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We consider dynamic assortment problems with reusable products, in which each arriving customer chooses
a product within an offered assortment, uses the product for a random duration of time, and returns the
product back to the firm to be used by other customers. The goal is to find a policy for deciding on
the assortment to offer to each customer so that the total expected revenue over a finite selling horizon
is maximized. The dynamic programming formulation of this problem requires a high-dimensional state
variable that keeps track of the on-hand product inventories, as well as the products that are currently
in use. We present a tractable approach to compute a policy that is guaranteed to obtain at least 50%
of the optimal total expected revenue. This policy is based on constructing linear approximations to the
optimal value functions. When the usage duration is infinite or follows a negative binomial distribution,
we also show how to efficiently perform rollout on a simple static policy. Performing rollout corresponds
to using separable and nonlinear value function approximations. The resulting policy is also guaranteed
to obtain at least 50% of the optimal total expected revenue. The special case of our model with infinite
usage durations captures the case where the customers purchase the products outright without returning
them at all. Under infinite usage durations, we give a variant of our rollout approach that is guaranteed

to obtain at least max{%, 1-— %} fraction of the optimal total expected revenue, where Chin is the

23/¢C
smallest inventory of a product and R is the largest relative deviation of the price of a product over the

min

selling horizon. We provide computational experiments based on simulated data for dynamic assortment
management, as well as real parking transaction data for the city of Seattle. Our computational experiments
demonstrate that the practical performance of our policies is substantially better than their performance

guarantees and that performing rollout yields noticeable improvements.
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1. Introduction

Revenue management problems focus on making capacity allocation decisions for limited inventories
of products over a finite selling horizon. These problems have applications in areas as diverse as
airline, hotel, electric power, health care, consumer credit, cruise line, and advertising capacity
management (Ozer and Phillips 2012). The dynamic programming formulations of revenue
management problems are generally intractable because they require high-dimensional state

variables that keep track of the remaining inventory of each product. Thus, computing the
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optimal policy is computationally difficult, so researchers have focused on approximate policies. In
traditional application areas of revenue management problems, the customers purchase the
products for final consumption. Some emerging industries, however, focus on renting out products
such as computing capacity, fashion items and storage units. In these industries, each customer
requests a product, uses the product for a possibly random duration of time and returns the product
back to the firm, at which point the product can be used by other customers. For example, firms
such as Amazon and Google offer cloud computing services, where users utilize computing capacity
for a certain duration of time before returning it. The firm needs to decide what type of computing
capacity to offer to each user and what prices to charge. Firms such as Rent the Runway and
Glam Corner rent fashion items to shoppers through their online platforms. The firm needs to
decide which assortment of fashion items to offer to each shopper and at what prices. Firms such
as Cube Smart and Make Space lease storage units, where customers return the leased storage
units back after using them for a certain duration of time. The firm needs to decide what prices
to charge for the storage units as a function of the current occupancy. Using real-time information
on the availability of street parking spaces, city governments have the opportunity to dynamically
adjust the price for parking spaces, where each driver uses a parking space for a certain duration of
time before leaving and making it available for other drivers. When making capacity management
decisions in such environments, the firm must consider the on-hand product inventories, as well as

the products that are currently in use.

In this paper, we consider dynamic assortment problems with reusable products. In our problem
setting, we have access to a set of products with limited inventories. Customers randomly arrive
into the system. Among the products for which we currently have available units on-hand, we offer
an assortment of products to the arriving customer. The customer either chooses a product from
the offered assortment or decides to leave the system. If the customer chooses a product, then
she uses the product for a random duration of time. After a usage duration, the customer returns
the product. The returned product can be used to offer an assortment to another customer in the
future. The goal is to find a policy for deciding on the assortment to offer to each customer so that

the total expected revenue over a finite selling horizon is maximized.

Our dynamic programming formulation of the problem allows for a broad class of choice models
for describing the choice process of the customers, non-stationarities in the revenue structure, and
arbitrary distributions for the random usage durations. In our formulation, the randomness in the
usage duration is not resolved until the customer returns the rented product back, but we can also
modify our formulation to address the case where the usage duration is revealed before the firm

makes its assortment offering decision. To our knowledge, our model is the first revenue management
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model with limited inventories of reusable resources, where the customers can choose among the
offered products according to a broad class of choice models, there can be non-stationarities in
the revenue structure, and the distributions of the usage durations can be arbitrary. The dynamic
programming formulation of the problem requires a high-dimensional state variable that keeps
track of the inventories of the products that are available on-hand, as well as the products that
are currently in use. Therefore, finding the optimal policy is computationally difficult. We propose

tractable policies that provide performance guarantees.

Main Contributions: In Section 3, we provide a method to construct linear approximations to
the optimal value functions in the dynamic programming formulation of the problem. Our method
uses an efficient backward recursion over the time periods in the selling horizon. At each time period,
we solve a static assortment problem, where we adjust the product revenues by time-dependent
constants computed from the recursion and find an assortment of products that maximizes the
expected adjusted revenue from a customer (Section 3.1). We show that the greedy policy with
respect to our linear value function approximations is guaranteed to obtain at least 50% of the
optimal total expected revenue (Section 3.2), but this policy turns out to be agnostic to inventory
levels. Specifically, whether this policy offers a particular product at a particular time period does
not depend on the exact on-hand inventory level of this product, as long as on-hand inventory
is available. To remedy this shortcoming, we construct separable and nonlinear value function

approximations, as discussed next.

In Section 4, we perform rollout on a static policy to construct separable and nonlinear value
function approximations. We start with a static policy that offers the same assortment at a
particular time period, irrespective of the state of the system (Section 4.1). We compute the total
expected revenue obtained by the static policy starting at each state and at each time period,
which can be done by focusing on each product separately. We use these total expected revenues as
the value function approximations at different states and at different time periods. In this way, we
obtain separable and nonlinear value function approximations. In rollout, we use the greedy policy
with respect to these value function approximations (Bertsekas and Tsitsiklis 1996). We show that
the policy obtained through the rollout approach is also guaranteed to yield at least 50% of the
optimal total expected revenue (Section 4.2). This policy is not agnostic to inventory levels, unlike
the greedy policy with respect to linear value function approximations. We demonstrate that we
can efficiently perform rollout when the usage duration follows a negative binomial distribution

(Section 4.3) or when the usage duration is infinite (Section 4.4).

The case with infinite usage durations corresponds to the situation where the customers purchase

the product outright, rather than renting. Under infinite usage durations, we also tailor our
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rollout approach to strengthen the performance guarantee. In particular, we use Cy,;, to denote
the smallest inventory of a product and R to denote the largest relative deviation of the price
of a product over the selling horizon. If the prices of the products are stationary, then we
have R =1. We show how to construct separable and nonlinear value function approximations
under infinite usage durations such that the greedy policy with respect to these value function
approximations is guaranteed to obtain at least max{%, 1-— . R

3\/ Chin

expected revenue. Therefore, the tailored policy provides at least a half-approximate performance

} fraction of the optimal total

guarantee, but as the inventories of the products become large, the tailored policy becomes
near-optimal. Our dynamic assortment problem with infinite usage durations corresponds to the
choice-based revenue management problem over parallel flight legs operating between the same
origin-destination pair, which is an important problem class that has been studied in the literature

(Zhang and Cooper 2005, Liu and van Ryzin 2008, Dai et al. 2014).

In Section 5, we provide extensions of our results. We extend our approach to the case with
multiple types of customers, each of whom makes choices according to a different choice model and
rents the products according to different usage distributions (Section 5.1). In our setup, we know
the type of a customer before offering an assortment, so that we can personalize the assortment
according to known customer features. Since different customer types can have different usage
distributions and we know the type of a customer before offering an assortment, this extension
allows us to capture the case where the usage duration is revealed before we offer an assortment
to a customer. We also extend our approach to the cases where we set the prices of the products
rather than choosing an assortment to offer (Section 5.2) and when we only approximately solve the
assortment optimization problems used in the construction of our value function approximations

(Section 5.3).

In Section 6, we provide computational experiments. We formulate a linear program that
yields an upper bound on the optimal total expected revenue (Section 6.1). In our first set of
computational experiments, we consider dynamic assortment management, where we offer an
assortment of products to each arriving customer. (Section 6.2). Our policies perform remarkably
well when compared with the upper bound on the optimal total expected revenue and yield average
improvements of 1-10% when compared with other benchmarks. In our second set of computational
experiments, we consider the problem of dynamically adjusting the prices for street parking spaces
(Section 6.3). We treat each parking space as a reusable product with a random usage duration.
Using data from the city of Seattle to estimate the model parameters, dynamically adjusting the

prices improves the total expected revenues by 2-7% when compared to static pricing.
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Literature Review: We review the recent work on revenue management models with reusable
products. Levi and Radovanovic (2010) study a model that assumes independent demands across
products, without any choice behavior for the customers. Focusing on the infinite selling horizon
setting with stationary demand, the authors establish a performance guarantee for a static policy
that does not consider the real-time state of the system. Owen and Simchi-Levi (2017) extend this
work to incorporate customer choice behavior and a finite selling horizon. The authors assume that
the usage durations are exponentially distributed and note that this assumption can be relaxed
under a stationary customer choice process. They develop a policy that is guaranteed to obtain 1/e
fraction of the optimal total expected revenue. This policy may offer products for which there is no
on-hand inventory. If the customer chooses a product for which there is no on-hand inventory, then
she must leave without making a purchase. The policy in their paper is also static because it offers
each assortment of products with a fixed probability that does not depend on the real-time state
of the system. By contrast, our model can accommodate arbitrary distributions for the random
usage durations and arbitrary non-stationarities in the choice process of the customers. The policy
that we construct takes the real-time state of the system into consideration. As long as the choice
process of the customers is governed by a random utility maximization principle, our policy never

offers products for which there is no on-hand inventory.

Lei and Jasin (2016) develop a model with reusable resources, deterministic usage durations, and
advance reservations. Their model includes multiple resources, and each product uses a different
combination of resources. The authors give a data-dependent performance guarantee and show
that their model is asymptotically optimal when the resource inventories and the number of
time periods in the selling horizon scale up linearly at the same rate. Chen et al. (2017) study
a model with multiple units of a single reusable product, random usage durations and advance
reservations. Their model allows random usage durations, but the usage duration is revealed at
the time of the reservation. The authors also provide a data-dependent performance guarantee and
show that their model is asymptotically optimal when the product inventory and the customer
arrival rate scale up linearly at the same rate. In our work, we do not allow advance reservations,
but we provide constant-factor performance guarantees that are not dependent on the problem
data, work with arbitrary usage duration distributions and allow the randommness in the usage

durations to be resolved when the customer returns the product.

Golrezaei et al. (2014) study dynamic assortment problems with non-reusable products. In
essence, their model is a special case of ours with infinite usage durations. Considering the case with
multiple customer types, the authors construct a policy that is guaranteed to obtain at least 50%

of the optimal total expected revenue, even when the sequence of customer type arrivals is chosen
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by an adversary. As the product inventories become arbitrarily large, the performance guarantee of
their policy improves from 50% to 1 —1/e. When the type of a customer is drawn from a stationary
distribution over the time periods, the performance guarantee further improves to 75%. The key
idea in this work is to adjust revenue from the sale of each product by a revenue modifier, which
is an increasing function of the current inventory of the product. The policy offers the assortment
that maximizes the expected adjusted revenue from each customer. As the inventory of a product is
depleted, its adjusted revenue decreases and the policy is more likely not to offer this product. The
proof of the performance guarantee in Golrezaei et al. (2014) is based on formulating a deterministic
linear programming approximation and constructing a dual feasible solution to the approximation
by using the revenue modifier. We note that it is possible to formulate a similar linear program
under reusable products, but this linear program has a capacity constraint for each product and
at each time period, thus ensuring that the expected number of products that are on-hand and
in use at any time period will not exceed the product inventory. The dual of this linear program
is substantially more complicated and it is not clear how to construct a feasible dual solution by

using the revenue modifier.

Considering the problem setting in Golrezaei et al. (2014), we can tailor our results in this paper

to non-reusable products to obtain stronger performance guarantees. Under non-reusable resources,

we can give a variant of our rollout approach that is guaranteed to obtain max{%, 1-— . %/IZITH}
fraction of the optimal total expected revenue, where Cy,;, and R are as discussed earlier in this
section. If, for example, the prices of the products are stationary and each product has at least 100
units of inventory, then this performance guarantee computes to be 89%. Similar to the policy in
Golrezaei et al. (2014), all of our policies are based on adjusting the revenue from the sale of each
product by a revenue modifier. The revenue modifiers in Golrezaei et al. (2014) are multiplicative,
whereas our revenue modifiers are additive. The construction of the revenue modifiers in Golrezaei
et al. (2014) only uses the current and initial inventory levels, whereas the construction of our
revenue modifiers uses all of the problem data. Thus, the revenue modifier in Golrezaei et al. (2014)
is robust as it is insensitive to a large part of the problem data. Our computational experiments,
however, indicate that using all of the problem data pays off and our policies can perform noticeably
better than the one in Golrezaei et al. (2014). Motivated by the online resource allocation setting,
Stein et al. (2016), Wang et al. (2016) and Gallego et al. (2016) also consider problems that
involve allocating products to customers arriving over time and provide policies with performance

guarantees, but this stream of work does not deal with reusable products either.

In the work discussed so far, the initial inventories of the products are exogenously given. There

is work on computing stocking quantities at the beginning of the selling horizon when the customers
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arriving over time choose among the products according to a certain choice model. The paper by
van Ryzin and Mahajan (1999) gives a model to compute the optimal stocking quantities under the
assumption that a customer can choose a product for which there is no on-hand inventory, in which
case, she leaves without a purchase, possibly resulting in a penalty or emergency procurement
cost. Other work considers the case where a customer chooses only among the products for which
there is on-hand inventory. Mahajan and van Ryzin (2001) use stochastic descent to compute
stocking quantities without a performance guarantee. Honhon et al. (2010) use a choice model based
on ranked preference lists and compute the optimal stocking quantities through a dynamic program,
whose running time is exponential in the number of products. Under ranked preference lists,
Aouad et al. (2015) give approximation algorithms, whereas Goyal et al. (2016) give polynomial-
time approximation schemes. Under the multinomial logit model, Aouad et al. (2017) provide

approximation algorithms. These papers do not consider reusable products.

Finally, our work is related to revenue management problems under customer choice. Zhang and
Cooper (2005) compute upper bounds on the optimal value functions for the choice-based parallel
flights problem. Gallego et al. (2004) focus on network revenue management problems and study
static policies extracted from a deterministic linear program. Adelman (2007) constructs linear
value function approximations when customers arrive into the system to purchase fixed products
without a choice process. His approach yields upper bounds on the optimal value functions, but
without a performance guarantee. Tong and Topaloglu (2013) show that the approach in Adelman
(2007) boils down to solving a linear program whose dimensions increase only linearly with the
numbers of itineraries, flights and time periods. Liu and van Ryzin (2008) develop dynamic
programming decomposition methods for decomposing the dynamic programming formulation
of the network revenue management problem by the flight legs. The authors obtain separable
and nonlinear value function approximations, also without a performance guarantee. Zhang and
Adelman (2009) and Vossen and Zhang (2015) extend the work of Adelman (2007) to include
a customer choice process. Their approach requires solving a linear program whose number of
constraints increases exponentially with the number of itineraries. Therefore, the linear program is
solved using column generation. We can solve the column generation subproblem efficiently under
some choice models, but there is no a priori bound on the number of columns that need to be
generated to obtain the optimal solution. Overall, the work discussed in this paragraph constructs

linear and nonlinear value function approximations, but without performance guarantees.

Organization: In Section 2, we provide a dynamic programming formulation for our dynamic
assortment problem with reusable products. In Section 3, we design a policy that is guaranteed to

obtain at least 50% of the optimal total expected revenue. This policy uses linear value function



Rusmevichientong, Sumida, and Topaloglu: Dynamic Assortment Optimization for Reusable Products

approximations. In Section 4, we use rollout on a static policy to obtain separable and nonlinear
value function approximations. The resulting policy is also guaranteed to obtain at least 50% of
the optimal total expected revenue. In Section 5, we describe extensions to the cases where we have
multiple customer types, we make pricing decisions and we can solve the assortment problems with

errors. In Section 6, we give our computational experiments. In Section 7, we conclude.

2. Problem Formulation

We have a set of products with limited inventories. At each time period in the selling horizon, we
decide on the set of products to offer. A customer arriving into the system either chooses to rent
one of the offered products or decides to leave the system without renting anything. We capture
the choice process of the customers through a discrete choice model. If the customer chooses to
rent one of the offered products, then she uses the product for a random duration of time by paying
an upfront fee and a per-period rental fee for each time period that she uses the product. After
using the product for a random duration of time, the customer returns the product, at which point,
we can rent the product to another customer. Our goal is to find a policy for maximizing the
total expected revenue over the selling horizon. We describe the problem data, state and transition

dynamics, followed by a dynamic programming formulation of the problem.

Problem Data: We have n products indexed by N ={1,...,n}. For each product i € N/, let
C; € Z, denote its initial inventory level. There are T' time periods in the selling horizon indexed
by 7 ={1,...,T}. Each time period corresponds to a small interval of time and there is exactly
one customer arrival at each time period. It is not difficult to extend our model to the case with at
most one customer arrival at each time period. If we offer the subset of products S, then a customer
arriving at time period ¢ chooses product i with probability ¢!(S). Naturally, we have ¢:(S) =0
for all i ¢ S. If a customer chooses to rent product 7 at time period ¢, then she immediately pays
a one-time upfront fee of r!. If a customer is renting product ¢ during time period ¢, then she also
pays a per-period rental fee of w!. Depending on the specific application at hand, one of the fees
can be zero; in addition, one or both of the fees can be stationary. The per-period rental fee can

also depend on how long the product has been in use.

We use the generic random variable Duration; to represent the random rental duration of
product i. The random variable Duration;, has a probability mass function f; : Z,, — [0,1],
where > fi(¢) = 1. We describe the rental duration in terms of its hazard rate p;, associated
with the probability mass function f;, where for each ¢ € Z, , we have

filt+1)

pie = Pr{Duration;=/¢+1 | Duration; > {} = =%———.
7 Zs:[-l,—l fi(s)
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The hazard rate p;, is the probability that each unit of product ¢ is returned after ¢+ 1 periods,
given that the product has been used for more than ¢ periods. Since Y o, fi(s) = 1, we have
pio = fi(1), so that p;o is the probability that a unit of product i is used for exactly one time

period. The usage durations of different units are assumed to be independent of each other.

At each time period ¢, the following sequence of events happen. We observe the state of the
system, which consists of the current on-hand units and the outstanding units that are currently
being rented by the customers. Based on the state, we decide which subset of products to offer. The
customer arriving at time period ¢ chooses a unit to rent or leaves the system without renting. We
collect the upfront fee for the rented unit and the rent from all customers still using their rented
units. Finally, we observe whether each customer with a rented unit of product decides to return

the unit, including the customer who rented a unit at the current time period.

State and Transition Dynamics: To capture the state of the system at a generic time period,
let g; o denote the number of units of product ¢ available as on-hand inventory at the beginning of
the time period. Also, for ¢ > 1, let ¢; , denote the number of units of product 7 that have been
used for exactly ¢ time periods at the beginning of the time period. Thus, we describe the state
of the system by the vector ¢ = (¢, : i € N, £=0,1,...). For example, if g represents the state of
the system at the beginning of time period ¢, then ¢; ; is the number of units of product ¢ rented
at time period t — 1 and not returned by the beginning of time period ¢. Since Y~ ¢ = Cj,
let Q={(gie:i€eN, £=0,1,...) : > 2 qic=C; Vi€ N} denote the set of all possible states. We
assume that the system starts with no units in use. Thus, there will never be a unit in use for more

than T' time periods, which makes the effective set of possible states finite.

Consider the state g at the beginning of time period ¢. There are g; , units of product ¢ that have
been used for exactly ¢ periods. By definition of the hazard rate, with probability p;,, each of the
gi¢ units will be returned by the beginning of time period ¢ + 1. Thus, if no purchase is made at
time period ¢, then the number of units that will be available as on-hand inventory at the beginning
of time period ¢+ 118 g; 0+ Y_,, Bin(qi s, pi ), where Bin(k, p) denotes a binomial random variable
with parameters k € Z, and p € [0,1]. Also, at the beginning of time period ¢+ 1, the number of
units of product i that will have been rented out for £+ 1 periods will be ¢;  — Bin(g; ¢, pi.¢), where
the second term reflects the units that will be returned at time period ¢. Therefore, given the state
g at the beginning of time period t, if there is no purchase by a customer, then the state X (q) =
(Xie(q):ieN, £=0,1,...) at the beginning of period ¢+ 1 is given by

Gio+ Y oo Bin(gis,pis) if€=0,

Qio—1 — Bin(gi o1, pie—1) if £>2.
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Note that if there is no purchase at time period ¢, then a unit that was on-hand will stay on-hand
at time period t + 1. Also, a unit that was in use will either be returned or it will stay in use. In

the latter case, its usage duration will be at least two time periods. So, we have X, 1(q)=0.

Dynamic Programming Formulation: We use F to denote the collection of feasible subsets
of products that we can offer to the customers at each time period, which captures the constraints
that we may impose on the offered subset of products. To formulate the problem as a dynamic
program, we denote a Bernoulli random variable with parameter p € [0, 1] by Z(p). Also, viewing the
state g = (q;0:1 €N, £=0,1,...) as a vector, we let e;; be a unit vector with one in the (i, k)-th
coordinate and zero everywhere else. Let J*(g) denote the maximum total expected revenue over
the time periods t,...,T, given that the system is in state q at the beginning of time period t. Then,
using 1.} to denote the indicator function, we can compute the optimal value functions {J* : t € T}
by solving the dynamic program

Jt(Q) = Zﬂf Z%‘,z

1EN =1

+ max{Z B 0408 (1t 4 B{Z0pu0) I (X @) (1= Z(pi0)) I (X () — v+ €1) } )
ieN

SeF

+ (1= Lz 09l(9)) E{Jt“(X(q))}}, (2)

1eN
with the boundary condition that J?*! = 0. In the dynamic programming formulation above, we
implicitly assume that even if ¢; o = 0, meaning that we do not have any on-hand inventory for
product ¢, we can offer an assortment that includes product i. Note the indicator function; if a
customer chooses a product with zero on-hand inventory, then she leaves the system without renting
any products. The possibility of offering products with zero on-hand inventory may be unrealistic
in certain settings. Shortly in this section, in Assumption 2.1, we impose rather mild assumptions
on the discrete choice model {¢}(S):i €N, SCN} and the set of feasible decisions F to ensure
that the optimal policy never offers a product with zero on-hand inventory, even if we are allowed
to do so. So, under Assumption 2.1, it follows that the dynamic programming formulation above
is equivalent to a dynamic programming formulation that explicitly imposes a constraint to ensure

that we must have non-zero on-hand inventory for each product that we offer.

In the dynamic program in (2), the term Y, 7> ¢, captures the rent payments from
customers with already rented units at the beginning of time period t. On the other hand, the
term 1} 47!l + ]E{Z(pw) JTHX(q)+ (1 —Z(pio)) JT (X (q) —eio+€in) } corresponds to the
expected revenue from a customer who selects product i at time period t. Here, r! 4 7} reflects the

one-time upfront payment and the per-period rent for the first rental period. Noting the definition
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of the hazard rate, we have p; o = f;(1). Therefore, the Bernoulli random variable Z(p; ) takes a
value of 1 if and only if the customer renting a unit of product ¢ at time period ¢ uses the product
for exactly one time period. If Z(p,; o) =1, then the unit is returned to the firm at the end of time
period ¢, in which case, the state at the beginning of time period ¢+ 1 is X (q), which is identical to
the state that we would have obtained when no rentals were made at time period ¢. On the other
hand, if Z(p;) =0, then the selected unit of product i will not be returned at the end of time
period t. In this case, the selected unit of product ¢ will not be on-hand at the beginning of time
period t 4 1; instead, this unit will be in use for exactly one time period. Therefore, the state of
the system at the beginning of time period ¢+ 1 will be X (q) — e; o+ €;.1. To simplify our dynamic
programming formulation, note that since the rental durations of different units are independent

of each other, X (q) and Z(p; ) are independent of each other as well. Therefore, we obtain

E{Z(ps0) 7" (X(9)) + (1= Z(pi) I (X (q) — eso+es) } ~E{ 7" (X (a)) }
= P E{J (X (@) }+ (1= pio) E{I (X (@) —ero+enn) | ~E{ /(X (a))}
= — (1= pio) E{ S (X (q) = /"™ (X (q) —eso+ein) }-

in which case, simply by arranging the terms, we can write the dynamic programming formulation

in (2) equivalently as

Fa) =YY e + B{ (X))

iEN (=1

+ max {Z Vgooz1y 9(S) (7! 47— (1= pio) B{ I (X (@) = T (X (0) — e+ €41) })} . (3)
ieN

SeF

Note that J** (X (q)) — J'™ (X (q) — €;,0+ €;,1) captures the marginal value of renting one unit

of product ¢ to the customer at time period ¢.

Throughout the paper, we impose a mild assumption on the discrete choice model
{¢4(S):ie N, SCN} and the set of feasible decisions F to ensure that the optimal policy never

offers a product with zero on-hand inventory. This assumption is given below.

Assumption 2.1 (Substitutability and Feasibility) Adding more products to an assortment
does not increase the selection probability; that is, for all SCN and ke N, ¢1(SU{k}) < @L(S)
for all i € S. In addition, if a set of products is feasible to offer, then so are all of its subsets; that
is, if A€ F, then S € F for all S C A.

The first assumption ensures that products are substitutable, and thus, the probability of

choosing any product never increases if more options become available. This assumption is rather



Rusmevichientong, Sumida, and Topaloglu: Dynamic Assortment Optimization for Reusable Products

12

mild and it holds for all choice models that satisfy the random utility maximization principle,
including the multinomial logit, nested logit, d-level logit, paired combinatorial logit, and many
others. In addition, the second assumption on the collection of feasible subsets F also holds for a
¢ <B }7

where ¢; is the space consumed by product ¢ and B is the total shelf-space available. Under

broad class of assortment constraints, such as a shelf-space constraint F = {S CN: Yics
the assumption above, it is not difficult to see that the optimal policy never offers a product
with zero on-hand inventory. In the maximization problem in (3), the profit contribution of
product i is Ty, o >1y X (1] +7f — (1= pi o) E{J* (X (q)) = J*'(X(q) —eio+e€i1)}). Let S* be
an optimal solution to this maximization problem. In this case, observe that we can drop all
products with non-positive profit contributions from S* without degrading the objective value of
the maximization problem in (3) because if we drop such products, then by the substitutability
assumption, the selection probabilities of all other products increase, whereas by the feasibility
assumption, the subset we obtain remains feasible. Thus, the new subset that we obtain in this
fashion provides an objective value to the maximization problem in (3) that is at least as large as
that provided by S*. Because the profit contribution of product ¢ is zero when 1, ;>1; =0, there

exists an optimal policy that never offers a product with zero on-hand inventory.

Because all products are available at the beginning of the selling horizon, the optimal total
expected revenue is J! (Zze n Ci ew). One source of difficulty in computing the optimal value
functions {J':t € T} is that the maximization problem in (3) is a combinatorial optimization
problem that chooses the set of products to offer. However, there exist efficient algorithms to solve
this problem under many discrete choice models, including the multinomial logit (Talluri and van
Ryzin 2004, Rusmevichientong et al. 2014), nested logit (Davis et al. 2014, Gallego and Topaloglu
2014), d-level logit (Li et al. 2015), and paired combinatorial logit (Zhang et al. 2017), and under
many different types of feasible sets F (Davis et al. 2013, Feldman and Topaloglu 2015, Desire
et al. 2016). Later in the paper, we will also discuss how our results can be extended when we can

only approximately solve the maximization problem in (3).

Although we can solve the maximization problem in (3) efficiently, to find the optimal policy,
we need to compute the optimal value function J(q) for each g € Q and ¢ € T. The number of
possible states |Q| grows exponentially with n and 7', which makes it difficult to find the optimal
policy. Thus, throughout the rest of the paper, we focus on developing approximate policies that

are efficient to compute and have provable performance guarantees.

3. Linear Value Function Approximations

We develop an approach to construct linear approximations to the optimal value functions and

analyze the performance of a policy that uses these approximations. In particular, we give a
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tractable recursion to come up with linear value function approximations. We show that if we use
the greedy policy with respect to these linear value function approximations, then we obtain a

policy that is guaranteed to obtain at least 50% of the optimal total expected revenue.

3.1 Specification of Linear Value Function Approximations

We consider an approximation J' to the optimal value function J* given by

= Zzﬁié die; (4)

ieN €=0
where, for £> 1, the parameter f , represents the marginal value at time period ¢ of each unit of
product i that has been in use for ¢ periods, whereas the parameter ! o represents the marginal
value of each unit of product i that is currently available as on-hand inventory at time period . We

propose computing 19574 recursively as follows.

e Initialization: Set I/T+1 0 for allie N, £>0.
e Backward Recursion: For t =TT — ,1, we compute 7, by using {VtJrl ieN, (>0}

as follows. Let At € F be an assortment such that

At = arg max Zj\;@?(S {r + 7 — (1= pio) (D15 — “{1)} (5)
S

Once At is computed, for each i € N/, let

ﬁz‘t,o — At+1 i ¢t(At) [7’ +7r _ (1 _on) ( t+1 _ VtTl)} (6)
ﬁf,e = TF + ,OzthH + (L= pie) J}rl vVe=1,2,....

The above description completes the specification of the approximate value function Jt. We shortly
give the intuition behind our approach. Because we start the system with all units available as
on-hand inventory, no unit will be in use for more than 7T time periods. Thus, we only need to

compute !, for £=0,1,...,T, so we can execute the above recursion in finite time.

We provide some intuition into the computation of At Intuitively speaking, we can interpret At as
an ideal assortment to offer at time period ¢ under the linear value function approximations when we
ignore inventory availability. In particular, if we replace the value function J**! in the maximization
problem on the right side of (3) with the linear approximation Ji*!(q) = S ien Dreo Vit qie and
drop the indicator function 1y, ,>1; to ignore inventory availability, then the objective function
of this maximization problem takes the form -, ¢!(S) [rf +m! — (1 —pio) (215" — 2{1)], which

is the same as the objective function of the maximization problem in (5). Next, we provide some
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intuition into the computation of &/} 0, which measures the value of a unit of on-hand inventory for
product ¢ at time period t. Roughly speaking, assume that we offer the ideal assortment At at time
period ¢, and if a customer selects product ¢ at time period ¢, then we “direct” the customer to
one of the C; copies of product i with equal probability of 1/C;. In this case, the probability that
a unit of product i “sees” a demand at time period t is qﬁt(A’) . We write the recursion that we

use to compute 7} in (6) equivalently as

ﬁit’O = Cl(lqﬁf(flt)[ + 7t —l—plol/t+1 +(1—pio) 0y } (1—¢t(At)> A,o

On the left side above, 7 is the value of a unit of product i on-hand at time period ¢. If we offer
the ideal assortment A! at time period ¢, then a unit of product 7 “sees” a demand with probability
C%qbf(flt) In this case, we collect the upfront fee 7! and the rent 7! for the first time period. As
discussed earlier, with probability p; o = f;(1), the customer rents product i for exactly one time
period, in which case, she returns the product by the beginning of time period ¢ + 1. The value
of a unit of on-hand inventory of product i at time period ¢t +1 is 7 At“ . With probability 1 — p; o,
the customer rents product 7 for more than one time period, in Which case, the product will have
been rented out at the beginning of time period ¢+ 1 for exactly one period. The value of a unit of
product ¢ at time period t+ 1 that has been in use for one period is Vt+1 This discussion provides
the intuition for the term 7! +7! + p; o /5" + (1= p;0) 2{ 1! on the right side above. With probability
1- é(bt-(flt), the unit of product ¢ does not “see” a demand in which case this unit is still available

at time period ¢+ 1 and the value of this unit is given by 2{§".

We can give a similar intuition for the recursion that is used to compute &}, for all £=1,2,....
Noting the recursion 7} , = 7 4 p; ¢ I/t+1 +(1—pie) Afj}rl, recall that o, on the left side is the value
of a unit of product ¢ that has been in use for £ periods at time period ¢. This unit of product i will
certainly be used until the end of time period ¢ and we will obtain the rental fee of 7!. Furthermore,
by the definition of the hazard rate p;,, a unit of product ¢ that has been in use for ¢ periods at
time period ¢ will be returned by the beginning of the next time period with probability p;,, in
which case, the value of this on-hand unit at time period ¢+ 1 is 191“61, yielding the term p; gVH_l
on the right side. On the other hand, once again, by the definition of the hazard rate p; ,, a unit of
product ¢ that has been in use for ¢ periods at time period ¢ will not be returned by the beginning
of time period ¢ 4 1 with probability 1 — p; ,. Therefore, this unit of product ¢ will have been used

pitl

for £+ 1 periods at the next time period and the value of this unit at time period ¢ +1 is 77, |,

yielding the term (1 — p; ) ! £+1 on the right side.

The discussion in the previous two paragraphs also provides a natural interpretation for our

value function approximations. In particular, our value function approximations correspond to the
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total expected revenue that we obtain when we use a policy that manages each unit of product ¢
independently. Focus on one particular unit of product ¢. At time period ¢, we always offer the
assortment A’, in which case, an arriving customer selects product i with probability ¢f(A?). If
the customer selects product i, then we “direct” the customer to each unit of product ¢ with equal
probability of 1/C;. In this case, the unit of product i that we focus on “sees” a demand at time
period ¢ with probability qﬁf(flt)c% If the unit of product i that we focus on “sees” a demand,
then it is rented, so we collect the upfront fee of r! and the rent of n! for the first time period.
A unit that is rented stays in use for a random duration of time that is governed by the hazard
rates {p;,:¢ >0}, during which we collect the rent of 7! at each time period ¢ that the unit is in
use. After the usage duration has expired, the unit is returned. By the discussion in the previous
two paragraphs, if we use a policy that manages each unit of product ¢ independently in the way
we just described, then ﬁfl corresponds to the total expected revenue from a unit of product @
that has been in use for exactly ¢ time periods at the beginning of time period t. Therefore, our
value function approximations correspond to the value functions of a policy that manages each
unit independently. Clearly, this policy does not pool the units of the same product together, so
we certainly do not advocate using such a policy in practice. We will only use the value functions
of this policy to construct value function approximations. It turns out that the greedy policy with

respect to the value function approximations will have a performance guarantee.

Considering the effort to compute the parameters {7],:i €N, £=0,...,T, t €T}, we need to
solve problem (5) for each time period t € 7. The number of operations to solve this problem
depends on the underlying choice model. We use Opt to denote the number of operations to solve
one instance of problem (5). Next, we need to compute {¢!(A?):ie N, t € T}. The number of
operations to compute these choice probabilities also depends on the underlying choice model. We
use Prob to denote the number of operations to compute {¢(S):i€ N} for a fixed subset S and
time period t. Once we compute {¢!(A?):i €N, t€ T}, we can use (6) to compute each one of
the parameters {7} ,:i €N, £=0,...,T, t € T} in O(1) operations. Thus, noting that there are
O(T?n) such parameters, we can compute all of the parameters {7} ,:i €N, £=0,...,T, teT}
in O(T x Opt+T x Prob+T?n) operations. For example, if the customers choose according to
the multinomial logit model, then we can solve one instance of problem (5) in O(nlogn)
operations (Talluri and van Ryzin 2004). Also, for a fixed subset S and time period ¢, we can
compute {¢f(S):i€ N} in O(n) operations. In this case, we can compute all of the parameters

{pl,:ieN, £=0,...,T, te T} in O(Tnlogn+T?n) operations.

Lastly, although we use linear value function approximations, it is not difficult to see that the

optimal value functions are not even separable by the products. In Appendix A, we give a problem
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instance with only one time period in the selling horizon, in which the optimal value functions are
not separable by the products. We close this section with the next lemma, where we show that the
marginal value of a unit of on-hand inventory becomes smaller as the end of the selling horizon

approaches. We will use this property several times throughout the paper.

Lemma 3.1 (Properties of the Marginal Values) The marginal value of on-hand inventory

A~

decreases over time; that is, U}, > fogl forallteT and i€ N.

Proof: For notational brevity, let Al =r! + 7! — (1 — p;o) (075" —0{1"). We will shortly show the
claim that ¢!(A*) At >0 for all i € V. In this case, by the recursion in (6) that we use to compute
Uty we have 0}, =0/ + c% PL(AY) AL > iy, which is the desired result. To see the claim that
PH(AY) Al > 0 for all i € N, assume on the contrary that there exists some k € N such that
PL(AT) AL <0. Let Nt ={ie N: Al >0} and N~ = {ie N': Al <0}. By our assumption, there
exists some k € N~ such that ¢f(A?) > 0. Furthermore, by Assumption 2.1, ¢{(A' NNT) > ¢! (A?)
for all i € A'NN*. By the same assumption, because A € F, we have A'!NNT € F. So, we get

D GHANAL = Y elANAL + Y GHANAL < ) ol(A)A]

iEN ieNT iEN ieN+
= > ¢HAYAL < D @ ANNT)AL = ) GlA'NNT) AL
i€ AtnN+ i€ AtnN+ ieN

where the first inequality follows because there exists some k € N~ such that ¢§€(At) > 0, the

second equality holds since ¢!(A?) =0 for all i ¢ A, and the second inequality uses the fact that
PHAT N NT) > ¢t (AY) for all i € A' NN, Since A' NN+t € F, the chain of inequalities above
contradicts the fact that A? is an optimal solution to problem (5). [ |

3.2 An Approximate Policy Using Marginal Values

We consider the greedy policy with respect to the value function approximations {J*: ¢ e T}. If
the system is in state g at time period ¢, then this policy offers the assortment S’t(q) given by

$'(q) = argmax { ) = (1= o) B{ ' (X (@) — I (X (a) — i+ €21) |
1€

= g 3 disz0l(S) [t = (1= pio) (015 = 221 |, (7)

where the second equality uses the definition of the value function approximations in (4). The next

theorem is the main result of this section, giving a performance guarantee for this policy.

}
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Theorem 3.2 (Performance of the Greedy Policy) The total expected revenue of the greedy
policy with respect to the value function approximations {jt 1 te 'T} is at least 50% of the optimal

total expected revenue; that is, this policy is a half-approrimation.

The proof of this theorem makes use of the next lemma. Because we do not have any products in
use at the beginning of the selling horizon, the initial state is ), - C; €; 0. The next lemma relates

the approximation jl(zi@\/ C;eio) to the optimal total expected revenue J' (>, . Cie;p).
Lemma 3.3 (Expected Revenue Upper Bound) J'(},_,,Cie;o) <2 jl(zie/\/ Cieip).

Proof: By Adelman (2007), we can obtain an upper bound on the optimal total expected revenue

by using the objective value provided by any feasible solution to the linear program

min jl (Z Cﬁi,@)

1EN

st ') 2 oY e + B{J(X(0)}

iEN (=1

D Mgz 6S) [l = (1= p) E{ T (X (@) = T (X (q) — e+ ei) | |
ieN
Vge @, Se F, teT,

where the decision variables are {J'(q): q € Q, t € T} and we follow the convention that J7+! = 0.
Define the constant 5 = Y ien VioCi- We proceed to show that {(B"+J'(q):q€ Q, te T} with
Ji(q) as in (4)-(6) is a feasible solution to the linear program above. (Without the constant 5,
the solution {J'(q):q € Q, t € T} is not necessarily feasible to the linear program.) As all units
are available at the beginning of the selling horizon, a unit will never be in use for more than T
time periods. Thus, we can assume that Q is a finite set, so the numbers of decision variables and

constraints above are finite. By the definitions of J**(g) in (4) and X (q) in (1), we get

B+ E{ I (X (a) | = 5t“+2{ t“[q1o+ZMv4+sz«+l Gt M%d}

ieN £=1
5t+1+2{qlout+1+2ql/ pie?i' + (1= pie) zLJ}
ieN

Similarly, E{jt“ (X(q))—J" (X (q)—e;o+er) } =0/ 5t —0i1 So, if we evaluate the right side
of the constraint in the linear program above at {3+ .J'(q): q € Q, t € T}, then we obtain

S g+ A E{J'"!(X(q))}

iEN (=1
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T3 Mgz 61(9) [l = (1= puo) E{ B 4 T (X (@) = 34 = T (X (@) — eso +eun) }]

€N
Z Zq25+ﬁt+l+2{q10yt+l+zqu pzlyzo (1_102@) z—gil}}
iEN (=1 iEN
+ Y Mpgozy 4S) [+t — (1= pio) (015" = 011)]
ieEN
= Zﬁfﬁlcﬁz{%o”fﬁl+Zqzew}+Z]1{qm>1}¢> ) [ri+mi = (1= pio) (5" = 7i11)]
iEN iEN iEN

where the second equality holds because we have 0}, = 7! + p; /5" + (1 — pie) D{ ;11 by (6) and
B+l = > ien PVibt Ci. By a simple lemma, given as Lemma B.1 in Appendix B, if we let Al =¢! +
= (1= pio) (D55 = DIFY), then 30, &L (A AL > 3, Dy o 21y $4(S) Al for all S € F. Note that
this inequality does not follow from the definition of A’ because although we have Y ien PL(AY) Al >
Y ien Pi(S) Al by (5), we may have A} < Ty, >1y Aj when A} < 0. Thus, using the chain of

equalities above, we upper bound the right side of the constraint in the linear program as

Zﬁfﬁlcﬁz{qzo”fﬁ“rzqzew}+Zﬂ{qlo>1}¢ S) [ri+mi = (1= pio) (715" = 7i1")]

ieN ieN ieN
< SR CAS ettt O [t — (1 pi) (515 — 911)]
ieEN 1€EN £=0 ieN
= D U CHI Y et + Y Ci(ty — 1Y)
ieEN iEN €=0 ieN
= Z%oci—i_zzq“ﬁitl = B'+.J'q),
iEN i€EN £=0

where the first inequality holds as 2f, > 2/} by Lemma 3.1, the first equality follows from (6) and
the last equality is by the definition of Bt. By the chain of inequalities above, for any g € Q, S € F
and t € T, if we evaluate the right side of the constraint at {Bt + jt(q) :q € Q, te T}, then the right
side of the constraint is upper bounded by 3!+ jt(q). So, the solution {Bt + jt(q) :q€eQ, teT}is
feasible to the linear program, which implies that the objective value of the linear program evaluated
at this solution is an upper bound on the optimal total expected revenue. The objective value of
the linear program evaluated at the solution {3*+J'(q):qe Q, te T} is B + jl(zia\/ Cieip) =
B V0 Ci =2 0 Ci=2J (3 n Cieio). Thus, 27 (3,5 Ci€i) is an upper bound

on the optimal total expected revenue. |

The greedy policy with respect to the value function approximations {J*:t € T} offers the

assortment S*(q) in (7) when the system is in state ¢ at time period t. Let U’(g) denote the total
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expected revenue under this greedy policy over the time periods ¢,...,T, given that we are in state
g at time period ¢. We can compute {U":t € T} by using the recursion
Ula)=D_m ) de
ieN =1
+ D Mgz 0i(5°(a) (Tf -+ E{Z(pi0) U (X (@) + (1= Z(pio) U™ (X (@) — i+ i) })
ieN

(13 Q20150 B{U (X (a)) },

1EN
with the boundary condition that U?*! = 0. In the recursion above, we use the same line of
reasoning that we used for the dynamic programming formulation in (2), but the decision is
fixed as S’t(q). An observation that will shortly be useful is that U'™! appears with a positive
coefficient on the right side above. Therefore, if we replace U'*! with a function H'*! that satisfies
Ut (q) > H'"'(q), then the right side of the expression above becomes smaller. By using the same
sequence of manipulations that we used to obtain the dynamic program in (3), we can write the

above recursion equivalently as

Ula) = Somt> a + E{U (X (a)

1EN =1

3 Moz 6S(@) (rl 7t = (1= pio) E{U" (X (@) — U (X(0) — evo+eia) }) - (8)
ieN

The coefficients of U'™! are not necessarily all positive on the right side above, but the last two
recursions are equivalent. So, if we replace U'*! on the right side above with a function H'*! that

satisfies U™ (q) > H'"'(q), then the right side of the expression above still gets smaller.
Here is the proof of Theorem 3.2.

Proof of Theorem 3.2: We will use induction over the time periods to show that U*(q) > J*(q)
for all g€ Q and t € T, where jt(q) is as in (4). By definition, we have ﬁgfl =0 for all i € N,
£=0,1,...,so that JT+H = 0. Furthermore, we have U7+ = (. Thus, the result holds at time period
T + 1. Assuming that U™ (g) > J'*!(q) for all g € Q, we proceed to show that Ut(q) > J'(q) for
all g € Q. Using the same argument in the proof of Lemma 3.3, we have
E{th(X(Q))} = Z {Qi,O ’9%1 =+ Z(Ju [Pi,e ﬁf,gl + (1 - Pi,e) ﬁf;ﬂl—l] } :
ieN =1

Similarly, we have E{jt“(X(q)) —JH(X(q) —eio+ei) } =0/ 5" —/4" . Thus, by the inductive
hypothesis and the recursion defining U*(q) in (8), we obtain

U'(q) > waiqm + E{jt“(X(q))}

1EN (=1
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+ Y Loz 08 (@) (7 + 7 — (1= pio) E{ I (X (@) = ] (X (@) — e +eun) })

ieEN
= Z ZQ1Z + Z{Q10Vt+1+ZQzZ Pzel/zo (1_/)12) 1?—}-1]}
ieEN /=1 iEN
+ ) Mgz 6HS (@) [+l — (1= pro) (15 — 0]
ieEN
_ z{qlou:ngqﬁ T (1 ) L]
iEN /=1
+max Ay $(S) [+l — (1= pio) (2151 = 211H)]

iEN

where the last equality follows from the fact that S’t(q) is, by (7), an optimal solution
to the maximization problem on the right side above. Noting (6), for all ¢ > 1, we have
Dy =mt+ pie ot 4+ (1= pie) U054, In this case, the expression on the right side of the chain of

inequalities above can equivalently be written as

z{%oy;gw;%,w;g} omax > Ty 21 0(S) [t 7 = (1= pio) (955 = 951)]

1€EN 1EN

(]

q70VfJ61+ZQi=fﬁz’t,€} + Z]l{qz‘,ozl} ¢5(At) [7" +7T _(1_p10)( t+1_ﬁz‘tjl)]
{=1

1EN 1EN

(]

ieEN 16/\/

o0
At41 Lt ot 141
qi,0V; 0 +§ qz',l%’/i,e} + E Qi,O(Vi,o_V@o)
=1

ieEN

(]

= . . X
{qzonﬁ“ququ,e} 5™ G0 o+ 7t — (1= i) 6157~ 710
/=1

ieN

ety = J'(a).

ieN £=0

(]

In the chain of inequalities above, to see that the second inequality holds, by the discussion in the
proof of Lemma 3.1, we have ¢L(A?) [rt + 7t — (1 — pio) (045" — 2£1")] > 0 for all i € N. Also, by the
definition of Q, we have ¢; o < C; for any q € Q, which implies that 1y, ;>1y > &> %0 The first equality
follows from (6). The chain of inequalities above completes the induction argument so that we have
Ut(q) > J'(q) for all g € Q and t € T Because the initial state of the system is Y icn Ci€io, the total
expected revenue collected by the greedy policy is U! (ZZE v Ci ew). So, using the last inequality
witht=1and q=3,_\ C;e;o, we get U' (Ziej\/ C, eiyo) > J! (Zie]\/ C; 61‘,0) >1J (Zie./\f C; 61',0),

where the second inequality follows by Lemma 3.3. |

We note that simple myopic approaches that ignore the future customer arrivals can perform
arbitrarily poorly, as we demonstrate in Appendix C. In contrast, by Theorem 3.2, the greedy policy

with respect to the value function approximations {j t:t e T} is guaranteed to obtain at least 50%
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of the optimal total expected revenue. In our computational experiments, we demonstrate that
the practical performance of this greedy policy can be substantially better than this theoretical
performance guarantee. Despite having a performance guarantee, the greedy policy with respect
to the value function approximations {jt :t € T} has a somewhat undesirable feature. Consider
two states q € Q and q' € Q such that {i e N': ¢;0 > 1} ={i € N : ¢ > 1}. In other words, the
set of products for which we have on-hand inventory is the same in the two states. In this case,
by (7), we have S’t(q) = S’t(q’ ). Therefore, the decisions of the greedy policy depend on the set of
products for which we have on-hand inventory, but not on the level of inventory for these products.
The greedy policy does not differentiate between having too much or too little inventory of a
product, as long as we have on-hand inventory for this product. In the next section, we develop
a more sophisticated policy that explicitly takes the inventory levels into consideration, while
still maintaining the performance guarantee of the greedy policy. Our computational experiments

demonstrate that the latter policy can perform noticeably better than the greedy policy.

4. Improving the Policy Performance through Rollout

To develop a policy that explicitly takes the inventory levels of the products into consideration, we
build on a static policy that offers a fixed assortment at each time period. With the assortment At
defined in (5), the static policy always offers the assortment A at time period ¢. Using an analysis
similar to the one for the greedy policy with respect to the linear value function approximations
discussed in the previous section, we show that the static policy obtains at least 50% of the optimal
total expected revenue. Furthermore, the value functions associated with the static policy are
separable by the products. We perform rollout on the static policy to obtain a policy that takes
the inventory levels of the products into consideration, while still maintaining the performance
guarantee of the static policy. Exploiting the fact that the value functions associated with the static
policy are separable by the products, we show that we can efficiently perform rollout on the static
policy when the usage durations follow a negative binomial distribution or when the customers

purchase the products outright without returning them at all.

4.1 Properties of the Static Policy

We consider a static policy that always offers the assortment At at time period ¢ regardless of
the product availabilities, where A’ is defined in (5). If a customer chooses a product that is not
available, then she leaves the system. By the next lemma, the static policy obtains at least 50% of
the optimal total expected revenue. The proof is similar to the analysis of the greedy policy with

respect to the linear value function approximations. The details are in Appendix D.
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Lemma 4.1 (Performance of the Static Policy) The total expected revenue of the static

policy that offers assortment At at time period t is at least 50% of the optimal total expected revenue.

Let V*(q) denote the total expected revenue under the static policy over the time periods ¢,...,T,
given that we are in state q at time period ¢. Similar to the dynamic program in (3), we can

compute {V*:¢ €T} by using the recursion

Vi) =w S g + E{V(X(@)

1EN (=1

+ Z Ligio>1y ‘b;(/it) <7'f +m—(1— Pi,O)E{VtH(X(Q)) ~V*H(X(q) —eioteir) }) )
ieN

with the boundary condition that V7 +! = (. The following lemma shows that V*(q) decomposes
by products. The proof is in Appendix E. To facilitate our exposition, let e, be the standard unit
vector with one in the ¢-th coordinate. Let ¢; = (¢;» : ¢=0,1,...) denote the numbers of units of
product i that have been in use for different numbers of time periods. By (1), the state of the units
of product 7 at the next time period depends on the state of the units of product ¢ at the current
time period, but not on other products. Thus, X, ,(q) is a function of g; only, which implies that

we can write X; ,(q) as X, ¢(q;), so we can define the vector X;(¢;) = (X, ,(q:): ¢=0,1,...).

Lemma 4.2 (Decomposability by Products) For each t € T and q € Q, we have
Viq) =>,cn Vil (@), where for each i € N, {V}' :t € T} is computed by using the recursion

Via) =3 ae + E{VI(Xila)}

{=1

g A0 (1t = (= ) B{VI (Xila) - VI (Kia) —enten) ). 0)

with the boundary condition that V;'t' =0.

4.2 Rollout Policy Based on the Static Policy

We perform rollout on the static policy to obtain a policy that takes the inventory levels of the
products into consideration. To perform rollout on the static policy, given that we are in a particular
state at the current time period, we choose the decision that maximizes the immediate expected
revenue at the current time period plus the expected revenue from the static policy starting from
the state at the next time period. We refer to the policy obtained by performing rollout on the static
policy as the rollout policy. The rollout policy ultimately corresponds to using V*(q) = >, Vi'(q:)

t
rollout

as a separable nonlinear approximation to J'(q). Let S, .(q) be the assortment offered by the
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rollout policy given that we are in state q at time period ¢. As V'™!(q) is the total expected revenue

t

obtained by the static policy starting in state q at time period ¢+ 1, St ..(q) is given by

follout (q)

= arg %12}{ { Z ]l{qi’o >1} d’f(s) (Tf + 7Tf +E{Z(Pz‘,o) Vt+1(X(Q)) + (1 =2Z(pi,)) Vt+1(X(Q) — €0+ 6i,1)}>
ieN

+ (1 — Z Lig o> 1}¢f(5)> E{VHI(X((I))}}

ieN
—argma 300 0408) (4 7t - (1= p) {1 (X (@) -V (X(0) - esntenn) })
ieN
—argma 3 B o0 l(8) (4t - (1= p0) B{V (K@) - VI (Xifa) —ea e }).
€N
In the first equality above, we follow the same argument that we used to construct the dynamic
program in (2), in which we find an assortment that maximizes the immediate expected revenue
and the expected value function at the next time period under the optimal policy, but above, we
use the value function of the static policy at the next time period. We arrive at the second equality
by the same reasoning that we used to obtain the dynamic program in (3) from the dynamic
program in (2). The third equality follows from the fact that the value functions of the static policy

decompose by the products, as shown in Lemma 4.2.

It is a well-known result that the policy obtained by performing rollout on a base policy always
performs at least as well as the base policy itself; see Section 6.1.3 in Bertsekas and Tsitsiklis (1996).
Therefore, the total expected revenue obtained by our rollout policy is at least as large as the total
expected revenue obtained by the static policy. So, by Lemma 4.1, the rollout policy obtains at least
50% of the optimal total expected revenue as well. In many applications, a policy based on rollout

tends to offer a dramatic improvement over the base policy. The key question is whether the rollout

t
rollout

assortment S’ . (q) can be computed efficiently. Lemma 4.2 shows that the value function of the
static policy is separable by the products, indicating that computing the value functions of the
static policy through the recursion in (9) is more manageable than computing the value functions
of the optimal policy through the dynamic program in (3). As discussed earlier, without loss of
generality, we can assume that the vector ¢; = (¢;,:¢=0,1,...) is finite-dimensional, because we
start with no units in use so that we always have have ¢; , =0 for all £ >T. However, the state
variable g¢; = (¢; 0 : £=0,1,...) in the recursion in (9) is still a high-dimensional vector. In particular,
the state space in this recursion is given by Q; = {(¢i¢€Zs : £=0,1,...) | X0y ¢ =Ci} and
computing the value function V;'(g;) of the static policy for all g; € Q; is difficult.

In the remainder of this section, we consider two cases. First, if the usage duration follows

a negative binomial distribution, then the value functions of the static policy can be computed



Rusmevichientong, Sumida, and Topaloglu: Dynamic Assortment Optimization for Reusable Products

24

efficiently. Second, if the customers purchase the products outright and never return them, then
the value functions of the static policy can be computed efficiently as well. Once we compute the
value functions {V*:t € T} of the static policy efficiently, we can solve the maximization problem

above that defines S*, .(q) to find the assortment offered by the rollout policy. Note that the

rollout

t
rollout

maximization problem that we solve to obtain the assortment S¢ . (q) has the same structure as
the maximization problem on the right side of the dynamic program in (3). Thus, once we compute
the value functions {V*:t € T} of the static policy, as discussed at the end of Section 2, there are
numerous choice models that render this maximization problem tractable. Lastly, we emphasize
that even if we cannot compute the value functions {V*:¢ € T} of the static policy, we can use
simulation to estimate the expected revenue of the static policy, which still allows performing rollout
on the static policy. Section 6.1.3 in Bertsekas and Tsitsiklis (1996) discusses using simulation to
perform rollout. Naturally, the computational requirements of performing rollout inflate when we

use simulation to estimate the total expected revenue of the static policy. Next, we discuss how to

perform rollout efficiently when the usage durations have a negative binomial distribution.

4.3 Negative Binomial Usage Duration

In this section, we assume that for each product i € N, the usage duration is given as
Duration; = 1+ NegBin(s;,n;), where NegBin(s;,7;) denotes a negative binomial random variable
with parameters s; € Z,, and n; € [0, 1] taking values over {0,1,...}. A negative binomial random
variable with parameters (s;,n;) corresponds to the sum of s; independent geometric random
variables, each with parameter 7;. Thus, a negative binomial random variable with parameters
(1,7m;) is equivalent to a geometric random variable with parameter 7;. As s; increases, the
probability mass function of a negative binomial random variable with parameters (s;,7;) becomes
more symmetric. Even with s; = 3, the probability mass function is rather symmetric. Therefore,

a negative binomial random variable is quite flexible for modeling usage durations.

Noting that a negative binomial random variable with parameters (s;,7;) corresponds to the sum
of s; geometric random variables, we provide the following interpretation for our use of a negative
binomial random variable for modeling the usage durations. At each time period, a customer is
satisfied with product i with probability 7;. As soon as a customer is dissatisfied with the product
for s; times, she returns the product, ending her rental duration. Naturally, we do not advocate
this interpretation as a model of how a customer makes a decision for keeping the product, but
this interpretation provides us with the vocabulary to explain our model more clearly, as follows.
If the usage durations have negative binomial distributions, then our state variable does not need

to keep track of the numbers of units of each product i that have been in use for a certain duration
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of time. It is enough to use a state variable that keeps track of the numbers of customers who are
using each product ¢ and have been dissatisfied for a certain number of times. In this case, we can

efficiently compute the value functions of the static policy, as long as s; is relatively small.

We discuss how we can compute the value functions of the static policy by using a recursion

similar to the one in (9) when the usage durations are negative binomial random variables.

State and Transition Dynamics: To compute the value functions of the static policy through

a recursion similar to the one used in (9), we define
w; o = number of customers who are using product 7 and have been dissatisfied for d times.

A customer using product ¢ returns the product once she has been dissatisfied for s; times, in which
case, the product becomes available on-hand. Therefore, the s;-dimensional vector (w; o, ..., w; 1)
captures the state of the customers using product i. The on-hand inventory of product i is given
by C; — ZZZOl w; 4. Under negative binomial usage durations, we use w; = (w; 4:0<d<s;, —1) to
denote the state vector for product 7 at the beginning of a generic time period. With this state
representation, if no purchase is made at the current time period, then the new random state
F,(w;) = (F; 4(w;) : 0<d<s;—1) at the next time period is given by
Fia(w) = { S::EZiZ:Z:; + (wi,4-1 — Bin(w; g—1,m:)) g Ell; (1): 2,...,8—1,

where we use the fact that for each d, the number of customers who continue to remain dissatisfied
for d times at the next time period is equal to Bin(w; 4,7;), because each customer is satisfied with
the product with probability 7;, independently of each other. Furthermore, w; 41 — Bin(w; 4_1,7;)
captures the number of customers who were dissatisfied for d — 1 times at the beginning of the
current time period and they were dissatisfied one more time in the current time period; in that
case, these customers are dissatisfied for a total of d times at the next time period. These customers

add up to the number of customers dissatisfied d times at the next time period.

Dynamic Programming Formulation: With this state representation, we can compute the
value functions of the static policy for each product ¢ through the following recursion. We use
w; = (W;,...,Ww;s—1) to capture the state of product i. Recall that the static policy offers the
assortment A’ at each time period t. Given that the state of product i at time period t is w;, let
V' (w;) be the total expected revenue from product ¢ under the static policy over the time periods
t,...,T. Using the vectors e, = (1,0,0,...,0) € R% and e; = (0,1,0,...,0) € R*, we can compute
{V}!':t €T} by using the recursion

s;—1

Viw) = > wia+ (1 gt < o) ¢>§<At>) E{V+ (F(w)) |

d=0
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* ]I{ZZi_lw- < cv}ﬁf):f(AAt) <7“f +7Tf+77z‘E{ VI (Fy(wi) + eo) } + (1 —ﬁi)E{HtH (Fi(w;) +e1) })
—0 Wi, i
s;i—1

= Y wia+E{VH (Fi(w)) |

d=0

T, < o) 9HA) ( = E{ VI (F(wy) = VI (Fiw) + o) |
- BV (Rw) -V (Fw) ren ). (0

with the boundary condition that V;" ™' = 0. In the first equality above, for a customer to rent a
unit of product i, we need to have product i available on-hand and the customer needs to choose
product i. The number of units of product ¢ available on-hand is given by C; — Zzi:fol W; 4, SO
the expression 1 — 1 {ZZZOI wia < 1) (bf(/lt) captures the probability that a customer does not rent
product i when we offer the assortment Af. If ZZ:Ol w; 4 < C;, then we have product ¢ available
on-hand. If the customer chooses product ¢, then she rents this product. With probability 7;, the
customer renting product i at the current time period is satisfied and she ends up being a customer
with no dissatisfactions at the beginning of the next time period. With probability 1 — »;, the
customer renting product ¢ at the current time period is dissatisfied and she becomes a customer
who is dissatisfied for one time at the beginning of the next time period. The second equality
follows by arranging the terms. If s; =1, so that the usage durations for product ¢ are geometric

random variables, then the state variable w; becomes the scalar w; ¢, in which case, the recursion

above continues to hold as long as we set e =1 and e; =0.

Discussion of the State Variable: We can reach the state variable w; = (w; 4:0<d <s; — 1)
that we used in (10) by starting from the state variable ¢; = (g;, : £ = 0,1,...) that we used
in (9). Recall that ¢;, is the number of units of product i that have been in use for exactly
¢ time periods. Because the number of units of product i available on-hand is given by ¢;o =
Ci — > 2, qie, we can use the state variable (¢;,:¢=1,2,...), instead of (g;,:¢=0,1,...). Let
Yi.ae be the number of customers who have been using product ¢ for exactly ¢ time periods and
have been dissatisfied for d times. By definition, we have ¢; , = ZZ:()l Yide- S0, we can use the
state variable y; = (yiar:0=1,2,..., 0<d<s;—1) instead of (¢;,: ¢ =1,2,...), because given
(Yiae:l=1,2,...,0<d<s;—1), we can compute (¢;,:¢=1,2,...) as ¢, = ZZ":_OI Yi.ac- Lastly,
under negative binomial usage durations, from the perspective of immediate expected revenues
and state transitions, if we know the number of times a customer has been dissatisfied, then we do
not need to know how long she has been using the product. Thus, letting w; 4, = ZZI Yiae be the
number of customers who are using product ¢ and have been dissatisfied d times, we can use w,; =

(wiq:0<d<s;—1) as the state variable, which is precisely the state variable in (10).
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In the recursion in (10), the state variable is an s;-dimensional vector (w;g,...,w;s,—1) such
that ZZ;_Ol w; 4 < Cy, so the number of states is O(C;"). Thus, when s; is relatively small, we can
compute the value functions of the static policy efficiently. For example, in our computational
experiments, using transaction data from the city of Seattle, we find that the negative binomial
distribution provides a reasonably good model for the duration of time for which the drivers park

their vehicles. In our experiments, the fitted value for the parameter s; was 2.

4.4 Infinite Usage Duration

In this section, we focus on the case in which the usage duration is infinity. This case corresponds to
the situation where the customers buy the products outright, never returning them. Infinite usage
durations have a number of interesting applications. In the retail setting, customers make purchases
among substitutable products, in which case, our model dynamically makes product assortment
offerings to each individual customer as a function of the remaining product inventories (Topaloglu
2013, Golrezaei et al. 2014). Also, an important class of revenue management problems occurs on
a flight network with parallel flights operating between the same origin-destination pair. In this
setting, the customers make a purchase among multiple parallel flights on a particular departure
date. Our model dynamically adjusts the assortment of flights offered to each individual customer
as a function of the remaining flight capacities (Zhang and Cooper 2005, Liu and van Ryzin 2008,
Dai et al. 2014). Under infinite usage durations, we proceed to discuss how we can compute the

value functions of the static policy by using a recursion similar to the one in (9).

State and Transition Dynamics: Because the products are purchased outright, we assume
that 7} =0 for all ¢ € T so that there is no per-period rental fee. Since the products are not returned,
we only need to keep track of the on-hand inventory of product . We let ¢, o be the number of
units of product 7 on-hand and use ¢, as the state variable at the beginning of a time period. If
the state of the system at the current time period is ¢; o and a customer purchases product 7, then

the state of the system at the next time period is simply ¢; o — 1.

Dynamic Programming Formulation: Given that we have g; ¢ units of product ¢ on-hand,
let V(gi0) be the total expected revenue from product i under the static policy over the time

periods t,...,T. We can compute {V}:t € T} by using the recursion

V(o) = (1—1{%,0»}@(%)) Vi guo) + T pon $4(AY) (rf+v;+1<qi,o—1>)

= V) + B 604 (5= {V (o) Va0 - 1} ). (1)
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with the boundary condition that V;"** = 0. In the first equality above, if we have on-hand units
of product 7 and a customer chooses product i, then we have one fewer on-hand unit at the next
time period. The second equality follows by arranging the terms. Because the state variable g; o
in the recursion above is scalar, we can efficiently compute the value functions of the static policy
under infinite usage durations. The recursion in (11) is similar to the one in revenue management

problems with a single resource; see Section 2.6.2 in Talluri and van Ryzin (2005).

Thus, under both negative binomial and infinite usage durations, we can efficiently perform
rollout on the static policy; in that case, we obtain a policy that takes the inventory levels of
the products into consideration, while still obtaining at least 50% of the optimal total expected
revenue. It turns out that we can further strengthen our performance guarantee under infinite

usage durations. In particular, we let Cl;, = min;en C; to capture the smallest inventory of a
t
maX¢c T Ty

S } to capture the largest relative deviation in the upfront
min e i

product. Also, we let R = max;cn {
fee for a product over the selling horizon. In Theorem F.2 in Appendix F, using a modified static

policy based on a solution of a linear program, we can construct a tailored rollout policy that is
R

2 3\/ Cmin

Therefore, the tailored variant of our rollout approach always provides at least a half-approximate

guaranteed to obtain at least max {%, 1— } fraction of the optimal total expected revenue.
performance guarantee, but it becomes near-optimal as the inventories of the products become
large. This performance guarantee is not an asymptotic performance guarantee. It holds for any
value of the product inventories and the number of time periods in the selling horizon. For example,
if the smallest product inventory is 100 and the upfront fees are stationary so that C.;, = 100
and R =1, then the tailored variant of our rollout policy is guaranteed to obtain at least 89%
of the optimal total expected revenue, regardless of the other problem parameters. In addition,
we consider a standard regime where the inventories of the products and the number of time
periods in the selling horizon scale up linearly at the same rate x (Gallego and van Ryzin 1994). In
Theorem F.7 in Appendix F, we also show that the tailored variant of our rollout policy obtains
at least 1 — % fraction of the optimal total expected revenue, where B is a constant that is
independent of the scaling rate . Thus, the relative optimality gap of the tailored variant of the
rollout policy is O (1 — ﬁ) as the inventories of the products and the number of time periods scale
up linearly at the same rate k. These two performance guarantees do not generalize to arbitrary

usage duration distributions.

5. Extensions

We give extensions to the case in which we have multiple customer types, we make pricing decisions

instead of assortment offer decisions, and we can solve the assortment optimization problems only
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approximately. We show that our half-approximate performance guarantee continues to hold when
we have multiple customer types and when we make pricing decisions. Furthermore, we show
that if we can solve the assortment optimization problems approximately, then our performance
guarantees hold with appropriate modifications to reflect the solution accuracy in the assortment

problems. Some of these extensions are used in our computational experiments.

5.1 Heterogeneous Customer Types

We have m customer types indexed by M = {1,2,...,m}. At time period ¢t € T, a customer of
type j arrives with probability p"/, where we have 3. , p"/ =1, so that each time period has
exactly one customer arrival. We observe the type of each arriving customer. Each customer type
has its own choice model, reward structure, assortment constraints, and usage duration. If we offer
the subset S of products, then a customer of type j arriving at time period t chooses product i
with probability ¢!7(S). Note that if we do not observe the type of each arriving customer, then
we can continue using the model in Section 2, where the choice probability ¢:(S) is obtained by
mixing the choice models corresponding to different customer types. If a customer of type j selects
product i at time period t, then she pays a one-time upfront fee of rf’j . Furthermore, if she rents
this product during time period ¢, then she pays a per-period rental fee of 71/, The usage duration
of product ¢ by a customer of type j is given by the random variable Durationg . We let ,of’e be
the hazard rate of the usage duration of product i for a customer of type j, which is defined
by p{x = Pr{Duration] = ¢ 4+ 1 | Duration’ > ¢}. Lastly, the assortments offered to customers
of different types have different feasibility requirements. We use F7 to denote the set of feasible

assortments that can be offered to customers of type j.

We can extend all of our results to the case with heterogeneous customer types. We will focus
on the essentials in this section; the details are included in Appendix G. To capture the state of
the system, because each customer type has its own reward structure and usage duration, we need
to keep track of the number of units that are currently in use by each customer type. We use g; o
to denote the number of units of product ¢ on-hand. For £> 1, we use q{[ to denote the number of
units of product ¢ that have been used for exactly £ time periods by a customer of type j. Therefore,
we can describe the state of the system by using g = (%,07‘15,@ i €N, jeM, £>1). Using q as
the state variable, we can give a dynamic programming formulation of the problem that resembles

the one in (2). In this case, we use value function approximations of the form

jt(q) = Zéf Gio+ Z Z Zﬁfg qf,e,

iEN iEN jJEM (=1
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where éf captures the marginal value of a unit of product ¢ on-hand at time period ¢ and ﬁfj

captures the marginal value of a unit of product ¢ that has been in use for ¢ periods by a customer

of type j at time period t. We propose computing éf and ﬁfj recursively as follows.
e Initialization: Set éiTH =0 and ﬁile’j =0forallieN, jeM, {>1.
e Recursion: For t =T,T — 1,...,1, we compute éf and 19;5 by using {éf“ :1 € N} and
{ﬁff’j cieN, jeM, £>1} as follows. For each j € M, let A% € F/ be such that

A = argmax Y60 (S)[rtd +ml? — (1= pl) (01 =511 |.
ieN

SeFi
1

Once A" is computed for all j € M, for each i € N and j € M, let

0 = 07+ = D PG (AY) [ ol — (L= ply) (87 — 911 | (2
L jeM

~tgo g j o At+1 j o\ ~t+1,5 o
i — T +pi,€0i +(1_pi7g)yi7g+1 V€—1,27

)

The above discussion completes the specification of the approximate value function J'. The
computation of the parameters {0! :i € N, t € T} and {00 i €N, jEM, £>1, teT}is
similar to our approach in Section 3.1. Also, the intuition for the specification of the parameters
above is similar to the one discussed in Section 3.1. Using an argument similar to the one in
the previous two sections, we can show that the greedy policy with respect to the value function
approximations {jf :t €T} obtains at least 50% of the optimal total expected revenue. We can
also perform rollout on a static policy to obtain a policy that takes the inventory levels of the
products into consideration, while ensuring that we still obtain at least 50% of the optimal total

expected revenue. We describe both of these results in Appendix G.

The use of heterogeneous customer types also allows us to model the case where the usage
duration is revealed before offering an assortment. In our problem formulation, we observe the
type of a customer before offering an assortment. Also, each customer type can have its own usage
duration distribution. Thus, by associating different deterministic usage durations with different
customer types, noting that we observe the type of a customer before offering an assortment, we

can model the case where the usage duration is revealed before we offer an assortment.

5.2 Price Optimization with Discrete Prices

So far in the paper, we have assumed that the upfront and per-period rental fees for the products
are fixed and we decide on the assortment of products to make available to the customers. It is

not difficult to adopt our results to the case in which we decide the upfront and per-period rental
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fees for the products and the customers choose based on the prices we charge. In particular, we
create multiple copies of each product i, where the different copies correspond to charging different
prices for product i. We call each copy of a product a virtual product. Let H denote the set of
possible copies of each product. We write (i,h) € N x H to denote copy h of product i. Thus, the
pairs {(¢,h):i € N, h € H} are the set of all virtual products that we can offer to the customers.
Offering virtual product (i,h) means that we offer product i at the price level corresponding to
copy h of this product. In this case, the question becomes that of choosing an assortment of virtual
products to offer at each time period to maximize the total expected revenue. As we can offer a
product at no more than one price level, among all virtual copies of a particular product, we can
offer at most one virtual copy. Thus, the set of possible assortments of virtual products that we
can offer at each time period is given by F = {SCN xH:[SN({i} x H)[ <1 VieN}. Using 7},
to denote the upfront fee at time period ¢ when we charge the price level corresponding to copy h
for product i, and 7rf7 . to denote the per-period fee at time period ¢ when we charge the price level
corresponding to copy h of product ¢, we can follow the same outline in the previous two sections
to come up with a policy that obtains at least 50% of the optimal total expected revenue. The only

difference is that we treat the virtual products N’ x H as the products.

5.3 Solving the Assortment Optimization Problem Approximately

The maximization problem in (5) is a combinatorial optimization problem. Under many choice
models, we can solve this problem tractably, but it is not possible to solve this problem tractably
under every choice model. In this section, we discuss how we can adapt our approach in principle
to the case where we have a fully polynomial-time approximation scheme (FPTAS) for problem
(5). For any € > 0, the FPTAS returns a 1/(1 + €)-approximate solution to problem (5), and
the running time to do so is polynomial in n and 1/e. It turns out that we can leverage the
FPTAS to obtain a 1/(2(1 + €))-approximate policy, and the running time to obtain and execute
the approximate policy is polynomial in n, 1/e¢ and 7. In particular, assume that we have an
FPTAS such that for any € >0, the FPTAS finds an assortment At satisfying

(1+e) Z¢t (At [r il — (1= pio) (0151 = 011Y) ]>maXZ¢t [r bl (1— plo)(t+1_yt4{1)]

SeF
iEN

in running time that is polynomial in n and 1/e. In the next theorem, we show how to leverage

this FPTAS to find a 1/(2(1 + ¢€))-approximate policy. The proof is in Appendix H.

Theorem 5.1 (Policies Through Approximate Solutions) Assume that for any € > 0, we

can find a 1/(1+ €)-approxzimate solution to problem (5) in running time that is polynomial in n
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and 1/e. Then, we can construct value function approzimations {jt :t €T} such that the greedy
policy with respect to these value function approximations is a 1/(2(1 4+ €))-approximate policy and

the running time to obtain and execute the greedy policy is polynomial in n, 1/€ and T.

A quick inspection of the proof of Theorem 5.1 shows that if the running time to obtain a
1/(1+ €)-approximate solution to problem (5) is O(f(n, %)) for some function f and the running
time to compute the probabilities {¢:(S) : i € N} for a fixed subset S and time period ¢ is
O(g(n)) for some function g, then the running time to obtain a 1/(2(1 + €))-approximate policy is
O(T x f(n,*L) 4+ T x g(n) +T?n). Therefore, if we have an FPTAS for problem (5) so that f(n,?1)
is polynomial in 1, then f(n, ) is also a polynomial in n, 1/e and T, which corresponds to
the case discussed in the theorem above. On the other hand, if we have only a polynomial-time

approximation scheme for problem (5) so that f(n, 1) is polynomial in n but exponential in 1, then

f(n,%L) is polynomial in n but exponential in 1 and T

6. Computational Experiments

We provide computational experiments to test the performance of our policies. In Section 6.1, we
give an approach to obtain an upper bound on the optimal total expected revenue, which is useful
for assessing the optimality gaps of our policies. In Sections 6.2 and 6.3, we give our computational

results on retail assortment management and pricing parking spaces in the city of Seattle.

6.1 Upper Bound on the Optimal Total Expected Revenue

To compute an upper bound on the optimal total expected revenue, we formulate a linear
program, in which the choices of the customers and the transition dynamics take on their expected
values. We use the decision variables (2'(A): A€ F, te€T) and (q,:i1€N, £>0, teT),
where z'(A) is the frequency with which we offer assortment A at time period t and ¢f, is
the expected number of units of product ¢ that have been in use for exactly ¢ time periods
at time period f. To construct the constraints in our linear program, noting the dynamic
programming formulation in (2), if the state of the system at the beginning of time period t is
q'=(¢f,:i€N, £>0) and the customer arriving at this time period chooses product i, then
the state of the system at the beginning of the next time period is given by the random variable
Z(pio) X (") + (1 —Z(pio)) (X(q") — €io+ €ei1), where Z(p) is a Bernoulli random variable with
parameter p. If the customer does not choose any of the products, then the state of the system
is X (q'). Furthermore, if we offer the assortment A at time period ¢ with frequency z'(A),

then the probability that a customer chooses product i is }~, ,¢i(A)2"(A). In this case, if
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the state of the system at the beginning of time period ¢ is ¢' and we offer assortment A with

frequency z'(A), then the expected state of the system at the beginning of the next time period
is given by ZieN{ZAe}‘ @i (A) 2 (A) } E{Z(pio) X (q") + (1 = Z(pin)) (X(q") —€io+ein)} +

(1= v {ucrdi(A) 2" (A)}} E{X (q")}. Thus, using the fact that E{Z(p;0)} = pio, by
arranging the terms, the expected state at the beginning of the next time period is given
by E{X(q")} — Yicn {2 ucr 9i(A) 2 (A)} x (1 = pig)(eio — €in). By (1), E{X,(q")} =

qfﬁo + 30 Pis qiys, E{X;1(q")} =0 and E{Xivg(q )} = Qf,eq — Pis—1 qihl for £ > 2, which implies
that the expected next state E{X (g")} in the last expression is linear in the decision variables
q'=(q/,:i€N, £>0). To obtain an upper bound on the optimal total expected revenue in our

dynamic assortment problem, we use the linear program

x ) DY (T A) A+ D Zqzz (13)

teT ieEN AEF teT ieN =1

st. gt :E{X( } Z{Z¢t }( —pio) (€io—ein) YVteT\{T}
qlzzciei,o
ieN
Zzt(A):l vteT

AeF

Z'(A)>0 VAeF, teT, ¢,>0 VieN, (>0,teT.

From the discussion right before the above problem, the objective function and the constraints
are linear in (2'(A): A€ F, te€T) and (¢f,:i€N, £>0, t€T). Therefore, the problem above
is indeed a linear program. Since ), ¢i(A)2'(A) is the expected number of customers that
choose product 7 at time period ¢, and >_,°, qu is the expected number of units of product 7 that
are in use at time period ¢, the objective function computes the total expected revenue over the
selling horizon. The first constraint keeps track of the expected numbers of products with different
durations of use. The second constraint initializes the state of the system. The third constraint
ensures that we offer an assortment at each time period, but this assortment can be empty. By
the same argument in Section 2, because the products are all available on-hand at the beginning
of the selling horizon, we have ¢ , =0 for all />T +1 in a feasible solution to the linear program
above. Thus, we do not need to define the decision variable Qf,e for £ >T 4+ 1, which indicates that
the numbers of decision variables and constraints are finite. In the next proposition, we show that
the optimal objective value of the linear program above is an upper bound on the optimal total
expected revenue in our dynamic assortment problem. The proof follows from a standard argument

in the revenue management literature. We defer the proof to Appendix I.
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Proposition 6.1 Letting Z* be the optimal objective wvalue of problem (13), we have
Z*Z'Jl(ziej\/cieiﬁ)'

In problem (13), we have one decision variable z‘(A) for each assortment A € F. Therefore, the
number of decision variables increases exponentially with the number of products. Nevertheless,
we can solve problem (13) by using column generation. In particular, noting that ¢'** in
the first constraint in problem (13) corresponds to the vector ¢"*' = (¢f,:i€ N, £>0), we
use a=(aj} :ieN, £>0, teT\{T}) to denote the dual variables associated with the first

! in the second constraint in problem (13) corresponds to the

constraint. Similarly, noting that q
vector ¢' = (¢}, : i€ N, £>0), weused = (0;,:i €N, £>0) to denote the dual variables associated
with the second constraint. Also, we use v = (' :t € T) to denote the dual variables associated
with the third constraint. In this case, the constraint associated with the decision variable z'(A)
in the dual of problem (13) is >, ¢4 (A) (1= pio) (f ' — i) +79" > 3, O4(A) (1t +7t). If we
solve problem (13) with only a subset of the decision variables (z*(A4): A€ F, t € T) to obtain the
dual solution (é&,8,%), then we can find which of the decision variables (z2!(A): A€ F, t € T) has

the largest reduced cost by solving the problem

max { D GA) (rf ) =D d(A) (1= pio) (aL5" — @Zf)}

AeF
1EN iEN

= ¢ t t_(1_p. At+1 At
= TEQ§§[¢¢(A) [Ti +m — (1 Pz,O) (O‘z,o Q1 )}

for all t € 7. In the problem above, we follow the convention that ozzj;” 1— agf '=0forallieN. The
problem above is known as the column generation subproblem. The column generation subproblem
above has the same structure as the maximization problem in (3). As discussed at the end of
Section 2, this problem is tractable under a variety of choice models. Also, if the customers choose
according to the multinomial logit model and there are no constraints on the assortments that we
can offer, then we can build on the work of Gallego et al. (2015) to give an equivalent formulation
for problem (13), whose numbers of decision variables and constraints increase linearly with the
number of products. Therefore, we can directly solve the equivalent formulation without resorting

to column generation. We discuss the equivalent formulation in Appendix J.

We formulate problem (13) under the assumption that there is a single customer type and we
make assortment decisions. We can formulate analogues of problem (13) when we have multiple

customer types and we make pricing decisions, which reflect the extensions we provided.
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6.2 Dynamic Assortment Management

In our first set of computational experiments, the products are not reusable. We have access to
a set of products with limited inventories. Customers arrive over time. Based on the remaining
inventories of the products and the number of time periods left in the selling horizon, we offer
an assortment to each arriving customer. The customer either purchases a product within the
assortment or leaves without making a purchase. The purchased product is not returned, so the
usage durations are infinite. Our goal is to find a policy to decide which assortment of products to

offer to each customer so that we maximize the total expected revenue over the selling horizon.

Experimental Setup: In our test problems, we have six products indexed by N ={1,...,6}
and six customer types indexed by M ={1,...,6}. In Section 5.1, we discussed how to extend our
model to the case with multiple customer types. Recalling that wf’j is the per-period rental fee
that a customer of type j pays for product i at time period ¢, because the customers purchase the
products outright, we set " = (0. The one-time upfront fee rf’j that a customer of type j pays for
product ¢ at time period ¢ does not depend on the time period or the customer type. Thus, we use

r; to denote the upfront fee for product 7.

To determine the upfront fees, we generate r; from the uniform distribution over [10,25]. After
generating the upfront fees for all of the products, we reorder them so that ry > 1, > ... >r,. Thus,
the first product has the largest upfront fee and the last product has the smallest upfront fee. The
customers choose among the products according to the multinomial logit model. A customer of
type j associates the preference weight vf with product ¢ and the preference weight vg with the
no-purchase option. If we offer the assortment S, then a customer of type j arriving at time
period ¢ chooses product i € S with probability ¢;”(S)=v!/(v} + > ,csvs). Note that the choice
probabilities do not depend on the time period. To come up with the preference weights, we set
the consideration set of customer type j as C; = {1,...,j}. If i € C;, then we generate v’ from
the uniform distribution over [0.9,1.1], whereas if i ¢ C;, then we set v/ = 0. Thus, a customer
is interested in purchasing only the products in her consideration set. Among the products in
her consideration set, she is somewhat indifferent. We calibrate the preference weight of the
no-purchase option so that if we offer all products, then a customer leaves without a purchase
with probability 0.1. Therefore, we calibrate v} to satisfy v}/(v) + > ,cc;vi) = 0.1. Golrezaei
et al. (2014) use a similar multinomial logit model with consideration sets in their computational
experiments. Note that a customer of type n has the largest consideration set C, = {1,...,n},
whereas a customer of type 1 has the smallest consideration set C; = {1}. Therefore, customers of

type n are the least choosy, whereas customers of type 1 are the most choosy.
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In our test problems, the more choosy customers tend to arrive later in the selling horizon so
that we need to carefully protect inventory for them. In particular, we choose equally-spaced time
periods 7" < 7771 < ... < 7! over the selling horizon. The probability p* that a customer of type j
arrives at time period t is proportional to e ™" ‘t*T”, where k is a parameter that we vary. That is, we
have ph/ = e‘”‘t_Tj‘/ZkeM e~*1t=7"1 So, the arrival probability for a customer of type j peaks at
around time period 77. Because 7" < 777! < ... < 7! as kK — 0o, we obtain an arrival process where
customers of type n arrive first, followed by customers of type n —1 and so on. As k — 0, we have
ptd — 1/| M|, in which case, different customer types arrive with equal probability at each time
period. Thus, we control the arrival order for the customer types through the parameter . The
selling horizon has T'= 300 time periods. The initial inventory of product i is C; = 30/, where «

is another parameter that we vary to control the inventory scarcity.

Varying the parameters («, k) over {0.7,0.8,0.9,1.0} x {0,0.01,0.03}, we obtain 12 test problems

in our experimental setup.

Benchmarks: In our computational experiments, we compare the performance of the following

seven benchmark strategies.

Greedy Policy (GR). In this benchmark, we use the greedy policy with respect to the linear value

function approximations {j t:te T}, as discussed in Section 3.

Rollout Policy (RO). This benchmark is the policy obtained by applying rollout on the static

policy, as discussed in Section 4.

Bid-Prices (BP). We use the classical bid-price policy in this benchmark. We solve the linear
program in (13) to estimate the value of a unit of inventory for each product, called its bid-price. We
offer the revenue maximizing set of products at each time period, after adjusting the revenues from

the products by their bid-prices; see Section 5.2 in Zhang and Adelman (2009).

Offer Sets (0S). We solve the linear program in (13) to obtain an optimal solution
(Z"(A):AeF, teT)and (¢,:i€N, £>0, t€T). Since ) ,.»2'(A) =1, letting N* be the set
of products with on-hand inventory at time period ¢, we sample an assortment S with respect to
the probabilities (2/(A): A€ F) and offer the assortment S N N' at time period ¢. Offering the

assortment SN N ensures that we only offer products that are currently available.

Decomposition (DC). This benchmark is the classical dynamic programming decomposition
method. The idea is to decompose the dynamic programming formulation of the problem by the
products and to obtain value function approximations by solving a separate dynamic program for
each product; see Section 6.2 in Liu and van Ryzin (2008). To our knowledge, this benchmark is

one of the strongest heuristics in practice but it does not have a performance guarantee.
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Myopic Policy (MY). We can construct myopic policies by ignoring the future customer arrivals
altogether. In particular, if we are at time period ¢ with qﬁ,o units of product ¢ on-hand, then
the assortment that we offer to a customer of type j is given by an optimal solution to the
problem maxgser Y ]l{qﬁ,o > 1} #7(S) ;. We use this benchmark to demonstrate the importance

of considering the future customer arrivals when choosing an assortment to offer.

Inventory Balancing (IB). We implement the inventory balancing policy in Golrezaei et al.
(2014). Letting ¥ : [0,1] — [0, 1] be an increasing function with ¥(0) =0, if we are at time period ¢
with ¢{, units of product i on-hand, then the assortment that we offer to a customer of type j
is given by an optimal solution to maxger .. ¥(q;/Ci) ¢"7(S) r;. Following Golrezaei et al.

(2014), we use ¥(x) = -4 (1 — e *). This policy has a half-approximation guarantee.

e—1

To further improve the performance of the benchmarks, we divide the selling horizon into three
equal segments and recompute the policy parameters at the beginning of each segment. For GR, for
example, if the remaining capacities of the products at the beginning of a segment are (C}:i € N)
and the set of remaining time periods in the selling horizon is 7/ C T, then we apply the recursive
computation at the beginning of Section 3.1 after replacing C; with C] and 7 with 7, which yields
new value function approximations. We use the new value function approximations until we reach
the next segment, at which point, we recompute the policy parameters. We use a similar approach
to recompute the policy parameters for the other benchmarks, except for MY and IB. MY does

not have any policy parameters to compute. The function W in IB is fixed a priori.

Results: Table 1 shows our computational results. The first column in this table labels the test
problems by using («, k), where a and k are as discussed earlier in this section. The second column
shows the upper bound on the optimal total expected revenue provided by the optimal objective
value of problem (13). The third through ninth columns show the total expected revenues obtained
by GR, RO, BP, OS, DC, MY and IB, which are estimated by simulating each benchmark over
1,000 sample paths. The remaining columns show the percent gaps between the total expected
revenues obtained by RO and every other benchmark. The performance gaps except for those

indicated with a star are statistically significant at the 95% level.

Our computational results indicate that RO performs quite well. By our use of separable and
nonlinear value function approximations, RO noticeably improves the performance of GR, which
uses linear value function approximations. Compared to BP and OS, which are based on the linear
program in (13), RO provides average performance improvements of 4.7% and 1.5%, respectively.
RO and DC are competitive, but to our knowledge, DC does not have a theoretical performance

guarantee. Ignoring the future customer arrivals may result in inferior decisions, as indicated by
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Params. | Upp. Total Expected Revenue % Gain of RO over
(a, k) Bnd.| GR RO BP OS DC MY IB |[GR BP OS DC MY IB

0.7, 0)]4,364 | 4,229 4,292 4,188 4,234 4,292 3,746 4,046 | 1.5 24 1.4 0.0" 12.7 5.7
0.7,0.01) | 3,955 | 3,753 3,893 3,707 3,828 3,861 3,091 3,432 | 3.6 48 1.7 08 20.6 11.8
0.7,0.03) | 3,925 | 3,726 3,854 3,572 3,783 3,858 2,691 3,168 | 3.3 7.3 1.8 -0.1" 30.2 17.8
0.8, 0)]4,026 3,924 3,959 3,865 3,907 3,951 3,510 3,763 | 0.9 24 1.3 0.2" 11.3 5.0
0.8,0.01) | 3,937 | 3,790 3,873 3,668 3,820 3,882 3,051 3,454 | 2.1 53 1.4 -02 21.2 10.8

)
)
)
)
)
) | 3,934 3,801 3,882 3,526 3,810 3,901 3,151 3,318 | 2.1 9.2 19 -0.5 18.8 145
0.9, 0)[3112]3,022 3,041 2956 3,012 3,027 2,733 2904 | 0.6 2.8 1.0 05 10.I 45
1)
)
)
)
)

2,809 | 2,718 2,773 2,645 2,732 2,779 2,325 2487 | 2.0 46 1.5 -0.2 16.2 10.3
3,084 | 2,977 3,040 2,914 2,994 3,073 2,511 2,603 | 2.1 4.1 1.5 -1.1 174 144
3,027 [ 2,940 2,978 2,804 2,016 2,931 2,694 2,848 | 1.3 5.8 2.1 1.6 9.5 4.4
2,483 | 2,415 2,467 2,380 2,425 2463 2,070 2212| 2.1 3.2 1.7 02 16.1 10.3
2,971 | 2,801 2,946 2,829 2,904 2,967 2,382 2,513 | 1.9 4.0 1.4 -0.7 19.1 14.7
Average 20 47 15 0.0 169 10.4

Table 1 Computational results for dynamic assortment management. Note GR = greedy policy, RO = rollout

policy, BP = bid-prices, OS = offer sets, DC = decomposition, MY = myopic policy, and IB = inventory balancing.

the 16.9% average performance gap between RO and MY. The multiplicative revenue modifier
WU(q;o/C;) used by IB does not depend on the future customer arrivals either. As a result, the
average performance gap between RO and IB is 10.4%. When we compare RO with MY and 1B,
the performance gaps are particularly noticeable when x is large; the more choosy customers in

that case tend to arrive later, and we need to carefully protect inventory for these customers.

For GR, it takes 1.8 seconds on average to simulate its performance over one sample path.
This computation time includes the time to recompute the policy parameters three times over the
selling horizon and to solve problem (7) to find an assortment to offer at each time period. The
same average computation time per sample path for RO is 4.1 seconds. The average computation
times per sample path for BP, OS and DC are 147.3, 149.7 and 240.6 seconds, respectively. The
average computation times per sample path for MY and IB are 0.8 and 0.7 seconds, respectively.
Thus, beside its favorable revenues, RO has quite fast computation times. In Appendix K, we give
the details of all computation times. Golrezaei et al. (2014) discuss possible variants of IB. We
experimented with these variants but they did not provide qualitatively different results for our
test problems. In Appendix L, we give our computational results on the variants of IB. In this
section, the usage durations were infinite. In Appendix M, we test the performance of our policies

under geometrically distributed usage durations with different means.

6.3 Street Parking Pricing in the City of Seattle

In our second set of computational experiments, we focus on the problem of dynamically pricing
street parking spaces. We treat the parking spaces within close proximity to each other as one
product. After having been used by a driver for a certain duration of time, a parking space can be

used by another driver, so the parking spaces are reusable products. The dynamics of the problem
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are as follows. When a driver arrives into the system with an intention to park in a certain region,
as a function of the remaining parking space inventory in the nearby regions, we decide on the
prices to charge for the parking spaces in different regions. The driver is informed about the prices
in real time, possibly through a smartphone application. The driver either parks at a particular
parking space or decides to leave the system. If the driver parks, then the parking space generates
revenue for a random usage duration. Our goal is to find a policy for deciding on the parking spaces

to offer and their prices so that the total expected revenue is maximized.

Data: For brevity of discussion, we describe the essential elements of the data that we use, the
approach that we use to augment the data for compliance with our modeling assumptions, and the
methodology that we use to estimate the model parameters. We defer the details to Appendix N. We
build on the data provided by the Open Data Program in the city of Seattle; see Seattle Open Data
(2017). Seattle uses parking rates that are dependent on the location and the time of day. Through
the Open Data Program, we have transaction data on the use of the street parking spaces during
20 weekdays of June 2017. Each transaction record shows a parking event, documenting the start
time, duration, and location of the parking event, along with the rate paid. We focus on 40 blocks
in the downtown area between the hours of 11AM and 4PM. We partition this area into 11 block
clusters, each including approximately four blocks arranged in a two-by-two configuration. We refer

to each two-by-two block cluster as a locale.

The street parking spaces in each locale correspond to a different product in our model. Thus,
we have n =11 products. To comply with our modeling assumptions, we augment the data from
the Open Data Program as follows. We assume that each driver arrives into the system with the
intention to park at a particular locale. The intended locale of a driver determines the type of the
driver. In Section 5.1, we discussed the extension to multiple customer types. Because the intended
locale of a driver determines her type, there are m = 11 customer types. In the data, we have access
to the locale at which a driver actually parked, but we do not have access to the intended locale of
a driver. For each driver, we randomly sample one of the five locales that are closest to the locale
where she actually parked. We set the intended locale of the driver as this sampled locale. Once
we augment the data in this way, each transaction record gives the start time, duration, intended
locale, actual parked locale, and per-hour rate for each parking event. (The intended locale of
a driver corresponds to the type of the customer, and the locale where a driver actually parks
corresponds to the product the customer has chosen. If we had set the intended locale of a driver
as the locale where she actually parked, then customers of a certain type would always be choosing
the same product.) Because we augment the data from the Open Data Program, we caution the

reader against comparing our results with the real operations in the city of Seattle.
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The set of feasible locales we can offer to a driver are the five locales that are closest to her
intended one. As a function of the remaining parking space inventories in these locales, we decide
on the prices to charge for these locales. In Section 5.2, we discussed the extension of our model
to the case in which we make pricing decisions. The driver either decides to park in one of these
locales or leaves the system. If the driver parks, then we generate a certain revenue depending
on the parking duration and the charged price. Although we have discussed the extensions of our
model to multiple customer types and to pricing decisions separately, it is not difficult to combine
these extensions and to come up with a variant of our model that makes pricing decisions under
multiple customer types. It is also not difficult to extend the linear program in (13) to the case in

which we make pricing decisions under multiple customer types.

Experimental Setup: As discussed in Section 5.2, when making pricing decisions, we create
multiple copies of each product, whereby the different copies correspond to charging different prices
for the product. As N corresponds to the set of possible parking locales, using H to denote the
set of possible prices that we can charge for a parking space, offering product copy (i,h) € N x H
represents charging price level h for locale i. We use ;) to denote the per-period fee when we
charge the price level h for locale i. We assume that the choices of the drivers are governed by the
multinomial logit model. So, if we offer the assortment S C N x H of locale and price combinations
to a driver arriving at time period ¢ with intended locale j, then she chooses to park in locale ¢

with probability ¢!/ (S) =

BT

as long as (i, h) € S. The parameter 3, which captures
43, 9)es € g
the price sensitivity of the drive(i]"s, is assumed to be constant over all drivers.

Throughout the paper so far, we have assumed that there is one customer arrival at each time
period. This assumption is not appropriate here because the arrival rate of the drivers vary during
the day, but extending our model to the case in which there is at most one customer arrival at each
time period is straightforward. We scale the time so that each time period in our model corresponds
to a time interval of 30 seconds. A time interval of 30 seconds is short enough to ensure that there
is at most one driver arrival in the region of our focus. We use p*’ to denote the probability that a
driver with intended locale j arrives at time period ¢t. We estimate the parameters 3, (a/ : j € M)

and (p* :te€ T, j € M) by using maximum likelihood.

We model the parking duration in locale i as 1+ NegBin(s;,n;), where NegBin(s;,7;) is a negative
binomial random variable with parameters s; € Z, , and 7, € [0, 1]. As discussed in Section 4.3, if s;
is small, then we can perform rollout on the static policy in a tractable fashion. For each locale i,

a negative binomial distribution with the parameter s, =2 provides a sensible fit.

Ultimately, in our experimental setup, we vary the length of the selling horizon over two values,

11AM-2PM and 11AM-4PM. To obtain problems with different congestion levels, we scale the
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Params. Upp. | Total Expected Revenue | % Gain of RO over
(T,0,C) Bnd.| RO GR OS FP GR (O FP

(11IAM-2PM, 2.5, 79) | 344 | 329 320 325 321 2.7 1.2 2.4
(11AM-2PM, 3.0, 79) | 410 | 385 375 379 375 2.6 1.6 2.6
(11AM-2PM, 3.5, 79) | 474 | 439 429 430 423 2.3 2.1 3.6
(11AM-2PM, 2.5, 55) | 338 | 306 301 300 296 1.6 2.0 3.3
(11AM-2PM, 3.0, 55) | 397 | 353 348 345 336 1.4 2.3 4.8
(11AM-2PM, 3.5, 55) | 452 | 396 390 385 370 1.5 2.8 6.6
(11AM-4PM, 2.5, 79) | 631 | 591 575 582 575 2.7 1.5 2.7
( )
( )
( )
( )
( )

11AM-4PM, 3.0, 79) | 749 | 689 673 674 667 | 2.3 2.2 3.2
11AM-4PM, 3.5, 79) | 860 | 781 766 761 747 | 1.9 2.6 4.4
11AM-4PM, 2.5, 55) | 613 | 543 534 528 520 1.7 2.8 4.2
11AM-4PM, 3.0, 55 717 | 624 614 609 587 1.6 2.4 5.9
11AM-4PM, 3.5, 55) | 812 | 696 686 679 644 1.4 2.4 7.5

Average 2.0 2.1 4.3

Table 2 Computational results for street parking pricing in the city of Seattle.

arrival rates with three different factors, 2.5, 3.0 and 3.5. Also, we vary the number of parking
spaces over two values, 55 and 79. This experimental setup yields 12 parameter combinations for
our test problems. From the rates used by the city of Seattle, the possible rates that we can charge

are within the menu of $2, $4 and $6 per hour.

Benchmarks: We use the benchmarks greedy policy (GR), rollout policy (RO) and offer sets
(OS), which are discussed in Section 6.2. We make the necessary modifications in these benchmarks
to ensure that we can handle multiple customer types and we choose the prices of the offered
products. The performances of bid-prices (BP) and myopic policy (MY) were not competitive.
Decomposition (DC) and inventory balancing (IB) do not extend to reusable products. Thus, we

drop these four benchmarks. We also add the following benchmark.

Fized Price (FP). Here, we charge one fixed price for all locales at all time periods. We test
the performance of the rates $2, $4 and $6 per hour, which is the price menu used by the other
benchmarks. We select the best constant price. This benchmark is not sophisticated but it serves

as a baseline. In all test problems, the rate $4 per hour provided the best performance.

Results: Table 2 shows our computational results. The first column in this table labels the
test problems by using (7,0,C), where 7 € {11AM-2PM, 11AM-4PM} is the selling horizon,
o €{2.5,3.0,3.5} is the multiplier for the arrival rates, and C € {55,79} is the total number of
parking spaces. The organization of the rest of the table closely mirrors that of Table 1. All of the
performance gaps in Table 2 are statistically significant. To get a feel for the congestion in our test
problems, noting that E{Duration;} is the expected parking duration in locale i, we can estimate
the number of times that we can turn over a parking space in locale i as T /E{Duration;}. The
total expected demand for parking is >, >, \p"/. Thus, with C; parking spaces available

in locale ¢, the ratio between the total expected demand and the total available capacity is
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t,j
SieT Xjemp?
> ien Ci T/E{Duration; } *

with 0 = 2.5 and C' =79, this ratio is 0.72, whereas for the test problems having the largest demand

For the test problems having the smallest demand and the largest capacity

and the smallest capacity with ¢ =3.5 and C =55, this ratio is 1.61.

Our results indicate that RO is consistently the strongest benchmark, providing average
performance improvements of 2.0%, 2.1% and 4.3% over GR, OS and FP, respectively. Comparing
RO with OS and FP, the performance gaps tend to be larger when ¢ is larger and C' is smaller so
that the system is more congested and the expected demand exceeds the available capacity by larger
margins. For our test problems, depending on the length of the selling horizon, the time to compute
the value functions {J': ¢ € T} for GR ranges from 362 to 672 seconds. The time to compute the
value functions {V!':i € N, t € T} for RO ranges from 1,550 to 17,201 seconds. For OS, the time to
solve the linear program in (13) ranges from 894 to 6,535 seconds. A few preliminary runs indicated
that the performance did not noticeably improve for any of the benchmarks when we recomputed
the policy parameters. Because the run times were relatively long, we did not recompute the policy
parameters. Overall, the computation times for RO are significantly longer, but using nonlinear

value function approximations, RO can provide significant revenue improvements.

7. Conclusions

We studied dynamic assortment problems with reusable products, and provided policies with
half-approximate performance guarantees. A natural question that arises is what features of
the rewards and transition dynamics make our half-approximation guarantees go through. In
Appendix O, we give conditions on the rewards and transition dynamics that allow us to obtain
our half-approximation guarantees. Our conditions on the transition dynamics, in particular, only
require the expected transition dynamics to be linear in the state, along with a certain decoupling
property between the effects of the actions and the current state on the transition dynamics.
Considering future research, our rollout approach decomposes the problem by the products, which
is reminiscent of dynamic programming decomposition techniques in revenue management. To
our knowledge, existing decomposition techniques do not provide any performance guarantees. An
exciting research area is to construct decomposition techniques with performance guarantees for
other revenue management problems. We were able to give an improved performance guarantee
for a tailored variant of our rollout policy under infinite usage durations. Our efforts to extend
the tailored variant to arbitrary usage duration distributions were not yet fruitful. It would be
interesting to give stronger performance guarantees for our rollout approach under arbitrary usage

duration distributions.
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Online Appendix

Dynamic Assortment Optimization for Reusable
Products with Random Usage Duration

Appendix A: Non-Separability of the Optimal Value Functions

Consider a problem instance with two products and one time period in the selling horizon, so that
N ={1,2} and T ={1}. The one-time upfront fees are r; =1 for all i € N, whereas the per-period
rental fees are w7 =0 for all i € N'. The usage times for both products are deterministic and equal
to one time period. If we offer both products, then the choice probabilities are ¢;({1,2}) =1/3
for all ¢ € N. If we offer only product 1, then the choice probability is ¢;({1}) = 1/2, whereas if
we offer only product 2, then the choice probability is ¢3({2}) = 1/2. It is simple to check that
these choice probabilities satisfy Assumption 2.1. It is feasible to offer all assortments, so the set
of feasible assortments is F = {&,{1},{2},{1,2}}. Since both products have the same upfront
fee and rent, it is simple to check that the optimal policy offers all products for which we have
on-hand inventory. Thus, using J'(a,b) to denote the optimal total expected revenue when we
have a units of on-hand inventory for product 1 and b units of on-hand inventory for product
2, we have J'(0,0) =0, J'(1,0) = ¢1({1}) x r{ = 3, J'(0,1) = ¢3({2}) x r3 = % and J'(1,1) =
$1({1,2}) x r{ + ¢3({1,2}) x rj = 2. Thus, we get J'(1,0) — J'(0,0) =1 # ¢ = J'(1,1) — J'(0,1),

indicating that the optimal value function is not separable by the products.

Appendix B: Expected Contribution of Ildeal Assortment

For notational brevity, we let Al = 7!+ 7t — (1 —p;o) (715" — #41"). In the next lemma, letting A’

be as in (5), we show that »°._, PH(AY) Al > Y ien Yai o1y 95(S) Aj for all S € F.
Lemma B.1 For all S € F, we have )_,_,, PH(AY) Al > > ien Ligio =13 95(S) AL

Proof: Note that we have Mgarsoy A 2 Tyarsoy Bjgo>13 A7 = gy, o>13 Af, where the first
inequality is by the fact that lga:sqy Af > 0 and the second inequality is by the fact that
Tiar>op g o> 1y A} >0, but T, >1y Af can be positive or negative. We will shortly establish the
claim that )., Pr(AY) Al > > ien 9i(S) Liar >0y Af for all S € F. In this case, noting the chain
of inequalities at the beginning of the proof, we obtain } . PH(AY) Al > 2ien 95(8) Lar s 0y Af >
Y ien P5(9) Tyars oy Uigr o1y A = D ien 5 () Ny, o> 13 A for all S € F, which is the desired
result. We proceed to establish the claim that ) ., PH(AY) Al > D oien Gi(S) Tars oy A} for
all S € F. Assume on the contrary that there exists S € F such that Yien PHAN) Al <
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Y oien D ) Iiat >0y Af. We define the assortment 5™ as 5% = {i € S: Al >0}. Therefore, we have
S* C S C N, in which case, since S € F, we have S* € F by Assumption 2.1. For all i € S*,
we have A} >0 by the definition of S*, so }7, s ¢7(5™) A = 32, v 97(5™) Lyar >0y Al Also, for
all ie S\ S*, we have ¢/(S*) =0 and A! <0, in which case, we have Dicsng Pi(ST) AT =0=
D ici\s oH(S) Iiat >0y Af. Lastly, for all ¢ e N\ S, we have ¢!(5*) =0=¢!(S). Therefore, we have
Doieans PiST) AL =0=3", 50 (S )H{At >0y Af. Noting Assumption 2.1, because S* C S, we have
$1(S*) > ¢!(S) for all i € S*. In this case, we obtain

D GHSHAL = D GUS)AL + D GUSHAL + Y 45T Al

iEN i€S* ieS\S* ieN\S
= Z d’t 1{At>o}A + Z ¢t ]l{A;?zo} AE + Z (j):(S') 1{A§zo} AE
s i€\ iEA\S
> Z¢> ]l{Af>O}A + Z i (S ]1{At>o}A + Z ¢i(S ]I{Af>0}A
1€S* ieS\S* i€EN\S
= Z ¢ ]I{Af >0} A
ieN
Thus, noting the assumption ).\ ¢;(S )H{At>O}A >, N¢z( AL we get Yoo\ 0i(SF) AL >
doien $:(A?) A, which contradicts the fact that A’ is an optimal solution to problem (5). [ |

Appendix C: Performance of Myopic Policies

Consider a problem instance with one product and two time periods in the selling horizon, so that
N ={1} and T = {1, 2}. The capacity of the product is C; = 1. For some € > 0, the one-time upfront
fees for the product are r{ =€ and ri = 1. The per-period rental fees are w! =0 for all ¢ € T. The
usage duration for the product is infinite, so once the product is rented, it is never returned. For all
t € T, we have the choice probability ¢! ({1}) = ——. The set of feasible assortments is F = {&, {1}}.

Because the per-period rental fees are zero, at each time period ¢, the myopic policy chooses an
assortment to offer by solving the problem maxger >, .\ ¢5(S) ;. Thus, the myopic policy always
offers the product, as long as there is on-hand inventory. Noting that we have only one unit of

inventory for the product, the total expected revenue obtained by the myopic policy is

1 1 1, 1 1 1 e(2+¢)
_— 1— — 1— —
1+eT1+< 1+e>1+er1 1+e€+< 1+e> T+e (142

where we use the fact that obtaining any revenue at the second time period requires a customer

not choosing the product at the first time period and choosing the product at the second time
period. On the other hand, considering a policy that never offers the product at the first time
period and always offers the product at the second time period, the expected revenue obtained by

L Thus, the ratio between the total expected revenues obtained by the

this policy is T

1+ Tl
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/(+e) _ _14e
e(2+e€)/(1+€)2 T e(2+e

1+€
€(2+e)

optimal policy and the myopic policy is at least 5 Since lim,_, = oo, if
we choose ¢ arbitrarily small, then the myopic policy performs arbitrarily poorly when compared
with the optimal policy. In contrast, our greedy policy with respect to the linear value function
approximations is always half-approximate. Thus, if € is arbitrarily small, then the myopic policy
also performs arbitrarily poorly when compared with our greedy policy with respect to the linear

value function approximations.

Appendix D: Performance of the Static Policy

In this section, we give a proof of Lemma 4.1, which shows that the total expected revenue obtained

by the static policy is at least 50% of the optimal total expected revenue.

Proof of Lemma 4.1: Under the static policy, we offer the assortment Al at time period t
regardless of the product availabilities, where At is given by an optimal solution to problem (5).
If a customer chooses a product that does not have on-hand inventory, then the customer leaves
without using the product. Let V*(q) denote the total expected revenue under this static policy
over the time periods ¢,...,7T, given that we are in state q at time period ¢. Similar to the dynamic

program in (3), we can compute {V*':t € T} by using the recursion

Vi =Y w S g + E{V(X(@))

iEN  0=1

D L1 $H(A) ( = (1= o) B{ VI (X (0)) = VI (X (a) — €50+ €41) }) ,

iEN

with the boundary condition that V7' = 0. Consider the function J(q) = Doien Doreo Qi Uiy,
where the parameters {ﬁf ;1 €N, £>0, t €T} are obtained by using the recursion at the beginning
of Section 3.1. We will use induction over the time periods to show that V*(g) > J*(q) for all g € Q
and ¢ € T. Because 0/, =0 for alli e N, £=0,1,... and V7*! =0, the result holds at time period
T +1. Assuming that V+!(q) > J**'(q) for all g € Q, we will show that V*(g) > J'(q) for all g € Q.

In the proof of Theorem 3.2, we show the equalities

E{th(X(CI))} = Z {Qi,o 19531 + Z%‘,e [Pz‘,z 17551 + (1= pi) ﬁfﬁﬂ] } :
=1

iEN
E{jtJrl(X(q)) o jt+1 (X(q) —€; o+ 61-71) } = 19%1 _ ﬁfjl .

Furthermore, by the claim that we establish in the proof of Lemma 3.1, recall that we have the

inequality ¢f(A") [rt + 7t — (1 — pio) (945" —£1")] > 0 for all i € N In this case, by the inductive



e-companion to Dynamic Assortment Optimization for Reusable Products ech

hypothesis that V+1(q) > J'*!(q) for all g € Q and the above recursion defining V*(q), we obtain

the chain of inequalities

Vig) = Zﬂfi%,e + E{jt+1(X(Q))}

iEN =1
+ D Yz SAY (= (L= pio) E{ I (X (9) = I (X(9) —ero+eun) | )
iEN
N z{qzoﬁ:ngw oo+ (110 lm}
iEN (=1 iEN
+ Z]l{qzo>1}¢ (At) [T +7T —(1—/)10)( Hl_VtJlrl)]
iEN
2 Zﬂ-fzqt}é + Z{qioﬁfgl—i_ZQzﬂ pzéVtJrl (1_/)1@) fjj_l]}
iEN (=1 iEN
qi,
Z cht (A" [rt 7t = (1= pio) (F15 = D1)]
’LGN

where the last inequality uses the fact that ¢f(A?) [t + —(1—p20)(“+1—19f{1)] > 0 and
L{g, 021} = €i0/C; for all g € Q. By the definition of 7, in (6), we have i, — ;3" = & 2 pL(AY) x
[rt+mt— (1= pio) (@75 —0{1")]. In this case, the expression on the right side of the chain of

inequalities above can equivalently be written as

Z Zqzz + Z{onl/tﬂ-i-que szVILO + (L= pie) ¥ ze+1 }‘FZ%O )

iEN (=1 iEN iEN

= Z{Qz()yzo +z(b[ 7T +Pszt+1+(1_,02£ 2[+1 }_‘_z(b() t+1)
1EN (=1 iEN

- z{qzou;;wquw%zqm ) = S e = Jia),
1EN iEN 1EN £=0

where the second equality uses the fact that 0f, = 7! + p; 0/ 0' + (1= pie) U741, by (6). The two
chains of equalities and inequalities above complete our induction argument, so that V*(q) > J ‘(q)
for all g € Q and t € T. By Lemma 3.3, we also have J' (3, Ci€i0) < 2J (3, Ci €:0), where

J' (X ,en Cieip) is the optimal total expected revenue. Thus, we obtain
V! <Z C; ei,O) > J! <Z C; 61‘,0) > = (ZC €; 0) .
ieN ieN ieN

Appendix E: Decomposability of the Value Functions of the Static Policy

In this section, we give a proof of Lemma 4.2, which shows that the value functions of the static

policy are separable by products.
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Proof of Lemma 4.2: We will prove the result by using induction over the time periods. The
result holds at time period T'+ 1 because VI =0=3",_,.V;"*" by definition. Assuming that the
result holds at time period ¢+ 1, we proceed to show that the result holds at time period ¢. Letting
e, be the standard unit vector with one in the /-th coordinate, by the inductive hypothesis, we
have E{ V(X (g)) — V**' (X (q) — e+ €11) | = E{ V"' (Xi(g) — VI (Xila:) — e +e:) b In

this case, by the recursion that we use to compute {V*:¢ € T} in Section 4.1, we obtain
Vi(q) = 277: Z Qi + ZE{‘/zH_l(Xz(qz))}
N L=1 ieN

2 Mg 900 (1t = (L= ) B{V (X))~ V¥ (Xifa) ~ e } )
ieN

By (9), the expression on the right side above is equal to » . .,V (q:). Therefore, the result holds

at time period t as well. |

Appendix F: A Tailored Rollout Policy under Infinite Usage Durations

Under infinite usage durations, we give a tailored variant of our rollout policy that is guaranteed

. l _ R . .
to obtain at least max{2,1 . m} fraction of the optimal total expected revenue, where

t
%} The tailored variant of our rollout policy is

Chin = min;en C; and R = max;cy { T

based on performing rollout on a static policy that is obtained from a linear programming
approximation. Since the usage durations are infinite, the products are purchased outright. Thus,

we set mf =0 for all i € N and ¢t € T in this section, so there is no per-period rental fee.

F.1 Problem Formulation and Upper Bound on the Optimal Total Expected Revenue

We give a dynamic programming formulation for our dynamic assortment problem under
infinite usage durations. Following this dynamic program, we formulate a linear programming
approximation that we use to obtain an upper bound on the optimal total expected revenue. The
linear programming approximation will be useful to derive a static policy. Our notation closely
follows the one in Section 2. Indeed, as the case with infinite usage durations is a special case of
the model in Section 2, we do not need to define any additional notation. We use ¢; o to denote the
remaining units of product ¢ on-hand at the beginning of a generic time period. Since the products
are not returned and there is no per-period rental fee, we do not need to keep track of the products
that are currently in use. In this case, we can use the vector g = (¢; 0 : ¢ € N) to capture the state of
the remaining on-hand product inventories. The state space is @ ={q:¢;0 €{0,1,...,C;} Vie N'}.
Let J'(q) denote the maximum total expected revenue over the time periods ¢,...,T, given that

the system is in state g at the beginning of time period ¢. Thus, using e; € R? to denote the
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standard unit vector with a one in the i-th coordinate, we can compute the optimal value functions

{J':t €T} by solving the dynamic program

T(g) = max {Z T | R AU RIS ) B (B BT ) J“l(q)}

SeF
iEN iEN

SeF

= max {Z Ly >0 i (S) (Tf - {Jt+1(Q) —J" g~ ei)}) } +J%a), (14)
ieN

with the boundary condition that J7*! = 0. In the dynamic program above, if we offer the
assortment S, then a customer arriving at time period ¢ chooses product ¢ with probability ¢%(S). If
there is on-hand inventory for product i, then we make a revenue of r! and the state of the system

at the next time period is q — e;.

Since all units are available on-hand at the beginning of the selling horizon, the initial state is
> icn Ci €, so the optimal total expected revenue is given by J*'(}°, - C; e;). Defining the decision
variable z*(A) as the frequency with which we offer assortment A at time period ¢, we consider the

linear programming approximation

max 30303 rgh(A) 2 (4) (15)

teT ieN AcF
st > Y @A) (A)SC VieN
teT AeF
Z Z'(A)=1 VteT
AeF

HAA) >0  VAEF, teT.

Problem (15) is a linear programming approximation to our dynamic assortment problem that
is formulated under the assumption that the choices of the customers take on their expected
values. The objective function in problem (15) computes the total expected revenue over the selling
horizon. Noting that the products are not returned, the first constraint ensures that the total
expected number of units sold for product ¢ does not exceed the initial inventory. The second
constraint ensures that we offer an assortment at each time period. It is well-known that the
optimal objective value of problem (15) is an upper bound on the optimal total expected revenue;
see Proposition 1 in 7. We will not only use the fact that the optimal objective value of problem
(15) is an upper bound on the optimal total expected revenue, but also build on the solution to

problem (15) to construct a static policy, as discussed next.

F.2 Static Policy

We construct a static policy by building on an optimal solution to problem (15). We show that

we can efficiently compute the value functions of this static policy. Ultimately, the tailored variant
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of our rollout policy corresponds to the greedy policy with respect to the value functions of the
static policy. Let (£2/(A): A€ F, t € T) be an optimal solution to problem (15). In our static policy,
we offer assortment A at time period ¢ with probability 2/(A). The assortment offer decisions at
different time periods are independent of each other. If we offer some assortment A at time period
t and the customer arriving at this time period chooses a product for which we do not have any
on-hand units, then the customer leaves. Also, if we offer some assortment A at time period t
and the customer arriving at this time period chooses a product for which we have on-hand units,
then we can still reject the customer and leave her empty handed. The fact that we can reject a
customer is not a concern because we only use the value functions of the static policy to come up
with a rollout policy that actually never rejects a customer. Let V*(q) denote the total expected
revenue under the static policy over the time periods t,...,7T, given that the system is in state g

at the beginning of time period t. We can compute {V':¢ € T} by using the recursion

Vi) = St (S ) 200)) max v a e, V)
# (1 E ten (S o) ) v

ieEN AeF
i
= Tt o) |- {vr@-vra-e}| svr@. o)
ieN AeF
with the boundary condition that VI*! = 0. In the recursion above, a customer chooses product 4
at time period ¢ with probability »_ , .~ ¢{(A) 2*(A). If we have on-hand units for product i, then we
decide whether to serve or reject the customer. If we serve the customer, then we make a revenue
of 7! and the state of the products at the next time period is g — e;. In the next lemma, we show

that V*(q) decomposes by products.

Lemma F.1 For each t € T and q € Q, we have V'(q) = >, Vi (i), where for each i € N,
{V!:teT} is computed by using the recursion

V! (@:0) = Lo ( > oA zf(A)) max {rf + V/H (gi0 = 1), Vi (gi0) |

der N (1 e ( 3 6l(4) 2t(A)> ) Vi (g 0)

AeF
.
o (X o)) [t = () -V -0} o) (D
AeF

with the boundary condition that V;"' ™' = 0.

The proof of the lemma above is similar to that of Lemma 4.2 and it is omitted. Note that the
state variable in the recursion in (17) is a scalar. Therefore, we can compute {V/: ¢t € T} efficiently.

In this case, by Lemma F.1, we can compute {V*:¢ € T} efficiently as well.
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F.3 Rollout Policy and Performance Guarantee

The tailored variant of our rollout policy corresponds to the greedy policy with respect to
the value functions {V*':t € T}. In other words, the tailored variant of our rollout policy
corresponds to using V*(q) = >, Vi'(qi,0) as a separable approximation to the optimal value
function J*(q). Let S¥,..(q) be the assortment offered by the tailored variant of our rollout policy

given that we are in state q at time period ¢. Replacing the optimal value function J***(q) on the

right side of (14) with V**'(q), S.,..:(q) is given by

rtollout(Q) = arg glg;:{ {Z ]l{th',o >1} QZ)E(S) <Tf + Vt+1(q - el)) + (1 - Z ]I{Qi,O >1} ¢§(S)) Vt+1(q)}

1N ieEN
— 1 1
= argmay {ZN s 8) (= (V@) - Vg e} }
= argmax {ZN Lig 021 94(S) ( — Vi (gi0) = Vi (oo - 1>}) } (18)

where the second equality follows from Lemma F.1. If the state of the system at time period ¢

is g, then the tailored variant of our rollout policy offers the assortment S}, ..(q). Note that if a

t

L out(@), then the tailored variant does not reject

customer chooses a product in the assortment S
the customer. Let U'(q) be the total expected revenue obtained by the tailored variant of our
rollout policy over the time periods ¢,...,T, given that we are in state q at time period t. We can

compute {U": ¢ € T} by solving the recursion

Ua) = D g >1) 4 (Storon(9)) ( +U" (g - )) (1= Y Loz 1) 9(Stoion(@)) ) U ()

ieEN ieEN
= 3 U021 B (Styion(@) ( ~{ui (@ -Uti(a- e»}) +U(q), (19)
ieN

with the boundary condition that U?*! = 0. In the recursion above, if a customer chooses a product
for which we have on-hand inventory, then we must serve this customer. Therefore, the tailored

variant of our rollout policy never rejects a customer.

Since the initial stateis ) ., C; e;, the total expected revenue obtained by the tailored variant of
our rollout policy is U' (3", cn Ciei). The next theorem is our main result, which gives a performance

guarantee for the tailored variant.

max;e7 7]

Theorem F.2 Letting C\i, = mingep C; and R= maXiGN{ 1 }, the total expected revenue

mingcy 7y
. . . . . . 1 R .
of our rollout policy tailored to infinite usage durations is at least max{ 5,1 — . m} fraction of

the optimal total expected revenue.

The proof of the theorem above uses a sequence of lemmas. We devote the next section to the

proof of this theorem.
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F.4 Proof of Theorem F.2

Recalling that {V*:t € T} are the value functions of the static policy computed through (16), the
next lemma compares the total expected revenue of the static policy with the optimal objective
value of problem (15). Throughout this section, we use (2(A): A€ F, t € T) to denote an optimal

solution to problem (15) with the corresponding optimal objective value Z*.

Lemma F.3 We have V' (3, \ Cie;) > Z*/2.

Proof: First, we give a lower bound on V*(q). Consider the scalars {v!:t € T} that are computed
by using the recursion

= (T o) -t 1ot (20)

AeF

with the boundary condition that v} ™' = 0. We claim that V;'(g;0) > v!q; 0. We will prove the
claim by using induction over the time periods. The result holds at time period T 4 1 because
VIt =0 =v "', Assuming that the result holds at time period 4 1, we proceed to show that the

result holds at time period t as well. We have

Vigio) = L, 021 ( Z ¢i(4) ﬁt(A)> [Tf - {‘/it+1(Qi,0) — Vi (gi0 — 1)}} + + Vi (gi0)

AeF

]l{qi,ozl} ( Z ¢§(A) gt(A)> [rf - Uf+1]+ + v t+1 dio

AeF

> B0 (S ) -t ol g

P \acF

Y

"
= Y;4i,0-

Since ), 2(A) =1 by the second constraint in problem (15), we have 3 ,_» ¢i(A) 2'(A) <1, in
which case, the first inequality above follows from the inductive hypothesis. The second inequality
holds because Ny, ;>13 > gio/Ci. The last equality is by (20). The chain of inequalities above
establishes the claim. So, we have V*(q) =", Vi'(Gi.0) = 2 icpn Vi Gio-

Second, we give a lower bound on ) . \ v/ C;. By (20), we have v/ C; =", - ¢L(A)2'(A) x

[rt — oI * 40t O;. Adding this equality over all t € T, since v ' =0, we get

vl Co= Y D A (A [ =]

teT AeF
2 DD HMFMI -0 2 3D WA= D i(4)2
teT AeF teT AeF teT AeF

Noting that [a]t > 0 for all a € R, the second inequality above holds because we have
vi>v2>...>v] T by (20). Adding the chain of inequalities above over all i € N, it follows that
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S O 2 Ty Cion Saer rt04(A) 2(4) — Tionv! Srey Saer 64(4) 3(4). By the second
constraint in problem (15), we have ), >, - ¢:(A) 2/(A) < C;. In this case, the last inequality
implies that > vf Ci >3, > v doacrTi dH(A) 2 (A) — > .. vi Ci. Therefore, noting that
the optimal objective value of problem (15) is Z* =3, > ..\ D 4cr7i ¢i(A) 2/(A), it follows that
23 .0 Ci > Z*, showing that Z*/2 is a lower bound on ), v/ C;. By the first part of the
proof, we have V(3 .\ Cie;) = > ..\ ViH(Ci) > 3, o vi Ci, whereas by the second part of the
proof, we have Y. _\.v! C; > Z*/2. So, the desired result follows. [ |

Under the static policy, we offer assortment A at time period ¢ with probability 2*(A). On the
other hand, if we offer assortment A at time period ¢, then a customer chooses product i with
probability ¢!(A). Therefore, under the static policy, a customer chooses product ¢ with probability
> acr Gi(A) £ (A). For notational brevity, we let

al=> dl(A)2(A),

AeF

in which case, using Y’ to denote a Bernoulli random variable with parameter &!, the random
variable Y}’ corresponds to the demand for product i at time period ¢ under the static policy. Also,
we define W} = Zit Y with W' =0, which corresponds to the total demand for product i

K2

under the static policy over the time periods ¢,...,T.

Next, we establish two preliminary bounds. In the next lemma, we give a lower bound on

{Vi!:t €T} by using the random variables {W/:t€ T}.

Lemma F.4 Letting R; max = maxer i, for each ¢;0=0,1,...,C; and t € T, we have

T

Vi (gi0) > > 75 65 = Rimax B{[W! — qi0] ). (21)

s=t

Proof: Because {Y;!: t € T} are independent of each other, Y and W/™" are also independent of

K2

each other. Noting that Y}’ is a Bernoulli random variable with parameter &, we get
E{W} = qio] "} =B{[W/" + ¥ —qio] "} = i E{ W™ + 1= qio] "} + (1 — &) E{ W — qi] ).

We will use induction over the time periods to show that the inequality in (21) holds for all ¢t € T.
The inequality holds at time period T4 1 because V'™ = 0 and the right side of the inequality in
(21) with t =T +1 is also zero. Assuming that the inequality in (21) holds at time period ¢+ 1, we

proceed to show that this inequality holds at time period ¢ as well. First, consider the case ¢; o > 1.
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Because ¢; o > 1, we have 1y,  >13 = 1. Furthermore, noting the definition of at, we can write the

recursion in (17) as
+
Viaio) = & [Tf - {VitH(Qi,o) — Vi (gi0 — 1)}] + Vi gi0)
> at (1= {V ) = Vi - D} ) + V7 o
> 6 (4 R BV = ) - BOWE 4 1= 0]} })

T
+ Y & Rima E{W T — i)}

s=t+1

T
= Z Tf OA‘? - Ri,max df E{[WiHl +1- Qi,O]Jr} - Ri,max (1 - OA‘:) E{[WitJrl - Qi70]+}

s=

T
= Z Tf @f - Ri,max E{[va - qi,()]+}7

s=

~

o+

where the second inequality is by the inductive hypothesis. Thus, (21) holds at time period ¢ as
well. Second, consider the case g; =0, so L4, 0>13 =0. Therefore, by (17), we get

T

Vi(gio) = Vit (gi0) > Y 106 — Rimax B{W/ ™'}

s=t+1
T T
> Z Tf df - Ri,max E{th + mt+1} = ZT: é‘f - Ri,max E{[W: - Qi,0]+}v
s=t s=t

where the first inequality is by the inductive hypothesis and the second inequality uses the fact
that E{Y} = &! and R; max > 7f. Thus, (21) holds at time period ¢ as well. [ |

By the lemma above, we have V' (C;) > 3", 1l &} — R; max E{[W}' — C;] " }. Next, we upper bound

K2

the expectation on the right side of this inequality.
Lemma F.5 We have E{[W}! —C;]*} < 237\1/& Y e Gh.

Proof: We have E{Y}'} =&} and Var(Y}) =& (1 —al) <@l Since W} =3, Y and {Y/:te T}
are independent of each other, we have E{W'} =3, &} and Var(W;") <>, - a!. First, consider
the case Y, &f < (C;)*?. It is simple to check that [z —a]t < & 22 for all z,a € R, which implies
that E{[W} — Ci]*} < 15 E{(W})?} = ;5 Var(W}) + ;5 (E{W}})*. Thus, we get

=1
B(W! -CJ'} < 1 Sa+ 3¢ (Z@QS L Ty L6 < e
4G teT 4¢; teT 4¢; teT 4mteT theT

where the second inequality uses the fact that Y, - &! < (C;)*? and the third inequality holds
because C; > {/C;. Second, consider the case Y, &t > (C;)*3. If Z is a random variable with
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E{Z} <a, then E{[Z —a]*} < $\/Var(Z); see 7. By the first constraint in problem (15), we have
E{W}}= Yo =7 > acr Pi(A) 2(A) < C;. Thus, we get

1
E{(W!-Ci]"} < =/ Var(W} at < E,
(=01} < oVl < 5[50 < e 3

where the second inequality uses the fact that Var(W}') <3, - a! and the third inequality uses

the fact that Y, &t > (C;)*/*. [ ]

In the next lemma, we compare the total expected revenue of the static policy with the optimal
objective value of problem (15). Lemma F.3 will ultimately allow us to show that the tailored
variant of our rollout policy always obtains at least half of the optimal total expected revenue,
whereas the next lemma will ultimately allow us to show that the tailored variant of our rollout

policy always obtains at least 1 — —-2— fraction of the optimal total expected revenue.
2

min

Lemma F.6 We have V' (3, \ Cie;) > (1 ~ 53 A ) z.

min

Proof: By Lemmas F.4 and F.5, we have V;'(C;) > 3°, 7 &} — R max 5 {/E > e7 & For notational

brevity, we let R; i, = minge77t. Adding the last inequality over all i € N, we obtain

. 1 .
V1<ECZ-6¢> = ZVJ(CZ) > EETEQE_ZR@MXQ Ko ;at

1EN 1EN ze/\/ teT 1EN
S LD LT L
ieN teT eN Rl min 2V/C; teT
DI PULE I ) Y
iEN tET Conin iEN tET
R R
= (1= =) 3 Yol ) = (1-552—) 2"
3/ (2R 3/7y )
2V Chin ieN teT AeF 2V Cinin
where the second inequality uses the fact that r!/R; nin > 1 and the third inequality holds because
t
R =max;cp {%} maxX;en f{ 2% and Cluin = mingepr C;. [ |

Here is the proof of Theorem F.2.

Proof of Theorem F.2: Shortly, we will prove the claim that U*(q) > V*(q) forallg€ Qand t€ T,
where {U":t € T} is computed through the recursion in (19), so that U?(q) is the total expected
revenue of the tailored variant of our rollout policy over the time periods t,...,T given that we are
in state g at time period ¢. In this case, we get U'(}°._\Cie;) > V(3,5 Ci€;). Furthermore,
by Lemmas F.3 and F.6, we have V(3 \ Cie;) > max{l, 1— ﬁ} Z*. Therefore, we get
UNY,cnCiei) > max{%,l — 3 m

that U'(},. Cie;) corresponds to the total expected revenue of the tailored variant of our rollout

}Z *, in which case, the desired result follows by the fact
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policy and the optimal objective value of problem (15) is an upper bound on the optimal total
expected revenue. In the rest of the proof, we use induction over the time periods to prove the
claim that we have at the beginning of this paragraph. Because U7+ = (0= V7+! the claim holds
at time period T+ 1. Assuming that the claim holds at time period ¢+ 1, we proceed to show that
the claim holds at time period ¢ as well. Noting (19), we obtain

0@ = 3 o Sl (1t~ (V7@ - U g =)} ) + Ua)

iEN

> Y Lo 1) Gil(Ston ( {V‘f+1 - V*"i(q ei)}> + V*(q)
iEN
= Z]l{‘ho>1}¢ rollout < {V;H_l Ql V;H_l(%,o_l)}> + Vt+1(q)
ieN
- rélea}({zﬂ{%oﬂ}‘b < {Vf“ i) — Vi —U})} + Vti(q)
ieEN
N
- %lea;({zll{qul}(b [ {V;Hl 4i,0 1(%‘,0_1)}} } + V(q)
ieEN
.
= Zét(A){Z]l{qz',o>1}¢ [ Vt“ (di0) = V;t+1(Qi,0—1)}:| } + Vi*tl(q)
AeF iEN
N
= S teen (D) i {v @ - va-en}] } £ V() = V()
1EN AeF

In the chain of inequalities above, the first inequality uses the inductive hypothesis. The second
equality holds because we have V*(q) =3, V/'(¢i0) by Lemma F.1. The third equality uses the
fact that S

rollout

(q) is, by definition, an optimal solution to the maximization problem on the right
side of (18). By using an argument that is similar to the one in the proof of Lemma B.1, we can
show that maxger >, ¢1(S) Al =maxger >, 91(S) [Al]T for any {Al:ie N}. In this case, the
fourth equality follows by identifying Af with Ty, > 1y [t = {V* (qi0) = Vi (qi0 — 1) }]. Noting
that we have )~ ,_»2'(A) =1 by the second constraint in problem (15), the last inequality holds
since the optimal objective value of a maximization problem is at least as large as any convex
combination of the objective values of the problem evaluated at all feasible solutions. The fifth
equality follows by, once again, noting that V*(q) = ..\ Vi’ (¢i0) and arranging the terms. The
last equality is by the dynamic program in (16). The chain of inequalities above shows that the

claim holds at time period ¢ as well, completing the induction argument. |
F.5 Asymptotic Scaling Regime

By Theorem F.2, as the initial inventories of the products get large, the tailored variant of our

rollout policy becomes near-optimal. Note that this result holds irrespective of the other parameters
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of the problem. In this section, we consider a standard regime where the inventories of the products
and the number of time periods in the selling horizon scale up linearly at the same rate x (7). We
show that the tailored variant of our rollout policy obtains at least 1 — % fraction of the optimal
total expected revenue, where B is a constant that is independent of the scaling rate k. In particular,
consider a sequence of instances of our dynamic assortment problem {P":k € Z, .} indexed by
k € Z... Instance P! corresponds to the instance that we consider throughout the paper. In instance
Pr, there are kT time periods in the selling horizon indexed by 7" = {1,...,xT}. The initial
inventory of product ¢ is kK C;. Using [-] to denote the round-up function, the one-time upfront

fee for product i at time period t is r;" = rl-w ol

. If we offer the assortment S at time period ¢,
then an arriving customer chooses product i with probability ¢ (S) = ¢!”/*1(S). Therefore, for
any t =1,...,T, the one-period fees and the choice probabilities in instance P! at time period ¢
are the same as the one-period fees and the choice probabilities in instance P* at time periods
{k(t —1)+1,...,xt}. Intuitively speaking, time period ¢ in instance P! is repeated s times in

instance P*. The next theorem is the main result of this section and gives a performance guarantee

for the tailored rollout policy for instance P*.

Theorem F.7 For instance P*, the total expected revenue of our rollout policy tailored to infinite
usage durations is at least 1 — % fraction of the optimal total expected revenue, where B is a

constant that is independent of k.

Proof: The proof follows from an outline similar to the one in the previous section. We let Z* be the
optimal objective value of problem (15) for instance P*. Noting that time period ¢ in instance P* is
repeated r times in instance P*, it is simple to check that Z® =k Z'. Using (2'"(A): A€ F, t€T")
to denote an optimal solution to problem (15) for instance P*, for notational brevity, we let ¢/ =
> acr 7" (A) 24%(A). In this case, if we let Y;"* be a Bernoulli random variable with parameter
df’“, Yit"’i captures the demand for product ¢ at time period ¢ under the static policy for instance P*.
We use {V**:t € T"} to denote the value functions of the static policy for instance P*, which are
computed through (16). By Lemma F.1, V1*(3",_ £ Cie;) =3, Vi""(kC;), where {V! :t € T}
maxsey ! maxgepn "

P —— . +—. In this case,
teT 75 mingc e T,

letting W;"" =3, . ¥;"" and using Lemma F.4 for instance P*, we have

are computed through (17) for instance P*. Note that R; jax =

V(RG> ) " 60 = Rimax B{W" — k)T } (22)

teTr Z
Since the variance of a Bernoulli random variable is at most 1/4, we have Var(W,") =
>ieqw Var(Y;"") < 1kT. As in the proof of Lemma F.5, for a random variable Z with E{Z} < a,
we have E{[Z — a]*} < 1/Var(Z). By the first constraint in problem (15) for instance P*, we
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have E{W,""} =3, E{Y""} =3, e G5 =3, e S acr 47 28%(A) < £ C;, in which case, we
obtain E{[W,"" — s C;|*} < 1\ /Var(W; ") < ‘/ZiT. So, by (22), we get

Vl’*@(Zmei) = SV RC) = YN A ST Ry B{IW — G
ieNt

1EN 1EN eTH iEN

VET
> T?K d?n - Ri,max
B DD ID B ST ELINR L o (1— Ve ZR) 7,
iEN teTh ACF 4 iEN A2 i

where the last equality uses the fact that the optimal objective value of problem (15) for instance P*
is given by Yo Do erk Doacr Ty 7 (A) 2R (A) = Z% = Z'. Thus, letting B = g Y ien Bimax
we get VI*(3. _kCie;) > <1 — %) Z*.In this case, the rest of the proof follows by using precisely

the same argument in the proof of Theorem F.2. |

Appendix G: Heterogeneous Customer Types

In this section, we discuss the extension of our approach to the case where there are multiple
customer types. In Section 5.1, we already discuss the notation that we use under heterogeneous
customer types. We do not repeat the discussion of the notation here. We proceed to give a
dynamic programming formulation under heterogeneous customer types. We use the vector g =
((Qi,anZ{g) i1 €N, jE€M, £>1) as the state variable, where ¢;o is the number of units of
product ¢ available on-hand and qie is the number of units of product ¢ that have been used for
exactly ¢ time periods by a customer of type j. In this case, the state space is given by Q =
{((gi0 € Z+,q{7e €Zy) t i€N, jJEM, £>1) : go+ D iemM Dimt qz{g =C; Vi e N'}. We capture
the decision at each time period by (S*,...,S8™), where S7 C N is the assortment that we offer to
customers of type j. The set of feasible assortments that we can offer to customers of type j is
given by F7. As in Assumption 2.1, we assume that if A € F7, then S € F/ for all S C A. Similarly,
the choice model {¢/7(S):i €N, S C N} that drives the choices of customers of type j at time
period t satisfies ¢/ (S U {k}) < ¢/ (S) for all SC N, k€ N and i € S. Given that the state is
q € Q at the current time period, if there is no purchase, then the state at the next time period is

given by the random vector X (q) = (Xi,o(q),Xij)Z(q) :i€N, jeM, £>1), where we have

Xiol@) = qio+ Z Z Bin (qg,s?pg,s) )

JEM s=1
; 0 ifl=1
X! = j ' j . ’
(9) { o1 — Bin(gi,r,piy) i L22.
The transition dynamics above are similar to the one in (1). The only difference is that we need

to keep track of the types of the customers using the units. Let J'(q) denote the maximum
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total expected revenue over the time periods ¢,...,T, given that the system is in state q at time

period t. We can compute {J*:t € T} by solving the dynamic program

:Zzﬂiquie * (sl,...,sm%%x.. {ZP’JZI{mNW (57) %

iEN jEM (=1 JEM iEN
(T?j + 77? + E{Z(Pg,o) JH (X (q)+ (1— Z(P?,o)) JH (X(Q) — €0+ eg,l) })
(DMLY l{qi,o>1}¢§7-f<sj>)E{Jf+l<X<q>>}},
JEM ieN
with the boundary condition that J7+! =0. Here, 63,1 is the unit vector with a one in the (¢,1)-th
coordinate associated with a customer of type j and zero everywhere else. Note that the dynamic

program above is very similar to the dynamic program in (2). As in Section 2, we can write the

dynamic program above equivalently as

S Y+ B[ (X ()

ieEN jeM =1
»J J( Qi t.J i (1 _ 5 t+1 _ 7t+l . J
3 gg]z_g{zn{ww (8 (47 - (1= A E{I 7 (X (@) - 1 (X () +)})}

(23)
Once we observe that the maximization problem in our initial dynamic programming formulation
decomposes by the customer types, the way we obtain the dynamic program above from the initial
one is similar to the way we obtain the dynamic program in (3) from (2). Next, we construct an

approximation to the optimal value function and bound the optimal total expected revenue.

Assuming that we have no products in use at the beginning of the selling horizon, the initial state
of the system is given by g* = ((q}jo,qu) ieEN, jeM, £>1)=((C;,0):ieN, jeM, £>1), so
that the optimal total expected revenue is J'(q'). We use a value function approximation of the
form J'(q) = D ien 0! qio + DN Djem daiet 077 ql,, where we compute 0! and D7) as discussed
in Section 5.1. We consider the greedy policy with respect to the value function approximations
{jt :t € T}. If the system is in state g at time period ¢, then this policy offers the assortment,
Sti(q) to a customer of type j, which is given by

SeFI

= arg max{z o 607(8) (1 47 = (1= ) [0 = £17]) } (24)

Sti(q) = arg max{z g 021367 (S )(Tfj +m = (1—=plo)E {jt“(X(q)) —J (X (q) —eio+eiy) }> }

SeFI

where the second equality follows from the definition of J*. Our main result under heterogeneous

customer types is stated in the following theorem.
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Theorem G.1 Under heterogeneous customer types, the total expected revenue of the greedy policy
with respect to the value function approrimations {jt 1 te 'T} is at least 50% of the optimal total

expected revenue.

To show Theorem G.1, we use the next lemma. Note that ' = ((¢},¢;) 11 €N, jEM, £>1)=
((C;,0):ie N, jE€M, £>1) is the initial state of the system.

Lemma G.2 J'(q')<2), 0! C;.

Proof: We can obtain an upper bound on the optimal total expected revenue by using the objective

value provided by any feasible solution to the linear program

min  J' (ql)
st J'a) > 33w gl + B{J(X(g))
iEN jEM =1
D P Moz 617(S) (T?j i = (1= plo) E{th(X(q>) (X (@) et el) }>
JEM iEN

VgeQ, (S%,...,8™) € Flx---x F", teT,

where the decision variables in the linear program above are {J'(q):q€ Q, t € T} and we follow
the convention that J7*+! = 0. Define the constant 3* = Yien 0! C;, where 6" is computed as in (12).
Letting the linear value function approximations {J': ¢ € T} be defined through the algorithm in
Section 5.1, we claim that {3'+ J'(q):q€ Q, t € T} is a feasible solution to the linear program
above. (The solution {.J'(q):q € Q, t € T} without the constant 5! is not necessarily feasible to
the linear program.) To establish the claim, because J'(q) is a linear function of g of the form

TN @) =Y ien 07 4o+ Xienr X jert vt Vi @lp» by the definition of X (g), we get

BtH +E{jt+1(X(Q))} = BtH + Z {@H |:Qi,0 + Z Zpg,z qg,e} Z Z’;ﬁif ‘L ¢ Pi‘,e qu]}

ieEN JEM (=1 JEM (=1
="y {% 00+ Zng 0 6+ (1= pl ) D “fifif]}
ieN JEM £=1
_ ey {q Y S g ot ]} 25)
1EN JEM £=1

where the last equality follows from the way we compute ﬁfj in (12). Similarly, using the fact that

J*+1(q) is linear in g, we also have E{jt“(X(q)) — JHY(X(q) — eio+ eil)} =gt — it by
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the definitions of J**! and X (q@). Thus, if we evaluate the right side of the constraint in the linear
program above at {3' +.J'(q): g € Q, t € T}, then we get

3 wavjiq{,fg + A+ B (X (a) ]

ieN jEM (=1

0 Ny 67080 (117 117 - (1 A B{ (X (@) - T (X (@) - enn+el) })

JEM iEN

DORDWIELES {q DD WHCE ﬂf’j]}

iEN jEM =1 iEN JEM L=1

TS Mgy 6 (S7) ( (1=l (6 — a:,m)

JEM ieEN

SDOLLERS o RS wh o)

ieN ieN JEM £=1
Y Py Mgz 07(SY) (Tf’j il — (1= ply) (017 — ﬁf,?“)) :
JEM ieEN

where the second equality uses the definition of 3*! at the beginning of the proof. Using the
same argument in the proof of Lemma 3.1, we can show that éf > éf“ under heterogeneous
customer types. Furthermore, using the same argument in the proof of Lemma B.1, we
can show that ¥,y Ly g» 11 67 (89) [r 489 — (1= plo) (B = 525)] < X0, 607(A09) x
[rf’j + il — (1= ply) (017 — 19;?741“1’3')} for all S7 € F7, where the assortment A%/ is as given in the
algorithm in Section 5.1. In this case, by the chain of equalities above, we can bound the right side

of the constraint in the linear program as

Zet+1c _i_z{qloatﬂ_i_zzqwmj}

i€EN iEN JEM £=1
ST g 609(S) ( b (1= gl ) (0 — Af,*“))
jeEM iEN
< Zefﬂmz{w ZZ}
iEN iEN JEM £=1

b 8 ) (- (1 ) (0 =0l )

JEM iEN

= ) 0+ +Z{q109 +ZZ “’J}+ZC — 0

ieN iEN JEM £=1 1EN
= Y ac, +Z{qzoe +quve Dy } ﬁt—l—Z{qlo@ +ZZq1,”J}— B+ J(q),
ieEN ieN JEM (=1 ieEN JEM L=1

where the first equality follows from the way we compute 6 in (12). By the chain of inequalities

above, for any q € Q, (S*,...,S™) e F' x ... x F™, t € T, if we evaluate the right side of the
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constraint in the linear program at {3'+ J'(q): g€ Q, t € T}, then the right side of the constraint
is upper bounded by 3! + J'(q). So, the solution {3'+ J'(q):q€ Q, t € T} is feasible to the
linear program, in which case, the objective value provided by this solution is an upper bound
on the optimal total expected revenue. Noting the definition of g', the objective value provided
by the solution {3"+.J'(q):q€ Q, teT}is f* +J'(¢") = ' + Y ien Ci 0! =2 Y ien Ci f!. Thus,

2> . enCi é} is an upper bound on the optimal total expected revenue. |

If we are in state g at time period ¢, then the greedy policy offers the assortment S (q) in (24)
to a customer of type j. Let U'(q) be the total expected revenue obtained by the greedy policy
over the time periods t,...,T, given that we are in state g at time period ¢. Using an argument
similar to the one right before the proof of Theorem 3.2 and noting the dynamic program under

heterogeneous customer types in (23), we can compute {U":¢ € T} by using the recursion

V@)=Y > w3 dl, + B{U(X ()}

iEN jEM =1

3PN gz 67(5()) < ol (1= o) E{ U (X () - U™ (X (q) ~ exp +€]) }),

JEM ieN
with the boundary condition that UT*! = 0. The coefficient of E{U'"'(X(q))} above is 1 —
> jem P Pien Uaoz1y 017 (57 (@) (1= plo)- Since 35, =1 and 3o, ¢ (5 (q)) < 1, this
coefficient is positive. The coefficient of E{U*" (X (q) —e;o+e€l,)} is positive as well. Thus, if
we replace the U on the right side above with a function H'*! that satisfies U'™!(q) > H**'(q),

then the right side of the expression above gets smaller.
Here is the proof of Theorem G.1.

Proof of Theorem G.1: We will use induction over the time periods to show that Ut(g) > J'(q)
for all g € Q and t € T, where J'(q) = Dien 0! qio + DN 2ojeM Dot {7 ql, is the linear value
function approximation computed through the algorithm in Section 5.1. In this case, noting that the
initial state is given by q' = ((¢}g.¢/;) i €N, jEM, £>1)=((C;,0):i €N, jEM, £>1), we
obtain U'(q') > J'(q") = Y ien 01 C; > 2J'(q"), where the second inequality follows from Lemma
G.2. Therefore, the desired result follows. In the rest of the proof, we use induction over the time
periods to show that U’(g) > J'(q). Since 67! =0 and ﬁgjl’j =0forallieN,jeM, (=12,...,
we have J7+1 = (0. We have UT+! = ( as well. Thus, the result holds at time period T+ 1. Assuming
that U1 (q) > J'*!(q) for all g € Q, we proceed to show that U'(q) > J'(q) for all g € Q as
well. By (25), we have E{J" (X (q))} = Yien {qi’o 0t 4 D iem Doiet ql, [08] — ] } Also, since
T (q) = Dien 0} i + Dien 2jem 2t ﬁfg qzj,z’ we have J'*1(X (q)) — J* (X (q) — es0 + 63,1) =
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01+ — i1, so that E{J"* (X (q)) — J"" (X (q) — €0+ el )} =0/ — 51"/, In this case, by the

inductive hypothesis and the recursion that defines U'(q), we get

> Y w3+ B (X ()

ieN jeM (=1
P Mgz &7 (5 () (Tf’j +ml = (1= pl,) E{jt“ (X(q))—J"" (X(q)—eio+el,) })
JEM ieN
- Z Z ! Zqzj,e + Z {Qi,o 0+ + Z qu,é [ﬁfg — wf]]}
iEN jEM =1 ieN jem =1

+D Y 0213617 (5(q)) ( T — (1= plo) (0 — ﬁffd))

JEM ieEN

- ettt X 3ot

JEM L=1

, t,j t,j j A ~t41,7
v ngg;{Zl{Wlm <SJ>(rﬂ+wﬁ — (1= plo) (B =01} >)}

JEM

where the last equality is by the definition of $%7(q) in (24). Noting that A" is a feasible but not

necessarily an optimal solution to the last maximization problem, we have

RIS W

ieN JEM (=1
t.J J( Qi t,j Li (1 gt+1 _ s+l
D p ggg{Zﬂ{Ww (s >( = (1= plg) (B =513 >)}
JEM ieN
{%09”1 DT } + 27D Mgz 01 (AY) ( T — (L= plo) (67 ﬁfm)

zeN JEM (=1 JEM 1EN
S PIEED 9 SH] 9 o e I G IRVRILAEiR)

ieN JEM 1=1 JEM ieN
B {q”““iz%e Vit }*Zqzo (6; -6+

€N JEM L=1 iEN
= {0 Gt Y0, } = J'(q).

ieN JEM (=1

In the second inequality above, we can use an argument similar to the one in the proof of Lemma
3.1 to show that ¢! (A7) (r!? 47t — (1 — plo) (1! — 117)) >0 for all i € N, in which case, the
second inequality follows by the fact that 1y, (>13 > gio /C; for any ¢; o < C;. The first equality
follows from the way we compute #! in (12). The two chains of inequalities above show that

Ut(q) > J'(q), establishing the desired claim. [ |
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Appendix H: Solving the Assortment Problem Approximately

We consider the case where we can solve problem (5) only approximately. Assume that we have an
FPTAS such that for any ¢ >0, the FPTAS finds an assortment A’ that satisfies
(1+e) Z¢t (A% {r + 7 — (1= pio) (045" = 01T) }>maxz¢t [7’ +7— (L= pio) (¥ t“—v“{l)}

SeF
1EN iEN

in running time that is polynomial in n and 1/e. We compute 7}, for all i € N, £>0 and t € T as
in (6), but the assortment At satisfies the inequality above, rather than being an optimal solution
to problem (5). In other words, the assortment A is a 1/(1 + €)-approximate solution to problem

(5). In the next lemma, we generalize Lemma 3.3.

Lemma H.1 Assume that A' is a 1/(1 + €)-approzimate solution to problem (5) for all t € T.
Then, we have J* (3,c Ci€io) <2(1+€)7 >, Cilly.

Proof: Assume that {0{,:i€ N, £>0, t €T} are computed as in (6), but Alis a 1/(1+e)-
approximate solution to problem (5). Define the constant Bt = > ien Vi Ci. For the value function
approximation J'(q) = 3, S0 UL, Gie, we claim that {(1+¢)7*1(3' + J'(q)): g€ Q, t€ T}
is a feasible solution to the linear program in the proof of Lemma 3.3. To show the claim, from
the discussion in the proof of Lemma 3.3, recall that E{J" (X (q)) — J™' (X (q) — €0+ €i1)} =
PP and B BT (X (9))} = B+ S (0 215+ 300 i [ 24+ (1= pr) 54 ]}
In this case, if we evaluate the right side of the constraint in the linear program in the proof of

Lemma 3.3 at the solution {(1+€)”~** (3" + J'(q)): g€ Q, t € T}, then we obtain

S S g+ (LT BB (X (@)

1EN =1

D ez 6) [rl = (1= i) (14 E{J™ (X (@) - I (X (@) — ero + i) |
ieEN

= Zﬂfzqw(lﬂ)“ﬁt“+(1+e>”2{%0”531+qu pevift+ (1= pis) f?il]}

PEN =1 iEN
+ Y Mg om1y OLS) [ mt = (L4 (1= pio) (05— 0111)]
PEN
< 1+ (14" Z {Qz oy + Z Qi 95,@}
iEN =1
+ > Myggs 1y 81(S) [t — (1= pio) (L+6)"~ (05 — 251
PEN

where the inequality holds because we have 7] , = 7 + p; ¢ 1/“’1 + (1= pig) 0 e 1, by (6). By Lemma
B.1, we have Zie/\/]l{qi,ozl} L(S) [’r +7ml—(1—pio) (7 t“—ytJ{l)] < maxaer Y ;e $i(A) X
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[rt+mt— (1= pio) (075" —0i1")] for all S € F, since this lemma assumes that At is the optimal

solution to the last maximization problem. So, we continue the chain of inequalities above as

1+ B+ (1+e)" ") {qz o ULH + Zqi,gﬁ;@}
=1

ieN
+ > M=y 8LS) [ mt = (1= pio) (L+€) (015! — oh)]
ieN
< (140" BT (4T {ql o ULE + Zqi,m;z}
ieEN =
+ (1407 g om0y $1(S) [rl+ 7l — (1= pio) (15" — o141)]
i€EN
< (140" BT (14T {ql o ULb + Zqi,@ﬁfl}
ieEN /=1

+ <1+6)Tt+lliergg;<{2¢§(x4 i+ — (1= pio) (¥ t“—vtTl)]}
ieN

< (1 +6)T7t BtJrl +(1 +6)T7tz {Q1 OVfng + Z%‘,é’}f,e}

ieEN
+ (1Y gAY [t = (1= o) (925 =11
ieEN
= T Y it (0 fZ{qw”f“ZWf’f}
1EN iEN (=1
+ (L4 (0, — oY),
1EN

where the last inequality is by the fact that A’ is 1/(1 + ¢)-approximate solution to problem (5)
and the last equality holds since 0f ;= 0/ 5" + qﬁt(At)[r + 7t — (1= pio) (215" = 9/3")] by (6) and
Bt = > ien Uib! Ci. Even if we choose A' as an approximate solution to problem (5), we can follow
precisely the same reasoning in the proof of Lemma 3.1 to show that we can drop each product i
with ¢! (A) (rt+mt— (1= pio) (205" —0{11)) <0 from At without deteriorating the objective value
of problem (5) provided by the solution A’. Thus, by the reasoning in the proof of Lemma 3.1, we

can assume that 1/ 0> I/t+1 So, we continue the last chain of inequalities as

(14T S o+ (140 tz{qzou:mzqi,w;g}+<1+e>T—t+l S Cy (7 - it
/=1

iEN iEN iEN

< Q4" YA (0" tHZ{qi,oamzqi,w;z}+<1+e>T—f+1za« (90— 745
(=1

ieN ieN ieEN
= (149"} { Oi +Zq@»,w;iz} = (L) (B + T (q)).
ieN =0
By the discussion so far, for any g € @, S € F and t € T, if we evaluate the right side of the
constraint at {(1+ €)=+ (5! + J*(q)) : g € Q, t € T}, then the right side of the constraint is upper
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bounded by (14 €)T"+1(3" + J!(g)). Thus, the solution {(1 4 €)7~ (5! +.J'(q)):q€ Q, t T}
is feasible to the linear program, so the objective value of the linear program at this solution is an
upper bound on the optimal total expected revenue. The desired result follows by noting that the
objective value of the linear program at the solution {(1+ ¢)7~(3! 4+ .J!(q)):q€ Q, t € T} is
(14T (B 4+ T (e Cr00)) = (14 ) (Xyen 7o Ci - Xsen 70 Ci). .

Consider a greedy policy with respect to the value function approximations {jt :teT} To
compute the decision of this policy, we need to solve the combinatorial optimization problem in
(7), which has the same structure as the one in (5). Therefore, we assume that we can obtain only
an approximate solution to problem (7). In particular, if the state of the system at time period ¢

is g, then the greedy policy offers the assortment S?(g) such that

(14 ) 3" Voo 6105 (@) [+ 7t = (1= pio) (015" = 91")]

i=1

> max Z Lguozny04(S) 747t = (1= pio) (915 = 111

We can compute the total expected revenue obtained by this greedy policy through the recursion in
(8). The only difference is that the assortment S?(q) is a 1/(1 4 €)-approximate solution to problem
(7), rather than the optimal solution. We let U*(q) be the total expected revenue obtained by the
greedy policy over the time periods ¢,...,T, given that the system is in state g at time period t.

We have the following lemma for the total expected revenue of the greedy policy.

Lemma H.2 For allqe Q and t € T, we have (1+¢€)" " U (q) > 3.\ Do 0so VL dive-

The proof of this lemma is omitted and it follows from induction over the time periods by using

the ideas in the proofs of Theorem 3.2 and Lemma H.1. Here is the proof of Theorem 5.1.

Proof of Theorem 5.1: For any § > 0, we will show that we can obtain a 1/(2 (1+J))-approximate
policy and the running time to obtain and execute the approximate policy is polynomial in n,
1/6 and T. Assume for the moment that § < 1. Given such §, set € = §/(4T), choose A’ as a
1/(1 + €)-approximate solution to problem (5) and choose S*(q) as a 1/(1+ €)-approximate solution
to problem (7). Since we can obtain these approximate solutions in running times polynomial in n
and 1/e, the running times involved are polynomial in n and 7'/, which are, in turn, polynomial
in n, 1/ and T, establishing the desired running time. By Lemmas H.1 and H.2, we have
2(14 )" UMY, e Cieio) >22(14¢€)" Z 010Ci = JN(Xcn Ciein) -
1eEN
Letting OPT be the optimal total expected revenue and GRE be the total expected revenue

from the greedy policy, noting that e = ¢/(47T'), the chain of inequalities above yields OpPT <
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2(14 %)* GRE <2 exp(6/2) GRE < 2 (1 + &) GRE, where the last inequality follows from the fact
that exp(d/2) <149 for all 0 € [0,1]. The last chain of inequalities shows that the greedy policy is
a 1/(2(1+ 0))-approximate policy. Lastly, if 6 > 1, then we can simply choose € =1/(4T). |

Appendix I: Upper Bound on the Optimal Total Expected Revenue

In this section, we give a proof for Proposition 6.1.

Proof of Proposition 6.1: Under the optimal policy, we use Q; , to denote the number of units of
product ¢ that have been in use for £ time periods at time period ¢. Also, under the optimal policy,
we let Z'(A) =1 if we offer assortment A at time period ¢; otherwise, we have Z*(A) = 0. Lastly,
under the optimal policy, we let ®! =1 if the customer arriving at time period ¢ chooses product
i; otherwise, we have ®{ = 0. Note that Q;,, Z*(A) and ®! are random variables. Furthermore,
Pr{®! = 1] Z'(A) = 1} = ¢}(A). Using the vector Q" = (Qi, : i € N, £>0), by the transition

dynamics of our dynamic assortment problem, we have

Q= Z@t[ pio) Qt>+<1—z<pi,0>><X<Qt>—ei,0+ei,l>}+{1_Z¢g}x Q

ieEN ieN
Z‘l)t plO )(ei,o_ei,l)a
ieEN

where the first equality uses an argument similar to the one that we use to justify the
first constraint in problem (13). Since Pr{®! = 1|Z%(A) = 1} = ¢!(A4), we have E{®!} =
Yoaer Pr{Z!(A) =1} Pr{®] = 1| Z'(A) = 1} = >, #:(A) Pr{Z'(A) = 1}. In this case, letting
q, = E{Qj,} and z'(A) = E{Z*(A)}, taking expectations in the chain of equalities above and
noting that E{X (q)} is linear in g, it follows that the solution (z'(A) : A€ F, t € T) and
(@,:i€N, £>0, teT) satisfies the first constraint in problem (13). Under the optimal policy,
we start with the initial state Zie v Cieio and offer one assortment at each time period, so Q=
> enCieio and 3, - Z*(A) = 1. Taking expectations in the last two equalities indicates that
the solution (z/(A) : A€ F, te€T) and (¢, :i€N, £>0, t €T) satisfies the second and third
constraints in problem (13) as well. Therefore, this solution is feasible to problem (13). Furthermore,
noting that E{®}} =3, - ¢i(A) Pr{Z'(A) =1} =, #:(A) 2'(A), the total expected revenue

under the optimal policy is

J! (Zciei,0> = E{ZZ(T;&‘FW;&)‘I%"‘ZZW:Z Qfé}

iEN teT ieN teT ieN (=1
= D Y (i) Y SHA A+ D Y d
teT ieN AeF teT ieN (=1

which is the objective value that the solution (2'(A) : A€ F, t€T)and (¢, : i €N, £>0, teT)

provides for problem (13). So, there exists a feasible solution to problem (13) that provides an
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objective value of J* (3, - C;e€; o). Therefore, the optimal objective value of problem (13) must
be at least J* (3. Ci€io). |

Appendix J: Linear Programming Approximation under the Multinomial Logit Model

We consider the case where the customers choose according to the multinomial logit model. Under
the multinomial logit model, a customer arriving at time period ¢ associates the preference weight
v! with product i and the preference weight v§ with the no-purchase option. If we offer the
assortment S, then a customer arriving at time period t chooses product ¢ with probability
¢;(S) = v/ (v5+ > ,esvj)- In this section, we show that if the customer arriving at each time period
chooses according to the multinomial logit model, then we can give an equivalent formulation
for problem (13), whose numbers of decision variables and constraints increase only linearly
with the number of products. In the equivalent formulation, we use the decision variables
(yt:1€ NU{0}, t€T), where y! captures the probability that a customer arriving at time period
t chooses product ¢ and yf, captures the probability that a customer arriving at time period ¢ leaves
without choosing any of the products. In this case, we show that problem (13) has the same optimal

objective value as the linear program

max Y N (ri+mul > > > dl, (26)

teT ieN teT ieN (=1

st q* = E{X (@)} =Y vl (1-puo) (eio—ein) Ve T\(T)

iEN

qlzzciei,o

1EN
Syl+ys =1 VteT
1EN
t t
Y% vieN, teT
v T g

y; >0 VieNU{0}, teT, ¢,>0 YieN, (>0,teT.

Noting that y! captures the probability that a customer arriving at time period ¢ chooses product ¢,
the objective function and the first constraint above have the same interpretation as the objective
function and the first constraint in problem (13) after replacing > ,.» #i(A) 2'(A) with y!. The
second constraint above initializes the state of the system. The third constraint ensures that the
customer arriving at each time period either chooses a product or leaves without choosing any of
the products. The fourth constraint ensures that the choice probabilities of the customer arriving

at each time period are consistent with the multinomial logit model.

To show that problems (13) and (26) have the same optimal objective values, noting that q'*!

in the first constraint in problem (13) corresponds to the vector ¢'*' = (¢{,:i €N, £>0), we
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use a=(a/t':ie N, £>0, teT\{T}) to denote the dual variables associated with the first
constraint. Deﬁnlng the vector a'*!' = (aj}':i €N, £>0) and letting « -y to denote the scalar
product of the vectors x and y, if we dualize the first constraint in problem (13) by associating

the dual variables a, then we can write the objective function of problem (13) as

S S e A) 2+ Y

teT ieEN AeF teT ieEN =1
n Z ol <E{X(qt)} _ Z{ Z Pl (A) Zt(A)}(l —pio) (€i0—€i1) — qm)
teT\{T} iEN  AeF
= Y [ - (- o) (o e | B )+ RS
teT ieEN AEF teT ieN  ¢=1
+ Z altt. (]E{X(qt)} - th);
teT\{T}

where we follow the convention that aT“ 0 and use the fact that a'™-e; o = Hl and o' e; ) =

a“’l Therefore, by linear programming duality, if we define F'(a) as

= max ZZZ[T + 7t — (1= pio) (b — tﬂ)} +ZZ Zqu

teT ieN AeF teT ieN /=1

+ ) at+1~(E{X<qt>}—qt+l) (27)

teT\{T}

st. ¢ = Z Cieio

1EN

d AMA)=1 VteT
AeF

Z(A)>0 VAeF, teT, ¢,>0 YVieN, (>0,teT,

then the optimal objective value of problem (13) is given by min, F'(a). Also, using precisely the

same sequence of steps but by working with problem (26), if we define G(«) as

= max ZZ{TE"‘Wf_(l—Pi,o)( f%l_aftl }yf—i—ZZWfi qzz

teT ieN teTieEN  I=1
+ Z ottt <E{X(qt)} _ qt+1) (28)
teT\{T}

s.t. q1 = Z 01 €0

€N

Yyltyh =1 VteT
iEN
Yot <yljvl VieN, teT

y; >0 Vie NU{0}, teT, ¢, >0 VYieN, £>0,teT,

then the optimal objective value of problem (26) is given by min, G(a). Therefore, if we can show

that F'(a) = G(a) for any «, then it follows that the optimal objective values of problem (13) and
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(26) are equal to each other, as desired. In the next lemma, we build on the work of ? to show that

we indeed have F(a) =G(a).
Lemma J.1 If F={S:S CN}, then we have F(a) = G().

Proof: Given index sets £ and {N*: /¢ € L}, along with the constants {p{:i € N,, ¢ € L} and
{94(S):i e N*, SCN*, £e L}, ? consider the linear program

max Y > > plgi(S)Z(S) (29)

LeL je Nt SCNE

st Y 2(S)=1 VieL
SCN*
Z(S)>0 VSCN! leL.

By Theorem 3 in ?, if ¢{(S) is of the form ¢{(S) = v;/(v5+>_,c4v;), then the problem above has

the same optimal objective value as the linear program

mas 3 S gl (30

el jeNt

st Y yity=1 VIeL
ieNt
yrJol <yé /vl VieNt, (el

y'>0  VieN'U{0}, LeL.

In problem (27), the decision variables (2'(A): Ae F, teT) and (¢/,:i€N, £>0, t€T) do
not interact in the objective function or the constraints. Therefore, problem (27) decomposes
into two subproblems, one subproblem involving the decision variables (z'(A): A€ F, t€T)
and the other subproblem involving the decision variables (qf,:i €N, £>0, t€T). Similarly,
problem (28) decomposes into two subproblems as well, one subproblem involving the decision
variables (y!:i€ NU{0}, t€T) and the other subproblem involving the decision variables
(¢f,:i€N, £>0, teT). For problems (27) and (28), we observe that the subproblems that
involve the decision variables (¢}, : i € N, £>0, t € T) are identical to each other. Therefore, these
subproblems have the same optimal objective value. Also, as F = {S:S C N}, letting L=T,
N =N and p! =r! + 7t — (1 —p;o) (ol —ali'), the subproblem for problem (27) that involves
the decision variables (2*(A): A€ F, t € T) has precisely the same form as problem (29), whereas
the subproblem for problem (28) that involves the decision variables (y!:i € N U{0}, t € T) has
precisely the same form as problem (30). So, by Theorem 3 in ?, the subproblem for problem (27)

that involves the decision variables (z/(A): A€ F, t € T) has the same optimal objective value as



e-companion to Dynamic Assortment Optimization for Reusable Products ec29

Params. Computation Time per Sample Path

(a, k) GR RO BP (ON] DC MY 1IB
( )| 1.69 5.05 155.27 150.28 264.11 0.84 0.83
( ) |2.69 4.30 164.68 172.77 286.14 1.89 1.15
( )| 1.62 4.44 140.92 168.38 271.44 0.72 0.66
( )| 1.57 4.20 152.69 146.11 241.85 0.68 0.77
( )| 1.61 4.05 141.74 149.04 253.53 0.60 0.63
( )| 1.78 4.07 175.45 202.73 281.71 0.97 0.58
(0.9, 0)]|201 4.01 124.29 120.28 197.96 0.68 0.62
( )
( )
( )
( )
( )

1.54 3.76 133.97 131.64 220.03 0.67 0.62
1.79 3.92 178.06 156.26 243.24 0.73 0.81
1.51 3.50 118.90 101.63 176.94 0.56 0.53
1.96 3.80 134.95 132.23 207.62 0.52 0.62
1.78 3.48 146.91 165.31 243.25 1.16 1.02
Average | 1.79 4.05 147.32 149.72 240.65 0.84 0.74

Table EC.1 Detailed computation times.

the subproblem for problem (28) that involves the decision variables (y!:i € N'U{0}, t € T). Thus,
problems (27) and (28) have the same optimal objective value. [ |

Lastly, we note that ? give an approach to obtain an optimal solution to problem (13) by using

an optimal solution to problem (26).

Appendix K: Details of Computation Times

We give the details of the computation times for the benchmarks that we use for the test problems
in Table 1. The computation times that we report correspond to the average time to simulate the
performance of each benchmark over one sample path. Recall that we divide the selling horizon into
three equal segments and recompute the policy parameters for each benchmark at the beginning of
each segment. Therefore, the computation times that we report include the time to recompute the
policy parameters three times and making the assortment offer decisions for all of the customers
that arrive over the selling horizon. We give our results in Table EC.1. The first column in this
table labels the test problems by using (a, k). The remaining seven columns show the computation

time in seconds to simulate the performance of each benchmark over a sample path.

Appendix L: Experimentation with Inventory Balancing

In our implementation of IB in Section 6.2, we use a revenue modifier of the form ¥(z) =

5 (1 —e™*). Following ?, we also work with a revenue modifier of the form ¥(z) = z. In addition,
? propose a hybrid policy that judiciously picks between the assortment proposed by IB and the
assortment proposed by some other secondary policy at each time period. We implemented the
hybrid policy, where we use OS discussed in Section 6.2 as the secondary policy and set the revenue

modifier in IB as ¥(z) = -% (1—e7"). We also tried using BP discussed in Section 6.2 as the
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Params. Total Expected Revenue % Gain of RO over
(o, k) RO IB-Exp IB-Lin HY |IB-Exp IB-Lin HY
(0.7, 0)|4,292 4,046 4,086 4,176 5.7 4.8 2.7
(0.7,0.01) | 3,893 3,432 3,476 3,563 11.8 10.7 8.5
(0.7,0.03) | 3,854 3,168 3,204 3,274 17.8 16.9 15.0
(0.8, 0)]3959 3,763 3,795 3,868 5.0 4.1 2.3
(0.8,0.01) | 3,873 3,454 3,490 3,603 10.8 9.9 7.0
(0.8,0.03) | 3,882 3,318 3,320 3,369 14.5 14.5  13.2
(0.9, 0)]3,041 2904 2,932 2,984 4.5 3.6 1.9
(0.9,0.01) | 2,773 2,487 2,513 2,589 10.3 9.4 6.6
(0.9,0.03) | 3,040 2,603 2,637 2,670 14.4 13.3 122
(1.0, 0)|2978 2,848 2,869 2,932 4.4 3.7 1.5
(1.0,0.01) | 2,467 2,212 2,235 2,310 10.3 9.4 6.4
)

2,046 2,513 2,552 2,598 147 134 118
Average 10.4 9.5 7.4

Table EC.2 Performance of inventory balancing.

secondary policy or setting the revenue modifier in IB as ¥(z) =z, but we did not obtain better
results. In the description of the hybrid policy in ?, there is a parameter v that determines the
tendency of the hybrid policy to deviate from the decisions of IB and switch to the secondary
policy. After some experimentation, we set v = 1.5, which is consistent with the choice of v in ?.

We use IB-Exp to refer to IB with the revenue modifier ¥(z) = —%; (1 —e~*), IB-Lin to refer to

IB with the revenue modifier ¥(x) =x and HY to refer to the hybrid policy. We give our results
in Table EC.2. The layout of this table is similar to that of Table 1. The first column labels the
test problems by using («, k). The second through fifth columns show the total expected revenues
obtained by RO, IB-Exp, IB-Lin and HY. Recall that RO refers to our rollout policy. The remaining
columns show the percent gaps between the total expected revenues obtained by RO and every
other benchmark. Our results indicate that IB-Lin improves upon IB-Exp by about 1% on average.
The performance of HY is noticeably better than that of IB-Exp and IB-Lin, but HY still lags
behind RO significantly. All of the performance gaps in Table EC.2 are statistically significant at
the 95% level.

Appendix M: Computational Experiments under Geometrically Distributed Usage Durations

We give computational experiments on test problems with reusable products. In our test problems,
we have six products and six customer types. The choices of the customers are governed by the
multinomial logit model. We use precisely the same approach discussed in Section 6.2 to generate
the one-time upfront fees {7/ TiieN,jeEM, te T}, the parameters of the multinomial logit model
{v/:ie NU{0}, j € M} and the customer arrival probabilities {p*/ :j € M, t € T}. We set the
per-period rental fee to zero. The number of time periods in the selling horizon is T'=1,200. The
usage time of a product is geometrically distributed with mean ~, where « is a parameter that we

vary. The initial inventory of a product i is C; =~/(2|N]). With this choice of initial inventories,



e-companion to Dynamic Assortment Optimization for Reusable Products ec3l

the total product capacity we have available for use is ) ..., C; = /2 per time period. By the
discussion in Section 6.2, we generate the parameters of the multinomial logit model so that if we
offer all products, then a customer arriving at a time period leaves without choosing any of the
products with probability 0.1. Since each customer uses a product for v time periods on average,
if we offer all products at all time periods, then the expected demand for the products is 0.9~
per time period. Thus, even if we offer all products at all time periods, the expected demand
exceeds the expected capacity by a factor of % =1.8. We experimented with different values for
the ratio between the expected demand and the capacity and our results qualitatively remained
unchanged. In our approach for generating the customer arrival probabilities {p™/:j € M, te T}
in Section 6.2, recall that we use a parameter x that controls the degree to which the customers
of different types arrive over non-overlapping time intervals. Varying the parameters (k,7y) over
{0,0.01,0.03} x {200,400, 600, 1,200}, we obtain 12 test problems. We test the performance of GR,
RO and OS, where GR is the greedy policy with respect to our linear value function approximations,
RO is our rollout approach performed on the static policy, and OS is the randomized offer set
policy that is based on the linear programming approximation. In Table 1, apart from DC, OS is
the strongest benchmark and DC does not apply in the presence of reusable products. Therefore,

we provide comparisons against OS.

We give our computational results in Table EC.3. The layout of this table is similar to that of
Table 1. The first column labels the test problems by using (x,7). The second column shows the
upper bound on the optimal total expected revenue provided by the optimal objective value of
problem (13). The third through fifth columns show the total expected revenues obtained by GR,
RO and OS. The last two columns show the percent gaps between the total expected revenues
obtained by RO and the other two benchmarks. Our results indicate that both GR and RO provide
noticeable improvements over OS, especially when the average usage duration is relatively small
so that we can use a product multiple times over the selling horizon. The performance of GR is
generally competitive to that of RO. In Table EC.3, the performance gaps except for those indicated

with a star are statistically significant at the 95% level.

Appendix N: Data and Experimental Setup for Street Parking Pricing in the City of Seattle

As discussed in Section 6.3, we augmented the data provided by the Open Data Program in Seattle
to ensure that we have an intended parking locale for each driver. In this case, each transaction
record gives the start time, duration, intended locale, actual parked local, and per-hour rate for
each parking event. Note that the intended and the actual parked locales may be the same. The

parking duration in the data reflects the duration of time for which each driver made a payment,
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% Gain of
Params. Upp. | Total Expected Revenue | RO over
(k,7) Bnd. GR RO oS GR OS

(0, 200) | 8,787 | 8,248 8,404 7,608 | 1.85 9.46
(0, 400) | 11,604 | 11,141 11,283 10,641 | 1.25 5.69
(0, 600)|12,654 | 12,251 12,354 11,918 | 0.83 3.53
( 0,1200) | 17,012 | 16,708 16,647 16,412 | -0.37 1.41
(0.01, 200) | 9,414 | 9,049 9,011 8,345 | -0.42 7.40
(0.01, 400) | 10,444 | 10,128 10,120 9,684 | -0.07* 4.31
(0.01, 600) | 11,942 | 11,677 11,626 11,284 | -0.44 2.94
(0.01,1200) | 16,731 | 16,353 16,326 16,183 | -0.17* 0.87
(0.03, 200) | 6,856 | 6,692 6,632 6,039 | -0.90 8.95
(0.03, 400) | 8,422 | 8,265 8234 7,817 | -0.38" 5.07
(0.03, 600) | 10,252 | 10,061 10,067 9,668 | 0.06* 3.97
(0.03,1200) | 12,470 | 12,244 12,290 12,069 | 0.37* 1.80

Average 0.14 4.62
Table EC.3 Computational results under geometrically distributed usage durations.

but the driver may not occupy the parking space for this whole duration. Nevertheless, we assume
that a driver indeed occupies the parking space for the whole duration of time for which she made
a payment. Payments can be made by using a smart phone application that allows extending
a parking session remotely, so we can treat the usage duration of a parking space as a random

quantity not known to the system operator at the time a driver parks.

The city of Seattle imposes parking time limits that prevent drivers from creating transactions
with a duration greater than the maximum time limit. Such time limits result in an abnormally
large fraction of transactions with durations that are exactly equal to the time limit, which created
difficulties when estimating the parking duration distributions. Thus, we eliminated the transaction
records whose durations are exactly equal to the time limit. After eliminating these transactions,
a negative binomial distribution with parameters (s;,7;) with s; = 2 gave reasonable fits. After
eliminating the transactions, the load in the system was small enough that taking the future
driver arrivals into consideration did not make an impact and simple policies performed remarkably
well. To alleviate this problem, we artificially multiplied the arrival rates estimated from the data
by a constant factor and decreased the number of parking spaces by another constant factor to

obtain a reasonably large load. The multipliers that we use are given in Section 6.3.

We assume that the drivers with intended locale of j arrive into the system according to a Poisson
process with the arrival rate function {A™ : 7 > 0}, where the time 7 is measured in seconds. Recall
that each time period in our model corresponds to a time interval of 30 seconds. In this case, a driver
with intended locale j arrives at time period ¢ approximately with probability p/ = 30 x Af(*):7,
where f(t) is the time in the day corresponding to time period ¢ in the selling horizon of our model.
For estimation purposes, we assume that the arrival rate function {A™ : 7 > 0} is constant over

each 15 minute time interval. When a driver with intended locale j arrives into the system, we
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offer a price menu for the five locales that are closest to her intended locale. The driver makes a
choice among these locales or decides to leave the system without parking. The latter decision may
correspond to using a parking space that is not street parking. In our choice model, if we offer the
assortment S at time period ¢, then a driver whose intended locale is j chooses to park in locale ¢
with probability

e’ +B i n

¢ () = ——
1437 ges € TP

as long as (i,h) € S. The parameter (3 is the price sensitivity of the drivers and it is constant across
all drivers. This assumption helps us keep the number of parameters that we need to estimate
manageable. We estimate the parameters 8, {a/ : j € M} and {p"/ :j € M, t € T} through
maximum likelihood. The likelihood function that we use for this purpose closely mirrors the one

used by 7.

As discussed in Section 3.3 of ?, when estimating the parameters of the choice model and the
arrival rates, there is a continuum of choices for the parameters that yield the same value for the
likelihood function. Therefore, we fix the no-purchase probability of each driver. In particular, we
focus on the time period 11AM to 4PM in our numerical study. The per-hour parking rate for each
locale in the data is fixed during this time period, but each locale has a different rate. Fixing the no-
purchase probability at 0.1, the no-purchase probability for a driver with intended locale j needs to
satisfy 1/(1432, jcsi e’ +8m4) = 0.1, where S7 is the set of locale and rate combinations offered to
a driver with intended locale j. If we fix the parameter 3, then the value of the parameter o/ is fixed
by the last equality. Therefore, we estimate 8 and {p*’ : j € M, t € T} through maximum likelihood
and determine the values of the parameters {a/ : j € M} by the last equality. We estimated the
parameters of the choice model and the arrival rates by using the data from 15 weekdays of June
2017. Using the data from the remaining five days of June 2017, we checked the percent deviation
in the expected number of parkings according to our demand model and the number of parkings

in the data over each hourly interval in each locale. The average absolute percent deviation was

27.05%.

When we estimated the parameters of the choice model through the data, the price sensitivity
parameter estimate came out to be § = —0.191 with a standard error of 0.008. Following the
magnitudes of the fares in the data, we allow the price of a parking space to take values $2, $4
or $6 per hour. With these settings, the price sensitivity parameter turned out to be so small
that changing the price of a parking space did not make a discernible difference in the choices
of the drivers. Therefore, we bumped the price sensitivity parameter to 5 = —0.5 in all of our

computational experiments.
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Appendix O: Conditions on the Rewards and Transition Dynamics

In this section, we give conditions on the rewards and transition dynamics that allow us to extend
our half-approximation guarantees to somewhat more general settings. We have n products indexed
by N ={1,...,n}. For each product i, let C; € Z, denote its initial inventory level. There are T
time periods in the selling horizon indexed by 7 = {1,...,T}. Each unit of product i can be in one
of the k + 1 states indexed by K ={0,1,...,k}. We refer to state 0 as the base state. To capture
the state of the system at the beginning of a generic time period, we use ¢; , to denote the number
of units of product 7 in state ¢. Therefore, we can describe the state of the system by using the
vector ¢ = (g;¢:1 €N, £ €K). At each time period ¢, we choose an action in the set F. If we choose
the action A € F at time period t and we have at least one unit of product 7 in the base state,
then we generate an immediate expected revenue of R!(A). Also, for each unit of product i that
is in state £ other than the base state, we generate an immediate expected revenue of II; ,. Note
that the latter expected revenue does not depend on the action we choose. Thus, if the system is

in state g and we take the action A, then we obtain an immediate expected revenue of

k
Z 1{%,021} RE (A)+ Z Z H;e Q-

iEN €N (=1

Next, we consider the transition dynamics. If the state of the units of product ¢ at the current
time period is g; = (¢; ¢ : £ € K) and we take action A at this time period, then the number of units

of product ¢ in state £ at the next time period is given by the random variable

Qie(qi, A) =Yio(qi) + Lig; 13 Aie(A),

where Y; , and A; ;(A) are random variables. By the transition dynamics above, the number of units
Q..(qi, A) of product 7 in state ¢ at the next time period can be decomposed into two terms. The
first term Y;,(q;) is independent of the action that we take. The second term Ly, o1y A, (A)
depends on the action that we take, but this term takes effect only if we have at least one unit
of product i in the base state. Observe that the number of units @, ,(qg;, A) of product i in state
¢ at the next time period can depend on the full state g; of the units of product i at the current
time period. We assume that ), (Yi¢(qi) + lg, o>13 Aie(A)) < C; with probability one, so that
the number of units of product ¢ does not increase over time. Also, we naturally assume that

Qi.(gi,A) >0, so that the number of units does not turn negative.

We argue that the problem primitives described so far generalize those that we use in our problem
formulation in Section 2. In Section 2, the set of states K corresponds to the set of possible number

of time periods that a unit of a product can be in use. A unit of product ¢ in the base state
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corresponds to a unit on-hand. The action corresponds to the assortment that we offer at a time
period. In Section 2, if we offer the assortment A at time period ¢ and the customer chooses product
i, then we generate a one-time upfront fee of r!, as long as we have a unit of product i available
on-hand. Furthermore, we generate a per-period rental fee of 7! from this product at the time

period that it was just rented. Therefore, we have R:(A) = ¢L(A) (rf +n!). For each unit of product

t

t

So, we have II!

1 that is in use at time period ¢, we generate a per-period rental fee of 7 = k.

Letting Y; /(q;) = X, ,(qi), where X; ,(g;) is as in (1), along with

(—1,1) with probability ¢!(A) (1 — p;o),

(Rio(A) Ain(A4)) = {(0,0) with probability 1 — ¢t(A) (1 — pi),

and A; ,(A) =0 for all € K\ {0,1}, in the model in Section 2, the state of the product i at the
next time period can be captured by Qi ¢(qi, A) = Yi ¢(q;) + N, g>1y Ai ¢(A). Therefore, the problem
primitives in Section 2 can be captured by using the notation defined so far in this section. We

make three assumptions to be able to obtain a half-approximation guarantee.

e The expectation E{Y; ,(qg;)} is linear in g;. In particular, there exist constants {6, ,,:s € K}
such that

IE{YM(ql)} = Z ei,s,e Gi,s-

sek
Intuitively, the parameter 0, ; , captures the “tendency” of a unit of product 7 in state s to
end up in state £ at the next time period, in expectation.
e In expectation, a unit of product 7 in the base state has a tendency to stay in the base state. In

particular, we have
91',0,0 =1 and 07;107@ =0 Vﬁ (S IC \ {0}

e We can round the transition-adjusted revenue from each product ¢ up to zero without loss of

.
}. (31)

This problem setup generalizes the one in Section 2 to some extent, especially in terms of the

generality. In particular, for any choice of constants {u,: ¢ € K}, we have

max { > (RE(A) +> u E{Ai,e(A)}> } = max { >

R{(A) + ) uB{A; (A)}

iEN Lex iEN lex

All of these three assumptions are satisfied by the problem primitives in Section 2.

transition dynamics. In particular, the random variable Y; ,(g;) can have any distribution as long
as it satisfies the first two assumptions above. Furthermore, the random variable A; ,(A) can take

values other than {—1,0,+1} as long as it satisfies (31). It may be difficult to ensure that (31) is
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satisfied in general, but in Section 2, we give at least one specific case for R!(A) and A; ,(A) that

ensures that (31) is indeed satisfied.

Our goal is to find a policy to choose an action at each time period so that we maximize the total
expected revenue over the selling horizon. We can find the optimal policy by formulating a dynamic
program that uses ¢ = (g, :1 €N, k € K) as the state variable. To obtain an approximate policy,
we can use linear value function approximations of the form J(q) = Y ien Dovex Uiy @i In this
case, we can follow the approach in Section 3 with minor modifications to choose the parameters
{Pf,ieN, LeK, t€T} in the value function approximations so that the greedy policy with
respect to the linear value function approximations is half-approximate. Furthermore, we can follow
the approach in Section 4 with minor modifications to perform rollout on a static policy, yielding

a policy that is also half-approximate.
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