ Jq+1(x)

(a)

≤
∑

[s,f ]∈F

λq[s,f ]
∑
j∈N

φqj(S
∗
[s,f ])

(
f∏
`=s

xj,

)̀ [
rj,[s,f ] +V q+1

β,j (xj − e[s,f ]))−V q+1
β,j (xj)

]
+
∑
j∈N

V q+1
β,j (xj)

(b)
=

∑
[s,f ]∈F

λq[s,f ]

{∑
j∈N

φqj(S
∗
[s,f ])

(
f∏
`=s

xj,

)̀ [
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]

+
∑
j∈N

∑
i∈N\{j}

φqi (S
∗
[s,f ])

(
f∏
`=s

xi,

)̀
βqi,[s,f ]→j

}
+
∑
j∈N

V q+1
β,j (xj)

(c)
=
∑
j∈N

{ ∑
[s,f ]∈F

λq[s,f ]

{
φqj(S

∗
[s,f ])

(
f∏
`=s

xj,

)̀ [
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]

+
∑

i∈N\{j}

φqi (S
∗
[s,f ])

(
f∏
`=s

xi,

)̀
βqi,[s,f ]→j

}
+V q+1

β,j (xj)

}

≤
∑
j∈N

{ ∑
[s,f ]∈F

λq[s,f ] max
S⊆N

{
φqj(S)

(
f∏
`=s

xj,

)̀ [
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]

+
∑

i∈N\{j}

φqi (S)

(
f∏
`=s

xi,

)̀
βqi,[s,f ]→j

}
+V q+1

β,j (xj)

}
(d)

≤
∑
j∈N

{ ∑
[s,f ]∈F

λq[s,f ] max
S⊆N

{
φqj(S)

(
f∏
`=s

xj,

)̀ [
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S)βqi,[s,f ]→j

}
+V q+1

β,j (xj)

}
(e)
=
∑
j∈N

V q
β,j(xj).

In the chain of inequalities above, (a) uses the induction hypothesis. To see that (b) holds, we

note that rj,[s,f ] =
∑

i∈N β
q
j,[s,f ]→i = βqj,[s,f ]→j +

∑
i∈N\{j} β

q
j,[s,f ]→i and use (21) after identifying ϕj

with φqj(S
∗
[s,f ])

∏f

`=s xj,`. Also, (c) holds by rearranging the order of the sums. To get (d), we use

the same argument that we use to obtain inequality (a) in the proof of Proposition 5.4. Lastly, (e)

follows from (14). The chain of inequalities above completes the induction argument.

Next, we state and prove Lemma D.1.
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Lemma D.1 (Equivalence of Linear Programs) Problems (13) and (15) have the same

optimal objective value.

Proof: We let ĥ =
{
ĥq[s,f ](S) : S ⊆N , [s, f ]∈F , q ∈Q

}
and ŷ =

{
ŷi,[s,f ] : i∈N , [s, f ]∈F

}
be

an optimal solution to problem (13). For each j ∈ N , we set h̃q[s,f ]→j(S) = ĥq[s,f ](S). In this

case, we observe that the solution h̃ =
{
h̃q[s,f ]→j(S) : j ∈N , S ⊆N , [s, f ]∈F , q ∈Q

}
and ŷ is

feasible to problem (15) and provides the same objective value as the optimal objective value

of problem (13). Therefore, the optimal objective value of problem (15) is at least as large as

that of problem (13). In the rest of the proof, we show that the reverse inequality also holds.

We let h̃ =
{
h̃q[s,f ]→j(S) : j ∈N , S ⊆N , [s, f ]∈F , q ∈Q

}
and ỹ =

{
ỹi,[s,f ] : i∈N , [s, f ]∈F

}
be

an optimal solution to problem (15). We define ĥq[s,f ](S) as

ĥq[s,f ](S) =
1

n

∑
j∈N

h̃q[s,f ]→j(S).

We establish that the solution ĥ =
{
ĥq[s,f ](S) : S ⊆ N , [s, f ] ∈ F , q ∈ Q

}
and ỹ is feasible to

problem (13). Using the definition of ĥq[s,f ](S) above, we have∑
S⊆N

ĥq[s,f ](S) =
1

n

∑
j∈N

∑
S⊆N

h̃q[s,f ]→j(S)
(a)
=

1

n

∑
j∈N

λq[s,f ] = λq[s,f ],

where (a) holds because the solution (h̃, ỹ) satisfies the second constraint in problem (15). Thus,

the solution (ĥ, ỹ) satisfies the second constraint in problem (13).

To check that the solution (ĥ, ỹ) satisfies the third constraint in problem (13), using the definition

of ĥq[s,f ](S) once more, we have∑
S⊆N

φqi (S) ĥq[s,f ](S) =
1

n

∑
j∈N

∑
S⊆N

φqi (S) h̃q[s,f ]→j(S)
(b)
=

1

n

∑
j∈N

ỹqi,[s,f ] = ỹqi,[s,f ], (22)

where (b) holds because the solution (h̃, ỹ) satisfies the third constraint in problem (15). Thus, the

solution (ĥ, ỹ) satisfies the third constraint in problem (13).

Lastly, we check that the solution (ĥ, ỹ) satisfies the first constraint in problem (13). In particular,

we have the chain of inequalities∑
q∈Q

∑
[s,f ]∈F

∑
S⊆N

1l{`∈[s,f ]} φ
q
i (S) ĥq[s,f ](S) =

∑
q∈Q

∑
[s,f ]∈F

1l{`∈[s,f ]}
∑
S⊆N

φqi (S) ĥq[s,f ](S)

(c)
=
∑
q∈Q

∑
[s,f ]∈F

1l{`∈[s,f ]} ỹ
q
i,[s,f ]

(d)
=
∑
q∈Q

∑
[s,f ]∈F

1l{`∈[s,f ]}
∑
S⊆N

φqi (S) h̃[s,f ]→i(S)
(e)

≤ 1,

where (c) follows from (22), (d) follows from the fact that the solution (h̃, ỹ) satisfies the third

constraint in problem (15) with i= j, and (e) holds because the solution (h̃, ỹ) also satisfies the first
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constraint in problem (15). Therefore, the solution (ĥ, ỹ) satisfies the first constraint in problem

(13). Thus, the solution (ĥ, ỹ) is feasible to problem (13). The solution (ĥ, ỹ) provides the objective

value
∑

q∈Q
∑

i∈N
∑

[s,f ]∈F ri,[s,f ] ỹ
q
i,[s,f ], which is the optimal objective value of problem (15). So,

the optimal objective value of problem (13) is at least as large as that of problem (15).

To write the dual of problem (15), associating the dual variables µ= {µi,` : i∈N , `∈ T },

σ= {σq[s,f ]→j : j ∈N , [s, f ]∈F , q ∈Q} and β= {βqi,[s,f ]→j : i, j ∈N , [s, f ]∈F , q ∈Q}, we have

min
∑
i∈N

∑
`∈T

µi,` +
∑
q∈Q

∑
j∈N

∑
[s,f ]∈F

λq[s,f ] σ
q
[s,f ]→j (23)

st σq[s,f ]→j ≥
∑
i∈N

φqi (S)βqi,[s,f ]→j − φqj(S)

f∑
`=s

µj,` ∀ j ∈N , [s, f ]∈F , S ⊆N , q ∈Q∑
j∈N

βqi,[s,f ]→j = ri,[s,f ] ∀ i∈N , [s, f ]∈F

µ≥ 0, σ,β free.

It is simple to check that problem (15) is feasible and bounded, so by strong duality, problem (23)

also has the optimal objective value Z∗LP. We use problem (23) to give a proof for Theorem 7.2.

Proof of Theorem 7.2:

Let (µ̂, σ̂, β̂) be an optimal solution to problem (23). For notational brevity, also letting

α̂qj =
∑Q

k=q

∑
[s,f ]∈F λ

k
[s,f ] σ̂

k
[s,f ]→j, we will use induction over the time periods to establish that

V q

β̂,j
(xj)≤ α̂qj +

∑
`∈T µ̂j,` xj,` for all xj ∈ {0,1}T , j ∈N and q ∈Q. In this case, using this result with

q= 1 and xj = e′, we obtain
∑

j∈N V
1
β̂,j

(e′)≤
∑

j∈N α̂
1
j +
∑

j∈N
∑

`∈T µ̂j,` = Z∗LP, where the equality

uses the fact that
∑

j∈N α̂
1
j +
∑

j∈N
∑

`∈T µ̂j,` =
∑

j∈N
∑

q∈Q
∑

[s,f ]∈F λ
q
[s,f ] σ̂

q
[s,f ]→j +

∑
j∈N

∑
`∈T µ̂j,`

and the last quantity is the optimal objective value of problem (23), which is Z∗LP. Thus, the desired

result follows. In the rest of the proof, we focus on the induction argument. Noting that µ̂ ≥ 0,

for each xj ∈ {0,1}T , at time period Q+ 1, we have V Q+1

β̂,j
(xj) = 0 ≤

∑
`∈T µ̂j,` xj,`, so the result

holds at time period Q+ 1. Assuming that the result holds at time period q+ 1, we show that the

result holds at time period q as well. By the induction hypothesis V q+1

β̂,j
(xj) and V q+1

β̂,j
(xj − e[s,f ])

are upper bounded by α̂q+1
j +

∑
`∈T µ̂j,` xj,` and α̂q+1

j +
∑

`∈T µ̂j,` xj,`−
∑f

`=s µ̂j,`. So, by (14),

V q

β̂,j
(xj)≤

∑
[s,f ]∈F

λq[s,f ] max
S⊆N

{
φqj(S)

(
f∏
`=s

xj,`

)[
βqj,[s,f ]→j −

f∑
`=s

µ̂j,`

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
+ α̂q+1

j +
∑
`∈T

µ̂j,` xj,`.

Following the same argument that we used to obtain the inequality (a) in the proof of

Proposition 5.4, we can drop the product
∏f

`=s xj,` on the right side above to make the right side of
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the inequality even larger. After dropping the product
∏f

`=s xj,`, let S∗[s,f ]→j be an optimal solution

to the resulting maximization problem. In this case, using the inequality above, we get

V q

β̂,j
(xj) ≤

∑
[s,f ]∈F

λq[s,f ] max
S⊆N

{
φqj(S)

[
βqj,[s,f ]→j −

f∑
`=s

µ̂j,`

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
+ α̂q+1

j +
∑
`∈T

µ̂j,` xj,`

(a)
=
∑

[s,f ]∈F

λq[s,f ]

{
φqj(S

∗
[s,f ]→j)

[
βqj,[s,f ]→j −

f∑
`=s

µ̂j,`

]
+
∑

i∈N\{j}

φqi (S
∗
[s,f ]→j) β

q
i,[s,f ]→j

}
+ α̂q+1

j +
∑
`∈T

µ̂j,` xj,`

(b)
=
∑

[s,f ]∈F

λq[s,f ]

{∑
i∈N

φqi (S
∗
[s,f ]→j) β

q
i,[s,f ]→j −φ

q
j(S

∗
[s,f ]→j)

f∑
`=s

µ̂j,`

}
+ α̂q+1

j +
∑
`∈T

µ̂j,` xj,`

(c)

≤
∑

[s,f ]∈F

λq[s,f ] σ̂
q
[s,f ]→j + α̂q+1

j +
∑
`∈T

µ̂j,` xj,`
(d)
= α̂qj +

∑
`∈T

µ̂j,` xj,`,

where (a) holds because S∗[s,f ]→j is an optimal solution to the maximization problem on the left

side of (a), (b) follows by arranging terms, (c) holds because (µ̂, σ̂, β̂) satisfies the first constraint

in (23), and (d) follows because α̂qj = α̂q+1
j +

∑
[s,f ]∈F λ

q
[s,f ] σ̂

q
[s,f ]→j. So, the induction is complete.

We focus on the proof of Theorem 7.3. To give an alternative representation of the value functions

{Γqβ,j : q ∈Q} in (16), for each `∈ T , define the value function

Ψq
β,j(`) =

Q∑
k=q

∑
[s,f ]∈F

1l{s=`} λ
k
[s,f ] max

S⊆N\{j}

{ ∑
i∈N\{j}

φki (S) βki,[s,f ]→j

}
. (24)

Directly by comparing (24) with (16), observe that the value functions {Γqβ,j : q ∈ Q} and

{Ψq
β,j : q ∈Q} satisfy the relationship Γqβ,j(a, b) =

∑b

`=aΨq
β,j(`) for each interval [a, b]. Given that

the state of resource j is xj ∈ {0,1}T , let K(xj) be the set of unavailable days for this resource;

that is ` ∈ K(xj) if and only if xj,` = 0. Note that K(xj) is the union of the maximal unavailable

intervals with respect to xj. In other words, we have K(xj) =∪[a,b]∈H(xj)[a, b]. In this case, by the

discussion earlier in this paragraph, we obtain the identity∑
[a,b]∈H(xj)

Γqβ,j(a, b) =
∑

[a,b]∈H(xj)

∑
`∈[a,b]

Ψq
β,j(`) =

∑
`∈K(xj)

Ψq
β,j(`),

where the last equality holds since K(xj) = ∪[a,b]∈H(xj)[a, b]. Thus, to establish Theorem 7.3, it is

enough to show that V q
β,j(xj) =

∑
[a,b]∈I(xj)

Θq
β,j(a, b) +

∑
`∈K(xj)

Ψq
β,j(`).

Proof of Theorem 7.3:

In the proof, we will use an induction argument over the time periods to establish that

V q
β,j(xj) =

∑
[a,b]∈I(xj)

Θq
β,j(a, b) +

∑
`∈K(xj)

Ψq
β,j(`) for all xj ∈ {0,1}T and q ∈ Q. At time period
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Q+ 1, we have V Q+1
β,j = ΘQ+1

β,j = ΨQ+1
β,j = 0, so the result holds at time period Q+ 1. Assuming that

the result holds at time period q+ 1, we show that the result holds at time period q as well. For

each xj ∈ {0,1}T , the collection of maximal available intervals I(xj) and the set of unavailable

days K(xj) collectively cover T ; that is, T =
(
∪[a,b]∈I(xj)[a, b]

)
∪K(xj). Thus, for each s ∈ T , we

have
∑

[a,b]∈I(xj)
1l{s∈[a,b]}+

∑
`∈K(xj)

1l{s=`} = 1. In this case, by (14), we get

V q
β,j(xj) = V q+1

β,j (xj) +
∑

[s,f ]∈F

λq[s,f ]

 ∑
[a,b]∈I(xj)

1l{s∈[a,b]}+
∑

`∈K(xj)

1l{s=`}

×
max
S⊆N

{
φqj(S)

(
f∏
h=s

xj,h

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}

=
∑

[a,b]∈I(xj)

(
Θq+1
β,j (a, b) +

∑
[s,f ]∈F

1l{s∈[a,b]} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

(
f∏
h=s

xj,h

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

})

+
∑

`∈K(xj)

(
Ψq+1
β,j (`) +

∑
[s,f ]∈F

1l{s=`} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

(
f∏
h=s

xj,h

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

})
,

where the second equality follows by using the induction hypothesis to note that

V q+1
β,j (xj) =

∑
[a,b]∈I(xj)

Θq+1
β,j (a, b) +

∑
`∈K(xj)

Ψq+1
β,j (`) and rearranging the order of sums.

Noting the right side of the chain of equalities above, in the rest of the proof, for each [a, b]∈ I(xj)

and `∈K(xj), we will establish the following two equalities

Θq
β,j(a, b) = Θq+1

β,j ([a, b]) +
∑

[s,f ]∈F

1l{s∈[a,b]} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

(
f∏
h=s

xj,h

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
, (25)

Ψq
β,j(`) = Ψq+1

β,j (`) +
∑

[s,f ]∈F

1l{s=`} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

(
f∏
h=s

xj,h

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
. (26)

Thus, by the first displayed equality in the proof, V q
β,j(xj) =

∑
[a,b]∈I(xj)

Θq
β,j(a, b) +

∑
`∈K(xj)

Ψq
β,j(`),

completing the induction argument.

First, we show that (25) holds for each [a, b]∈ I(xj). So, throughout this portion of the discussion,

we focus on the maximal available intervals [a, b]∈ I(xj). In (25), we consider s∈ [a, b]. Note that if
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s∈ [a, b] and f ∈ [a, b], then because [a, b]∈ I(xj), we get xj,h = 1 for all h= s, . . . , f , so
∏f

h=s xj,h =

1. Furthermore, because s∈ [a, b], we have f ∈ [a, b] if and only if [s, f ]⊆ [a, b]. On the other hand,

if s∈ [a, b] and f 6∈ [a, b], then since the interval [a, b] is a maximal available interval, there must be

some h= s+ 1, . . . , f such that xj,h = 0, so
∏f

h=s xj,h = 0. Furthermore, because s ∈ [a, b], we have

f 6∈ [a, b] if and only if [s, f ] 6⊆ [a, b]. Thus, using 1l{s∈[a,b]} = 1l{s∈[a,b], [s,f ]⊆[a,b]}+ 1l{s∈[a,b], [s,f ]6⊆[a,b]},

we equivalently express the right side of (25) as

Θq+1
β,j (a, b) +

∑
[s,f ]∈F

1l{s∈[a,b], [s,f ]⊆[a,b]} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

(
f∏
h=s

xj,h

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
+
∑

[s,f ]∈F

1l{s∈[a,b], [s,f ] 6⊆[a,b]} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

(
f∏
h=s

xj,h

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
(a)
= Θq+1

β,j (a, b) +
∑

[s,f ]∈F

1l{s∈[a,b], [s,f ]⊆[a,b]} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}

+
∑

[s,f ]∈F

1l{s∈[a,b], [s,f ]6⊆[a,b]} λ
q
[s,f ] max

S⊆N\{j}

{ ∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
, (27)

where (a) holds because if [s, f ]⊆ [a, b], then
∏f

h=s xj,h = 1, whereas if s ∈ [a, b] and [s, f ] 6⊆ [a, b],

then
∏f

h=s xj,h = 0, as discussed right before the chain of equalities just above.

From Section 3, recall that I(xj − e[s,f ]) =
(
I(xj) \ [a, b]

)
∪
{

[a, s− 1], [f + 1, b]
}

for [s, f ]⊆ [a, b].

By definition of K(xj), K(xj − e[s,f ]) =K(xj)∪{s, . . . , f} So, by the induction hypothesis, we get

V q+1
β,j (xj − e[s,f ]])−V q+1

β,j (xj)

=
∑

[a,b]∈I(xj−e[s,f ])

Θq+1
β,j (a, b) +

∑
`∈K(xj−e[s,f ])

Ψq+1
β,j (`) −

∑
[a,b]∈I(xj)

Θq+1
β,j (a, b) −

∑
`∈K(xj)

Ψq+1
β,j (`)

= Θq+1
β,j (a, s− 1) + Θq+1

β,j (f + 1, b) − Θq+1
β,j (a, b) +

f∑
`=s

Ψq+1
β,j (`)

(b)
= Θq+1

β,j (a, s− 1) + Θq+1
β,j (f + 1, b) − Θq+1

β,j (a, b) + Γq+1
β,j (s, f), (28)

where (b) follows from the discussion right before the proof of the theorem, which shows that the

value functions {Γqβ,j : q ∈ Q} and {Ψq
β,j : q ∈ Q} computed, respectively, through (16) and (24)
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satisfy the identity Γq+1
β,j (s, f) =

∑f

`=sΨq+1
β,j (`). In this case, plugging (28) into (27), we equivalently

express the right side of (25) as

Θq+1
β,j (a, b) +

∑
[s,f ]∈F

1l{s∈[a,b], [s,f ]⊆[a,b]} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

[
βqj,[s,f ]→j + Θq+1

β,j (a, s− 1) + Θq+1
β,j (f + 1, b) − Θq+1

β,j (a, b) + Γq+1
β,j (s, f)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}

+
∑

[s,f ]∈F

1l{s∈[a,b], [s,f ]6⊆[a,b]} λ
q
[s,f ] max

S⊆N\{j}

{ ∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
(c)
= Θq

β,j(a, b),

where (c) follows from (17). By the equality above, the right side of (25) is equal to Θq
β,j(a, b),

establishing the equality in (25).

Second, we show that (26) holds for each ` ∈ K(xj). Thus, we focus on the unavailable days

`∈K(xj). For `∈K(xj), we have xj,` = 0, so
∏f

h=s xj,h = 0 for s= `. So, the right side of (26) reads

Ψq+1
β,j (`) +

∑
[s,f ]∈F

1l{s=`} λ
q
[s,f ]×

max
S⊆N

{
φqj(S)

(
f∏
h=s

xj,h

)[
βqj,[s,f ]→j +V q+1

β,j (xj − e[s,f ])−V q+1
β,j (xj)

]
+

∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}

= Ψq+1
β,j (`) +

∑
[s,f ]∈F

1l{s=`} λ
q
[s,f ] max

S⊆N

{ ∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
(d)
= Ψq+1

β,j (`) +
∑

[s,f ]∈F

1l{s=`} λ
q
[s,f ] max

S⊆N\{j}

{ ∑
i∈N\{j}

φqi (S) βqi,[s,f ]→j

}
(e)
= Ψq

β,j(`),

where (d) holds because resource j does not appear in the objective function of the maximization

problem on the left side of (d), and (e) follows by (24). Thus, the equality in (26) holds.

Appendix E: Performance of the Constraint Splitting Policy on Synthetic Datasets

In Baek and Ma (2019), the authors consider general revenue management problems with non-unit

resource capacities, as well as booking requests not necessarily over intervals of days. They

split the resource constraints into two groups. In the first group, a booking request consumes

the capacities of at most L different resources. In the second group, they have a matroid

characterization of the capacity consumptions of the booking requests. The authors give a policy

that is guaranteed to obtain at least 1
2(1+L)

fraction of the optimal total expected revenue. We
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Param. Total Exp. Revenue
(Dmax, ρ, δ) LINR POLR LPR COS1 COS5

(6,1.2,0.9) 81.05 80.29 81.11 65.40 63.16
(6,1.2,0.7) 73.00 73.04 73.97 64.92 61.33
(6,1.6,0.9) 78.60 75.96 77.92 67.19 63.48
(6,1.6,0.7) 85.02 83.07 84.52 74.50 70.95
(6,2.0,0.9) 85.04 82.84 84.14 77.08 72.50
(6,2.0,0.7) 80.85 77.39 79.28 73.25 69.05

(8,1.2,0.9) 78.23 77.84 79.29 62.82 61.58
(8,1.2,0.7) 71.07 71.09 73.44 59.86 56.76
(8,1.6,0.9) 84.64 81.96 84.82 70.59 69.37
(8,1.6,0.7) 79.75 78.52 81.57 66.73 63.04
(8,2.0,0.9) 84.26 81.37 81.56 69.90 67.93
(8,2.0,0.7) 79.21 73.62 77.22 65.19 62.08

(10,1.2,0.9) 73.89 71.43 74.33 53.93 54.13
(10,1.2,0.7) 73.09 72.90 75.02 57.47 58.17
(10,1.6,0.9) 79.11 74.98 78.40 60.83 60.13
(10,1.6,0.7) 82.22 78.10 81.86 62.89 59.45
(10,2.0,0.9) 83.65 79.14 81.83 67.78 64.75
(10,2.0,0.7) 83.93 75.64 82.01 67.59 59.69

Avg. 79.81 77.18 79.57 66.00 63.20

Table EC.1 Total expected revenues obtained by the constraint splitting policies.

refer to the policy proposed by Baek and Ma (2019) as the constraint splitting policy. The

performance guarantee for the constraint splitting policy applies to general revenue management

problems, not requiring the resources to be unique or the booking requests to consume capacities

on consecutive days. Furthermore, this performance guarantee is independent of the number of

constraints in the second group. The constraint splitting policy, when applied to our revenue

management problem, provides a performance guarantee of 1
1+Dmax

. Our polynomial value function

approximations improve upon this performance guarantee when Dmin > 1. In this paper, exploiting

the unit capacities of the resources and the interval structure of the booking requests, we can

further perform rollout on static policies, which dramatically improves the performance of the static

policy on hand. For our synthetic datasets, we compute the parameters of the constraint splitting

policy once or five times over the selling horizon. We refer to the resulting policies, respectively, as

COS1 and COS5, where we emphasize that these policies are based on constraint splitting. In Table

EC.1, we compare the total expected revenues obtained by COS1 and COS5 with those obtained

by LINR, POLR, and LPR. We express the total expected revenue of each benchmark policy as a

percentage of the upper bound on the optimal total expected revenue. The total expected revenues

that we report for LINR, POLR, and LPR in Table EC.1 are taken from Table 2.

Our results indicate that LINR, POLR, and LPR perform significantly better than COS1 and

COS5. On average, the total expected revenues obtained by COS5 lag behind those obtained by

LINR, POLR, and LPR by, respectively, 20.83%, 18.19%, and 20.63%. Thus, exploiting the structure

of our revenue management problem, our rollout policies provide substantial improvements over

COS5. Similar observations hold for COS1 as well. Comparing the performance of COS5 with that
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of LIN5, POL5, and LP5 from Table 2, the improvements of LIN5, POL5, and LP5 over COS5 are still

significant, reaching, respectively, 19.01%, 7.49%, and 16.69%, on average.

Appendix F: Additional Details for the Boutique Hotel Dataset

We explain the details of the parameter estimates for the boutique hotel dataset. Following this

discussion, we check the performance of the policy in Baek and Ma (2019).

Parameter Estimation: Recalling that the values of {θk : k= 1, . . . ,171} are the same when k

falls in each of the seven intervals [1,3], [4,7], [8,14], [15,28], [29,42], [43,56] and [57,171], we need

to estimate seven parameters to come up with {θk : k= 1, . . . ,171}. The length of stay for a customer

ranges between one and eight days, so we need to estimate eight parameters for {ηd : d= 1, . . . ,8}.

Lastly, there are six rooms, which implies that we need to estimate the six preference weights

{vi : i= 1, . . . ,6}. Thus, the total number of parameters that we need to estimate is 21. For each one

of the time periods in the selling horizon, the dataset provides the assortment of rooms that was

on offer to the customers and indicates whether there was a booking at the time period. If there

was a booking, then the dataset also provides the room chosen in the booking and the interval

of stay for the booking. Using the dataset, we use standard maximum likelihood estimation to

estimate the parameters of our model. We provide summary statistics for the estimated values of

the parameters. The largest values for θk occur when k falls in one of the intervals [1,3], [4,7] and

[8,14]. More than 60% of the booking requests are for intervals of three or fewer days. Lastly, the

largest and smallest preference weights for a room differ by a factor of 2.28.

We carry out five-fold cross-validation for our arrival probability and preference weight

estimates. Recall that we have 1190 time periods in our selling horizon. Some time periods have

bookings, some do not. We split the 1190 time periods in the selling horizon into five equal

segments. After estimating the parameters of our model using four-fifths of the dataset, we validate

the ability of our parameter estimates to predict the arrivals and customer choices in the remaining

one-fifth holdout dataset. To validate the estimated arrival probabilities and preference weights,

we use our model parameters to predict the expected number of weekly bookings made within the

assortments offered in the holdout dataset, and compare our predictions with the actual numbers

of bookings. Over five holdout datasets, the average percent deviation between the predicted and

actual bookings is 23%. For each time period with a reservation in the holdout dataset, we also

order the offered rooms according to their choice probabilities from the fitted choice model, and

count the fraction of times that the booked room is one of the r rooms with the largest choice

probabilities. We refer to this fraction as the r-hit rate. For example, the 2-hit rate is the fraction

of times that the booked room had one of the top two choice probabilities. The 1-hit and 2-hit
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Load Total Exp. Revenue
Fact. LINR POLR LPR COS1 COS5

0.8 83.96 84.43 83.00 78.07 78.22
1.2 88.18 88.70 87.16 82.93 83.64
1.6 90.18 89.69 88.85 85.18 84.77
2.0 91.03 91.22 90.53 86.75 86.63

Avg. 88.34 88.51 87.38 83.23 83.32

Table EC.2 Total expected revenues obtained by the constraint splitting policies.

rates, averaged over five holdout datasets, are, respectively, 0.58 and 0.82. Therefore, more than

80% of the time, the booked room is one of the two options with the largest choice probabilities.

Similarly, more than 50% of the time, the booked room is indeed the one with the largest choice

probability. Lastly, the average rank of the booked room, averaged over all holdout datasets and

bookings in each holdout dataset, is 1.75.

Performance of the Constraint Splitting Policy: As discussed in Appendix E, we compute

the parameters of the constraint splitting policy in Baek and Ma (2019) once and five times over the

selling horizon, yielding the policies COS1 and COS5. In Table EC.2, we compare the performance

of these two policies with LINR, POLR, and LPR. Our results indicate that each of the policies LINR,

POLR, and LPR provide noticeable improvements over COS1 and COS5.


