
An Approximation Algorithm for Network Revenue
Management under Nonstationary Arrivals

Yuhang Ma1, Paat Rusmevichientong2, Mika Sumida1, Huseyin Topaloglu1

1
School of Operations Research and Information Engineering, Cornell Tech, New York, NY 10044,

2
Marshall School of Business, University of Southern California, Los Angeles, CA 90089,

ym367@cornell.edu, rusmevic@marshall.usc.edu, ms3268@cornell.edu, topaloglu@orie.cornell.edu

August 16, 2019

We provide an approximation algorithm for network revenue management problems. In our approximation

algorithm, we construct an approximate policy using value function approximations that are expressed as

linear combinations of basis functions. We use a backward recursion to compute the coe�cients of the basis

functions in the linear combinations. If each product uses at most L resources, then the total expected

revenue obtained by our approximate policy is at least 1/(1+L) of the optimal total expected revenue. In

many network revenue management settings, although the number of resources and products can become

large, the number of resources used by a product remains bounded. In this case, our approximate policy

provides a constant-factor performance guarantee. Our approximate policy can handle nonstationarities in

the customer arrival process. To our knowledge, our approximate policy is the first approximation algorithm

for network revenue management problems under nonstationary arrivals. Our approach can incorporate the

customer choice behavior among the products, and allows the products to use multiple units of a resource,

while still maintaining the performance guarantee. In our computational experiments, we demonstrate that

our approximate policy performs quite well, providing total expected revenues that are substantially better

than its theoretical performance guarantee.

Key words : network revenue management, approximate dynamic programming, dynamic pricing

1. Introduction

In network revenue management problems, we manage the limited capacities for a collection

of resources to satisfy the requests for di↵erent products that arrive randomly over time. Such

problems find applications in a variety of settings, including airlines, hospitality, railways, and

cloud computing. In airlines, for example, the resources are the flight legs and the products

are the itineraries o↵ered to customers that can consume capacities on multiple flight legs. In

hospitality, on the other hand, the resources are the availabilities of hotel rooms on each day and

the products are the multiple night stays o↵ered to customers that can consume capacities on

multiple days. The main tradeo↵ in network revenue management problems involves keeping a

balance between accepting a product request that is currently in the system to generate some

1

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
2

immediate revenue and reserving the resource capacities for a potentially more profitable product

request that can arrive in the future. Nevertheless, the key di�culty in finding the optimal course

of action arises from the fact that serving a request for a product consumes the capacities of the

di↵erent resources used by the product. Thus, computing the optimal course of action requires

keeping track of the remaining capacities for all the resources simultaneously, creating the curse of

dimensionality as the number of resources increases.

In this paper, we provide an approximation algorithm for network revenue management

problems. Our problem setup follows the standard network revenue management literature. We

have resources with limited capacities that can be used to serve the requests for products arriving

randomly over a finite selling horizon. At each time period in the selling horizon, a customer arrives

with a request for a particular product. If we accept the product request, then we generate a

certain revenue and consume the capacities of the di↵erent resources used by the product. The

arrivals of the product requests can have arbitrary nonstationarities, but they are independent

between the time periods. The goal is to find a policy to determine which product requests to

accept to maximize the total expected revenue over the selling horizon. The dynamic programming

formulation for this problem requires a high-dimensional state variable that keeps track of the

remaining resource capacities. Thus, it is intractable to compute the optimal policy.

Contributions: Letting L be the maximum number of resources used by a product, we give an

approximate policy that is guaranteed to obtain at least 1/(1 +L) of the optimal total expected

revenue. In many network revenue management settings, the number of resources and products

can become large, but the number of resources used by a product remains bounded. In airlines,

for example, L corresponds to the maximum number of flight legs included in an itinerary, which

usually does not exceed two or three. When the number of resources used by a product is bounded,

our approximate policy provides a constant-factor performance guarantee. To our knowledge, our

approximate policy is the first approximation algorithm that can handle arbitrary nonstationarities

in the arrivals of the product request. Also, we note that our performance guarantee is independent

of the numbers of resources and products, and it does not involve any hidden constants that can

potentially depend on other input data.

The idea behind our approximate policy is to use value function approximations that are

expressed as linear combinations of basis functions. The coe�cients in the linear combinations

are computed through a backward recursion over the time periods in the selling horizon. The

approach that we use to construct our approximate policy provides flexibility on two important

dimensions. First, our value function approximations are a member of a relatively broad class. In

our value function approximations, we have one basis function for each product. The basis function

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
3

associated with each product takes the value zero when we do not have su�cient capacities to

serve a request for the product. Therefore, we refer to our basis functions as availability-tracking

basis functions. For any choice of availability-tracking basis functions, we can use our backward

recursion over the time periods to compute coe�cients for the basis functions in the linear

combinations. In our backward recursion, we have a tuning parameter ✓ whose specific allowable

values are determined by the availability-tracking basis functions that we use. We prove that if

we construct an approximate policy using the value functions computed through our backward

recursion, then the approximate policy is guaranteed to obtain at least 1/(1+ ✓L) of the optimal

total expected revenue. This result holds for any choice of availability-tracking basis functions. The

performance guarantee of 1/(1 + ✓L) improves as ✓ gets smaller. In our approach, the tuning

parameter ✓ must be at least one, and there exist availability-tracking basis functions that permit

choosing the smallest possible value of one for the tuning parameter ✓, in which case, we obtain

the performance guarantee of 1/(1+L) discussed in the previous paragraph.

Second, we start with a network revenue management setup where each customer arrives into the

system to purchase a particular product and each product uses at most one unit of a resource. This

setup allows us to convey the key ideas without notational clutter, but we can extend our approach

to more general setups. In particular, we show that we can extend our approach to a case in

which we o↵er a set of products to each customer, and the customer chooses among the o↵ered

products. Similarly, we show that we can extend our approach to a case in which a product may use

more than one unit of a resource, which occurs, for example, in airlines when group reservations are

allowed. If the customers choose among the o↵ered products, then the performance guarantee of

our approximate policy is still 1/(1+L), whereas if a product uses at most M units of a particular

resource, then the performance guarantee of our approximate policy is 1/(1+ (2M � 1)L). Lastly,

our backward recursion is simple and does not require solving any involved optimization problems,

but it can use the solution to a linear programming approximation to construct our value function

approximations, while retaining the performance guarantee of 1/(1+L).

Literature Review: One approach to construct policies in network revenue management

problems is based on bid prices, where we associate a bid price for each resource, measuring the

value of a unit of resource. In this case, we accept the request for a product if the revenue from

the product exceeds the total value of the resources consumed by the product. Simpson (1989)

and Williamson (1992) compute bid prices using a linear programming approximation that is

constructed under the assumption that the numbers of product requests take on their expected

values. They use the optimal values of the dual variables associated with certain capacity constraints

to measure the value of a unit of resource. Talluri and van Ryzin (1998) show that such a bid price

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
4

policy is asymptotically optimal, as the expected numbers of product requests and the capacities

of the resources increase linearly with the same rate. Talluri and van Ryzin (1999) use samples of

the product requests in the linear program to capture information about the distributions of the

product requests. Bertsimas and Popescu (2003) measure the value of a unit of resource directly

by perturbing the right side of a capacity constraint and resolving the linear program. A number

of papers characterize the loss in the optimal total expected revenue for the policies derived from

linear programming approximations; see Cooper (2002), Maglaras and Meissner (2006), Jasin and

Kumar (2012), and Jasin and Kumar (2013). These papers focus on an asymptotic regime, where

the total expected demand and the capacities of the resources increase linearly with the same

rate. The characterization of the losses are additive and it depends on the input data. In contrast,

our performance guarantee holds without an asymptotic regime. Also, our performance guarantee

of 1/(1+L) is multiplicative and does not depend on the input data other than L.

The value of a unit of resource should depend on the time left in the selling horizon to utilize the

resource, as well as the remaining capacity of the resource. Thus, bid prices should, in principle, be

time and capacity dependent. There is work on computing such bid prices. Adelman (2007), Zhang

and Adelman (2009), Kunnumkal and Topaloglu (2010a), and Kirshner and Nediak (2015) develop

methods that yield time dependent bid prices, whereas Cooper and de Mello (2007), Topaloglu

(2009), and Zhang (2011) develop methods that yield capacity dependent bid prices. Tong and

Topaloglu (2013), Vossen and Zhang (2015a,b), and Kunnumkal and Talluri (2016a) show that some

of these approaches are equivalent, although their derivations use seemingly unrelated paths. There

is also work on incorporating customer choice behavior into network revenue management problems,

where customers choose among the o↵ered products. Some of the work extends and analyzes the

linear programming approximation to incorporate customer choice behavior; see Gallego et al.

(2004), Liu and van Ryzin (2008), Kunnumkal and Topaloglu (2008), Bront et al. (2009), Mendez-

Diaz et al. (2010), Meissner et al. (2012), Talluri (2014), and Strauss and Talluri (2017). There

is also work on approximating the value functions under customer choice behavior; see Zhang

and Cooper (2005, 2009), Zhang and Adelman (2009), Kunnumkal and Topaloglu (2010b), and

Kunnumkal and Talluri (2016b). There are papers that use stochastic approximation to compute

booking limits and bid prices; see van Ryzin and Vulcano (2008a,b), Topaloglu (2008), and

Chaneton and Vulcano (2011). These papers do not give performance guarantees.

Online packing problems are closely related to network revenue management problems, as each

packing constraint may capture the capacity of a resource and each arriving item may capture

the request for a product. Working with the random-order arrival model for the product requests,

Kesselheim et al. (2014) give a policy with a competitive ratio of 1�O(
p
(logL)/cmin), where cmin is

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
5

the smallest resource capacity. The authors also give an upper bound of 1�⌦(1�1/L
1

cmin�1) on the

competitive ratio. Thus, their competitive ratio approaches one as the capacities of the resources

become large. The strong competitive ratio in Kesselheim et al. (2014) comes at the cost of having to

work with the random-order arrival model, which is restrictive for the network revenue management

setting. In the random-order arrival model, the set of product requests that are to arrive over the

selling horizon is fixed a priori, possibly by an adversary. Once the set of product requests that are

to arrive is fixed, these product requests arrive according to a random permutation. A competitive

ratio under the random-order arrival model implies the same competitive ratio under independent

and identically distributed arrivals. However, the competitive ratio in Kesselheim et al. (2014)

does not hold under nonstationary arrivals. Indeed, in Appendix E, we give a simple example

to show that the policy proposed by Kesselheim et al. (2014) performs arbitrarily poorly under

nonstationary arrivals. Online packing problems are often motivated by the adwords setting, where

assuming stationary arrivals is reasonable, because the users doing a search today may not be

too di↵erent from those doing a search tomorrow. However, assuming stationary arrivals is not

reasonable in the network revenue management setting, because the customers booking airline

tickets close to the departure time are clearly di↵erent from those booking early. We also tested

the policy in Kesselheim et al. (2014) in our computational experiments under both stationary and

nonstationary arrivals, though it does not have a competitive ratio in the latter case. The policy

in Kesselheim et al. (2014) noticeably lags behind our approximate policy in both cases. Much of

the other work on online packing problems also uses the random-order arrival model; see Devanur

and Hayes (2009), Molinaro and Ravi (2014), Agrawal et al. (2014). Devanur et al. (2011) work

with stationary or adversarial arrivals, but with restrictions on choices of the adversary. Tan and

Srikant (2012) use nonstationary arrivals, but allow violations of capacity constraints.

The adwords problem is a special case of the online packing problem, where the revenue and

resource consumption of a product request are both dictated by the bid that an advertiser places for

a keyword. A number of papers use the primal-dual framework to design algorithms for the adwords

problem; see Mehta et al. (2007), Buchbinder and Naor (2009), and Goel et al. (2010). In the

primal-dual framework, a tradeo↵ function is used to prioritize the bidders for receiving keywords.

For example, the tradeo↵ function may prioritize the bidders with the larger remaining budgets

for receiving keywords. After making decisions over the selling horizon by following the tradeo↵

function, one uses the decisions to construct a primal-dual solution pair for a linear program

that provides an upper bound on the optimal total expected revenue, in which case, studying the

optimality gap of this solution yields the competitive ratio.

Motivated by product assortment personalization, Golrezaei et al. (2014) study a problem

involving multiple products with limited inventories. The firm o↵ers a set of products to an

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
6

arriving customer. The customer makes a choice among the o↵ered products according to a choice

model. The goal is to find a policy to determine which set of products to o↵er to each customer

to maximize the total expected revenue over the selling horizon. If each product uses exactly

one resource so that L = 1, then our network revenue management problem under the customer

choice behavior corresponds to the problem studied by Golrezaei et al. (2014). The authors use the

primal-dual framework to construct a policy with a 50% competitive ratio. The tradeo↵ function

used by Golrezaei et al. (2014) adjusts the revenue of each product as a function of its remaining

inventory, prioritizing the products with larger inventories. Their policy o↵ers a set of products to

maximize the immediate expected adjusted-revenue from each customer. Our availability-tracking

basis functions are somewhat analogous to the tradeo↵ functions in the primal-dual framework

in the sense that our basis functions also adjust the revenue of each product as a function of

the remaining inventories of the resources, in which case, we accept a product request only if

the immediate adjusted-revenue from the product is non-negative. However, our basis functions,

by themselves, are not su�cient to obtain a performance guarantee. To obtain our performance

guarantee, we need to weigh our basis functions with coe�cients and the computation of the

coe�cients requires designing a backward recursion over the time periods.

Recently, Rusmevichientong et al. (2017) consider dynamic assortment problems with random

usage durations. In their problem setting, each customer uses a product for a random duration of

time, before returning it. The authors use linear value function approximations to obtain a policy

with a 50% performance guarantee. The slopes of the linear value function approximations are

computed by using a backward recursion that resembles ours on the surface, but both papers tackle

rather di↵erent challenges. In Rusmevichientong et al. (2017), there is no resource network. If a

customer chooses a product, then she consumes only the inventory of this product. In the absence

of a resource network, linear value function approximations are su�cient to get a performance

guarantee, but under a resource network, linear approximations were not su�cient for us. When

we use nonlinear basis functions, the opportunity cost of the resource capacities used by a product

becomes dependent on the state of the system. Furthermore, since di↵erent products may use the

same resource, it is di�cult to account for the opportunity cost of each resource separately. We

get around these di�culties by constructing a state-independent upper bound on the opportunity

cost and constructing a backward recursion over the time periods that accounts for the optimal

total expected revenue from a particular product. Nevertheless, we cannot claim that our work

is a generalization of Rusmevichientong et al. (2017) either, because incorporating random usage

durations in the presence of a resource network brings its own complications.

There is work in dynamic optimization with implications on revenue management. Chan and

Farias (2009) give approximation algorithms for a certain class of stochastic control problems. Their

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
7

work implies that if each product uses only one resource, then a myopic policy provides a 50%

performance guarantee even under customer choice behavior. Asadpour and Nazerzadeh (2016) give

algorithms for maximizing random monotone submodular functions. Their non-adaptive algorithm

implies that if there is a single resource, then a static algorithm that a priori chooses the product

requests to accept provides a performance guarantee of (e�1)/(2e). Lastly, Wang et al. (2016) and

Gallego et al. (2016) give algorithms with performance guarantees for dynamic resource allocation

problems, but they also consider the case where each product uses one resource.

Organization: In Section 2, we give a dynamic programming formulation for the network

revenue management problem. In Section 3, we construct our approximate policy, provide a

performance guarantee, and show that this guarantee is tight. In Section 4, we give extensions

of our approximate policy to the cases where the customers choose among the products and a

product may consume more than one unit of a resource. We also discuss how to leverage a linear

programming approximation when constructing our approximate policies. In Section 5, we provide

computational experiments. In Section 6, we conclude.

2. Problem Formulation

The set of resources is L and the set of products is J . The capacity of resource i is Ci. If we

accept a request for product j, then we consume one unit of capacity of each resource in the set

Aj ✓ L. We use L to denote the maximum number of resources that can be used by a product,

so L = maxj2J |Aj|. Accepting a request for product j generates a revenue of rj. We have T

time periods in the selling horizon indexed by T = {1, . . . , T}. Each time period corresponds to

a su�ciently small interval of time so that there is at most one product request at each time

period. We get a request for product j at time period t with probability �t
j. With the remaining

probability 1�
P

j2J �t
j, there is no request for a product at time period t.

Our goal is to find a policy to determine which product requests to accept at each time period

to maximize the total expected revenue over the selling horizon, while adhering to the capacity

availabilities of the resources. To capture the state of the system, we let xi be the remaining

capacity of resource i at the beginning of a generic time period. Therefore, we can use the

vector x = (xi : i 2 L) 2 Z|L|
+ to capture the state of the resources. The set of possible states

is Q= {x2Z|L|
+ : xi Ci 8 i2L}. We can accept a request for product j when we have at least

one unit of capacity for each resource used by product j. Therefore, letting 1l{·} be the indicator

function, we can accept a request for product j if and only if
Q

i2Aj 1l{xi�1} = 1.

We use V t(x) to denote the maximum total expected revenue over time periods t, t+ 1, . . . , T ,

given that the system is in state x at time period t. Letting ei 2Z|L|
+ be the unit vector with a one

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
8

in the i-th component and defining [a]+ =max{a,0}, we can find the optimal policy by computing

the optimal value functions {V t(x) :x2Q, t2 T } through the dynamic program

V t(x) =
X

j2J

�t
j

Y

i2Aj

1l{xi�1}

!
max

(
rj +V t+1

x�

X

i2Aj

ei

!
, V t+1(x)

)

+

1�

X

j2J

�t
j +

X

j2J

�t
j

1�

Y

i2Aj

1l{xi�1}

!!
V t+1(x)

= V t+1(x)+
X

j2J

�t
j

Y

i2Aj

1l{xi�1}

!"
rj �V t+1(x)+V t+1

x�

X

i2Aj

ei

!#+

, (1)

with the boundary condition that V T+1 = 0. In the dynamic program above, if we have a request

for product j at time period t and we have capacities on all resources used by product j, then we

have a choice to accept or reject the request. If we accept, then we generate a revenue of rj and the

state of the resources at the next time period is x�
P

i2Aj ei. If we reject, then we do not generate

revenue and the state of the resources at the next time period remains at x. Also, if there is no

request at time period t or there is a request for some product, but we do not have capacity on

some resource used by the product, then we do not accept a request, in which case, the state of the

resources at the next time period remains at x. The second equality above follows by arranging

the terms. Letting C = (Ci : i 2 L) be the vector of initial resource capacities, the optimal total

expected revenue is V 1(C). By (1), given that the state of the resources at time period t is x, if

rj � V t+1(x)�V t+1(x�
P

i2Aj ei), then it is optimal to accept a request for product j as long as we

have capacity on all resources used by product j. Here, we can view V t+1(x)�V t+1(x�
P

i2Aj ei)

as the opportunity cost of the capacities used by product j.

The size of the state space is |Q|=O
�Q

i2LCi

�
, which increases exponentially with the number

of resources, making the computation of the optimal value functions intractable.

3. Approximate Policy

We construct approximations to the optimal value functions using a linear combination of basis

functions. We use the following outline. In Section 3.1, we describe our basis functions. In

Section 3.2, we show how to compute the coe�cient of each basis function in the value

function approximations. In Section 3.3, we show the performance guarantee for our approximate

policy. In Section 3.4, we show that this performance guarantee is tight.

3.1 Requirements for Basis Functions

We approximate the optimal value function V t using the value function approximation Ht. To

construct the value function approximation Ht, we use a linear combination of basis functions. In

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
9

particular, for each product j, we have a basis function 'j :Q! [0,1]. In this case, the value

function approximation Ht is given by

Ht(x) =
X

j2J

�t
j 'j(x), (2)

where B = {'j : j 2J } is a prespecified collection of basis functions and {�t
j : j 2 J , t 2 T } are

adjustable coe�cients. To construct our approximate policy, we replace V t+1 on the right side of (1)

with Ht+1. Therefore, given that the state of the resources at time period t is x, our approximate

policy accepts a request for product j as long as rj �Ht+1(x)�Ht+1(x�
P

i2Aj ei) and we have

capacity on all resources used by product j. We refer to our basis functions as availability-tracking

basis functions because we will impose the condition that 'j(x) takes the value of zero if the vector

of resource capacities x does not provide enough availability to serve a request for product j. Below

is the full definition of availability-tracking basis functions.

Definition 3.1 (Availability-Tracking Bases) The collection B = {'j : j 2J } is called a

collection of availability-tracking basis functions if it satisfies the following conditions.

(a) Availability Tracking: For each j 2 J and x 2Q, we have 'j(x) = 0 whenever xi = 0 for

some i2Aj. That is, 'j(x)
Q

i2Aj 1l{xi�1}.

(b) Limited Dependence: For each j 2J and x2Q, the basis function 'j(x) only depends on

(xi : i2Aj). That is, for any x,y 2Q with xi = yi for all i2Aj, we have 'j(x) ='j(y).

(c) Normalization: For each j 2J , we have 'j(C) = 1.

As discussed right before the definition, the range of 'j is the interval [0,1]. The first property

ensures that 'j(x) takes the value zero if the resource capacities x are not su�cient to serve a

request for product j. The second property ensures that 'j(x) is independent of the capacities of

the resources that are not used by product j. The third property ensures that 'j(x) is one when

the resource capacities x are at their largest possible values. For example, the minimum basis

function 'j(x) =mini2Aj
xi
Ci

and the polynomial basis function 'j(x) =
Q

i2Aj
xi
Ci

satisfy the three

properties in the definition above. One can check that if 'j(x) is linear in x, then it cannot satisfy

the three properties. Therefore, linear basis functions are not availability-tracking.

Given a collection B = {'j : j 2J } of availability-tracking basis functions, we define the

maximum scaled incremental contribution �B from a unit of resource as

�B = max
j2J , i2L

max
x2Q :xi�1

Ci ⇥ ('j(x)�'j(x� ei)) .

A collection with a smaller value of �B will yield an approximate policy with a better performance

guarantee, but �B can never be smaller than one, as shown in the next lemma.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
10

Lemma 3.2 (Bound on Change in the Value of Bases) If B = {'j : j 2 J } is a collection

of availability-tracking basis functions, then we must have �B � 1.

Proof: For any product j and resource i 2 Aj, by parts (a) and (c) of Definition 3.1, we have

'j(C �Ciei) = 0 and 'j(C) = 1. Therefore, a telescoping sum yields

1 ='j(C)�'j(C�Ciei) =
CiX

h=1

"
'j

X

s 6=i

Cses+hei

!
�'j

X

s 6=i

Cses+(h�1)ei

!#


CiX

h=1

�B

Ci
=�B,

where the inequality holds because �B �Ci ⇥ ('j(
P

s 6=iCses + hei)�'j(
P

s 6=iCses + (h� 1)ei))

by the definition of �B. ⇤

As shown in the next two examples, the lower bound in Lemma 3.2 is tight.

Example 3.3 (Minimum) Let 'j(x) = mini2Aj
xi
Ci
. It is simple to verify that B = {'j : j 2J }

satisfies the three properties in Definition 3.1, so �B � 1 by Lemma 3.2. Moreover,

'j(x)�'j(x� ei) =min
`2Aj

⇢
x`

C`

�
�min

`2Aj

⇢
x` � 1l{`=i}

C`

�
=

8
>><

>>:

1
Ci

if xi
Ci

=min`2Aj
x`
C`

min`2Aj
x`
C`

� xi�1
Ci

if xi
Ci

>min
`2Aj

x`
C`

� xi�1
Ci

0 if xi�1
Ci

>min`2Aj
x`
C`
.

The quantity in all three cases on the right side above is no larger than 1/Ci, so that

Ci ('j(x)�'j(x� ei)) 1, in which case, we get �B  1. Thus, we must have �B = 1.

Example 3.4 (Polynomial) Let 'j(x) =
Q

i2Aj
xi
Ci
. It is simple to verify that B = {'j : j 2J }

satisfies the three properties in Definition 3.1, so �B � 1 by Lemma 3.2. Also,

'j(x)�'j(x� ei) =

Y

`2Aj

x`

C`

!
�

0

@xi � 1

Ci
·

Y

`2Aj\{i}

x`

C`

1

A=
1

Ci

Y

`2Aj\{i}

x`

C`
 1

Ci
,

where the last inequality follows because x` C`. Therefore, we have Ci ('j(x)�'j(x� ei)) 1,

indicating that �B  1. So, we get �B = 1.

By the discussion so far, if we set 'j(x) =mini2Aj
xi
Ci

or 'j(x) =
Q

i2Aj
xi
Ci

for all j 2J , then the

collection of basis functions B = {'j : j 2J } is availability-tracking with �B = 1. There are many

other availability-tracking basis functions. In Appendix A, we give three results that allow us to

construct rich collections of availability-tracking basis functions and guide us to choose a collection

of availability-tracking basis functions. First, we show that if B = {'j : j 2J } is a collection of

availability-tracking basis functions and f : [0,1] ! [0,1] is a non-decreasing and di↵erentiable

function with f(0) = 0 and f(1) = 1, then letting ⇢j(x) = f('j(x)) for all j 2 J , the collection

of basis functions D = {⇢j : j 2 J } is also availability-tracking and �D �B maxa2[0,1] f 0(a). For

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
11

example, using this result with 'j(x) =
Q

i2Aj
xi
Ci

and f(a) = (1�e�a)/(1�e�1), it follows that the

collection of basis functions D = {⇢j : j 2J } with

⇢j(x) = f('j(x)) =
1� e�

Q
i2Aj xi/Ci

1� e�1

is availability-tracking. It might be di�cult to see at a first glance that the basis function above is

availability-tracking. Second, we show that if, for each i 2 L, gi : [0,1]! [0,1] is a non-decreasing

and di↵erentiable function with gi(0) = 0 and gi(1) = 1, then letting ⇢j(x) =mini2Aj gi(xi/Ci)

or ⇢j(x) =
Q

i2Aj gi(xi/Ci) for all j 2 J , the collection of basis functions D = {⇢j : j 2 J }

is also availability-tracking and �D  maxi2Lmaxa2[0,1] g0i(a). For example, using this result

with gi(a) = (1� e�a)/(1� e�1), it follows that the collection of basis functions {⇢j : j 2 J }

with ⇢j(x) =mini2Aj (1� e�xi/Ci)/(1� e�1) or ⇢j(x) =
Q

i2Aj (1� e�xi/Ci)/(1� e�1) is availability

tracking. By using these two results, we can construct rich collections of availability-tracking basis

functions. Third, Definition 3.1 does not require the availability-tracking basis functions to be

non-decreasing, but we show that if B = {'j : j 2J } is any collection of availability-tracking basis

functions, then we can always construct a collection of non-decreasing availability-tracking basis

functions D = {⇢j : j 2J } such that�D �B. Since a collection of basis functions B = {'j : j 2J }

with a smaller value of �B will yield an approximate policy with a better performance guarantee,

this result indicates that it is preferable to use non-decreasing basis functions. In Appendix A, we

also give an example of a non-monotone basis function.

The discussion so far focuses on the basis functions {'j : j 2 J } in the value function

approximations in (2). Next, we discuss computing the coe�cients {�t
j : j 2J , t2 T }.

3.2 Tuning the Coe�cients

To compute the coe�cients {�t
j : j 2J , t2 T } in the value function approximations in (2), we use

the following backward recursion over the time periods.

• Initialization: Let B = {'j : j 2 J } be any collection of availability-tracking basis functions

and ✓��B be a tuning parameter. Initialize �T+1
j = 0 for all j 2J .

• Coe�cient Computation: For each t= T,T � 1, . . . ,1, use the coe�cients {�t+1
j : j 2J } to

compute {�t
j : j 2J } as

�t
j = �t

j

"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
t+1
k

#+

+ �t+1
j . (3)

We shortly provide an intuitive interpretation for the algorithm above. The algorithm above allows

us to compute {�t
j : j 2 J , t 2 T }, which specifies the value function approximations {Ht : t 2 T }

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
12

given in (2). In our approximate policy, we make the decisions for the product request at time

period t by replacing the optimal value function V t+1 on the right side of (1) with Ht+1. Thus,

given that the state of the system at time period t is x, if rj �Ht+1(x)�Ht+1(x�
P

i2Aj ei), then

our approximate policy accepts a request for product j as long as we have capacity on all resources

used by product j. Next, we give an intuitive interpretation for the coe�cients {�t
j : j 2J , t2 T }

and the backward recursion in (3) that we use to compute these coe�cients.

To give an intuitive interpretation for the coe�cients {�t
j : j 2 J , t 2 T }, we note that the

optimal total expected revenue over the selling horizon is given by V 1(C). Therefore, H1(C) is

our approximation to the optimal total expected revenue over the selling horizon. Since 'j(C) = 1

for all j 2 J by part (c) of Definition 3.1, we have H1(C) =
P

j2J �1
j 'j(C) =

P
j2J �1

j , which

implies that
P

j2J �1
j is our approximation to the optimal total expected revenue over the selling

horizon. Thus, we can interpret �1
j as our approximation to the optimal total expected revenue

that we can extract from the requests for product j over the selling horizon. In this case, extending

the argument intuitively to a generic time period, we will also interpret �t
j as our approximation

to the optimal total expected revenue that we can extract from the requests for product j over

time periods t, t+ 1, . . . , T . Since �t
j is our approximation to the optimal total expected revenue

that we can extract from the requests for product j over time periods t, t+1, . . . , T , whereas �t+1
j

is our approximation to the optimal total expected revenue that we can extract from the requests

for product j over time periods t+1, t+2, . . . , T , we naturally expect that �t
j � �t+1

j . Noting that

[a]+ � 0 for any a2R, by (3), we indeed have �t
j � �t+1

j .

To understand the intuitive idea behind the backward recursion in (3), recall that we view

V t+1(x)�V t+1(x�
P

i2Aj ei) as the opportunity cost of the capacities that are used by a request

for product j that we accept at time period t. Using our value function approximations, we can

approximate this opportunity cost byHt+1(x)�Ht+1(x�
P

i2Aj ei). Considering the value function

approximation Ht+1(x) =
P

j2J �t+1
j 'j(x) with any collection of availability-tracking basis

functions B = {'j : j 2J }, it is possible to show that we can upper bound the opportunity cost

Ht+1(x) �Ht+1(x �
P

i2Aj ei) as Ht+1(x) �Ht+1(x �
P

i2Aj ei)  ✓
P

i2Aj
1
Ci

P
k2J 1l{i2Ak} �

t+1
k ,

as long as ✓ ��B. We show this result in Lemma 3.7 when we analyze the performance of our

approximate policy. Note that the upper bound ✓
P

i2Aj
1
Ci

P
k2J 1l{i2Ak} �

t+1
k does not depend

on the state of the system. Thus, we use ✓
P

i2Aj
1
Ci

P
k2J 1l{i2Ak} �

t+1
k as a state-independent

approximation to the opportunity cost of the capacities that are used by a request for product j

that we accept at time period t. In this case, going back to (3), if we accept a request for product j

at time period t, then we obtain a revenue of rj and we approximate the opportunity cost of

the capacities that we consume by using ✓
P

i2Aj
1
Ci

P
k2J 1l{i2Ak} �

t+1
k . We accept a request for

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
13

product j only if the revenue from the product exceeds the opportunity cost of the capacities

consumed by product j. Thus, [rj � ✓
P

i2Aj
1
Ci

P
k2J 1l{i2Ak} �

t+1
k]+ is our approximation to the

net revenue contribution from a request for product j at time period t. By the discussion in the

previous paragraph, �t
j is an approximation to the optimal total expected revenue from product

j over time periods t, t+1, . . . , T . Since we have a request for product j at time period t with

probability �t
j, the recursion in (3) states the following. The approximation to the optimal total

expected revenue from product j over time periods t, t+1, . . . , T is given by the approximation to

the expected net revenue contribution from product j at time period t plus the approximation to

the optimal total expected revenue from product j over time periods t+1, t+2, . . . , T .

In the next section, we show that our approximate policy is guaranteed to obtain at least

1/(1+ ✓L) fraction of the optimal total expected revenue. The proof of this performance guarantee

involves two steps. In the first step, we use a linear program whose objective value provides an

upper bound on the optimal total expected revenue. In particular, assuming that the total number

of requests for each product takes on its expected value, this linear program finds the number of

requests to accept for each product. The total expected number of requests for product j over

the selling horizon is
P

t2T �t
j. Letting ⇤j =

P
t2T �t

j for notational brevity and using the decision

variable zj to capture the number of requests for product j that we plan to accept over the selling

horizon, the linear program has the form

Z
⇤
LP = max

(
X

j2J

rj zj :
X

j2J

1l{i2Aj} zj Ci 8 i2L, 0 zj ⇤j 8 j 2J
)
. (4)

The objective function above accounts for the total revenue over the selling horizon. The first

constraint ensures that the total capacity consumptions of the resources do not exceed the

initial capacities. The second constraint ensures that the numbers of requests that we serve for

the products do not exceed the expected demands. We show that we can use the coe�cients

{�t
j : j 2J , t2 T } that are computed through (3) to construct a feasible solution to the dual

of the linear program above and this feasible solution provides an objective value of at most

(1+ ✓L)
P

j2J �1
j . Since the dual is a minimization problem, we get (1 + ✓L)

P
j2J �1

j � Z
⇤
LP �

V 1(C), where the second inequality uses the fact that the optimal objective value of the linear

program is an upper bound on the optimal total expected revenue.

In the second step, we use backwards induction over the time periods to show that the total

expected revenue obtained by our approximate policy is at least
P

j2J �1
j . The intuition behind

this result is that the recursion in (3) uses the upper bound ✓
P

i2Aj
1
Ci

P
k2J 1l{i2Ak} �

t+1
k on the

opportunity cost of the capacities used by each product j. So, intuitively speaking, �1
j computed

through the recursion in (3) turns out to be a pessimistic approximation to the optimal total

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
14

expected revenue obtained from product j over the selling horizon. In this case, we will show that

the total expected revenue obtained by our approximate policy is at least as large as the pessimistic

approximation of the optimal total expected revenue
P

j2J �1
j . Thus, letting APP be the total

expected revenue obtained by our approximate policy, we have APP�
P

j2J �1
j . Using the chain of

inequalities at the end of the previous paragraph, we get APP�
P

j2J �1
j � 1

1+✓L
Z
⇤
LP � 1

1+✓L
V 1(C),

establishing that the total expected revenue obtained by our approximate policy is guaranteed to

be at least 1/(1+ ✓L) fraction of the optimal total expected revenue.

In the next section, we follow the two steps discussed in the previous two paragraphs to show

this performance guarantee for our approximate policy.

3.3 Performance Guarantee for the Approximate Policy

Recall that once we compute the coe�cients {�t
j : j 2 J , t 2 T } by using (3), in our approximate

policy, given that the state of the resources at time period t is x, we accept a request for product j as

long as rj �Ht+1(x)�Ht+1(x�
P

i2Aj ei) and we have capacity on all resources used by product j.

To formally state our approximate policy, we use uApp,t
j :Q! {0,1} to denote the decision function

of our approximate policy at time period t. Given that the state of the resources at time period

t is x, we have uApp,t
j (x) = 1 if our approximate policy accepts a request for product j at time

period t. Otherwise, we have uApp,t
j (x) = 0. Therefore, uApp,t

j (x) is given by

uApp,t
j (x) =

8
><

>:

Q
i2Aj 1l{xi�1} if rj �Ht+1(x)�Ht+1

x�

X

i2Aj

ei

!
,

0 otherwise.

(5)

In the next theorem, we give a performance guarantee for this policy as a function of the tuning

parameter ✓ in (3) and the maximum number of resources L used by a product.

Theorem 3.5 (Performance) If the tuning parameter ✓ satisfies ✓��B, then the total expected

revenue obtained by the approximate policy is at least 1/(1+ ✓L) fraction of the optimal.

We devote the rest of this section to giving a proof of Theorem 3.5, but before we go into the

proof, we make three remarks on this theorem. First, to obtain the best performance guarantee, we

need to choose the tuning parameter ✓ as small as possible and the smallest possible value of ✓ in the

theorem is �B. By Lemma 3.2, we have �B � 1, but as shown in Examples 3.3 and 3.4, there are

choices of basis functions under which �B = 1. Therefore, working with these basis functions, we

can choose the tuning parameter ✓ as one and obtain an approximate policy whose total expected

revenue is at least 1/(1 + L) fraction of the optimal total expected revenue. In many network

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
15

revenue management problems arising in settings such as airlines and hotels, each product uses only

a small number of resources. Therefore, even though the number of resources can be large, as long

as the number of resources used by a product is uniformly bounded, we obtain a constant-factor

approximation guarantee. Second, although we obtain the best performance guarantee by choosing

✓ at its smallest possible value of �B, our computational experiments indicate that increasing

✓ beyond �B can improve the total expected revenue of the approximate policy. We view the

tuning parameter ✓ as a knob that provides flexibility in the implementation of our approximate

policy. Third, as is the case for most constant-factor approximation algorithms, the performance

guarantee in Theorem 3.5 is a worst-case guarantee. In our computational experiments, we compare

the total expected revenue obtained by our approximate policy with a computationally tractable

upper bound on the optimal total expected revenue, and demonstrate that the approximate policy

performs substantially better than its worst-case performance guarantee. Next, we turn to the

proof of Theorem 3.5. The proof uses a sequence of lemmas.

In the next lemma, we show that (1 + ✓L)
P

j2J �1
j is an upper bound on V 1(C). The proof is

based on using {�t
j : j 2J , t2 T } to construct a feasible solution to the dual of problem (4).

Lemma 3.6 (Upper Bound on the Optimal Total Expected Revenue) If the coe�cients

{�t
j : j 2J , t2 T } are computed through (3), then we have V 1 (C) (1+ ✓L)

P
j2J �1

j .

Proof: It is a well-known result in the network revenue management literature that the optimal

objective value of problem (4) is an upper bound on the optimal total expected revenue; see

Bertsimas and Popescu (2003). Thus, we have Z
⇤
LP � V 1(C). Problem (4) is feasible and bounded

because setting zj = 0 for all j 2 J provides a feasible solution and the decision variables have

upper bounds. Thus, the optimal objective value of the dual of problem (4) is also Z
⇤
LP . Using

the vectors of dual variables µ = (µi : i 2 L) and � = (�j : j 2 J), the dual of problem (4) is

min
(µ,�)2R|L|+|J |

+

�P
i2LCi µi +

P
j2J ⇤j �j :

P
i2L 1l{i2Aj}µi + �j � rj 8 j 2 J

. The decision

variable �j has a non-negative objective function coe�cient, so it takes on its smallest possible value

in an optimal solution. Writing the constraints in the dual problem as �j � rj �
P

i2L 1l{i2Aj}µi for

all j 2J and noting that the decision variable �j is non-negative, the smallest possible value of �j

is [rj �
P

i2L 1l{i2Aj}µi]+. In this case, replacing the decision variable �j by its value in an optimal

solution, we can write the dual of problem (4) as

Z
⇤
LP = min

µ2R|L|
+

8
<

:
X

i2L

Ci µi +
X

j2J

⇤j

"
rj �

X

i2L

1l{i2Aj}µi

#+
9
=

; . (6)

We define the solution µ̂= (µ̂i : i2L) to the problem above by setting µ̂i =
✓
Ci

P
k2J 1l{i2Ak} �

1
k for

all i 2 L. Noting (3), since [a]+ � 0 for any a 2 R, we have �1
j � �2

j � . . . � �T
j � �T+1

j = 0 for all

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
16

j 2J , which implies that µ̂i � 0 for all i2L. Thus, µ̂ is a feasible solution to problem (6). In this

case, the objective value provided by this solution is at least Z⇤
LP , yielding

Z
⇤
LP 

X

i2L

Ci µ̂i +
X

j2J

⇤j

"
rj �

X

i2L

1l{i2Aj}µ̂i

#+

=
X

i2L

Ci
✓

Ci

X

k2J

1l{i2Ak} �
1
k +

X

j2J

⇤j

"
rj �

X

i2L

1l{i2Aj}
✓

Ci

X

k2J

1l{i2Ak} �
1
k

#+

= ✓
X

k2J

X

i2L

1l{i2Ak} �
1
k +

X

j2J

X

t2T

�t
j

"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
1
k

#+

 ✓L
X

k2J

�1
k +

X

j2J

X

t2T

�t
j

"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
t+1
k

#+

= ✓L
X

k2J

�1
k +

X

j2J

X

t2T

[�t
j � �t+1

j] = (1+ ✓L)
X

j2J

�1
j ,

where the second equality uses the fact that ⇤j =
P

t2T �t
j, the second inequality uses the fact

that
P

i2L 1l{i2Ak} = |Ak| L and �1
k � �2

k � . . .� �T
k � �T+1

k for all k 2 J , the third equality holds

because �t
j � �t+1

j = [rj � ✓
P

i2Aj
1
Ci

P
k2J 1l{i2Ak} �

t+1
k]+ by (3) and the fourth equality follows by

noting that
P

t2T [�
t
j ��t+1

j] = �1
j . Thus, we have (1+✓L)

P
j2J �1

j � Z
⇤
LP , in which case, the desired

result follows from the fact that Z⇤
LP � V 1(C). ⇤

In the next lemma, we bound the opportunity cost of the capacities that are consumed by

product j under our value function approximations.

Lemma 3.7 (Bound on the Opportunity Cost) For a collection of availability-tracking basis

functions B = {'j : j 2J }, let Ht(x) =
P

k2J �t
k 'k(x), where the coe�cients {�t

k : k 2 J } satisfy

�t
k � 0 for all k 2J . Then, for each j 2J and x2Q such that x�

P
i2Aj ei � 0, we have

Ht(x)�Ht

x�

X

i2Aj

ei

!
 �B

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t
k.

Proof: We prove the result using induction on the cardinality of Aj. Consider the base case where

|Aj|= 1 so that we have Aj = {i} for some i2L. In this case, we get

Ht(x)�Ht (x� ei) =
X

k2J

1l{i2Ak}�
t
k ('k(x)�'k(x� ei))  �B

Ci

X

k2J

1l{i2Ak}�
t
k, (7)

where the equality holds because 'k(x) � 'k(x � ei) = 0 whenever i 62 Ak by part (b) of

Definition 3.1 and the inequality follows from the definition of �B. Thus, the base case holds.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
17

Suppose that the result holds for any |Aj| s. Consider a case in which |Aj|= s+1, so Aj =B[{`}

for some B ✓L with |B|= s and `2L with ` 62B. Letting y=x�
P

i2B ei, we obtain

Ht(x)�Ht

x�

X

i2Aj

ei

!
= Ht(x)�Ht

x�

X

i2B

ei � e`

!

= Ht(x)�Ht

x�

X

i2B

ei

!
+Ht

x�

X

i2B

ei

!
�Ht

x�

X

i2B

ei � e`

!

 �B

X

i2B

1

Ci

X

k2J

1l{i2Ak}�
t
k + H (y)�H (y� e`)

 �B

X

i2B

1

Ci

X

k2J

1l{i2Ak}�
t
k +

�B

C`

X

k2J

1l{`2Ak}�
t
k

= �B

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t
k,

where the first inequality follows from the induction assumption, the second inequality follows from

the base case, and the last equality is by the fact that Aj =B [{`}. ⇤

We obtain the term 1l{i2Ak} on the right side of (7) due to part (b) of Definition 3.1, which,

in turn, yields the term 1l{i2Ak} on the right side of (3). Without this term, the upper bound in

Lemma 3.6 would involve (1 + ✓|L|) rather than (1 + ✓L). Next, we use this lemma to show that

the total expected revenue obtained by our approximate policy is at least
P

j2J �1
j . Let U

t(x) be

the total expected revenue obtained by our approximate policy over time periods t, t+ 1, . . . , T

given that the state of the resources at time period t is x. Noting the decision function for the

approximate policy in (5), we can compute {U t : t2 T } through the dynamic program

U t(x) =
X

j2J

�t
j u

App,t
j (x)

"
rj +U t+1

x�

X

i2Aj

ei

!#
+

1�

X

j2J

�t
j +

X

j2J

�t
j (1�uApp,t

j (x))

!
U t+1(x)

= U t+1(x)+
X

j2J

�t
j u

App,t
j (x)

"
rj �U t+1(x)+U t+1

x�

X

i2Aj

ei

!#
, (8)

with the boundary condition that UT+1 = 0. In the dynamic program above, we have a request

for product j at time period t with probability �t
j, in which case, if we have uApp,t

j (x) = 1 so that

the approximate policy accepts this request, then we obtain a revenue of rj and the state of the

resources at the next time period is x�
P

i2Aj ei. If there is a request for product j at time period t,

but we have uApp,t
j (x) = 0, then the state of the resources at the next time period remains at x. With

probability 1�
P

j2J �t
j, there is no request, in which case, the state of the resources at the next

time period also remains at x. The second equality above is by arranging the terms.

The total expected revenue obtained by our approximate policy is U 1(C). In the next lemma,

we show that this total expected revenue is at least
P

j2J �1
j .

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
18

Lemma 3.8 (Lower Bound on Performance) If the tuning parameter ✓ satisfies ✓��B and

the coe�cients {�t
j : j 2J , t2 T } are computed through (3), then we have U 1 (C)�

P
j2J �1

j .

Proof: We use induction over the time periods to show that U t(x)�Ht(x) for all x 2 Q and

t 2 T , where Ht(x) =
P

j2J �t
j 'j(x) with {�t

j : j 2 J , t 2 T } computed through (3). Consider the

base case at time period T + 1. Since UT+1 = 0 and �T+1
j = 0, the base case holds. Suppose that

the result holds at time period t+ 1, so U t+1(x) � Ht+1(x) for all x 2 Q. On the right side of

(8), the coe�cients of U t+1(x) and U t+1(x�
P

i2Aj ei) are, respectively, 1�
P

j2J �t
j u

App,t
j (x) and

�t
j u

App,t
j (x), which are non-negative. Since U t+1 �Ht+1 by the induction assumption, replacing U t+1

on the right side of (8) with Ht+1, the right side of (8) gets smaller. Thus, we have

U t(x) � Ht+1(x)+
X

j2J

�t
j u

App,t
j (x)

"
rj �Ht+1(x)+Ht+1

x�

X

i2Aj

ei

!#

= Ht+1(x)+
X

j2J

�t
j

Y

i2Aj

1l{xi�1}

!"
rj �Ht+1(x)+Ht+1

x�

X

i2Aj

ei

!#+

� Ht+1(x)+
X

j2J

�t
j

Y

i2Aj

1l{xi�1}

!"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

#+

= Ht+1(x)+
X

j2J

Y

i2Aj

1l{xi�1}

!
�
�t
j � �t+1

j

�

� Ht+1(x)+
X

j2J

'j(x)
�
�t
j � �t+1

j

�
= Ht(x). (9)

Here, the first equality follows by the definition of the decision function in (5) as we have uApp,t
j (x) =

1 if and only if
Q

i2Aj 1l{xi�1} = 1 and rj �Ht+1(x)+Ht+1(x�
P

i2Aj ei)� 0. The second inequality

follows from Lemma 3.7 and the fact that ✓��B. The second equality uses the definition of

�t
j in (3). The third inequality follows from part (a) of Definition 3.1, along with the fact that

�t
j � �t+1

j � 0. The last equality holds because we have Ht+1(x) =
P

j2J �t+1
j 'j(x). So, U t(x) �

Ht(x), completing the induction argument. This inequality at t= 1 and x=C, along with part

(c) of Definition 3.1, yields U 1(C)�H1(C) =
P

j2J �1
j 'j(C) =

P
j2J �1

j . ⇤

Note that due to part (a) of Definition 3.1, we can use 'j(x) in the last inequality in (9) as a lower

bound substitute on the feasibility condition
Q

i2Aj 1l{xi�1} for accepting a request for product j.

The proof of Theorem 3.5 directly follows by combining Lemmas 3.6 and 3.8.

Proof of Theorem 3.5: The optimal total expected revenue is V 1(C), whereas the total

expected revenue obtained by our approximate policy is U 1(C). In this case, by Lemmas 3.6 and

3.8, we have U 1(C)�
P

j2J �1
j � V 1(C)/(1+ ✓L). ⇤

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
19

3.4 Tightness of the Analysis

In this section, we give a class of problem instances to demonstrate that the performance guarantee

in Theorem 3.5 is tight for any L. Fix two positive integers K and �. We consider a problem

instance with K resources and K +1 products. We index the resources by L= {1, . . . ,K} and the

products by J = {1, . . . ,K,K + 1}. The initial capacities of the resources are Ci = � + 1 for all

i2L. For j = 1, . . . ,K, product j uses only one unit of resource j. Product K+1 uses all of the K

resources. That is, Aj = {j} for all j = 1, . . . ,K and AK+1 =L. Note that L=maxj2J |Aj|=K. The

revenues of the products are given by rj =
1

�+1

⇣
1� 1

�

⌘
for all j = 1, . . . ,K and rK+1 = 1. There are

K� +1 time periods in the selling horizon indexed by T = {1, . . . ,K� +1}. For j = 1, . . . ,K, the

requests for product j arrive only at time periods (j�1)�+1, (j�1)�+2, . . . , j�. At the last time

period, we have a request of product K +1. In particular, for j = 1, . . . ,K, we have

�t
j =

(
1 if (j� 1)�+1 t j�,

0 otherwise,
and �t

K+1 =

(
1 if t=K�+1,

0 otherwise.

Even if we accept all of the product requests, we do not run out of the capacities of any of the

resources. Thus, the optimal policy accepts all requests, in which case, the total expected revenue

of the optimal policy is OPT=K� r1 + rK+1 =
K�
�+1

⇣
1� 1

�

⌘
+1.

We consider our approximate policy using the collection of availability-tracking basis functions

B = {'j : j 2 J } with 'j(x) = mini2Aj
xi
Ci

for all j 2 J . In Example 3.3, we show that we have

�B = 1 for this collection of basis functions. Therefore, we can choose ✓ = 1 in the recursion

in (3). We proceed to computing the coe�cients {�t
j : j 2 J , t 2 T }. Since �K�+2

K+1 = 0, by (3),

we have �K�+1
K+1 = �K�+1

K+1 rK+1 = 1. Also, noting that �t
K+1 = 0 for all t 2 T \ {K� + 1}, we have

�1
K+1 = �2

K+1 = . . .= �K�+1
K+1 = 1. For j = 1, . . . ,K, by (3), we have

�t
j = �t

j


rj �

�t+1
j + �t+1

K+1

Cj

�+
+ �t+1

j = �t
j


rj �

�t+1
j + �t+1

K+1

�+1

�+
+ �t+1

j .

Since �K�+2
j = 0, noting that �K�+1

j = 0, we obtain �K�+1
j = 0 by the recursion above. Also, since

�1
K+1 = �2

K+1 = . . . = �K�+1
K+1 = 1, for all t 2 T \ {K� + 1}, we have rj �

�t+1
j +�t+1

K+1

�+1
 rj �

�t+1
K+1

�+1
=

1
�+1

⇣
1� 1

�

⌘
� 1

�+1
 0. Therefore, we get

h
rj �

�t+1
j +�t+1

K+1

�+1

i+
= 0 for all t 2 T \ {K� +1}, in which

case, noting the recursion above, we have �1
j = �2

j = . . .= �K�+1
j = 0. Thus, by the discussion in this

paragraph, we have �t
K+1 = 1 for all t 2 T . Also, for j = 1, . . . ,K, we have �t

j = 0 for all t 2 T . In

this case, we get Ht(x) =
P

j2J �t
j mini2Aj

xi
Ci

= �t
K+1 mini2L

xi
Ci

= 1
�+1

mini2L xi for all t2 T .

Consider the decisions made by our approximate policy. Initially, the capacities of the resources

are Ci = � + 1 for all i 2 L. At the first time period, we have a request for product 1. Since r1 =
1

�+1

⇣
1� 1

�

⌘
< 1

�+1
=H2(C)�H2(C � e1), we do not accept the request. Since r1 = r2 = . . .= rK ,

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
20

a similar argument shows that we reject all of the requests at time periods 1,2, . . . ,K�. However,

we accept the request for product K+1 at the last time period, because HK�+2(x) = 0, and thus,

rK+1 = 1> 0 =HK�+2(C)�HK�+2(C �
P

i2AK+1 ei). Therefore, the total expected revenue from

our approximate policy is APP= rK+1 = 1. So, the ratio between the total expected revenues of our

approximate policy and the optimal policy is APP

OPT
= 1/

⇣
1+ K�

�+1

⇣
1� 1

�

⌘⌘
. If we choose � arbitrarily

large, then APP

OPT
becomes arbitrarily close to 1/(1+K), which is equal to 1/(1+L).

4. Extensions

We extend our approximate policy to the cases in which the customers choose among the o↵ered

products, and a product can use more than one unit of the capacity of a resource. We also discuss

leveraging a linear program to build value function approximations.

4.1 Customer Choice Behavior

In the model in Section 2, each customer enters the system with a request for a particular

product. We decide whether to accept or reject the request for this product. In this section, we

extend our model and performance guarantee to a case in which we o↵er a subset of products to

each arriving customer, and the customer chooses among the o↵ered products or decides to leave

without a purchase. Therefore, the customer does not arrive with a request for a particular product,

and the product that the customer ends up choosing may depend on the subset of products that we

o↵er. The notation that we use closely follows the one introduced in Section 2. We only discuss the

additional notation that we need. If we o↵er the subset S ✓J of products to a customer arriving

at time period t, then the customer chooses product j 2 S with probability �t
j(S). Naturally, we

have �t
j(S) = 0 for all j 62 S. Note that the choices of the customers at di↵erent time periods may

be governed by di↵erent purchase probabilities. Therefore, we allow nonstationarities in the choice

process of the customers. We refer to a subset of products that we o↵er to the customers as an

assortment. We use F ✓ 2J to denote the set of feasible assortments that we can o↵er to an arriving

customer. We impose the following mild assumption on the choice probabilities and the set of

feasible assortments that we can o↵er to the customers.

Assumption 4.1 (Substitutability and Feasibility) For all t 2 T , S 2 F , j 2 S, and k 62 S,

we have �t
j(S)� �t

j(S [{k}). Also, if S 2F , then we have R 2F for all R✓ S.

The first part of the assumption ensures that if we introduce an additional product into the

assortment S, then the choice probability of a product that is already in the assortment S does

not increase. This property holds for all choice models that are based on the random utility

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
21

maximization principle. The second part of the assumption ensures that if we remove products from

a feasible assortment, then the assortment remains feasible. To formulate the problem as a dynamic

program, we let V t(x) be the optimal total expected revenue over time periods t, t+1, . . . , T given

that the capacities of the resources at time period t is x. We can compute the optimal value

functions {V t(x) :x2Q, t2 T } using the dynamic program

V t(x) = max
S2F

(
X

j2J

�t
j(S)

Y

i2Aj

1l{xi�1}

!"
rj +V t+1

x�

X

i2Aj

ei

!#

+

1�

X

j2J

�t
j(S)+

X

j2J

�t
j(S)

1�

Y

i2Aj

1l{xi�1}

!!
V t+1(x)

)

= V t+1(x)+max
S2F

(
X

j2J

�t
j(S)

Y

i2Aj

1l{xi�1}

!
rj �V t+1(x)+V t+1

x�

X

i2Aj

ei

!!)
, (10)

with the boundary condition that V T+1 = 0. If |Aj| = 1 for all j 2 J so that each product uses

exactly one resource, then our model becomes equivalent to the one in Golrezaei et al. (2014). In

Golrezaei et al. (2014), there are multiple customer types, but multiple customer types do not bring

any complication. Under multiple customer types, the result of the max operator above depends

on the customer type and we simply take an expectation over the arriving customer type.

In the first equality in (10), if we o↵er the assortment S at time period t, then the arriving

customer chooses product j with probability �t
j(S). If we have su�cient resource capacities to serve

product j, so that
Q

i2Aj 1l{xi�1} = 1, then the customer purchases product j, in which case, we

generate a revenue of rj and the state of the resources at the next time period is x�
P

i2Aj ei. On

the other hand, the arriving customer does not choose any product and decides to leave without a

purchase with probability 1�
P

j2J �t
j(S), in which case, the state of the resources at the next time

period remains at x. Lastly, the arriving customer chooses product j with probability �t
j(S), but

if we do not have su�cient resource capacities to serve product j, so that
Q

i2Aj 1l{xi�1} = 0, then

the customer leaves without a purchase, in which case, the state of the resources at the next time

period remains at x as well. In (10), we allow o↵ering a product for which we lack su�cient resource

capacities to serve. If the customer ends up choosing such a product, then the customer leaves

without a purchase. O↵ering a product for which we lack su�cient resource capacities to serve may

not sound realistic, but it is simple to argue that there exists an optimal policy that never o↵ers

such a product anyway. To establish this result, note that in the optimal solution to the second

maximization problem in (10), if we attempt to o↵er products for which we do not have enough

resource capacity to serve, then we can drop all such products from the assortment, along with each

product j such that rj �V t+1(x)+V t+1(x�
P

i2Aj ei)< 0, in which case, by Assumption 4.1, the

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
22

choice probabilities of all remaining products in the assortment do not decrease, yielding another

assortment that provides an objective value that is as large as the original one.

Similar to our earlier model, computing the optimal value functions {V t : t2 T } is intractable. We

use a value function approximation of the form Ht(x) =
P

j2J �t
j 'j(x), where B = {'j : j 2J } is

a collection of availability-tracking basis functions. We compute the coe�cients {�t
j : j 2J , t2 T }

in the value function approximations using a slight variation of our earlier algorithm.

• Initialization: Let B = {'j : j 2 J } be any collection of availability-tracking basis functions

and ✓��B be a tuning parameter. Initialize �T+1
j = 0 for all j 2J .

• Coe�cient Computation: For each t= T,T � 1, . . . ,1, use the coe�cients {�t+1
j : j 2J } to

compute the assortment Ŝt 2F at time period t as

Ŝt = argmax
S2F

(
X

j2J

�t
j(S)

rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

!)
. (11)

Then, use the coe�cients {�t+1
j : j 2 J } and the assortment Ŝt computed above to compute

{�t
j : j 2J } as

�t
j = �t

j(Ŝ
t)

rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

!
+ �t+1

j . (12)

The algorithm above specifies the coe�cients {�t
j : j 2 J , t 2 T }, which, in turn, specify the

approximate value functions {Ht : t2 T }.

Given that the state of the resources at time period t is x, we solve the maximization problem on

the right side of the second equality in (10) to find the optimal assortment to o↵er. We construct

our approximate policy by replacing V t+1 in this problem with Ht+1. Thus, given that the state of

the resources at time period t is x, our approximate policy o↵ers the assortment

SApp,t(x) = argmax
S2F

(
X

j2J

�t
j(S)

Y

i2Aj

1l{xi�1}

!
rj �Ht+1(x)+Ht+1

x�

X

i2Aj

ei

!!)
. (13)

An optimal solution to the problem above can be viewed as the decision function of our approximate

policy under customer choice behavior. By the next theorem, our approximate policy enjoys the

same performance guarantee as in Theorem 3.5. The proof of this theorem uses a technique similar

to the one in Section 3.3. We defer the proof to Appendix B.

Theorem 4.2 (Performance under Choice) If the choice probabilities and the feasible

assortments satisfy Assumption 4.1 and the tuning parameter ✓ satisfies ✓ � �B, then the total

expected revenue obtained by the approximate policy is at least 1/(1+ ✓L) fraction of the optimal.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
23

4.2 Multiple Units of Capacity Consumption

In this section, we extend our approach to allow products to use multiple units of a resource. Once

again, the notation that we use closely follows the one introduced in Section 2. We only discuss

the additional notation that we need. For each product j and resource i, we use aij to denote the

number of units of resource i used by product j. In our earlier model, we have aij 2 {0,1} for all

i 2 L, j 2 J . In this section, we consider the case where aij can be any non-negative integer. As

before, Aj = {i 2L : aij � 1} denotes the set of resources used by product j, and L=maxj2J |Aj|
denotes the maximum number of resources used by a product. We use mi =maxj2J aij to denote

the maximum number of units of resource i that is used by any product. Without loss of generality,

we assume that the initial capacity of each resource i satisfies Ci �mi. Otherwise, there is a product

that uses more units than the initial capacity of a resource, in which case, we can drop such a

product. To find the optimal policy, we can use a dynamic program that is similar to the one in

(1). All we need to do is to replace all occurrences of
Q

i2Aj 1l{xi�1} with
Q

i2Aj 1l{xi�aij} and all

occurrences of
P

i2Aj ei with
P

i2Aj aij ei in the dynamic program.

We modify our basis functions as follows. For each product j 2J , let Gj :Q!Q be a mapping

such that for each x 2Q, Gj(x) =
�
xi1l{xi�aij} : i2L

�
. Thus, Gj(x) leaves the i-th component of

x unchanged when the value of the component exceeds the amount of resource i consumed by

product j; otherwise, Gj(x) sets the component to zero. For a collection of availability-tracking

basis functions B = {'j : j 2J }, we use the value function approximation Ht given by

Ht(x) =
X

j2J

�t
j 'j (Gj(x)) . (14)

We compute the coe�cients {�t
j : j 2 J , t 2 T } in the value function approximation above using

the following algorithm.

• Initialization: Let B = {'j : j 2 J } be any collection of availability-tracking basis functions

and ✓��B be a tuning parameter. Initialize �T+1
j = 0 for all j 2J .

• Coe�cient Computation: For each t= T,T � 1, . . . ,1, use the coe�cients {�t+1
j : j 2J } to

compute {�t
j : j 2J } as

�t
j = �t

j

"
rj � ✓

X

i2Aj

2mi � 1

Ci

X

k2J

1l{i2Ak} �
t+1
k

#+

+ �t+1
j . (15)

To construct our approximate policy, we use the decision function in (5) after replacing
Q

i2Aj 1l{xi�1} with
Q

i2Aj 1l{xi�aij} and
P

i2Aj ei with
P

i2Aj aij ei. This decision function provides

the decisions made by our approximate policy given that the state of the resources at time period t

is x. The following theorem gives a performance guarantee for our approximate policy when a

product can consume multiple units of a resource. The proof is in Appendix C.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
24

Theorem 4.3 (Performance under Multiple Units Consumption) Let M =maxi2L,j2J aij

be the maximum number of units of a resource used by a product. If the tuning parameter ✓

satisfies ✓ � �B, then the total expected revenue obtained by the approximate policy is at least

1/(1+ ✓(2M � 1)L) fraction of the optimal.

To intuitively see the origin of the term 2M � 1, assume that all products use one unit of a

resource. If the capacity of the resource goes down to one, then we can accept at most one unit

of any product. In contrast, assume that all products use M units of a resource. If the capacity of

the resource goes down to 2M � 1, then we can accept at most one unit of any product.

4.3 Leveraging a Linear Programming Approximation

Noting that ⇤j =
P

t2T �t
j in the second constraint in problem (4) corresponds to the total expected

number of requests for product j over the selling horizon, we can view the linear program in (4)

as an approximation to the network revenue management problem that is formulated under the

assumption that the numbers of requests for the products take on their expected values. It is

well-known that the optimal objective value of the linear program in (4) provides an upper bound

on the optimal total expected revenue; see Bertsimas and Popescu (2003). In practice, this upper

bound becomes useful when assessing the optimality gaps of various heuristics. In this section,

we show that we can leverage an optimal solution to the linear program in (4) when constructing

our value function approximations. We explain the idea using the model in Section 2, but we can

incorporate customer choice behavior as shown in Section 4.1, and allow for products consuming

multiple units of a resource as shown in Section 4.2. For a collection of availability-tracking

basis functions B = {'j : j 2 J }, we approximate the optimal value functions {V t : t 2 T } using

value function approximations {Ht : t 2 T } of the form Ht(x) =
P

j2J �t
j 'j(x). To compute the

coe�cients {�t
j : j 2J , t2 T }, we use the following algorithm.

• Initialization: Let B = {'j : j 2J } be any collection of availability-tracking basis functions,

✓ ��B be a tuning parameter, and (z⇤j : j 2 J) be an optimal solution to the linear program

in (4). Initialize �T+1
j = 0 for all j 2J .

• Coe�cient Computation: For each t= T,T � 1, . . . ,1, use the coe�cients {�t+1
j : j 2J } to

compute {�t
j : j 2J } as

�t
j =

z⇤j
⇤j

�t
j

"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
t+1
k

#+

+ �t+1
j . (16)

Once we construct the value function approximations {Ht : t 2 T } using the algorithm above,

we use the same decision function in (5) in our approximate policy. The following theorem gives a

performance guarantee for our approximate policy. The proof is in Appendix D.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
25

Theorem 4.4 (Performance with Linear Programming Approximation) If the tuning

parameter ✓ satisfies ✓ ��B, then the total expected revenue obtained by the approximate policy

is at least 1/(1+ ✓L) fraction of the optimal.

Intuitively, if product j is unlikely to contribute to the optimal total expected revenue, then we

expect z⇤j to be close to zero. In this case, noting (16), the coe�cients {�t
j : t2 T } for this product

do not contribute significantly to the value function approximation.

5. Computational Experiments

In this section, we discuss computational experiments that we conducted to assess the numerical

performance of our approximate policy. During the course of our computational experiments, we

also experiment with di↵erent availability-tracking basis functions.

5.1 Experimental Setup

In our computational experiments, we use the test problems in Topaloglu (2009). A number of other

papers, including Hu et al. (2013), Brown and Smith (2014), Vossen and Zhang (2015a,b), and

Kunnumkal and Talluri (2016a), used these test problems in their computational experiments as

well. The test problems in Topaloglu (2009) originate from the airline setting, where the resources

correspond to the flight legs and the products correspond to the itineraries. In our test problems, the

airline network has N +1 locations. One location is the hub and the remaining N locations are the

spokes. There is a flight leg from each spoke to the hub and a flight leg from the hub to each spoke.

Therefore, the number of flight legs is 2N . In Figure 1, we show the structure of the airline network

with N = 6. We vary N in our computational experiments. Note that there are N origin-destination

pairs that connect the hub to a spoke, N origin-destination pairs that connect a spoke to the

hub, and N(N � 1) origin-destination pairs that connect a spoke to another spoke, resulting

in 2N + N(N � 1) origin-destination pairs. There is a high-fare and a low-fare itinerary that

connects each origin-destination pair. Thus, the number of itineraries is 2 (2N +N(N � 1)). For a

certain origin-destination pair, the revenue associated with the high-fare itinerary connecting this

origin-destination pair is  times the revenue associated with the corresponding low-fare itinerary,

where  captures the revenue di↵erence between the high-fare and low-fare itineraries. We vary 

in our computational experiments as well.

The arrival probabilities for the itinerary requests are generated in such a way that the requests

for the high-fare itineraries tend to arrive later in the selling horizon. To generate the arrival

probabilities {�t
j : j 2 J , t 2 T } for the itinerary requests, for each origin-destination pair (o, d),

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
26

Figure 1 Structure of the airline network with N = 6 spokes.

we sample Bo,d from the uniform distribution over [0,1] and ⌧o,d from the uniform distribution over

{ 1
2
T, . . . , 2

3
T}. In this case, the probability that we have a request for an itinerary that connects

the origin-destination pair (o, d) is proportional to Bo,d. The probability that we have a request for

the low-fare itinerary that connects the origin-destination pair (o, d) decreases over time, whereas

the probability that we have a request for the corresponding high-fare itinerary is zero until time

period ⌧o,d, but this probability increases over time after time period ⌧o,d. Therefore, the requests

for the high-fare itinerary start appearing only after time period ⌧o,d. To be precise, after generating

Bo,d and ⌧o,d, for all t2 T , we set ⌘t,low
o,d and ⌘t,high

o,d as

⌘t,low
o,d =Bo,d

T +1� t

T
and ⌘t,high

o,d =

(
0 if t ⌧o,d
Bo,d

t�⌧o,d
T�⌧o,d

otherwise.

Letting D be the set of all origin-destination pairs, if itinerary j is the low-fare itinerary for

origin-destination pair (o, d), then we set �t
j = ⌘t,low

o,d /
P

(s,r)2D(⌘
t,low
s,r + ⌘t,high

s,r), but if itinerary j is the

corresponding high-fare itinerary, then we set �t
j = ⌘t,high

o,d /
P

(s,r)2D(⌘
t,low
s,r + ⌘t,high

s,r). Since the requests

for the high-fare itineraries tend to arrive later in the selling horizon, it becomes important to

reserve the capacities for the high-fare itinerary requests by rejecting the requests early in the

selling horizon. The total expected demand for the capacity on flight leg i is
P

t2T
P

j2J 1l{i2Aj} �
t
j,

so the initial capacity of flight leg i is set to be Ci =
1
↵

P
t2T

P
j2J 1l{i2Aj} �

t
j. Thus, larger values

for ↵ yield tighter capacities. We vary ↵ in our computational experiments.

Letting N , , and ↵ be as above, and recalling that T is the length of the selling horizon, we

vary T 2 {200,600}, N 2 {4,5,6,8}, 2 {2,4}, and ↵2 {1.0,1.2,1.6}, to get 48 test problems.

5.2 Benchmark Methods

In our computational experiments, we work with six benchmarks, one of which is our approximate

policy. We proceed to describing our benchmarks.

Approximate Policy (APP): This benchmark is our approximate policy with the decision

function in (5). We experimented with di↵erent basis functions. The basis function 'j(x) =

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
27

mini2Aj (1� e�xi/Ci)/(1� e�1), which is availability-tracking by the discussion in Section 3.1,

provided consistent improvements over the others that we experimented with. Thus, we use this

basis function. One can check that �B = 1/(1� e�1) for this basis function. In our computational

results, we discuss our experimentation with di↵erent basis functions. Note that our basis function

resembles the tradeo↵ function (x) = (1� e�x)/(1� e�1) in Golrezaei et al. (2014).

In our practical implementation of APP, we make two modifications. First, we divide the

selling horizon into five equal segments and reconstruct our value function approximations

at the beginning of each segment. In particular, the beginning of segment k corresponds to

time period (k� 1) T
5
+1. If the remaining capacities on the flight legs at the beginning of

segment k are given by the vector x, then we replace Ci in the recursion in (3) with xi

and use this recursion over time periods T,T � 1, . . . , (k� 1) T
5
+1 to compute the coe�cients

{�t
j : j 2J , t= (k� 1) T

5
+1, . . . , T}. These coe�cients specify the value function approximations

that we use when making the decisions over segment k. When we reach the beginning of the

next segment, we reconstruct our value function approximations in a similar fashion. Second, we

calibrate the value for the tuning parameter ✓ at the beginning of each segment. The values of

the coe�cients {�t
j : j 2 J , t 2 T } in (3) depend on ✓, which, in turn, implies that the total

expected revenue obtained by APP also depends on ✓. When reconstructing our value function

approximations at the beginning of each segment, we search for the best tuning parameter over

the interval I = [1/(1�e�1),15] with a precision of 0.01. Given that we use the tuning parameter ✓

when reconstructing our value function approximations at the beginning of segment k, let Uk,✓(x)

be the total expected revenue obtained by APP over time periods (k� 1) T
5
+1, . . . , T starting

with the capacities x for the flight legs. Computing the total expected revenue Uk,✓(x) exactly is

intractable, because computing this quantity requires solving a dynamic program similar to the one

in (8), but we estimate this quantity using simulation. At the beginning of segment k, we choose the

value of the tuning parameter ✓ as argmax{Uk,✓(x) : ✓ 2 I \ {0.01⇥ ` : `= 0,1, . . .}}. We use this

value for the tuning parameter until we reach the beginning of the next segment. The theoretical

performance guarantee that we give in Theorem 3.5 will be the strongest when we use the smallest

possible value for ✓ with ✓ � �B, but choosing a di↵erent value for the tuning parameter may

actually provide better practical performance for APP.

Bid Price Policy (BPP): This benchmark is the well-known bid price policy; see Section 3.3

in Talluri and van Ryzin (2005). The idea behind BPP is to use the optimal values of the dual

variables associated with the first constraint in the linear program in (4) to estimate the value of

a unit of capacity on each flight leg. In this case, if the revenue from a certain itinerary exceeds

the value of the capacities used by this itinerary, then we accept the request for the itinerary. To

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
28

be specific, letting (µ⇤
i : i2L) be the optimal values of the dual variables associated with the first

constraint in problem (4), BPP accepts a request for itinerary j if and only if rj �
P

i2Aj µ⇤
i and

there are su�cient capacities to serve a request for itinerary j. In our practical implementation of

BPP, we divide the selling horizon into five equal segments and resolve problem (4) at the beginning

of each segment. In particular, if the remaining capacities on the flight legs at the beginning of

segment k are given by the vector x, then we replace Ci with xi and ⇤j with
PT

t=(k�1) T
5 +1 �

t
j in

problem (4). Letting (µ⇤
i : i2L) be the optimal values of the dual variables associated with the first

constraint, we use these values of the dual variables during segment k. Using a similar approach,

we recompute the policy parameters for all other benchmarks at the beginning of each segment,

but for economy of space, we do not discuss recomputation any longer.

Randomized Linear Program (RLP): In this benchmark, we use the realizations of the

total numbers of itinerary requests over the selling horizon, as opposed to their expected values, to

capture the distribution information for the total numbers of itinerary requests. Using the random

variable Dj to denote the total number of requests for itinerary j over the selling horizon, we

replace ⇤j on the right side of the second constraint in problem (4) with Dj. As a function of

D= (Dj : j 2J), letting (µ⇤
i (D) : i2L) be the optimal values of the dual variables associated with

the first constraint in problem (4), we use the E{µ⇤
i (D)} to estimate the value of a unit of capacity

on flight leg i. In this case, RLP accepts a request for itinerary j as long as rj �
P

i2Aj E{µ⇤
i (D)};

see Talluri and van Ryzin (1999). Computing the expectation E{µ⇤
i (D)} exactly is intractable, so

we estimate this expectation using simulation.

Finite Di↵erences (DIF): Here, we use the optimal objective value of problem (4) to estimate

the value of the capacities used by an itinerary. As a function of C = (Ci : i2L), we let Z⇤
LP (C) be

the optimal objective value of problem (4), in which case, we estimate the value of the capacities

used by itinerary j as Z⇤
LP (C)�Z

⇤
LP (C�

P
i2Aj ei). Thus, DIF accepts a request for itinerary j as

long as rj � Z
⇤
LP (C)�Z

⇤
LP (C �

P
i2Aj ei); see Bertsimas and Popescu (2003).

Dynamic Programming Decomposition (DEC): The idea behind this benchmark is to

decompose the dynamic programming formulation of the problem by the flight legs, in which case,

we can solve dynamic programs with scalar state variables to obtain value function approximations;

see Section 4.2 in Zhang and Adelman (2009). To our knowledge, DEC is one of the strongest

heuristics in practice, but it does not have a performance guarantee.

Online Packing Policy (OPP): This benchmark uses a linear program similar to the one

in (4) to construct a policy for online packing problems; see Kesselheim et al. (2014). If the arrivals

are stationary, then this policy has the competitive ratio of 1�O(
p

(logL)/cmin) that we discuss

in the introduction section, but in Appendix E, we give a simple example to show that this policy

can perform arbitrarily poorly under nonstationary arrivals.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
29

Params. Upp. Tot. Exp. Rev. % Gap with APP

(T,N,,↵) Bnd. APP BPP RLP DIF DEC OPP BPP RLP DIF DEC OPP

(200,4,4,1.0) 21,531 20,013 19,377 19,937 19,608 20,076 19,601 3.18 0.38 2.02 -0.32 2.06

(200,4,4,1.2) 19,882 18,386 17,140 17,964 17,529 18,538 17,276 6.78 2.29 4.66 -0.82 6.04

(200,4,4,1.6) 17,530 15,993 14,474 15,712 14,996 16,185 13,507 9.50 1.76 6.24 -1.20 15.55

(200,4,8,1.0) 34,571 32,655 30,692 32,447 31,305 32,845 31,858 6.01 0.64 4.14 -0.58 2.44

(200,4,8,1.2) 32,922 31,020 27,324 30,310 28,384 31,284 28,025 11.91 2.29 8.50 -0.85 9.65

(200,4,8,1.6) 30,570 28,704 24,062 27,890 25,461 28,861 21,901 16.17 2.83 11.30 -0.55 23.70

(200,5,4,1.0) 22,144 20,984 20,197 20,796 20,488 21,139 20,478 3.75 0.90 2.36 -0.74 2.41

(200,5,4,1.2) 21,263 19,565 18,462 19,225 18,933 19,716 18,463 5.64 1.73 3.23 -0.77 5.63

(200,5,4,1.6) 18,870 17,037 15,406 16,676 16,090 17,260 14,925 9.57 2.12 5.56 -1.31 12.39

(200,5,8,1.0) 35,387 33,943 31,844 33,519 32,491 34,219 33,048 6.18 1.25 4.28 -0.81 2.63

(200,5,8,1.2) 34,495 32,318 29,232 31,551 30,395 32,653 29,702 9.55 2.37 5.95 -1.04 8.10

(200,5,8,1.6) 32,081 29,666 24,971 28,943 26,800 30,068 24,074 15.82 2.44 9.66 -1.36 18.85

(200,6,4,1.0) 22,300 20,595 19,819 20,496 20,110 20,699 19,943 3.77 0.48 2.35 -0.51 3.17

(200,6,4,1.2) 20,932 19,049 17,927 18,753 18,463 19,174 17,793 5.89 1.55 3.08 -0.65 6.60

(200,6,4,1.6) 18,592 16,595 15,220 16,302 15,863 16,786 14,235 8.29 1.76 4.41 -1.15 14.22

(200,6,8,1.0) 35,544 33,338 31,132 33,205 31,946 33,644 32,186 6.62 0.40 4.17 -0.92 3.46

(200,6,8,1.2) 34,172 31,623 28,504 31,107 29,737 32,004 28,603 9.86 1.63 5.96 -1.21 9.55

(200,6,8,1.6) 31,824 29,191 24,923 28,459 26,702 29,551 22,880 14.62 2.51 8.53 -1.23 21.62

(200,8,4,1.0) 20,052 18,359 17,508 17,875 17,742 18,421 17,634 4.63 2.63 3.36 -0.34 3.95

(200,8,4,1.2) 18,952 16,936 15,753 16,354 16,188 17,054 15,728 6.98 3.43 4.41 -0.70 7.13

(200,8,4,1.6) 16,833 14,676 13,371 14,161 14,019 14,831 12,439 8.89 3.51 4.48 -1.05 15.24

(200,8,8,1.0) 31,835 29,742 27,378 28,779 28,058 29,890 28,346 7.95 3.24 5.66 -0.50 4.69

(200,8,8,1.2) 30,727 28,232 24,793 27,116 25,956 28,412 25,218 12.18 3.95 8.06 -0.64 10.68

(200,8,8,1.6) 28,608 25,913 21,844 24,837 23,616 26,116 19,869 15.70 4.15 8.87 -0.78 23.32

Average 8.73 2.09 5.47 -0.83 9.71

Table 1 Computational results for the test problems with T = 200 time periods in the selling horizon.

5.3 Computational Results

Table 1 shows our computational results on the test problems with T = 200 time periods in the

selling horizon, while Table 2 shows our computational results on the test problems with T = 600.

The layouts of the two tables are identical. In the first column, we show the parameter configuration

for each test problem using the tuple (T,N,,↵), where N ,  and ↵ are as discussed in our

experimental setup. In the second column, we show the upper bound on the optimal total expected

revenue provided by the optimal objective value of problem (4). In the third to eighth columns, we

show the total expected revenues obtained by APP, BPP, RLP, DIF, DEC and OPP. We estimate

these total expected revenues by simulating the performance of each benchmark over 100 sample

paths. In the ninth to thirteenth columns, we give the percent gaps between the total expected

revenues obtained by APP and the remaining five benchmarks.

Considering the results in Table 1, the performance of APP is better than that of BPP with

a substantial margin. RLP and DIF both perform better than BPP, but this improvement is not

enough to catch up with APP. We underline two trends by comparing the performance of APP with

that of RLP, but similar observations hold when we compare the performance of APP with that of

BPP or DIF. We focus on comparing APP with RLP, because RLP already performs noticeably

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
30

Params. Upp. Tot. Exp. Rev. % Gap with APP

(T,N,,↵) Bnd. APP BPP RLP DIF DEC OPP BPP RLP DIF DEC OPP

(600,4,4,1.0) 32,409 30,596 29,751 30,209 29,969 30,724 29,988 2.76 1.27 2.05 -0.42 1.99

(600,4,4,1.2) 29,852 27,990 26,100 27,455 26,546 28,233 26,138 6.75 1.91 5.16 -0.87 6.62

(600,4,4,1.6) 26,324 24,414 22,009 24,060 22,567 24,668 20,474 9.85 1.45 7.57 -1.04 16.14

(600,4,8,1.0) 52,086 49,909 47,249 49,168 47,796 50,194 48,553 5.33 1.49 4.23 -0.57 2.72

(600,4,8,1.2) 49,529 47,214 41,751 46,069 43,748 47,677 42,223 11.57 2.43 7.34 -0.98 10.57

(600,4,8,1.6) 46,001 43,637 36,632 42,941 38,256 44,008 33,108 16.05 1.59 12.33 -0.85 24.13

(600,5,4,1.0) 33,299 31,928 30,763 31,592 31,027 32,095 31,217 3.65 1.05 2.82 -0.52 2.23

(600,5,4,1.2) 31,943 29,813 28,290 29,473 28,832 30,147 28,206 5.11 1.14 3.29 -1.12 5.39

(600,5,4,1.6) 28,343 25,903 23,847 25,713 24,582 26,405 22,724 7.94 0.73 5.10 -1.94 12.27

(600,5,8,1.0) 53,285 51,563 48,653 50,871 49,263 51,923 50,250 5.64 1.34 4.46 -0.70 2.55

(600,5,8,1.2) 51,904 49,207 44,958 48,639 46,078 49,737 45,280 8.64 1.15 6.36 -1.08 7.98

(600,5,8,1.6) 48,283 45,221 38,966 44,582 40,784 45,911 36,476 13.83 1.41 9.81 -1.52 19.34

(600,6,4,1.0) 26,873 25,369 24,405 24,777 24,576 25,445 24,661 3.80 2.33 3.13 -0.30 2.79

(600,6,4,1.2) 25,184 23,325 21,945 22,553 22,455 23,517 21,841 5.92 3.31 3.73 -0.82 6.36

(600,6,4,1.6) 22,274 20,327 18,542 19,622 19,259 20,571 17,466 8.78 3.47 5.25 -1.20 14.07

(600,6,8,1.0) 42,865 41,102 38,411 39,830 38,935 41,305 39,768 6.55 3.09 5.27 -0.49 3.24

(600,6,8,1.2) 41,166 38,936 34,848 37,267 36,205 39,238 35,128 10.50 4.29 7.02 -0.77 9.78

(600,6,8,1.6) 38,252 35,845 30,536 34,430 32,492 36,238 28,181 14.81 3.95 9.35 -1.09 21.38

(600,8,4,1.0) 24,167 22,332 21,241 21,601 21,616 22,466 21,546 4.89 3.27 3.20 -0.60 3.52

(600,8,4,1.2) 22,755 20,539 19,074 19,726 19,668 20,710 19,077 7.13 3.96 4.24 -0.83 7.12

(600,8,4,1.6) 20,228 17,852 16,411 17,221 17,083 18,076 15,002 8.07 3.53 4.31 -1.25 15.97

(600,8,8,1.0) 38,395 36,299 33,270 34,870 34,159 36,521 34,599 8.34 3.94 5.89 -0.61 4.68

(600,8,8,1.2) 36,976 34,376 30,063 32,791 31,831 34,614 30,603 12.55 4.61 7.40 -0.69 10.97

(600,8,8,1.6) 34,449 31,589 26,876 30,209 28,856 31,840 23,875 14.92 4.37 8.65 -0.79 24.42

Average 8.47 2.55 5.75 -0.88 9.84

Table 2 Computational results for the test problems with T = 600 time periods in the selling horizon.

better than BPP and DIFF, which are the two other benchmarks that are based on the linear

program in (4). The first trend is that as the parameter ↵ increases and the capacities on the

flight legs get tighter, the performance gaps between APP and RLP get larger. Considering the

test problems with ↵= 1.0, ↵= 1.2, and ↵= 1.6 separately, the average percent gaps between the

total expected revenues obtained by APP and RLP are, respectively, 1.24%, 2.41%, and 2.64%. As

the capacities on the flight legs get tighter, it becomes more important to protect the capacity

for the high-fare itinerary requests that tend to arrive later in the selling horizon. It appears that

APP does a better job of capturing this tradeo↵. The second trend is that as the parameter 

increases and the revenue di↵erence between the high-fare and low-fare itineraries increases, the

performance gap between APP and RLP increases as well. Considering the test problems with

= 2 and = 4 separately, the average percent gaps between the total expected revenues obtained

by APP and RLP are, respectively, 1.88% and 2.31%. When the revenue di↵erence between the

high-fare and low-fare itineraries increases, the opportunity cost of not having the capacity to

serve a high-fare itinerary request also increases and APP seems to do a better job of reserving

the capacity for high-fare itinerary requests. APP lags behind DEC with a small but consistent

margin. Over all test problems, the average gap between the performance of APP and DEC is

0.83%. As mentioned earlier, to our knowledge, DEC is one of the strongest heuristics for network

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
31

revenue management problems in practice, but we emphasize that DEC does not have a theoretical

performance guarantee. Similar to the trends discussed earlier in this paragraph, the performance

gap between APP and DEC gets larger as the capacities on the flight legs get tighter or the revenue

di↵erence between the high-fare and low-fare itineraries increases. The performance of OPP is

not competitive to APP, which is not surprising because OPP is designed to deal with stationary

arrivals. Similar observations hold for the results in Table 2. APP consistently performs better than

BPP. Although RLP and DIF both perform better than BPP, they do not catch up with APP.

APP lags behind DEC by a small but consistent margin. OPP significantly lags behind APP.

The calibrated value of the tuning parameter ✓ that we use for APP depends on the problem

parameters. In Table 3, we show the value of the tuning parameter for all of our test problems when

we calibrate the tuning parameter at the beginning of the selling horizon. Our results indicate that

the calibrated value of the tuning parameter gets smaller as ↵ increases and the capacities on the

flight legs get tighter. Intuitively speaking, as the capacities on the flight legs get tighter and the

resources become more scarce, we expect the value of a unit of capacity to increase. Indeed, we

numerically observed that if we decrease the value of ✓ in the recursion in (3), then values of the

coe�cients {�t
j : j 2J , t2 T } computed through this recursion tend to increase, in which case, the

value of a unit of capacity also increases. We carried out all of our computational experiments using

Java 1.8.0 on 2.8 GHz Intel Xeon E5-2680 CPU with 1 GB of RAM. For the largest test problems

with T = 600 time periods and N = 8 spokes, the average CPU time to compute the coe�cients

{�t
j : j 2J , t2 T } for a fixed value of ✓ was about 0.05 seconds.

In our implementation of APP, we experimented with five other availability-tracking basis

functions, which are 'prd-exp

j (x) =
Q

i2Aj (1 � e�xi/Ci)/(1 � e�1), 'min

j (x) = mini2Aj
xi
Ci
, 'prd

j (x) =
Q

i2Aj
xi
Ci
, 'exp-sum

j (x) = exp
⇣P

i2Aj

⇣
1� Ci

xi

⌘⌘
and 'recip-sum

j (x) = |Aj|/
P

i2Aj
Ci
xi
. In Table 4, for

economy of space, we consider a subset of our test problems and show the performance of APP with

the five basis functions above, along with 'min-exp

j (x) = mini2Aj (1� e�xi/Ci)/(1� e�1) used in our

earlier computational results. In the first column, we show the parameter configuration for each test

problem. In the second to seventh columns, we show the total expected revenues obtained by APP

with the six basis functions. In the eighth to twelfth columns, we show the percent gap between

the performance of APP with the basis function 'min-exp

j (x) = mini2Aj (1� e�xi/Ci)/(1� e�1) and

the remaining five basis functions. Our results indicate that the performance of APP is somewhat

robust to the choice of basis functions, but by experimenting with di↵erent basis functions, we can

improve the performance by about 1.20% on average.

In all of our test problems, the maximum number of resources used by a product is two. The

theoretical performance guarantee that we give for APP in Theorem 3.5 depends on the maximum

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
32

Params.

(T,N,,↵) ✓

(200,4,4,1.0) 1.91

(200,4,4,1.2) 1.60

(200,4,4,1.6) 1.59

(200,4,8,1.0) 5.50

(200,4,8,1.2) 4.75

(200,4,8,1.6) 3.76

(200,5,4,1.0) 2.23

(200,5,4,1.2) 1.65

(200,5,4,1.6) 1.59

(200,5,8,1.0) 6.33

(200,5,8,1.2) 4.84

(200,5,8,1.6) 3.99

Params.

(T,N,,↵) ✓

(200,6,4,1.0) 1.78

(200,6,4,1.2) 1.62

(200,6,4,1.6) 1.59

(200,6,8,1.0) 5.64

(200,6,8,1.2) 4.75

(200,6,8,1.6) 3.98

(200,8,4,1.0) 1.61

(200,8,4,1.2) 1.59

(200,8,4,1.6) 1.59

(200,8,8,1.0) 5.03

(200,8,8,1.2) 4.37

(200,8,8,1.6) 3.40

Params.

(T,N,,↵) ✓

(600,4,4,1.0) 1.82

(600,4,4,1.2) 1.62

(600,4,4,1.6) 1.59

(600,4,8,1.0) 5.66

(600,4,8,1.2) 4.86

(600,4,8,1.6) 3.69

(600,5,4,1.0) 1.97

(600,5,4,1.2) 1.60

(600,5,4,1.6) 1.60

(600,5,8,1.0) 6.20

(600,5,8,1.2) 4.84

(600,5,8,1.6) 3.93

Params.

(T,N,,↵) ✓

(600,6,4,1.0) 1.60

(600,6,4,1.2) 1.59

(600,6,4,1.6) 1.60

(600,6,8,1.0) 5.65

(600,6,8,1.2) 4.81

(600,6,8,1.6) 3.93

(600,8,4,1.0) 1.71

(600,8,4,1.2) 1.59

(600,8,4,1.6) 1.59

(600,8,8,1.0) 5.50

(600,8,8,1.2) 4.38

(600,8,8,1.6) 3.45

Table 3 Calibrated values of the tuning parameter ✓.

Tot. Exp. Rev. % Gap with Min-Exp

Params Min- Prd- Exp- Recip- Prd- Exp- Recip-

(T,N,,↵) Exp Exp Min Prd Sum Sum Exp Min Prd Sum Sum

(200,6,4,1.0) 20,595 20,420 20,447 20,086 20,284 20,427 0.85 0.72 2.47 1.51 0.82

(200,6,4,1.2) 19,049 18,847 18,820 18,341 18,586 18,874 1.06 1.20 3.72 2.43 0.92

(200,6,4,1.6) 16,595 16,621 16,459 16,149 16,337 16,539 -0.16 0.82 2.69 1.56 0.33

(200,6,8,1.0) 33,338 33,248 33,123 32,544 32,914 33,088 0.27 0.64 2.38 1.27 0.75

(200,6,8,1.2) 31,623 31,619 31,425 30,816 31,059 31,192 0.01 0.63 2.55 1.78 1.36

(200,6,8,1.6) 29,191 29,265 28,928 28,654 29,046 29,090 -0.25 0.90 1.84 0.50 0.34

Table 4 Performance of APP with di↵erent basis functions.

number of resources used by a product. In Appendix F, we provide computational experiments

in the hotel network revenue management setting, where we systematically vary the maximum

number of resources used by a product. Our results demonstrate that APP maintains its edge over

BPP, RLP, DIF and OPP, and the performance gap between APP and DEC remains stable. Lastly,

in our computational experiments, the arrivals for the product requests are nonstationary. OPP

has a competitive ratio under stationary arrivals. In Appendix G, we provide computational

experiments to test the performance of OPP under stationary arrivals. Under stationary arrivals,

the performance of OPP gets better, but APP still provides significant improvements over OPP.

An examination of Theorem 3 and Lemma 7 in Kesselheim et al. (2014) shows that the competitive

ratio of OPP is max{1� 45
p
(1+ log2L)/cmin, 1/(8e (2L)1/(cmin�1))} for cmin � 2, which, although

approaches one as the capacities of the resource get large, can be substantially less than one for

practical instances. For example, for cmin = 100 and L= 2, this competitive ratio is about 0.045,

which is significantly less than the performance guarantee of 1/(1 +L) = 1/3 for APP. Note that

OPP does not use forecasts of the numbers of requests for di↵erent products, which can partly

explain its poor performance. The practical performance of OPP is not competitive, but it is

remarkable that OPP has an asymptotic performance guarantee without using forecasts.

In all of our computational experiments, we recompute the policy parameters five times over the

selling horizon. In Appendix H, we test the performance of the benchmarks when we compute the

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
33

policy parameters only once at the beginning of the selling horizon. Lastly, we also implemented the

approach in Section 4.3, which uses an optimal solution to problem (4) to compute the coe�cients

{�t
j : j 2J , t2 T }. For our test problems, this approach did not provide noticeable improvements

in the performance of APP.

6. Conclusion

We developed an approximate policy with a performance guarantee for network revenue

management problems, which, to our knowledge, is unique as it works under nonstationary

arrivals. In the paper, we pointed out several extensions of our approximate policy, but there

are still other extensions that are possible. For example, in some papers in the online packing

literature, there are multiple service modes with di↵erent revenues and resource consumptions. If

we choose to accept a product request, then we decide which mode to use to serve the request;

see, for example, Feldman et al. (2010) and Kesselheim et al. (2014). We can incorporate multiple

service modes into our approximate policy by using our extension to the customer choice behavior

given in Section 4.1. In particular, we use K to denote the set of service modes. At time period

t, we have a request for product j with probability �t
j. If we use mode k to serve a request for

product j, then we generate a revenue of rj,k and consume one unit of capacity for each resource

in the set Aj,k ✓ L. We can reformulate the problem with multiple service modes equivalently

as an instance of the problem in Section 4.1. In our reformulation, we refer to each product

and service mode combination as a meta-product. At each time period, we choose a subset of

meta-products to o↵er to the customers. O↵ering meta-product (j, k)2J ⇥K corresponds to being

willing to use mode k to serve a request for product j. Not o↵ering any of the meta-products

{(j, k) : k 2K} corresponds to not being willing to accept a request for product j. The feasible

subsets of meta-products that we can o↵er to the customers at a particular time period is given by

F = {S ✓J ⇥K : |S \ {(j, k) : k 2K}| 1 8 j 2J }, meaning that for each product j, we can o↵er

at most one meta-product of the form (j, k). In this way, we ensure that if we are willing to accept a

request for product j, then we choose one mode to serve it. If we o↵er the subset S of meta-products

at time period t such that (j, k) 2 S for service mode k and we have a request for product j,

then the arriving customer chooses meta-product (j, k). Therefore, we have the choice probability

�t
j,k(S) = �t

j if (j, k) 2 S. Otherwise, �t
j,k(S) = 0. The revenue of meta-product (j, k) is rj,k. If we

sell one unit of meta-product (j, k), then we consume the capacities of the resources in the set Aj,k.

Thus, replacing the products in the formulation in Section 4.1 with the meta-products, we can

check that the feasible subsets of meta-products and the choice probabilities given above satisfy

Assumption 4.1. So, we can use the formulation in Section 4.1 to come up with an approximate

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
34

policy to decide which meta-products to o↵er at each time period to maximize the total expected

revenue, which, in turn, yields an approximate policy to decide which product requests to accept

and which mode to use for the accepted requests.

By the preceding discussion, the extension in Section 4.1 allows us to incorporate multiple

service modes, but there are other variants of the network revenue management problem that are

di�cult to address by using our approach. For example, if overbooking is allowed, then the dynamic

programming formulation of the problem is fundamentally di↵erent than the one that we use,

because the state variable needs to keep track of the number of accepted bookings for each product,

which ultimately may or may not show up. Thus, extending our work to handle overbooking is

not straightforward. Also, the choice of our basis functions and the algorithm that we use to

construct the coe�cients of the basis functions strictly exploit the structure of the network revenue

management problem. Extending our approach to a broader class of dynamic programs is certainly

worthwhile, but such extensions appear to be nontrivial to us at this point. Another important

point is that our choice of the basis functions was based on experimentation. The definition of

availability-tracking basis functions provides some guidance on the choice of the basis functions,

but a more systematic approach for choosing the basis functions is a useful research direction.

Moreover, although our approach has a performance guarantee, this performance guarantee stays

away from one. It would be useful if we can establish that our approach becomes asymptotically

optimal in some regime, such as the one where the resource capacities and the expected demands for

the products increase linearly with the same rate. Lastly, the dynamic programming decomposition

approach, which we used as a benchmark in our computational experiments, is one of the strongest

heuristics for network revenue management problems. To our knowledge, however, this approach

does not have a performance guarantee. It would be useful to understand whether it is possible to

give a performance guarantee for this approach.

Acknowledgements. We gratefully acknowledge the comments of the area editor, associate

editor and three referees, which substantially improved our exposition, technical results and

computational experiments. The second and fourth authors were supported in part by National

Science Foundation grants CMMI-1824860 and CMMI-1825406. The fourth author was also

supported in part by Schmidt Sciences.

Author Biographies: Yuhang Ma is a PhD student in the School of Operations Research and

Information Engineering at Cornell University. Her research interests are assortment optimization

and revenue management.

Paat Rusmevichientong is a professor of data sciences and operations at the USC Marshall

School of Business. His research interests include revenue management, choice modeling, pricing,

assortment optimization, and approximate dynamic programming.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
35

Mika Sumida is a PhD student in the School of Operations Research and Information Engineering

at Cornell University. Her research interests include algorithm design, resource allocation, and

revenue management with applications in online marketplaces and the sharing economy.

Huseyin Topaloglu is a professor in the School of Operations Research and Information

Engineering at Cornell University. His research focuses on revenue management, assortment

optimization, transportation logistics, and approximate dynamic programming.

References

Adelman, D. 2007. Dynamic bid prices in revenue management. Operations Research 55(4) 647–661.

Agrawal, S., Z. Wang, Y. Ye. 2014. A dynamic near-optimal algorithm for online linear programming.

Operations Research 62(4) 876–890.

Asadpour, A., H. Nazerzadeh. 2016. Maximizing stochastic monotone submodular functions. Management

Science 62(8) 2374–2391.

Bertsimas, D., I. Popescu. 2003. Revenue management in a dynamic network environment. Transportation

Science 37(3) 257–277.

Bront, J. J. M., I. Mendez Diaz, G. Vulcano. 2009. A column generation algorithm for choice-based network

revenue management. Operations Research 57(3) 769–784.

Brown, D. B., J. E. Smith. 2014. Information relaxations, duality, and convex stochastic dynamic programs.

Operations Research 62(6) 1394–1415.

Buchbinder, N., J. (S.) Naor. 2009. The design of competitive online algorithms via a primal: Dual approach.

Foundations and Trends in Theoretical Computer Science 3(2-3) 93–263.

Chan, C. W., V. F. Farias. 2009. Stochastic depletion problems: E↵ective myopic policies for a class of

dynamic optimization problems. Mathematics of Operations Research 34(2) 333–350.

Chaneton, J. M., G. Vulcano. 2011. Computing bid prices for revenue management under customer choice

behavior. Manufacturing & Service Operations Management 13(4) 452–470.

Cooper, W. L. 2002. Asymptotic behavior of an allocation policy for revenue management. Operations

Research 50(4) 720–727.

Cooper, W. L., T. Homem de Mello. 2007. Some decomposition methods for revenue management.

Transportation Science 41(3) 332–353.

Devanur, N. R., T. P. Hayes. 2009. The adwords problem: Online keyword matching with budgeted bidders

under random permutations. Proceedings of the ACM Conference on Electronic Commerce. 71–78.

Devanur, N. R., K. Jain, B. Sivan, C. A. Wilkens. 2011. Near optimal online algorithms and fast

approximation algorithms for resource allocation problems. Proceedings of the 12th ACM Conference

on Electronic Commerce. EC ’11, ACM, New York, NY, USA, 29–38.

Feldman, J., M. Henzinger, N. Korula, V. S. Mirrokni, C. Stein. 2010. Online stochastic packing applied

to display ad allocation. Proceedings of the 18th Annual European Conference on Algorithms: Part I .

ESA’10, Springer-Verlag, Berlin, Heidelberg, 182–194.

Gallego, G., G. Iyengar, R. Phillips, A. Dubey. 2004. Managing flexible products on a network. CORC

Technical Report TR-2004-01.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
36

Gallego, G., A. Li, V. A. Truong, X. Wang. 2016. Online bipartite matching. Working Paper, Columbia

University.

Goel, A., M. Mahdian, H. Nazerzadeh, A. Saberi. 2010. Advertisement allocation for generalized second-

pricing schemes. Operations Research Letters 38(6) 571–576.

Golrezaei, N., H. Nazerzadeh, P. Rusmevichientong. 2014. Real-time optimization of personalized

assortments. Management Science 60(6) 1532–1551.

Hu, X., R. Caldentey, G. Vulcano. 2013. Revenue sharing in airline alliances. Management Science 59(5)

1177–1195.

Jasin, S., S. Kumar. 2012. A re-solving heuristic with bounded revenue loss for network revenue management

with customer choice. Mathematics of Operations Research 37(2) 313–345.

Jasin, S., S. Kumar. 2013. Analysis of deterministic LP-based booking limit and bid price controls for revenue

management. Operations Research 61(6) 1312–1320.

Kesselheim, T., A. Tönnis, K. Radke, B. Vöcking. 2014. Primal beats dual on online packing LPs in the

random-order model. Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing .

STOC ’14, New York, NY, 303–312.

Kirshner, S. N., M. Nediak. 2015. Scalable dynamic bid prices for network revenue management in continuous

time. Production and Operations Management 24(10) 1621–1635.

Kunnumkal, S., K. Talluri. 2016a. On a piecewise-linear approximation for network revenue management.

Mathematics of Operations Research 41(1) 72–91.

Kunnumkal, S., K. Talluri. 2016b. Technical note: A note on relaxations of choice network revenue

management dynamic program. Operations Research 64(1) 158–166.

Kunnumkal, S., H. Topaloglu. 2008. A refined deterministic linear program for the network revenue

management problem with customer choice behavior. Naval Research Logistics Quarterly 55(6) 563–

580.

Kunnumkal, S., H. Topaloglu. 2010a. Computing time-dependent bid prices in network revenue management

problems. Transportation Science 44(1) 38–62.

Kunnumkal, S., H. Topaloglu. 2010b. A new dynamic programming decomposition method for the network

revenue management problem with customer choice behavior. Production and Operations Management

19(5) 575–590.

Liu, Q., G. J. van Ryzin. 2008. On the choice-based linear programming model for network revenue

management. Manufacturing & Service Operations Management 10(2) 288–310.

Maglaras, C., J. Meissner. 2006. Dynamic pricing strategies for multiproduct revenue management problems.

Manufacturing & Service Operations Management 8(2) 136–148.

Mehta, A., Saberi A, U. Vazirani, V. Vazirani. 2007. Adwords and generalized online matching. Journal of

the ACM 54(5) 22:1–22:19.

Meissner, J., A. Strauss, K. Talluri. 2012. An enhanced concave program relaxation for choice network

revenue management. Production and Operations Management 22(1) 71–87.

Mendez-Diaz, I., J. J. M. Bront, G. Vulcano, P. Zabala. 2010. A branch-and-cut algorithm for the latent-class

logit assortment problem. Discrete Applied Mathematics 36 383–390.

Molinaro, M., R. Ravi. 2014. The geometry of online packing linear programs. Mathematics of Operations

Research 39(1) 46–59.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
37

Rusmevichientong, P., M. Sumida, H. Topaloglu. 2017. Dynamic assortment optimization for reusable

products with random usage durations. Working Paper, Cornell Tech.

Simpson, R. W. 1989. Using network flow techniques to find shadow prices for market demands and

seat inventory control . MIT, Department of Aeronautics and Astronautics, Flight Transportation

Laboratory.

Strauss, A. K., K. Talluri. 2017. Tractable consideration set structures for network revenue management.

Production and Operations Management 26(7) 1359–1368.

Talluri, K. 2014. New formulations for choice network revenue management. INFORMS Journal on

Computing 26(2) 401–413.

Talluri, K. T., G. J. van Ryzin. 1998. An analysis of bid-price controls for network revenue management.

Management Science 44(11-part-1) 1577–1593.

Talluri, K. T., G. J. van Ryzin. 1999. A randomized linear programming method for computing network bid

prices. Transportation Science 33(2) 207–216.

Talluri, K. T., G. J. van Ryzin. 2005. The theory and practice of revenue management . Kluwer Academic

Publishers, Boston, MA.

Tan, B., R. Srikant. 2012. Online advertisement, optimization and stochastic networks. IEEE Transactions

on Automatic Control 57(11) 2854–2868.

Tong, C., H. Topaloglu. 2013. On the approximate linear programming approach for network revenue

management problems. INFORMS Journal on Computing 26(1) 121–134.

Topaloglu, H. 2008. A stochastic approximation method to compute bid prices in network revenue

management problems. INFORMS Journal on Computing 20(4) 596–610.

Topaloglu, H. 2009. Using Lagrangian relaxation to compute capacity-dependent bid prices in network

revenue management. Operations Research 57(3) 637–649.

van Ryzin, G., G. Vulcano. 2008a. Computing virtual nesting controls for network revenue management

under customer choice behavior. Manufacturing & Service Operations Management 10(3) 448–467.

van Ryzin, G., G. Vulcano. 2008b. Simulation-based optimization of virtual nesting controls for network

revenue management. Operations Research 56(4) 865–880.

Vossen, T. W. M., D. Zhang. 2015a. A dynamic disaggregation approach to approximate linear programs

for network revenue management. Production and Operations Management 24(3) 469–487.

Vossen, T. W. M., D. Zhang. 2015b. Reductions of approximate linear programs for network revenue

management. Operations Research 63(6) 1352–1371.

Wang, X., V. A. Truong, D. Bank. 2016. Online advance admission scheduling for services, with customer

preferences. Working Paper, Columbia University.

Williamson, E. L. 1992. Airline network seat control. Ph.D. thesis, Massachusetts Institute of Technology,

Cambridge, MA.

Zhang, D. 2011. An improved dynamic programming decomposition approach for network revenue

management. Manufacturing & Service Operations Management 13(1) 35–52.

Zhang, D., D. Adelman. 2009. An approximate dynamic programming approach to network revenue

management with customer choice. Transportation Science 43(3) 381–394.

Zhang, D., W. L. Cooper. 2005. Revenue management for parallel flights with customer choice behavior.

Operations Research 53(3) 415–431.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
38

Zhang, D., W. L. Cooper. 2009. Pricing substitutable flights in airline revenue management. European

Journal of Operational Research 197(3) 848–861.

Electronic Companion:

An Approximation Algorithm for Network Revenue

Management under Nonstationary Arrivals

Yuhang Ma, Paat Rusmevichientong, Mika Sumida, Huseyin Topaloglu

Appendix A: Constructing Availability-Tracking Basis Functions

In the next lemma, we show that we can construct availability-tracking basis functions from

existing ones by taking a composition with a non-decreasing function. By using this lemma, we

can use known availability-tracking basis functions to construct others, enriching the class of

availability-tracking basis functions we have access to.

Lemma A.1 Let B = {'j : j 2J } be a collection of availability-tracking basis functions.

If f : [0,1]! [0,1] is non-decreasing and di↵erentiable with f(0) = 0, f(1) = 1 and

maxa2[0,1] f
0(a)<1, then letting ⇢j(x) = f('j(x)) for all j 2 J , the collection D = {⇢j : j 2J } is

also availability-tracking with �D 
�
maxa2[0,1] f

0(a)
�
⇥�B.

Proof: It is simple to verify that D satisfies the three parts of Definition 3.1. Since 'j(C) = 1 and

'j(C�ei) 1, we have �B =maxj2J , i2L maxx2Q :xi�1Ci⇥ ('j(x)�'j(x� ei))� 0. In this case,

by the mean value theorem, for each x2Q with xi � 1, there exists y 2 [0,1] such that

Ci ⇥
⇣
f('j(x))� f('j(x� ei))

⌘
=Ci ⇥

⇣
f
0(y) ('j(x)�'j(x� ei))

⌘
 f

0(y)�B  max
a2[0,1]

f
0(a)⇥�B,

where the first inequality uses the fact that f
0(y) � 0 and the definition of �B, whereas

the second inequality uses the fact that �B � 0. The inequality above implies that �D =

maxj2J , i2L maxx2Q :xi�1Ci ⇥ (f('j(x))� f('j(x� ei)))
�
maxa2[0,1] f

0(a)
�
⇥�B. ⇤

The next lemma also allows us to use known availability-tracking basis functions to construct

other availability-tracking basis functions.

Lemma A.2 Let B = {'j : j 2J } be a collection of availability-tracking basis functions. If, for

each i 2 L, gi : [0,1]! [0,1] is non-decreasing and di↵erentiable with gi(0) = 0, gi(1) = 1 and

maxa2[0,1] g
0(a)<1, then letting ⇢j(x) =mini2Aj gi(xi/Ci) or ⇢j(x) =

Q
i2Aj gi(xi/Ci) for all j 2J ,

the collection D = {⇢j : j 2J } is also availability-tracking with �D maxi2Lmaxa2[0,1] g
0
i(a).

Proof: It is simple to verify that D satisfies the three parts of Definition 3.1. Also, by the mean

value theorem, for xi = 1, . . . ,Ci, there exists y 2 [0,1] such that gi(
xi
Ci
) � gi(

xi�1
Ci

) = 1
Ci

g
0
i(y) 

1

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
2

1
Ci

max`2Lmaxa2[0,1] g
0
`(a). First, consider the case ⇢j(x) = mini2Aj gi(xi/Ci). Using the same line

of reasoning that we use in Example 3.3 and noting that gi is non-decreasing, we obtain

⇢j(x)� ⇢j(x� ei) = min
`2Aj

n
gi

⇣
x`
C`

⌘o
�min

`2Aj

n
g`

⇣
x`�1l{`=i}

C`

⌘o

=

8
>>><

>>>:

gi

⇣
xi
Ci

⌘
� gi

⇣
xi�1
Ci

⌘
if gi

⇣
xi
Ci

⌘
=min`2Aj g`

⇣
x`
C`

⌘

min`2Aj g`

⇣
x`
C`

⌘
� gi

⇣
xi�1
Ci

⌘
if gi

⇣
xi
Ci

⌘
>min`2Aj g`

⇣
x`
C`

⌘
� gi

⇣
xi�1
Ci

⌘

0 if gi

⇣
xi�1
Ci

⌘
>min`2Aj g`

⇣
x`
C`

⌘
.

 gi

⇣
xi
Ci

⌘
� gi

⇣
xi�1
Ci

⌘
 1

Ci
max
`2L

max
a2[0,1]

g
0
`(a).

Second, consider the case ⇢j(x) =
Q

i2Aj gi(xi/Ci). Using the same line of reasoning that we use in

Example 3.4 and noting, once again, that gi is non-decreasing, we get

⇢j(x)� ⇢j(x� ei) =
Y

`2Aj

g`

⇣
x`
C`

⌘
� gi

⇣
xi�1
Ci

⌘
·
Y

`2Aj\{i}

g`

⇣
x`
C`

⌘

=
⇣
gi

⇣
xi
Ci

⌘
� gi

⇣
xi�1
Ci

⌘⌘
·
Y

`2Aj\{i}

g`

⇣
x`
C`

⌘
 gi

⇣
xi
Ci

⌘
� gi

⇣
xi�1
Ci

⌘
 1

Ci
max
`2L

max
a2[0,1]

g
0
`(a).

Thus, we have ⇢j(x) � ⇢j(x � ei)  1
Ci

max`2Lmaxa2[0,1] g
0
`(a) in both cases. The last inequality

implies that �D max`2Lmaxa2[0,1] g
0
`(a). ⇤

In the rest of this section, we show that if B = {'j : j 2J } is any collection of availability-tracking

basis functions, then we can construct a collection of non-decreasing availability-tracking

basis functions D = {⇢j : j 2 J } such that �D  �B. In particular, given any collection of

availability-tracking basis functions B = {'j : j 2J }, we define ⇢j :Q! [0,1] as

⇢j(x) = max
(�i : i2Aj)2Z|Aj |

+

(
'j

x�

X

i2Aj

�i ei

!
: 0 �i  xi 8 i2A

j

)
. (17)

We will show three results for the collection of basis-functions D = {⇢j : j 2J }. First, this collection

of basis functions is availability-tracking. Second, ⇢j is non-decreasing in the sense that ⇢j(x) �

⇢j(x� ei) for any x2Q with xi � 1. Third, we show that �D �B. In the next lemma, we show

that the collection of basis functions D = {⇢j : j 2J } is availability-tracking.

Lemma A.3 If the collection of basis functions B = {'j : j 2J } is availability-tracking, then the

collection of basis functions D = {⇢j : j 2J } with ⇢j as in (17) is also availability-tracking.

Proof: Since the collection B = {'j : j 2 J } is availability-tracking, it satisfies the three parts of

Definition 3.1. We proceed to verify that the collection {⇢j : j 2 J } satisfies the three parts of

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
3

Definition 3.1 as well. To verify part (a), let x2Q be such that xi = 0 for some i2A
j. Since xi = 0,

we can write (17) as

⇢j(x) = max
(�` : `2Aj\{i})2Z|Aj |�1

+

8
<

:'j

0

@x�
X

`2Aj\{i}

�` e`

1

A : 0 �`  x` 8 `2A
j \ {i}

9
=

; .

Because xi = 0, the i-th component of the vector x�
P

`2Aj\{i} �` e` is zero, in which case, since 'j

satisfies part (a) and i2A
j, we get 'j(x�

P
`2A\{i} �` e`) = 0 for any (�` : `2A

j \{i}) that satisfies
0 �`  x` for all ` 2A

j \ {i}. Therefore, the objective value of the maximization problem on the

right side above is zero at any feasible solution. Thus, ⇢j(x) = 0, verifying part (a).

To verify part (b), let x,y 2Q be such that xi = yi for all i 2A
j. In this case, for each i 2A

j,

the i-th components of the vectors x�
P

`2Aj �` e` and y �
P

`2Aj �` e` are the same. Therefore,

because 'j satisfies part (b), we get 'j(x�
P

`2Aj �` e`) = 'j(y�
P

`2Aj �` e`). Once again, using

the fact that xi = yi for all i2A
j, we get

⇢j(x) = max
(�` : `2Aj)2Z|Aj |

+

(
'j

x�

X

`2Aj

�` e`

!
: 0 �`  x` 8 `2A

j

)

= max
(�` : `2Aj)2Z|Aj |

+

(
'j

y�

X

`2Aj

�` e`

!
: 0 �`  y` 8 `2A

j

)
= ⇢j(y),

verifying part (b). To verify part (c), because 'j(x) 1 for any x2Q, it holds that ⇢j(C) 1 by

(17). On the other hand, since setting �` = 0 for all `2A
j is a feasible solution to the maximization

problem in (17), ⇢j(x) � 'j(x) for any x 2 Q, in which case, since 'j satisfies part (c), we get

⇢j(C)�'j(C) = 1. Thus, we have ⇢j(C) = 1, verifying part (c). ⇤

Next, we show that ⇢j is non-decreasing.

Lemma A.4 If 'j is an availability-tracking basis function, then letting ⇢j be as in (17), we have

⇢j(x)� ⇢j(x� ei) for any x2Q with xi � 1.

Proof: First, assume that i 2 A
j. Since xi � 1, the interval [1, xi] is non-empty. Restricting the

constraint 0 �i  xi to 1 �i  xi in problem (17), we get

⇢j(x) = max
(�` : `2Aj)2Z|Aj |

+

(
'j

x�

X

`2Aj

�` e`

!
: 0 �`  x` 8 `2A

j

)

� max
(�` : `2Aj)2Z|Aj |

+

(
'j

x�

X

`2Aj

�` e`

!
: 0 �`  x` 8 `2A

j \ {i}, 1 �i  xi

)
.

We claim that the expression on the right side above is equal to ⇢j(x�ei), in which case, the result

follows. To see the claim, we add and subtract ei in the argument of 'j on the right side above

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
4

and do the change of variables �i = �i � 1 and �` = �` for all ` 2 A \ {i}. Therefore, we can write

the maximization problem on the right side above equivalently as

max
(�` : `2Aj)2Z|Aj |

+

(
'j

x�

X

`2Aj

�` e`

!
: 0 �`  x` 8 `2A

j \ {i}, 1 �i  xi

)

= max
(�` : `2Aj)2Z|Aj |

+

8
<

:'j

0

@x� ei �
X

`2Aj\{i}

�` e` � (�i � 1)ei

1

A : 0 �`  x` 8 `2A
j \ {i}, 1 �i  xi

9
=

;

= max
(�` : `2Aj)2Z|Aj |

+

8
<

:'j

0

@x� ei �
X

`2Aj\{i}

�` e` � �i ei

1

A : 0 �`  x` 8 `2A
j \ {i}, 0 �i  xi � 1

9
=

;

= max
(�` : `2Aj)2Z|Aj |

+

(
'j

x� ei �

X

`2Aj

�` e`

!
: 0 �`  x` 8 `2A

j \ {i}, 0 �i  xi � 1

)
= ⇢j(x� ei),

where the last equality is by (17). Thus, the claim holds. Second, assume that i 62A
j. Since ⇢j is

availability-tracking by Lemma A.3, by part (b) of Definition 3.1, we get ⇢j(x) = ⇢j(x� ei). ⇤

Finally, we show that �D �B, where the collection D = {⇢j : j 2 J } is constructed by using

the collection B = {'j : j 2J } as in (17).

Lemma A.5 If the collection of basis functions B = {'j : j 2J } is availability-tracking, then the

collection of basis functions D = {⇢j : j 2J } with ⇢j as in (17) satisfies �D �B.

Proof: To show the result in the lemma, for any j 2 J , i 2 L and x 2Q satisfying xi � 1, we will

establish the claim that

⇢j(x)� ⇢j(x� ei) max
y2Q:yi�1

n
'j(y)�'j(y� ei)

o
. (18)

In this case, we get �D = maxj2J ,i2LCi ⇥ maxx2Q:xi�1 {⇢j(x)� ⇢j(x� ei)}  maxj2J ,i2LCi ⇥

maxy2Q:yi�1 {'j(y)�'j(y� ei)}=�B, which is the desired result. If i 62A
j, then by part (b) of

Definition 3.1, 'j(y) ='j(y� ei). Similarly, because ⇢j is availability-tracking by Lemma A.3, we

have ⇢j(x) = ⇢j(x� ei) as well. Therefore, both sides of the inequality in (18) are zero and the

claim follows. In the rest of the proof, we assume that i2A
j. By (17), we have

⇢j(x)� ⇢j(x� ei) = max
(�` : `2Aj)2Z|Aj |

+

(
'j

x�

X

`2Aj

�` e`

!
: 0 �`  x` 8 `2A

j

)

� max
(�` : `2Aj)2Z|Aj |

+

(
'j

x� ei �

X

`2Aj

�` e`

!
: 0 �`  x` 8 `2A

j \ {i}, 0 �i  xi � 1

)
.

Let �⇤ = (�⇤` : `2A
j) be an optimal solution to the first maximization problem above. First, assume

that �
⇤
i < xi. In this case, �

⇤ = (�⇤` : ` 2 A
j) is a feasible but not necessarily optimal solution

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
5

to the second maximization problem above. If we evaluate the objective function of the second

maximization problem above at this feasible solution, then it follows that ⇢j(x)� ⇢j(x� ei) 
'j

�
x�

P
`2Aj �

⇤
` e`

�
� 'j

�
x� ei �

P
`2Aj �

⇤
` e`

�
. Since 0  �

⇤
`  x` for all ` 2 A

j, we have

x�
P

`2Aj �
⇤
` e` 2Q. In addition, since �

⇤
i <xi, the i-th component of the vector x�

P
`2Aj �

⇤
` e` is

at least one. Thus, the claim in (18) follows by

⇢j(x)� ⇢j(x� ei)'j

x�

X

`2Aj

�
⇤
` e`

!
�'j

x� ei �

X

`2Aj

�
⇤
` e`

!
 max

y2Q:yi�1

n
'j(y)�'j(y� ei)

o
.

Second, assume that �
⇤
i = xi. So, the i-th component of the vector x�

P
`2Aj �

⇤
` e` is zero. Thus,

by part (a) of Definition 3.1, we have 'j(x�
P

`2Aj �
⇤
` e`) = 0, so ⇢j(x) = 'j(x�

P
`2Aj �

⇤
` e`) = 0,

yielding ⇢j(x)�⇢j(x�ei) 0. Also, 'j(C) = 1�'j(C�ei), so maxy2Q:yi�1{'j(y)�'j(y�ei)}�
0. Thus, we get ⇢j(x)� ⇢j(x� ei) 0maxy2Q:yi�1{'j(y)�'j(y� ei)}, establishing (18). ⇤

Letting 'j(x) =
Q

i2Aj f(
xi
Ci
) with f(a) = 2

3
� 5

3
|a� 2

5
| for a 3

5
and f(a) = 5

3
(x� 2

5
) for a� 3

5
,

one can check that B = {'j : j 2J } is availability-tracking with �B = 5
3
and 'j is non-monotone.

Appendix B: Performance Guarantee under Customer Choice Behavior

In this section, we give a proof for Theorem 4.2 by using a sequence of lemmas. The next lemma

shows that the coe�cients {�t
j : j 2J , t2 T } computed through (12) are non-decreasing in t.

Lemma B.1 For all j 2J and t2 T , we have �
t
j � �

t+1
j .

Proof: Considering problem (11), we define µj = rj � ✓
P

i2Aj
1
Ci

P
k2J 1l{i2Ak}�

t+1
k for notational

brevity. We claim that if Ŝt is an optimal solution to problem (11), then we have �
t
j(Ŝ

t)µj � 0

for all j 2 Ŝ
t. We prove this claim by contradiction. Suppose, on the contrary, that the set

N̂
t = {j 2 Ŝ

t : �t
j(Ŝ

t)µj < 0} is nonempty. Letting P̂
t = {j 2 Ŝ

t \ N̂ t : µj � 0}, we have P̂
t ✓ Ŝ

t, in

which case, by Assumption 4.1, we have �
t
j(P̂

t) � �
t
j(Ŝ

t) for all j 2 P̂
t. Moreover, by the same

assumption, since Ŝ
t 2F , we have P̂

t 2F as well. So, we obtain the chain of inequalities

X

j2Ŝt

�
t
j(Ŝ

t)µj =
X

j2Ŝt\N̂t

�
t
j(Ŝ

t)µj +
X

j2N̂t

�
t
j(Ŝ)µj <

X

j2Ŝt\N̂t

�
t
j(Ŝ

t)µj 
X

j2P̂ t

�
t
j(Ŝ

t)µj 
X

j2P̂ t

�
t
j(P̂

t)µj,

where the first inequality uses the fact that �
t
j(Ŝ

t)µj < 0 for all j 2 N̂
t and N̂

t 6= ?, the second

inequality uses the fact that µj < 0 whenever j 2 Ŝ
t \ N̂ t and j 62 P̂

t and the third inequality uses

the fact that �
t
j(P̂

t) � �
t
j(Ŝ

t) and µj � 0 for all j 2 P̂
t. Since P̂

t 2 F , the solution P̂
t is feasible

to problem (11), so the chain of inequalities above contradicts the fact that Ŝ
t is an optimal

solution to problem (11), establishing the claim. In this case, if j 2 Ŝ
t, then (12) implies that

�
t
j = �

t+1
j +�

t
j(Ŝ

t)µj � �
t+1
j . If j 62 Ŝ

t, then we have �
t
j(Ŝ

t) = 0, so �
t
j = �

t+1
j +�

t
j(Ŝ

t)µj = �
t+1
j . ⇤

The next lemma gives a bound on the optimal total expected revenue obtained through (10).

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
6

Lemma B.2 If the coe�cients {�t
j : j 2J , t2 T } are computed through (12), then we have

V
1 (C) (1+ ✓L)

P
j2J �

1
j .

Proof: We formulate a linear program whose optimal objective value provides an upper bound

on the optimal total expected revenue. In particular, we use the vector of decision variables

z = (zt(S) : S 2F , t2 T), where z
t(S) is the probability that we o↵er the assortment S at time

period t. In this case, we consider the linear program

Z⇤
LP = max

z2R|F|⇥T
+

(
X

t2T

X

S2F

X

j2J

rj �
t
j(S)z

t(S) :
X

t2T

X

S2F

X

j2J

1l{i2Aj} �
t
j(S)z

t(S)Ci 8 i2L,

X

S2F

z
t(S) = 1 8 t2 T

)
. (19)

The objective function above accounts for the total expected revenue over the selling horizon. The

first constraint ensures that the total expected capacity consumption of the resources do not exceed

the initial capacities. The second constraint ensures that we o↵er an assortment at each time period

with probability one. It is well-known that the optimal objective value of problem (19) is an upper

bound on the optimal total expected revenue; see Liu and van Ryzin (2008). Thus, we have Z⇤
LP �

V
1(C). By Assumption 4.1, it is simple to see that ?2F . O↵ering the empty assortment at each

time period yields a feasible solution to problem (19). By the second constraint above, the decision

variables are upper bounded by one. Therefore, problem (19) is feasible and bounded, so the optimal

objective value of the dual of problem (19) is also Z⇤
LP . Using the vectors of dual variables µ =

(µi : i2L) and �= (�t : t2 T), the dual of problem (19) involves minimizing the objective function
P

i2LCi µi +
P

t2T �
t subject to the constraint

P
i2L
P

j2J 1l{i2Aj} �
t
j(S)µi + �

t �
P

j2J rj �
t
j(S)

for all S 2 F , t 2 T with the decision variables (µ,�) 2 R|L|
+ ⇥RT . Since the decision variable �

t

appears with a positive coe�cient in the objective function, it takes on its smallest possible value

in an optimal solution. If we express the constraint as �t �
P

j2J �
t
j(S) (rj �

P
i2L 1l{i2Aj} µi) for all

S 2 F , t 2 T , then the smallest possible value of �t is maxS2F
P

j2J �
t
j(S) (rj �

P
i2L 1l{i2Aj} µi),

in which case, replacing the decision variable �
t by its value in an optimal solution, the dual of

problem (19) takes the form

Z⇤
LP = min

µ2R|L|
+

(
X

i2L

Ci µi +
X

t2T

max
S2F

(
X

j2J

�
t
j(S)

rj �

X

i2L

1l{i2Aj} µi

!))
. (20)

Using the coe�cients {�t
j : j 2J , t2 T } that are computed through (12), we construct a solution

µ̂= (µ̂i : i2L) to problem (20) by setting µ̂i =
✓
Ci

P
k2J 1l{i2Ak} �

1
k for all i2L. By Lemma B.1, we

have �
1
j � �

2
j � . . .� �

T+1
j = 0. Therefore, we have µ̂i � 0 for all i 2 L, so the solution µ̂ is feasible

to problem (20). In this case, noting that problem (20) is a minimization problem, the objective

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
7

value of this problem evaluated at the solution µ̂ is an upper bound on the optimal objective value

Z⇤
LP . Evaluating the objective function of problem (20) at the solution µ̂, we get

Z⇤
LP 

X

i2L

Ci µ̂i +
X

t2T

max
S2F

(
X

j2J

�
t
j(S)

rj �

X

i2L

1l{i2Aj} µ̂i

!)

=
X

i2L

Ci
✓

Ci

X

k2J

1l{i2Ak} �
1
k +
X

t2T

max
S2F

(
X

j2J

�
t
j(S)

rj �

X

i2L

1l{i2Aj}
✓

Ci

X

k2J

1l{i2Ak} �
1
k

!)

= ✓

X

k2J

X

i2L

1l{i2Ak} �
1
k +
X

t2T

max
S2F

(
X

j2J

�
t
j(S)

rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
1
k

!)

 ✓L

X

k2J

�
1
k +
X

t2T

max
S2F

(
X

j2J

�
t
j(S)

rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
t+1
k

!)

= ✓L

X

k2J

�
1
k +
X

t2T

X

j2J

�
t
j(Ŝ

t)

rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
t+1
k

!

= ✓L

X

k2J

�
1
k +
X

t2T

X

j2J

⇥
�
t
j � �

t+1
j

⇤
= (1+ ✓L)

X

j2J

�
1
j ,

where the second inequality uses the fact that
P

i2L 1l{i2Ak} = |Ak| L and �
1
k � �

2
k � . . . � �

T
k �

�
T+1
k for all k 2J , the third equality holds by the definition of Ŝt in (11), the fourth equality holds

because �
t
j � �

t+1
j = �

t
j(Ŝ

t)
⇣
rj � ✓

P
i2Aj

1
Ci

P
k2J 1l{i2Ak}�

t+1
k

⌘
by (12). Thus, (1 + ✓L)

P
j2J �

1
j �

Z⇤
LP , in which case, the desired result follows from the fact that Z⇤

LP � V
1(C). ⇤

Next, we give a lower bound on the total expected revenue obtained by our approximate policy.

Let U t(x) denote the total expected revenue obtained by our approximate policy over time periods

t, t+1, . . . , T , given that the state of the resources at time period t is x. Building on the dynamic

program in (10), we can compute {U t : t2 T } through the recursion

U
t(x) =

X

j2J

�
t
j(S

App,t(x))

Y

i2Aj

1l{xi�1}

!"
rj +U

t+1

x�

X

i2Aj

ei

!#

+

1�

X

j2J

�
t
j(S

App,t(x))+
X

j2J

�
t
j(S

App,t(x))

1�

Y

i2Aj

1l{xi�1}

!!
U

t+1(x)

= U
t+1(x)+

X

j2J

�
t
j(S

App,t(x))

Y

i2Aj

1l{xi�1}

!"
rj �U

t+1(x)+U
t+1

x�

X

i2Aj

ei

!#
, (21)

with the boundary condition that U
T+1 = 0. Recall that if the state of the remaining resources

at time period t is x, then the approximate policy o↵ers the assortment S
App,t(x) given in (13).

The recursion above is analogous to the dynamic program in (10). The only di↵erence is that the

o↵ered assortment is fixed by the decision of the approximate policy.

The total expected revenue obtained by our approximate policy is given by U
1(C). In the next

lemma, we give a lower bound on this quantity.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
8

Lemma B.3 If the tuning parameter ✓ satisfies ✓��B and the coe�cients {�t
j : j 2J , t2 T } are

computed through (12), then we have U
1 (C)�

P
j2J �

1
j .

Proof: We use induction over the time periods to show that U t(x)�H
t(x) for all x2Q and t2 T ,

where H
t(x) =

P
j2J �

t
j 'j(x) with {�t

j : j 2 J , t 2 T } computed through (12). Consider the base

case at time period T + 1. Since U
T+1 = 0 =H

T+1, the base case holds. Suppose that the result

holds at time period t+1, so that U
t+1(x)�H

t+1(x) for all x 2Q. We proceed to showing that

U
t(x)�H

t(x) for all x2Q. Since U
t+1 �H

t+1, if we replace U
t+1 on the right side of the second

equality in (21) with H
t+1, then by precisely the same line of reasoning at the beginning of the

proof of Lemma 3.8, the right side of (21) gets smaller. Thus, we have

U
t(x) � H

t+1(x)+
X

j2J

�
t
j(S

App,t(x))

Y

i2Aj

1l{xi�1}

!"
rj �H

t+1(x)+H
t+1

x�

X

i2Aj

ei

!#

= H
t+1(x)+max

S2F

(
X

j2J

�
t
j(S)

Y

i2Aj

1l{xi�1}

!"
rj �H

t+1(x)+H
t+1

x�

X

i2Aj

ei

!#)

� H
t+1(x)+max

S2F

(
X

j2J

�
t
j(S)

Y

i2Aj

1l{xi�1}

!"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

#)

� H
t+1(x)+

X

j2J

�j(Ŝ
t)

Y

i2Aj

1l{xi�1}

!"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

#

= H
t+1(x)+

X

j2J

Y

i2Aj

1l{xi�1}

!
�
�
t
j � �

t+1
j

�

� H
t+1(x)+

X

j2J

'j(x)
�
�
t
j � �

t+1
j

�
= H

t(x).

Here, the first equality follows from the decision function for the approximate policy given in

(13). The second inequality is by Lemma 3.7. The third inequality uses the fact that Ŝ
t 2 F is a

feasible but not necessarily optimal solution to the maximization problem on the left side of the

third inequality. The second equality is by (12). The fourth inequality follows by noting part (a)

of Definition 3.1 and using the fact that �
t
j � �

t+1
j by Lemma B.1. The last equality holds since

H
t(x) =

P
j2J �

t
j 'j(x). Thus, the induction argument is complete, so U

t(x)�H
t(x) for all x2Q,

t2 T . Using this inequality with t= 1 and x=C, we get U 1(C)�H
1(C) =

P
j2J �

1
j . ⇤

Next, we use the two lemmas above to give a proof for Theorem 4.2.

Proof of Theorem 4.2: By Lemma B.2, we have (1+✓L)
P

j2J �
1
j � V

1(C), whereas by Lemma

B.3, we have U
1(C)�

P
j2J �

1
j . Therefore, we get U 1(C)�

P
j2J �

1
j � V

1(C)/(1+ ✓L). ⇤

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
9

Appendix C: Performance Guarantee under Multiple Units of Capacity Consumption

In this section, we give a proof for Theorem 4.3. Recall that product j uses aij units of resource i. We

still use Aj = {i2L : aij � 1} to denote the set of resources used by product j and L=maxj2J |Aj|
to denote the maximum number of resources used by a product. Lastly, the maximum number

of units of resource i that is used by any product is given by mi = maxj2J aij. As discussed at

the beginning of Section 4.2, we can compute the optimal policy by solving a dynamic program

that is similar to the one in (1). All we need to do is to replace all occurrences of
Q

i2Aj 1l{xi�1}

with
Q

i2Aj 1l{xi�aij} and all occurrences of
P

i2Aj ei with
P

i2Aj aij ei in the dynamic program.

In particular, we can compute the optimal policy by computing the value functions {V t : t 2 T }
through the dynamic program

V
t(x) = V

t+1(x)+
X

j2J

�
t
j

Y

i2Aj

1l{xi�aij}

!"
rj �V

t+1(x)+V
t+1

x�

X

i2Aj

aijei

!#+
,

with the boundary condition that V
T+1 = 0. If rj � V

t+1(x)� V
t+1(x�

P
i2Aj aij ei), then it is

optimal to accept a request for product j, as long as we have
Q

i2Aj 1l{xi�aij} = 1.

The next lemma generalizes Lemma 3.7 to the case where each product can use multiple units

of a resource. Recall that the mapping Gj :Q!Q is given by Gj(x) =
�
xi 1l{xi�aij} : i2L

�
.

Lemma C.1 For a collection of availability-tracking basis functions B = {'j : j 2J }, let

H
t(x) =

P
k2J �

t
k 'k(Gk(x)), where the coe�cients {�t

k : k 2 J } satisfy �
t
k � 0 for all k 2 J . Then,

for each j 2J and x2Q such that x�
P

i2Aj aij ei � 0, we have

H
t(x)�H

t

x�

X

i2Aj

aij ei

!
 �B

X

i2Aj

2mi � 1

Ci

X

k2J

1l{i2Ak} �
t
k.

Proof: Let y = Gk(x) and ỹ = Gk(x� aij ei). By the definition of Gk, note that y and ỹ can di↵er

only in the i-th component. Moreover, by the definition of Gk, we have

yi � ỹi = xi 1l{xi�aik} � (xi � aij) 1l{xi�aij�aik} =

8
><

>:

aij if xi � aij + aik

xi if aij + aik � 1� xi � aik

0 if aik � 1� xi,

which implies that yi and ỹi di↵er from each other by at most aij + aik � 1, as long as i 2 A
k so

that aik � 1. By the definition of mi, aij + aik � 1 2mi � 1. So, by a telescoping sum, we get

'k(y)�'k(ỹ) =
yi�ỹiX

h=1

('k(ỹ+hei)�'k(ỹ+(h� 1)ei))  �B(2mi � 1)

Ci
, (22)

where the inequality follows from the definition of �B. We show the inequality in the lemma by

using induction on the cardinality of Aj. Consider the base case where |Aj|= 1 so that A
j = {i}

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
10

for some i 2 L. Since Gk(x) and Gk(x� aij ei) di↵er only in the i-th component, by part (b) of

Definition 3.1, we have 'k(Gk(x))�'k(Gk(x� aijei)) = 0 whenever i 62A
k. So, we get

H
t(x)�H

t (x� aijei) =
X

k2J

1l{i2Ak}�
t
k

⇣
'k(Gk(x))�'k(Gk(x� aijei))

⌘

 �B(2mi � 1)

Ci

X

k2J

1l{i2Ak}�
t
k,

where the inequality is by (22). Thus, the base case holds. Suppose that the results holds for any

|Aj| s. Consider the case where |Aj|= s+ 1 so that A
j =B [{`} for some B ✓ L with |B|= s

and `2L with ` 62B. Letting w=x�
P

i2B aij ei for notational brevity, we have

H
t(x)�H

t

x�

X

i2Aj

aij ei

!
= H

t(x)�H
t

x�

X

i2B

aij ei � a`j e`

!

= H
t(x)�H

t

x�

X

i2B

aij ei

!
+H

t

x�

X

i2B

aij ei

!
�H

t

x�

X

i2B

aij ei � a`j e`

!

= H
t(x)�H

t

x�

X

i2B

aij ei

!
+H

t(w)�H
t(w� a`j e`)

 �B

X

i2B

2mi � 1

Ci

X

k2J

1l{i2Ak}�
t
k + H

t (w)�H
t (w� a`j e`)

 �B

X

i2B

2mi � 1

Ci

X

k2J

1l{i2Ak}�
t
k +

�B(2m` � 1)

C`

X

k2J

1l{`2Ak}�
t
k

= �B

X

i2Aj

2mi � 1

Ci

X

k2J

1l{i2Ak}�
t
k,

where the first inequality is by the induction assumption along the fact that |B|= s, whereas the

second inequality is by the base case. Thus, the induction argument is complete. ⇤

The next lemma gives an upper bound on the optimal total expected revenue. It generalizes

Lemma 3.6 to multiple units of resource consumption by the products.

Lemma C.2 If the coe�cients {�t
j : j 2J , t2 T } are computed through (15), then we have

V
1 (C) (1+ ✓ (2M � 1)L)

P
j2J �

1
j .

Proof: Considering the linear program in (4), if we replace all occurrences of 1l{i2Aj} with aij, then

the optimal objective value of this linear program provides an upper bound on the optimal total

expected revenue when a product can consume multiple units of a resource. By following precisely

the same sequence of steps that we use in the proof of Lemma 3.6, we can obtain the optimal

objective value of this linear program by solving its dual and the dual of this linear program can be

obtained by replacing all occurrences of 1l{i2Aj} in the linear program in (6) with aij. Therefore, we

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
11

can obtain an upper bound on the optimal total expected revenue by using the optimal objective

value of the linear program

Z⇤
LP = min

µ2R|L|
+

8
<

:
X

i2L

Ci µi +
X

j2J

⇤j

"
rj �

X

i2L

aij µi

#+9=

; , (23)

where we recall that ⇤j =
P

t2T �
t
j. We construct a solution µ̂= (µ̂ : i 2 L) to the problem above

by setting µ̂i =
✓ (2mi�1)

Ci

P
k2J 1l{i2Ak} �

1
k for all i2L. Since [a]+ � 0 for all a2R, by (15), we have

�
1
j � �

2
j � . . .� �

T
j � �

T+1
j = 0. Thus, µ̂i � 0 for all i2L, which implies that µ̂ is a feasible solution

to problem (23). In this case, the objective value provided by the solution µ̂ for the problem above

is an upper bound on the optimal objective value Z⇤
LP . Thus, evaluating the objective function of

problem (23) at the solution µ̂, we get

Z⇤
LP 

X

i2L

Ci µ̂i +
X

j2J

⇤j

"
rj �

X

i2L

aij µ̂i

#+

=
X

i2L

Ci
✓ (2mi � 1)

Ci

X

k2J

1l{i2Ak} �
1
k +
X

j2J

⇤j

"
rj �

X

i2L

aij
✓ (2mi � 1)

Ci

X

k2J

1l{i2Ak} �
1
k

#+

 ✓

X

k2J

�
1
k

X

i2L

1l{i2Ak} (2mi � 1)+
X

j2J

⇤j

"
rj �

X

i2Aj

✓ (2mi � 1)

Ci

X

k2J

1l{i2Ak} �
1
k

#+

 ✓

X

k2J

�
1
k

X

i2L

1l{i2Ak} (2mi � 1)+
X

j2J

X

t2T

�
t
j

"
rj �

X

i2Aj

✓ (2mi � 1)

Ci

X

k2J

1l{i2Ak} �
t+1
k

#+

= ✓

X

k2J

�
1
k

X

i2L

1l{i2Ak} (2mi � 1)+
X

j2J

X

t2T

⇥
�
t
j � �

t+1
j

⇤

 ✓ (2M � 1)L
X

k2J

�
1
k +
X

j2J

X

t2T

⇥
�
t
j � �

t+1
j

⇤

= (1+ ✓ (2M � 1)L)
X

j2J

�
1
j .

In the chain of inequalities above, the second inequality uses the fact that aij � 1 for all i2A
j and

aij = 0 for all i 62 A
j. The third inequality holds because �

1
j � �

2
j � . . . � �

T
j � �

T+1
j . The second

equality follows by (15). The fourth inequality follows by the fact that M =maxi2Lmi and |Ak|L

for all k 2J . Therefore, we get Z⇤
LP  (1+✓ (2M �1)L)

P
j2J �

1
j . Since the optimal objective value

of the linear program in (23) is an upper bound on the optimal total expected revenue, we obtain

V
1(C) Z⇤

LP  (1+ ✓ (2M � 1)L)
P

j2J �
1
j . ⇤

As discussed at the beginning of this appendix, if rj � V
t+1(x)� V

t+1(x�
P

i2Aj aijei), then

it is optimal to accept a request for product j, as long as we have
Q

i2Aj 1l{xi�aij} = 1. Replacing

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
12

V
t+1 in the last inequality with the value function approximation H

t+1, we obtain our approximate

policy. So, the decision function of the approximate policy is given by

u
App,t
j (x) =

8
><

>:

Q
i2Aj 1l{xi�aij} if rj �H

t+1(x)�H
t+1

x�

X

i2Aj

aij ei

!

0 otherwise.

(24)

Letting U
t(x) be the total expected revenue of the approximate policy over time periods

t, t+1, . . . , T given that the system is in state x at time period t, we have the recursion

U
t(x) =

X

j2J

�
t
j u

App,t
j (x)

"
rj +U

t+1

x�

X

i2Aj

aij ei

!#
+

1�

X

j2J

�
t
j +
X

j2J

�
t
j (1�u

App,t
j (x))

!
U

t+1(x)

= U
t+1(x)+

X

j2J

�
t
j u

App,t
j (x)

"
rj �U

t+1(x)+U
t+1

x�

X

i2Aj

aij ei

!#
, (25)

with the boundary condition that UT+1 = 0. The recursion above is the analogue of the recursion

in (8) for the case where each product can consume multiple units of a resource.

The next lemma gives a lower bound on the total expected revenue obtained by the approximate

policy. It generalizes Lemma 3.8 to multiple units of resource consumption by the products.

Lemma C.3 If the tuning parameter ✓ satisfies ✓��B and the coe�cients {�t
j : j 2J , t2 T } are

computed through (15), then we have U
1 (C)�

P
j2J �

1
j .

Proof: We use induction over the time periods to show that U t(x)�H
t(x) for all x2Q and t2 T ,

where H
t(x) =

P
j2J �

t
j 'j(x) with {�t

j : j 2 J , t 2 T } computed through (15). Consider the base

case at time period T + 1. Since U
T+1 = 0 = H

T+1, the base case holds. Suppose that that the

result holds at time period t+1 so that U
t+1(x)�H

t+1(x) for all x 2Q. Replacing U
t+1 on the

right side of (25) with H
t+1, we obtain

U
t(x) � H

t+1(x)+
X

j2J

�
t
j u

App,t
j (x)

"
rj �H

t+1(x)+H
t+1

x�

X

i2Aj

aij ei

!#

= H
t+1(x)+

X

j2J

�
t
j

Y

i2Aj

1l{xi�aij}

!"
rj �H

t+1(x)+H
t+1

x�

X

i2Aj

aij ei

!#+

� H
t+1(x)+

X

j2J

�
t
j

Y

i2Aj

1l{xi�aij}

!"
rj � ✓

X

i2Aj

2mi � 1

Ci

X

k2J

1l{i2Ak}�
t+1
k

#+

= H
t+1(x)+

X

j2J

Y

i2Aj

1l{xi�aij}

!
�
�
t
j � �

t+1
j

�
� H

t+1(x)+
X

j2J

'j(Gj(x))
�
�
t
j � �

t+1
j

�
= H

t(x).

In the chain of inequalities above, the first equality holds by the definition of the decision

function for the approximate policy given in (24). The second inequality follows by noting that

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
13

H
t(x)�H

t(x�
P

i2Aj aij ei)  �B

P
i2Aj

2mi�1
Ci

P
k2J 1l{i2Ak} �

t
k by Lemma C.1 and we choose

the tuning parameter ✓ to satisfy ✓ � �B. The second equality follows from (15). To see that

the third inequality holds, note that we have 'j(Gj(x)) 
Q

i2Aj 1l{xi�aij}. In particular, if
Q

i2Aj 1l{xi�aij} = 1, then the last inequality holds trivially since 'j : Q ! [0,1] for all j 2 J . If,

on the other hand,
Q

i2Aj 1l{xi�aij} = 0, then there must exist some i 2 A
j such that xi < aij,

in which case, the i-th component of Gj(x) will be zero by the definition of Gj, so by part (a)

of Definition 3.1, we get 'j(Gj(x)) = 0. Therefore, the fourth inequality holds because we have

'j(Gj(x)) 
Q

i2Aj 1l{xi�aij} and (15) implies that �t
j � �

t+1
j � 0. The last equality holds because

H
t+1(x) =

P
j2J �

t+1
j 'j(Gj(x)). The chain of inequalities above completes the induction argument,

so it follows that U t(x)�H
t(x) for all x 2Q and t 2 T . Using the last inequality with t= 1 and

x=C, we get U 1(C)�H
1(C) =

P
j2J �

1
j 'j(Gj(C)) =

P
j2J �

1
j 'j(C) =

P
j2J �

1
j . ⇤

The proof of Theorem 4.3 follows by combining Lemmas C.2 and C.3.

Proof of Theorem 4.3: By Lemma C.2, we have (1+ ✓(2M � 1)L)
P

j2J �
1
j � V

1(C), whereas

by Lemma C.3, we have U
1(C)�

P
j2J �

1
j . So, U

1(C)�
P

j2J �
1
j � V

1(C)/(1+ ✓ (2M � 1)L). ⇤

Appendix D: Performance Guarantee by Leveraging a Linear Programming Approximation

In this section, we give a proof for Theorem 4.4. In the next lemma, we give an upper bound on

the optimal objective value of the linear program in (4).

Lemma D.1 Noting that Z⇤
LP is the optimal objective value of the linear program in (4), if the

coe�cients {�t
j : j 2J , t2 T } are computed through (16), then we have Z⇤

LP  (1+ ✓L)
P

j2J �
1
j .

Proof: Recall that ⇤j in the linear program in (4) is given by ⇤j =
P

t2T �
t
j. In this case, since we

have �
T+1
j = 0 for all j 2J , a telescoping sum yields

X

j2J

�
1
j =

X

j2J

X

t2T

(�t
j � �

t+1
j) =

X

t2T

X

j2J

z
⇤
j

⇤j
�
t
j

"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

#+

�
X

t2T

X

j2J

z
⇤
j

⇤j
�
t
j

"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

#
= Z⇤

LP �
X

t2T

X

j2J

✓
z
⇤
j

⇤j
�
t
j

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
t+1
k

� Z⇤
LP �

X

t2T

X

j2J

✓
z
⇤
j

⇤j
�
t
j

X

i2Aj

1

Ci

X

k2J

1l{i2Ak} �
1
k = Z⇤

LP �
X

j2J

✓ z
⇤
j

X

i2L

1l{i2Aj}
1

Ci

X

k2J

1l{i2Ak} �
1
k

= Z⇤
LP � ✓

X

i2L

X

k2J

1l{i2Ak} �
1
k

1

Ci

X

j2J

1l{i2Aj} z
⇤
j � Z⇤

LP � ✓

X

i2L

X

k2J

1l{i2Ak} �
1
k � Z⇤

LP � ✓L

X

k2J

�
1
k.

In the chain of inequalities above, the second equality follows from (16). The third equality

follows because
P

t2T �
t
j = ⇤j and Z⇤

LP =
P

j2J rj z
⇤
j . The second inequality holds because

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
14

�
1
j � �

2
j � . . .� �

T+1
j by (16). The fourth equality uses the fact that i 2 A

j if and only if

1l{i2Aj} = 1. The third inequality holds because the first constraint in problem (4) implies that
P

j2J 1l{i2Aj} z
⇤
j  Ci. The fourth inequality uses the fact that

P
i2Ak 1l{i2Ak} = |Ak|L. By the

chain of inequalities, we have (1+ ✓L)
P

j2J �
1
j � Z⇤

LP , as desired. ⇤

The decision function of our approximate policy has the same form as (5). The only di↵erence is

that we compute the coe�cients {�t
j : j 2J , t2 T } by using (16). To compute the total expected

revenue obtained by our approximate policy, we can use the same recursion in (8). Next, we give

a lower bound on the total expected revenue obtained by our approximate policy.

Lemma D.2 If the tuning parameter ✓ satisfies ✓��B and the coe�cients {�t
j : j 2J , t2 T } are

computed through (16), then we have U
1 (C)�

P
j2J �

1
j .

Proof: We will use induction over the time periods to show that U t(x)�H
t(x) for all x 2Q and

t 2 T . Using this inequality with t= 1 and x=C yields U
1(C) �H

1(C) =
P

j2J �
1
j , as desired.

The base case at t= T +1 holds because U
T+1 = 0=H

T+1. Suppose that U t+1 �H
t+1. Replacing

U
t+1 on the right side of (8) with H

t+1, the right side of (8) becomes smaller, so we get

U
t(x) � H

t+1(x)+
X

j2J

�
t
j u

App,t
j (x)

"
rj �H

t+1(x)+H
t+1

x�

X

i2Aj

ei

!#

= H
t+1(x)+

X

j2J

�
t
j

Y

i2Aj

1l{xi�1}

!"
rj �H

t+1(x)+H
t+1

x�

X

i2Aj

ei

!#+

� H
t+1(x)+

X

j2J

�
t
j

Y

i2Aj

1l{xi�1}

!"
rj ��B

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

#+

� H
t+1(x)+

X

j2J

z
⇤
j

⇤j
�
t
j

Y

i2Aj

1l{xi�1}

!"
rj � ✓

X

i2Aj

1

Ci

X

k2J

1l{i2Ak}�
t+1
k

#+

= H
t+1(x)+

X

j2J

Y

i2Aj

1l{xi�1}

!
�
�
t
j � �

t+1
j

�
� H

t+1(x)+
X

j2J

'j(x)
�
�
t
j � �

t+1
j

�
= H

t(x),

where we use the same argument used in the chain of inequalities in the proof of Lemma 3.8 in

the main text. The only di↵erence is that the third inequality uses the fact that z
⇤
j  ⇤j by the

second constraint in problem (4), along with the fact that ✓��B. The chain of inequalities above

completes the induction argument so that U t(x)�H
t(x) for all x2Q and t2 T . ⇤

Here is the proof of Theorem 4.4.

Proof of Theorem 4.4: The optimal objective value of the linear program in (4) is an

upper bound on the optimal total expected revenue, so we have Z⇤
LP � V

1(C); see Bertsimas and

Popescu (2003). In this case, using Lemmas D.1 and D.2, it follows that U
1(C) �

P
j2J �

1
j �

Z⇤
LP/(1+ ✓L)� V

1(C)/(1+ ✓L). ⇤

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
15

Appendix E: Performance of the Online Packing Policy

We give a simple example to show that the policy proposed by Kesselheim et al. (2014) can perform

arbitrarily poorly under nonstationary arrivals. We briefly describe this policy. Given that we are

at time period t, we use ⇣
t�1
j to denote the total number of requests that we received for product

j over time periods 1, . . . , t� 1. Using the decision variables z = (zj : j 2 J) and y, if we have a

request for product k at time period t, then we solve the linear program

max

(
X

j2J

rj zj + rk y :
X

j2J

1l{i2Aj} zj +1l{i2Ak} y
t

T
Ci 8 i2L,

0 zj  ⇣
t�1
j 8 j 2J , 0 y 1

)
. (26)

We can view the problem above as a version of the linear program in (4) in which we only focus on

the product requests that have actually been realized over time periods 1, . . . , t and we scale the

capacities of the resources by t/T . In this case, letting (z⇤
, y

⇤) be an optimal solution to the linear

program above, we accept the request for product k at time period t with probability y
⇤. This

discussion specifies the policy proposed by Kesselheim et al. (2014).

The linear program above only uses the actual realizations of the product requests. In particular,

it does not require forecasting. Not so surprisingly, this feature becomes problematic when the

arrivals of the product requests are nonstationary. We proceed to give an example where the policy

proposed by Kesselheim et al. (2014) can perform arbitrarily poorly under nonstationary arrivals.

Consider a problem instance with a single resource with a capacity of 1 unit. There is a single

product with a revenue of 1. The product uses the single resource. There are T time periods in the

selling horizon. At the first time period, we have a request for the product with probability 1. At

each of the remaining T � 1 time periods, we do not have any product requests.

For this problem instance, consider problem (26) at the first time period. Noting that there is a

request for the product with probability one at the first time period, problem (26) takes the form

max{y : y 1/T, 0 y 1}, yielding the optimal solution y
⇤ = 1/T . So, we accept the request at

the first time period with probability 1/T . Since there are no product requests at the other time

periods, the total expected revenue obtained by the policy proposed by Kesselheim et al. (2014) is

1/T . The optimal policy always accepts the product request at the first time period, yielding a total

expected revenue of 1. If we choose T arbitrarily large, then the policy proposed by Kesselheim

et al. (2014) performs arbitrarily poorly when compared with the optimal policy.

The undesirable performance of the policy proposed by Kesselheim et al. (2014) is due to the

nonstationary arrivals. For this simple problem instance, we note that our approximate policy

always accepts the request at the first time period, yielding the optimal total expected revenue.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
16

Appendix F: Computational Experiments for Hotel Network Revenue Management

We provide computational experiments in the hotel network revenue management setting, where

we systematically vary the maximum number of resources used by a product.

F.1 Experimental Setup and Benchmark Methods

We consider the booking process of a hotel with a single room type over ⌧ days. In all of our test

problems, we fix the number of days as ⌧ = 60. Each resource corresponds to the room capacity on

a particular day. Therefore, there are ⌧ resources, which we index by L= {1, . . . , ⌧}. A customer

can book a room for up to L contiguous days and at  di↵erent fare levels. A product request

corresponds to a customer interested in booking a room for a particular number of days, beginning

on a particular day and at a particular fare level. Therefore, there are L⇥ ⌧ ⇥ products, indexed

by J = {(`, s, k) : `= 1, . . . ,L, s= 1, . . . , ⌧, k= 1, . . . ,}. A customer with a request for product

(`, s, k) is interested in staying for ` days, beginning on day s and by paying the fare level k. In

this case, product (`, s, k) uses the capacities of the resources s, s+1, . . . ,min{s+ `� 1, ⌧}, so the

maximum number of resources used by a product is L. In our computational experiments, we fix

= 2 so that there is only a high-fare and a low-fare. We work with di↵erent values of L, allowing

us to systematically vary the maximum number of resources used by a product.

If a low-fare product corresponds to staying for ` days, then its revenue is 10 ` (1� `/2L). Thus,

if a low-fare customer stays for ` days, then she pays 10 (1� `/2L) per day, which implies that the

customers staying longer pay less per day. The revenue from a high-fare product is four times the

revenue from the corresponding low-fare product. Bookings for staying on a particular day start

arriving 15 days before the beginning day of the stay. Therefore, the requests for product (`, s, k)

arrive over the days max{s� 15,1}, . . . , s. Over these days, the requests for the low-fare products

tend to arrive earlier, whereas the requests for the high-fare products tend to arrive later. To

generate test problems with this nature, we used an approach that is very similar to the one used

for the airline network revenue management test problems. The arrival probability for a low-fare

product decreases as we get closer to the day of stay for the product, whereas the arrival probability

for a high-fare product increases as we get closer to the day of stay for the product. The length of

stay for a product request is equally likely to take any of the values {1, . . . ,L}.

We divide each day into 30 time periods so that there is one product request at each time

period. Thus, the number of time periods in the selling horizon is T = 60⇥30 = 1,800. Using �
t
(`,s,k)

to denote the probability that we have a request for product (`, s, k) at time period t, since product

(`, s, k) uses the capacities of the resources s, s+1, . . . ,min{s+ `�1, ⌧}, the total expected demand

for the capacity on day i is
P

t2T
P

(`,s,k)2J 1l{simin{s+`�1,⌧}} �
t
(`,s,k). We set the capacity of resource

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
17

i as Ci =
1
↵

P
t2T
P

(`,s,k)2J 1l{simin{s+`�1,⌧}} �
t
(`,s,k), so larger values for ↵ yield tighter capacities.

We vary ↵ in our computational experiments. Varying L 2 {1,2,3,4,5} and ↵ 2 {1.0,1.2,1.6}, we

obtain 15 test problems in our experimental setup. With these values for L and ↵, in our test

problems, the room capacities per day range between 59 to 94. We use the same benchmarks that

we used for the airline network revenue management test problems. In particular, APP refers to

our approximate policy with the basis function 'j(x) =mini2Aj (1� e
�xi/Ci)/(1� e

�1), BPP refers

to the bid price policy, RLP refers to the randomized linear program, DIF refers to the finite

di↵erences, DEC refers to the dynamic programming decomposition, and OPP refers to the online

packing policy proposed by Kesselheim et al. (2014).

F.2 Computational Results

We give our computational results in Table 5. The layout of this table is similar to that of Tables 1

and 2. The only di↵erence is that we use the tuple (L,↵) to capture the parameter configuration

of each test problem. Our results for hotel network revenue management closely reflect those for

airline network revenue management. The performance of APP is better than that of BPP, RLP

and DIFF with average total expected revenue gaps of 7.88%, 3.80% and 5.85%, respectively,

over all of our test problems. APP lags behind DEC. As mentioned earlier, DEC is one of the

strongest heuristics for network revenue management problems in practice, but it does not have

a performance guarantee. The average gap between the performance of APP and DEC is -1.18%.

The performance of OPP is not competitive.

The performance guarantee of 1/(1 + ✓L) for APP deteriorates as L gets larger so that the

maximum number of resources used by a product increases. On the one hand, this deterioration in

the theoretical guarantee is not reflected in our computational results when we measure the gap

between the upper bound on the optimal total expected revenue and the total expected revenue

obtained by APP. Although these figures are not reported in Table 5, if we consider the test

problems with L = 1, L = 2, L = 3, L = 4 and L = 5 separately, then the average gaps between

the upper bound on the optimal total expected revenue and the total expected revenue obtained

by APP are, respectively, 8.54%, 8.86%, 8.33%, 7.58% and 6.28%. Thus, the performance of APP,

relative to the upper bound on the optimal total expected revenue, is robust as L gets larger.

On the other hand, the performance gaps between APP and the other benchmarks indeed

decrease as L gets larger. In Table 6, we show the average percent gap between the total expected

revenues obtained by APP and the other benchmarks, where the average is computed over all

test problems with a particular value of L. For example, the top left figure in the table shows

the average percent gap between the performance of APP and BPP for the test problems (1,1.0),

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
18

Params. Upp. Tot. Exp. Rev. % Gap with APP

(L,↵) Bnd. APP BPP RLP DIF DEC OPP BPP RLP DIF DEC OPP

(1,1.0) 9,802 8,961 8,564 8,714 8,596 9,060 7,934 4.43 2.76 4.07 -1.10 11.47

(1,1.2) 9,124 8,349 7,365 7,812 7,461 8,431 6,770 11.78 6.43 10.63 -0.98 18.91

(1,1.6) 8,060 7,372 5,724 6,866 6,021 7,405 4,842 22.35 6.86 18.33 -0.45 34.32

(2,1.0) 11,127 10,216 9,773 9,902 9,846 10,338 9,056 4.34 3.08 3.62 -1.20 11.35

(2,1.2) 10,352 9,480 8,408 8,832 8,586 9,575 7,624 11.31 6.83 9.43 -1.01 19.58

(2,1.6) 9,370 8,438 7,400 8,150 7,747 8,573 5,391 12.30 3.41 8.19 -1.60 36.11

(3,1.0) 13,723 12,729 12,171 12,275 12,282 12,845 11,292 4.38 3.56 3.50 -0.92 11.28

(3,1.2) 12,942 11,930 10,879 11,189 11,300 12,041 9,585 8.81 6.21 5.28 -0.93 19.65

(3,1.6) 11,607 10,456 9,667 10,116 9,910 10,704 6,757 7.55 3.25 5.22 -2.38 35.38

(4,1.0) 17,503 16,300 15,717 15,931 15,807 16,443 14,507 3.58 2.26 3.03 -0.87 11.00

(4,1.2) 16,583 15,356 14,262 14,662 14,755 15,520 12,262 7.12 4.52 3.91 -1.07 20.15

(4,1.6) 14,870 13,610 12,762 13,335 12,973 13,807 8,718 6.22 2.02 4.68 -1.45 35.94

(5,1.0) 24,128 22,730 22,162 22,410 22,376 22,959 20,399 2.50 1.41 1.56 -1.00 10.26

(5,1.2) 22,828 21,487 20,052 20,761 20,720 21,753 17,149 6.68 3.38 3.57 -1.23 20.19

(5,1.6) 20,644 19,164 18,239 18,955 18,643 19,447 11,969 4.82 1.09 2.72 -1.48 37.55

Average 7.88 3.80 5.85 -1.18 22.21

Table 5 Computational results for the hotel network revenue management test problems.

% Gap with APP

L BPP RLP DIF DEC OPP

1 12.86 5.35 11.01 -0.85 21.57

2 9.32 4.44 7.08 -1.27 22.35

3 6.91 4.34 4.67 -1.41 22.11

4 5.64 2.93 3.87 -1.13 22.36

5 4.67 1.96 2.62 -1.24 22.66

Table 6 Average performance gaps between APP and the other benchmarks as a function of L.

(1,1.2) and (1,1.6). Our results indicate that as L gets larger, the performance gaps between APP

and the other benchmarks decrease, except for OPP. Naturally, without knowing the optimal total

expected revenue, it is di�cult to distinguish whether this deterioration is due to the fact that

APP performs worse or the other benchmarks perform better as L gets larger.

Lastly, we experimented with APP using each one of the basis functions in Table 4. For all of

our test problems, the performance of APP was relatively insensitive to the choice of the basis

functions, but the basis function 'j(x) =mini2Aj (1� e
�xi/Ci)/(1� e

�1), which is the basis function

that we use, provided small improvements over the others.

Appendix G: Computational Experiments under Stationary Arrivals

In this section, we provide computational experiments to test the performance of OPP under

stationary arrivals. Our experimental setup is based on the airline network revenue management

test problems that we use in Section 5. We generate our test problems by using the same approach

discussed in Section 5.1. The only di↵erence is in the way we generate the arrival probabilities for

the product requests, as we focus on stationary arrivals. In particular, after generating Bo,d as in

Section 5.1, if product j is the high-fare or low-fare itinerary for origin-destination pair (o, d), then

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
19

Params. Upp. Tot. Exp. Rev. %

(T,N,,↵) Bnd. APP OPP Gap

(200,6,4,1.0) 30,990 29,241 28,049 4.1

(200,6,4,1.2) 29,562 27,687 26,174 5.5

(200,6,4,1.6) 27,146 24,486 22,702 7.3

(200,6,8,1.0) 55,820 53,491 51,393 3.9

(200,6,8,1.2) 54,376 51,685 48,656 5.9

(200,6,8,1.6) 51,950 48,280 43,356 10.2

Average 6.1

Params. Upp. Tot. Exp. Rev. %

(T,N,,↵) Bnd. APP OPP Gap

(600,6,4,1.0) 93,083 90,481 89,023 1.6

(600,6,4,1.2) 88,716 86,268 83,809 2.9

(600,6,4,1.6) 81,141 75,201 74,152 1.4

(600,6,8,1.0) 167,575 164,363 161,901 1.5

(600,6,8,1.2) 163,149 159,728 155,033 2.9

(600,6,8,1.6) 155,553 151,136 142,115 6.0

Average 2.7

Table 7 Computational results for the test problems with stationary arrivals.

we set �t
j =

1
2
Bo,d/

P
(s,r)2DBs,r for all t2 T . For economy of space, we focus on test problems with

six spokes and compare the performance of APP and OPP. We give our results in Table 7. In the

first column, we show the parameter configuration for each test problem using the tuple (T,N,,↵),

where N ,  and ↵ are as discussed in Section 5.1. In the second column, we show the upper bound

on the optimal total expected revenue provided by the optimal objective value of problem (4). In

the third and fourth columns, we show the total expected revenues obtained by APP and OPP.

In the fifth column, we show the percent gap between the total expected revenues obtained APP

and OPP. The results in Table 7 indicate that APP continues to provide significant improvements

over OPP under stationary arrivals. Comparing the performance gaps between APP and OPP in

Table 7 with those in Tables 1 and 2, the performance of OPP relative to APP improves under

stationary arrivals, but this improvement is not enough to catch up with APP.

Appendix H: Computational Results without Recomputing Policy Parameters

In this section, we focus on a portion of the test problems in Section 5 and test the performance

of the benchmarks when we compute the policy parameters only once at the beginning of the

selling horizon. We give our results in Table 8. The layout of this table is identical to that of

Table 1. We do not provide comparisons with OPP since OPP, by its definition, has to solve a

linear program at each time period. Comparing the results in Table 8 with those in Table 1, we

observe that the performance of APP deteriorates slightly when we do not recompute the policy

parameters. The performance of DEC remains essentially the same. The performance of all other

benchmarks deteriorates substantially when we do not recompute the policy parameters.

References

Bertsimas, D., I. Popescu. 2003. Revenue management in a dynamic network environment. Transportation

Science 37(3) 257–277.

Kesselheim, T., A. Tönnis, K. Radke, B. Vöcking. 2014. Primal beats dual on online packing LPs in the

random-order model. Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing .

STOC ’14, New York, NY, 303–312.

Ma, Rusmevichientong, Sumida and Topaloglu: Approximation for Network Revenue Management
20

Params. Upp. Tot. Exp. Rev. % Gap with APP

(T,N,,↵) Bnd. APP BPP RLP DIF DEC BPP RLP DIF DEC

(200,6,4,1.0) 22,300 20,565 18,285 18,829 18,395 20,764 11.09 8.44 10.55 -0.97

(200,6,4,1.2) 20,932 18,959 15,290 15,430 17,160 19,271 19.35 18.61 9.49 -1.64

(200,6,4,1.6) 18,592 16,275 12,613 13,194 13,052 16,834 22.50 18.93 19.81 -3.44

(200,6,8,1.0) 35,544 33,545 27,682 28,712 27,907 33,733 17.48 14.41 16.81 -0.56

(200,6,8,1.2) 34,172 31,808 22,315 22,430 23,789 32,154 29.85 29.48 25.21 -1.09

(200,6,8,1.6) 31,824 29,231 18,840 20,229 20,942 29,625 35.55 30.79 28.36 -1.35

Average 22.64 20.11 18.37 -1.51

Table 8 Computational results without recomputing the policy parameters.

Liu, Q., G. J. van Ryzin. 2008. On the choice-based linear programming model for network revenue

management. Manufacturing & Service Operations Management 10(2) 288–310.

