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We examine the revenue-utility assortment problem with the goal of finding an assortment that maximizes

a linear combination of the expected revenue of the firm and the expected utility of the customer. This

criterion captures the tradeoff between the firm-centric objective of maximizing the expected revenue and

the customer-centric objective of maximizing the expected utility. The customers choose according to the

multinomial logit model, and there is a constraint on the offered assortments characterized by a totally

unimodular matrix. We can solve the revenue-utility assortment problem by finding the assortment that

maximizes only the expected revenue, after adjusting the revenue of each product by the same constant.

To find an optimal assortment, we use a parametric linear program to generate a collection of candidate

assortments that is guaranteed to include an optimal solution to the revenue-utility assortment problem. This

collection of candidate assortments also allows us to construct an efficient frontier that shows the optimal

expected revenue-utility pairs as we vary the weights in the objective function. Furthermore, we develop a

procedure that limits the number of candidate assortments placed under consideration while maintaining the

solution quality. Through extensive examples, we demonstrate a broad range of applications that fit within

our framework.

Key words : choice modeling, multinomial logit, revenue-utility tradeoff, totally unimodular constraints

1. Introduction

In the revenue management literature, discrete choice models continue to receive attention

as an attractive option for modeling demand, because these models capture the substitution

possibilities among products. By using discrete choice models, we can develop demand models

* This manuscript extends and overrides the unpublished work by Davis et al. (2013), in which the authors focused

on maximizing the expected revenue under the multinomial logit model with totally unimodular constraints.
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that capture the fact that customers choose and substitute among products and that if a certain

product is unavailable, then some customers may substitute another product, whereas others may

decide to leave the system without making a purchase. A growing body of literature indicates

that capturing the customer choice process by using discrete choice models can yield better

operational decisions; see, for example, Talluri and van Ryzin (2004), Vulcano et al. (2010), and

Feldman et al. (2019). However, most of this literature focuses on the firm-centric objective of

maximizing expected revenue, leaving customer-centric objectives relatively untouched.

We study an optimization problem whose objective is to find an assortment that maximizes a

linear combination of the expected revenue of the firm and the expected utility of the customer.

This criterion captures the tradeoff between the firm-centric objective of expected revenue and the

customer-centric objective of expected utility. Customers choose among the products according to

the multinomial logit model, and there are constraints on the offered assortment characterized by

a totally unimodular matrix. Our totally unimodular constraints encompass numerous assortment

and pricing applications with different operational constraints. We refer to our optimization

problem as the revenue-utility assortment problem.

We show that we can obtain an optimal solution to the revenue-utility assortment problem by

finding an assortment that maximizes only the expected revenue, after adjusting the revenue of

each product by the same amount. To find an optimal assortment, we formulate a parametric linear

program (LP) that generates a collection of candidate assortments that is guaranteed to include an

optimal solution to the revenue-utility assortment problem. Moreover, this collection of candidate

assortments includes an optimal solution to the revenue-utility assortment problem for every value

of the weights we put on the expected revenue and the expected utility, and this property allows us

to construct an efficient frontier that shows the optimal revenue-utility pairs as the weights vary.

Moreover, we develop an approach that considers only a limited number of candidate assortments

and simultaneously maintains a prespecified solution quality.

Main Contributions: To gain an overview of our problem setup, letN = {1,2, . . . , n} denote the

set of available products. An assortment is represented by a vector x= (x1, . . . , xn)∈ {0,1}n, where

xi = 1 if and only if we offer product i. The set of feasible assortments is F = {x∈ {0,1}n : Ax ≤ b},
where A is a totally unimodular matrix. We give numerous examples that formulate operationally

useful assortment and pricing problems through totally unimodular constraints. Customers choose

among the products according to the multinomial logit model. Our goal is to find an assortment

that maximizes a linear combination of the expected revenue and the expected utility, where we

put a weight of one on the expected revenue and a weight of λ on the expected utility. When we
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need to explicitly refer to the weight on the expected utility, we refer to our assortment problem

as the (1, λ)-weighted revenue-utility assortment problem.

Novel formulation. Our objective function and constraints incorporate novel features. The

objective function considers both the firm-centric expected revenue and the customer-centric

expected utility. Through totally unimodular constraints, we capture a variety of practically

relevant applications, in which we can impose bounds on the number of offered products,

incorporate display location effects, and formulate assortment problems that choose the offered

products as well as their prices. In our problem formulation, we build on the fact that the

multinomial logit model is compatible with the random utility maximization principle, according to

which a customer associates random utilities with the alternatives and chooses the alternative with

the largest utility; see, for example, McFadden (1974). Naturally, if the utilities of all alternatives

are shifted by a constant, then the choice process of the customers does not change. To ensure

that the objective function of our revenue-utility assortment problem remains invariant to such

a constant shift, we focus on the expected utility of the customer net of the expected utility she

would have received if she had left without making a purchase. Our approach is equivalent to

normalizing the mean utility of the no-purchase option to zero.

Characterization of an optimal assortment. We construct a lower bound on the objective

function of the revenue-utility assortment problem that requires computing only the expected

revenue, but after adjusting the revenue associated with each product by the same additive

constant (Lemma 3.1). We show that this lower bound is tight at the optimal solution, in

the sense that we can obtain an optimal solution to the revenue-utility assortment problem by

finding an assortment that maximizes only the expected revenue, after adjusting the revenue

associated with each product by the same additive constant (Theorem 3.2). This characterization

establishes a new and critical connection between the expected revenue-utility and the standard

expected revenue objective functions. An immediate consequence of this structural property is

that when there is no constraint, an optimal solution to the revenue-utility assortment problem is

a revenue-ordered assortment that offers a certain number of products with the largest revenues

(Corollary 3.3). Unfortunately, computing the “right” adjustment in the revenues of the products

requires maximizing a nonconcave function with many local maxima, which is challenging. However,

as discussed in the next paragraph, we build on this connection to develop a solution method for

the revenue-utility assortment problem.

Efficient solution methods. We develop an approach to solving the revenue-utility assortment

problem that is based on solving a parametric LP. In this LP, we vary a parameter over the

real line to generate a collection of candidate assortments such that the collection is guaranteed
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to include an optimal solution to the revenue-utility assortment problem (Theorem 4.1). Using

ri and vi to denote the revenue and preference weight, respectively, of product i, scaling all the

revenues and preference weights so that they take integer values, and letting m be the number

of constraints, we show that the number of candidate assortments in the collection is at most

min
{

1 +n maxi∈N vi, 2 + 2n maxi∈N ri vi, (m+n)1+m
}

(Theorem 4.2). The first two terms of the

minimum show that for fixed revenues and preference weights, the number of candidate assortments

grows linearly with the number of products; the last term shows that for a fixed number of

constraints, the number of candidate assortments grows polynomially with the number of products.

An important feature of our collection of candidate assortments is that it is independent of the

weight λ in the (1, λ)-weighted revenue-utility assortment problem. Thus, once we construct the

collection of candidate assortments, we can use the same collection to solve the (1, λ)-weighted

revenue-utility assortment problem for all values of λ simultaneously. This allows us to construct

an efficient frontier that shows the optimal expected revenue-utility pairs as the weight λ varies.

We also develop an approach that balances solution quality and computational effort. Letting

Vmin and Vmax be the smallest and largest preference weights, respectively, for a given grid size

ρ > 0, our approach generates a collection of O
(

1
ρ

log (nVmax/Vmin)
)

candidate assortments and

ensures that the collection includes a solution whose objective value is at least 1/(1 + ρ) of the

optimal value. By adjusting the value of ρ, we can strike a balance between the solution quality and

the number of candidate assortments, the latter quantity being a measure of computational effort.

An LP for expected revenue maximization. When λ = 0, the objective function of the

(1, λ)-weighted revenue-utility assortment problem reduces to the expected revenue criterion. Even

in this simpler setting, we offer a novel contribution by showing that if there are constraints on

the assortment characterized by a totally unimodular matrix, then we can maximize the expected

revenue by solving an LP with n + 1 variables and n + m + 1 constraints (Theorem 5.2). Our

analysis uses the LP duality and can potentially be applied to other assortment problems, providing

connections between LP and assortment optimization.

Applications. We describe five practical problem classes that can be formulated using totally

unimodular constraints. First, we consider a variety of cardinality constraints that limit the number

of products in the offered assortment. Second, we consider assortment problems with display

location effects, in which the attractiveness of each product depends on its attributes as well as on

the location where the product is displayed. Display location effects are a common consideration

in retail, because getting a prime location can boost the attractiveness of the products displayed

on a shelf or a web page. Third, we consider pricing problems in which there is a finite menu

of possible prices and the attractiveness of a product depends on its price. In our formulation of
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the pricing problem, the relationship between the attractiveness of a product and its price can be

arbitrary. Fourth, we consider pricing problems with a price ladder constraint, in which there is

an inherent ordering in the qualities of the products and the prices of the products must adhere to

the same ordering. Fifth, we consider assortment problems with product precedence constraints,

such that a particular product cannot be offered unless certain related products are also offered.

These five applications can be modeled using totally unimodular constraints. To demonstrate the

effectiveness of our solution methods, we conduct numerical experiments on assortment problems

with display location effects and pricing problems.

Related Literature: Our paper is related to research on assortment problems under the

multinomial logit model, the goal of which is to find an assortment that maximizes the

expected revenue. Talluri and van Ryzin (2004) and Gallego et al. (2004) examine the problem

without any constraints, and both studies show that an optimal assortment is revenue ordered.

Rusmevichientong et al. (2009) present a polynomial-time approximation scheme for instances in

which each product has a space requirement and there is a limit on the total space consumption of

the offered products. Rusmevichientong et al. (2010) focus on cardinality constraints on the offered

assortment and develop an efficient algorithm for computing an optimal assortment. Bront et al.

(2009), Mendez-Diaz et al. (2014), Rusmevichientong et al. (2014), and Desir et al. (2016) focus on

the assortment problem under a mixture of multinomial logit models in which there are multiple

customer types and customers of different types choose according to different multinomial logit

models. The authors of these studies characterize the computational complexity of the problem and

provide heuristics, integer programming formulations, and approximation methods. Gallego et al.

(2015) show that the assortment problem under the multinomial logit model can be formulated

as an LP even when products consume combinations of resources and there are constraints on the

expected consumption of each resource, but their approach does not consider constraints on what

assortments can be offered.

The work presented in this paper is an outgrowth of our earlier work, which was circulated as an

unpublished technical report (Davis et al. 2013); in that report, we focused on finding an assortment

that maximizes only the expected revenue without considering the expected utility. We believe the

work in this paper is unique and amplifies our unpublished work substantially, because this paper

is one of very few studies that take a customer-centric view of assortment optimization, allowing

us to manage the tradeoff between firm-specific and customer-specific objectives. Moreover, much

of the assortment optimization work, including that of Davis et al. (2013), exploits the fact that

the expected revenue under the multinomial logit model can be written as a fraction of two linear

functions; see Davis et al. (2014), Feldman and Topaloglu (2015), and Li et al. (2015) for work
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under other choice models that build on a similar fractional structure of the expected revenue

function. This structure immediately breaks down when we include the expected utility in the

objective function. Our algorithmic approach, which constructs a lower bound on the objective

function of the revenue-utility assortment problem and parametrically maximizes this lower bound,

differs substantially from the approaches used in the previous literature. Other work on assortment

optimization under the multinomial logit model includes Wang (2012), Abeliuk et al. (2016), Aouad

et al. (2018), Sen et al. (2018), Wang and Sahin (2018), Aouad et al. (2019), and Flores et al. (2019).

We are aware of only two other papers on assortment problems with customer-centric objectives.

Ashlagi and Shi (2016) formulate the problem of designing school choice menus as a large-scale

optimization problem. Their column generation subproblem has an objective function similar to

ours. However, they use an entirely different argument to characterize an optimal assortment, and

they do not consider efficient algorithms under constraints on the offered assortment or pricing

variants. In the context of drug design, Truong (2014) formulates an assortment problem that

minimizes the difference between the expected cost and the expected utility. Her expected cost

function is similar to our expected revenue, but since she focuses on minimizing the difference

between the expected cost and the expected utility, the structure of her objective function is

different. Moreover, she does not consider pricing variants or constraints on the offered assortment.

Our pricing application uses discrete price menus. Pricing models traditionally assume a

parametric relationship between the price and the preference weight of a product. For example,

if the mean utility of a product is linear in its prices, then the preference weight of product i, as

a function of its price p, is given by eαi−βi p for constants (αi, βi). Under these parametric forms,

the expected revenue is smooth in the prices; see, for example, Song and Xue (2007), Dong et al.

(2009), Li and Huh (2011), Gallego and Wang (2014), Li and Huh (2015), Li and Webster (2017),

and Chen and Gallego (2019). Our application to the pricing problem in Section 6.3 allows the

preference weight of an item to depend on its price in an arbitrary fashion, without any restriction.

Furthermore, since we work with discrete price menus, we can limit attention to operationally

appealing prices, such as those in increments of a dollar or those that have 99 cents as the final digits.

Organization: In Section 2, we formulate our assortment problem. In Section 3, we show that

the revenue-utility assortment problem can be solved by finding an assortment that maximizes

the expected revenue, after adjusting the revenues of all products by the same additive amount.

In Section 4, we use this observation to formulate a parametric LP to generate a collection of

candidate assortments. In Section 5, we develop a method that balances the number of candidate

assortments with the solution quality. In Section 6, we discuss applications with totally unimodular

constraints. We present numerical experiments in Section 7 and offer conclusions in Section 8.
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2. Problem Formulation

Let N = {1,2, . . . , n} denote the set of products. The revenue associated with product i is ri ≥ 0.

We use x= (x1, . . . , xn)∈ {0,1}n to capture the subset of products that we offer to the customers,

where xi = 1 if and only if we offer product i. We refer to the vector x simply as the assortment

that we offer. The customers make a choice within the assortment that we offer according to the

multinomial logit model. Under the multinomial logit model, a customer associates a random utility

with each product i, which has the Gumbel distribution with location and scale parameters (µi,1).

Similarly, a customer associates a random utility with the no-purchase option, which also has

the Gumbel distribution with location and scale parameters (µ0,1). The customer chooses the

available alternative that provides the largest utility; this alternative may be one of the products

in the offered assortment or the no-purchase option. Letting vi = eµi denote the preference weight

of product i and v0 = eµ0 denote the preference weight of the no-purchase option, if we offer the

assortment x, then the customer chooses product i with probability

φi(x) =
vi xi

v0 +
∑

j∈N vj xj
.

Under the assortment x, the expected utility that the customer obtains from the chosen alternative

is log(v0 +
∑

i∈N vi xi) +Q, where Q is the Euler-Mascheroni constant (McFadden 1974).

We have two goals in mind when choosing the assortment to offer. First, we want to maximize the

expected revenue obtained from the customer. When the customer chooses product i, we obtain a

revenue of ri, so if we offer the assortment x, then the expected revenue obtained from the customer

is
∑

i∈N φi(x) ri =
∑

i∈N ri vi xi/
(
v0 +

∑
j∈N vj xj

)
. Second, we want to maximize the expected

utility that the customer receives from the chosen alternative, net of the expected utility that she

obtains when she must choose the no-purchase option. The expected utility of the no-purchase

option is log v0 +Q. Therefore, if we offer the assortment x, then the customer’s expected utility

from the alternative she chooses, net of the expected utility she obtains when she must choose

the no-purchase option, is log
(
v0 +

∑
i∈N vi xi

)
+ Q − log v0 − Q = log

(
1 +

∑
i∈N

vi
v0
xi

)
. Letting

V (x) =
∑

i∈N
vi
v0
xi for notational brevity and using r= (r1, . . . , rn) to denote the vector of product

revenues, if we offer the assortment x, then the expected revenue and the net expected utility of

the customer are, respectively, given by

Rev(x;r) =

∑
i∈N ri vi xi

v0 +
∑

i∈N vi xi
and Util(x) = log(1 +V (x)).

We focus on the net expected utility rather than the expected utility for the following reason. If we

multiply the preference weight of all alternatives by a constant, then the choice probability of each
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alternative remains the same. Therefore, if we estimate the parameters of the multinomial logit

model from the data, then we can estimate them only up to a multiplicative constant; see Section 3.5

in Train (2003). If we multiply the preference weights of all alternatives by α, then the expected

utility of the customer increases from log(v0 +
∑

i∈N vi xi) +Q to logα+ log(v0 +
∑

i∈N vi xi) +Q.

Thus, the expected utility of the customer depends on a multiplicative constant that applies to

the preference weights of all alternatives, but we cannot estimate such a multiplicative constant

from the data. On the other hand, even when we multiply the preference weights of all alternatives

by α, the expected net utility of the customer remains the same as log
(

1 +
∑

i∈N
vi
v0
xi

)
. Thus,

by focusing on the net expected utility, we obtain a measure of utility that is insensitive to a

multiplicative constant that applies to all preference weights. Lastly, we need to find assortments

that maximize the expected revenue under different product revenues, so we make explicit the

dependence of Rev(x;r) on the product revenues r.

The set of feasible assortments that we can offer is given by F = {x∈ {0,1}n : Ax≤ b}, where m

is the number of constraints, A∈Rm×n is a totally unimodular matrix, and b ∈Rm is an integral

vector. We express our set of feasible assortments by using “less than or equal to” constraints, but

negating or duplicating a row of a totally unimodular matrix preserves its total unimodularity.

Thus, we can accommodate “greater than or equal to” or “equal to” constraints by replacing a

“greater than or equal to” constraint with the negative of a “less than or equal to” constraint and

by replacing an “equal to” constraint with a pair of “less than or equal to” and “greater than or

equal to” constraints; see Proposition 2.2 in Chapter III.1 in Nemhauser and Wolsey (1988). Our

goal is to find a feasible assortment that maximizes a linear combination of the expected revenue

and the net expected utility. Let λ ≥ 0 be a parameter that controls the tradeoff between the

expected revenue and the expected utility. We want to solve the following optimization problem:

Z∗λ = max
x∈F

{
Rev(x;r) +λUtil(x)

}

= max
x∈F

{ ∑
i∈N ri vi xi

v0 +
∑

i∈N vi xi
+λ log(1 +V (x))

}
. (Revenue-Utility)

Next, we characterize an optimal solution to the Revenue-Utility problem and use the

characterization to create a collection of candidate assortments that contains an optimal solution.

3. Characterization of an Optimal Assortment

In the Revenue-Utility problem, both the expected revenue Rev(x;r) and the expected utility Util(x)

depend on the offered assortment x. The next lemma provides a lower bound on the objective

function of the Revenue-Utility problem that requires computing only the expected revenue, but not
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the expected utility. In this lemma and throughout the rest of the paper, we let e∈Rn be a vector

of all ones, Vmin = mini∈N vi/v0 and Vmax = maxi∈N vi/v0. Moreover, we assume that F includes a

nonempty assortment; otherwise, the Revenue-Utility problem is trivial.

Lemma 3.1 (Lower Bound) Noting that the objective function of the Revenue-Utility problem is

Rev(x;r) +λ log(1 +V (x)), we have that for all x∈F and t∈ [Vmin, nVmax],

Rev(x;r) +λ log(1 +V (x)) ≥ Rev(x;r+λ (1 + t)e) + λ (log(1 + t)− t) .

Proof: Consider increasing the revenues of all products by some amount α∈R. Using the definitions

of Rev(x;r) and V (x), for any x∈F , we have

Rev(x;r+αe) =

∑
i∈N (ri +α)vi xi

v0 +
∑

i∈N vi xi
=

∑
i∈N ri vi xi

v0 +
∑

i∈N vi xi
+

α
∑

i∈N
vi
v0
xi

1 +
∑

i∈N
vi
v0
xi

= Rev(x;r)+
αV (x)

1 +V (x)
.

Because log(1+a) is concave in a and its derivative at a is 1/(1+a), by the subgradient inequality,

we have log(1 + b) ≤ log(1 + a) + 1
1+a

(b − a) for all a ∈ R+ and b ∈ R+, which is equivalent to

log(1 + a)≥ log(1 + b)− b+ (1+b)a

1+a
. For any x ∈ F and t ∈ [Vmin, nVmax], using this inequality with

a= V (x) and b= t, we get log(1 +V (x))≥ log(1 + t)− t+ (1+t)V (x)

1+V (x)
. So, we have

Rev(x;r) +λ log(1 +V (x)) ≥ Rev(x;r) +λ

{
log(1 + t)− t+

(1 + t)V (x)

1 +V (x)

}

= Rev(x;r+λ (1 + t)e) + λ (log(1 + t)− t) ,

where the last equality follows from the identity at the beginning of the proof with α= λ (1 + t).

Since Rev(x;r+λ (1 + t)e) +λ (log(1 + t)− t) is a lower bound on the objective function of the

Revenue-Utility problem for all x ∈ F and t ∈ [Vmin, nVmax], we can maximize this function over

all x ∈ F and t ∈ [Vmin, nVmax] to obtain a lower bound on the optimal objective value of the

Revenue-Utility problem. In other words, we can solve the problem

max
t∈[Vmin,nVmax]

{
max
x∈F

{
Rev(x;r+λ (1 + t)e)

}
+λ (log(1 + t)− t)

}
. (Parametric)

The next theorem shows that the above Parametric lower bound on the optimal objective value

of the Revenue-Utility problem is actually tight. Furthermore, we can use an optimal solution to

the Parametric problem to obtain an optimal solution to the Revenue-Utility problem, yielding a

characterization of an optimal solution to the Revenue-Utility problem.

Theorem 3.2 (Revenue-Utility Solution) If (t∗,x∗) is an optimal solution to the Parametric

problem, then x∗ is also an optimal solution to the Revenue-Utility problem. Furthermore, the

Parametric and Revenue-Utility problems have the same optimal objective value.
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Proof: Let x̂ be an optimal solution to the Revenue-Utility problem providing the optimal

objective value Z∗λ. Since x∗ is a feasible solution to the Revenue-Utility problem, we have

Z∗λ ≥ Rev(x∗; r) +λ log(1 +V (x∗)). Using Lemma 3.1 with x=x∗ and t= t∗, we have

Rev(x∗; r) +λ log(1 +V (x∗)) ≥ Rev(x∗; r+λ (1 + t∗)e) +λ (log(1 + t∗)− t∗)
(a)

≥ Rev(x̂ ; r+λ (1 +V (x̂))e) + λ (log(1 +V (x̂))−V (x̂))

(b)
= Rev(x̂ ;r) +

λ (1 +V (x̂))V (x̂)

1 +V (x̂)
+λ (log (1 +V (x̂))−V (x̂))

= Rev(x̂ ;r) + λ log(1 +V (x̂)) = Z∗λ,

where (a) holds because F includes a nonempty assortment, yielding x̂ 6= 0∈Rn+, in which case we

get V (x̂) ∈ [Vmin, nVmax], so (V (x̂), x̂) is a feasible but not necessarily an optimal solution to the

Parametric problem, whereas (b) follows by the identity at the beginning of the proof of Lemma 3.1

with α= λ (1 +V (x̂)). Since Z∗λ ≥ Rev(x∗; r) +λ log(1 +V (x∗)), all of the above inequalities hold

as equalities, in which case Rev(x∗; r+λ (1+ t∗)e)+λ (log(1 + t∗)− t∗) =Z∗λ, so the Parametric and

Revenue-Utility problems have the same optimal objective value. Similarly, since all of the above

inequalities hold as equalities, we have Rev(x∗; r) + λ log(1 + V (x∗)) = Z∗λ, which implies that x∗

is an optimal solution to the Revenue-Utility problem.

By Theorem 3.2, letting t∗ be an optimal solution to the outer maximization problem in the

Parametric problem, we can obtain an optimal solution to the Revenue-Utility problem by solving the

problem maxx∈F Rev(x;r+λ (1 + t∗)e). Thus, we can solve the Revenue-Utility problem by finding

an assortment that maximizes only the expected revenue, as long as we shift all product revenues

by λ (1 + t∗). However, finding an optimal solution to the outer maximization in the Parametric

problem to determine t∗ is difficult. In Figure 3, we plot the objective function of the outer

maximization as a function of t, which involves multiple local maxima. Instead of trying to find the

global maximum, our approach in Section 4 generates a collection of candidate assortments without

knowing the value of t∗ such that this collection is guaranteed to contain an optimal solution to the

problem maxx∈F Rev(x;r+λ (1 + t∗)e). The collection of candidate assortments thus includes an

optimal solution to the Revenue-Utility problem as well. By checking the objective value associated

with each candidate assortment, we determine an optimal solution to the Revenue-Utility problem.

We close this section with a corollary to Theorem 3.2, which shows that a revenue-ordered

assortment is optimal to the Revenue-Utility problem when there is no constraint.

Corollary 3.3 (Revenue-Ordered) If there is no constraint, then a revenue-ordered assortment

solves the Revenue-Utility problem; that is, if F = {0,1}n and the products are indexed such that

r1 ≥ r2 ≥ . . .≥ rn, then there exists an optimal solution x∗ to the Revenue-Utility problem such that

x∗i = 1 for all i≤ s∗ and x∗i = 0 for all i > s∗ for some s∗ ∈N .
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Figure 1 The objective function of the outer maximization in the Parametric problem as a function of

t ∈ [Vmin, nVmax], with n = 6, F = {0,1}n, λ = 0.37, (r1, . . . , r6) = (1.89,1.71,1.65,0.67,0.45,0.34),

(v1, . . . , v6) = (0.24,0.54,1.05,1.94,2.11,2.51), and v0 = 1.

Proof: It is well-known that a revenue-ordered assortment maximizes the expected revenue when

there is no constraint; that is, if r1 ≥ r2 ≥ . . . ≥ rn, then an optimal solution x∗ to the problem

maxx∈{0,1}n Rev(x;r) is of the form x∗i = 1 for all i≤ s∗ and x∗i = 0 for all i > s∗ for some s∗ ∈N ; see,

for example, Talluri and van Ryzin (2004). By the discussion that follows Theorem 3.2, an optimal

solution to maxx∈{0,1}n Rev(x;r+λ (1 + t)e) for some t ∈ [Vmin, nVmax] is also an optimal solution

to the Revenue-Utility problem. In the last problem, the revenue of product i is ri +λ (1 + t). Since

adding a constant to the revenue of each product does not change the ordering of the revenues, a

revenue-ordered assortment is optimal for the last problem as well.

Corollary 3.3 generalizes existing results on the optimality of revenue-ordered assortments for

the unconstrained expected revenue maximization problem. Even when the objective function

includes the expected utility in addition to the expected revenue, revenue-ordered assortments

remain optimal. Next, we focus on generating our collection of candidate assortments.

4. Constructing Candidate Assortments

From the discussion in the previous section, we know that an optimal solution to the Revenue-Utility

problem can be obtained by solving the problem maxx∈F Rev(x;r + λ (1 + t∗)e) for some

t∗ ∈ [Vmin, nVmax]. Note that Rev(x;r+λ (1 + t∗)e) =
∑

i∈N (ri+λ (1+t∗))vi xi
v0+

∑
i∈N vi xi

≥ γ if and only if
∑

i∈N (ri− γ+λ (1 + t∗))vi xi ≥ v0 γ. Motivated by this observation, we consider the following LP:

LP(γ) = max
x∈Rn

+

{∑

i∈N
(ri− γ)vi xi

∣∣∣ Ax ≤ b, xi ≤ 1 ∀ i∈N
}
. (Candidate LP)
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Since the constraint matrix A is totally unimodular, it is a standard result that the Candidate LP

has an optimal solution with all decision variables taking binary values; see Proposition 2.2

in Chapter III.1 in Nemhauser and Wolsey (1988). Therefore, for each γ ∈ R, there exists an

optimal solution xLP(γ)∈F to the Candidate LP problem. We consider the collection of candidate

assortments given by {xLP(γ) : γ ∈R}. Solving the Candidate LP for all γ ∈R is an application of

a parametric LP; see Chapter 5.5 in Bertsimas and Tsitsiklis (1997). The optimal objective value

of the Candidate LP, given by LP(γ), is continuous, piecewise linear, decreasing, and convex in γ.

The number of breakpoints of the function LP(·) gives the cardinality of {xLP(γ) : γ ∈R}. The next

theorem shows that {xLP(γ) : γ ∈R} contains an optimal solution to the Revenue-Utility problem.

Theorem 4.1 (Collection of Candidate Assortments) There exists an optimal solution to

the Revenue-Utility problem that is in the collection of assortments {xLP(γ) : γ ∈R}.

Proof: Let t∗ be an optimal solution to the outer maximization in the Parametric problem, and

let γ∗ = maxx∈F Rev(x;r+λ (1 + t∗)e). We set x∗ = xLP(γ∗− λ (1 + t∗)); that is, x∗ is an optimal

solution to the Candidate LP when solved with γ = γ∗− λ (1 + t∗). We will prove by contradiction

that x∗ is an optimal solution to the problem maxx∈F Rev(x;r+λ (1 + t∗)e). Suppose on the

contrary that x∗ is not an optimal solution to the problem maxx∈F Rev(x;r+λ (1 + t∗)e), so that

γ∗ > Rev(x∗;r+λ (1 + t∗)e) =
∑

i∈N (ri+λ (1+t∗))vi x
∗
i

v0+
∑

i∈N vi x
∗
i

. Focusing on the first and third expressions in

this chain of inequalities and rearranging the terms, we get
∑

i∈N (ri− γ∗+λ (1 + t∗))vi x
∗
i < v0 γ

∗.

Moreover, each x ∈ F is a feasible solution to the Candidate LP when solved with

γ = γ∗−λ (1 + t∗), but x∗ is an optimal solution to this LP, which implies that
∑

i∈N (ri− γ∗+λ (1 + t∗))vi xi ≤
∑

i∈N (ri− γ∗+λ (1 + t∗))vi x
∗
i for all x ∈ F . Therefore, for each

x∈F , we have

∑

i∈N
(ri− γ∗+λ (1 + t∗))vi xi ≤

∑

i∈N
(ri− γ∗+λ (1 + t∗))vi x

∗
i < v0 γ

∗.

Focusing on the first and third expressions above and solving for γ∗, we get
∑

i∈N (ri+λ (1+t∗))vi xi
v0+

∑
i∈N vi xi

< γ∗

for each x∈F . This contradicts the fact that γ∗ = maxx∈F Rev(x;r+λ (1 + t∗)e)!

By the argument in the previous paragraph, we have established that x∗ is an optimal solution

to the problem maxx∈F Rev(x;r + λ (1 + t∗)e). It follows from Theorem 3.2 that x∗ is also an

optimal solution to the Revenue-Utility problem. Lastly, since x∗ = xLP(γ∗ − λ (1 + t∗)), we have

x∗ ∈ {xLP(γ) : γ ∈ R}. Therefore, there exists an optimal solution to the Revenue-Utility problem

that is in the collection of assortments {xLP(γ) : γ ∈R}.

We can use a parametric LP to construct the collection {xLP(γ) : γ ∈R} of assortments such that

this collection includes an optimal solution to the Candidate LP for all γ ∈R. By Theorem 4.1, an
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optimal solution to the Revenue-Utility problem is guaranteed to be in this collection. To emphasize

that this collection has a finite number of assortments, we write

{xLP(γ) : γ ∈R} = {x`Cand ∈F : `= 1, . . . ,L} , (Collection of Candidate Assortments)

where L is the number of candidate assortments, and for each `, x`Cand is a candidate assortment,

corresponding to an optimal solution to the Candidate LP for some γ.1 The above expression

highlights the discrete nature of the collection of candidate assortments. The next theorem shows

that L is upper bounded by the minimum of three terms. The first two terms show that for fixed

preference weights and revenues, L is linear in the number of products n; the third term shows

that for a fixed number of constraints m, L is polynomial in n. Note that as long as the preference

weights and revenues of the products are rationals, we can assume that the preference weights and

revenues are integers, because by the discussion in Section 2, we can scale the preference weights

and revenues by the same constant.

Theorem 4.2 (Number of Candidate Assortments) If vi and ri vi are integers for all i∈N ,

then L ≤ min
{

1 +n maxi∈N vi, 2 + 2n maxi∈N ri vi, (m+n)1+m
}

.

Proof: The bound (m+ n)1+m follows by counting the number of extreme point solutions of an

LP. Including the slack variables for the two sets of constraints, the Candidate LP has 2n + m

decision variables and n+m constraints, in which case a naive argument shows that the number of

extreme point solutions of this LP is
(
2n+m
n+m

)
=O((2n+m)n), but since n of the n+m constraints

are bounds on the decision variables, we can use a more refined argument to establish the bound

of (m+ n)1+m. We defer the details to Appendix A. Here, we prove the bounds 1 + n maxi∈N vi

and 2 + 2n maxi∈N ri vi using a technique adapted from Carstensen (1983). Note that the function

γ 7→ LP(γ) is continuous, piecewise linear, decreasing, and convex in γ. As γ ranges over R, the

number of breakpoints of LP(·) gives the number of possible optimal solutions to the Candidate LP.

For each x∈F , let `x(γ) =
∑

i∈N (ri− γ)vi xi, which is linear in γ. In this case, we have

LP(γ) = max{`x(γ) : x∈F} ,

where we use the fact that there exists a binary-valued optimal solution to the Candidate LP. Thus,

LP(·) is the pointwise maximum of the lines {`x(·) : x ∈F}. If two lines `x′(·) and `x′′(·) have the

same slope, then we can eliminate one of the lines from the set {`x(·) : x ∈ F} without changing

the function LP(·). Therefore, the number of lines in the set {`x(·) : x ∈ F} that is necessary to

describe the function LP(·) is the number of different slopes for these lines. The slope of the line

1 If for some γ there are multiple optimal solutions, we break ties using a deterministic tie-breaking rule.
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`x(·) is −∑i∈N vi xi, which is an integer between −∑i∈N vi and zero. Therefore, there are at most

1 +
∑

i∈N vi ≤ 1 + nmaxi∈N vi different slopes for the lines in the set {`x(·) : x ∈ F}, yielding at

most 1 +nmaxi∈N vi breakpoints.

Similarly, if three lines `x′(·), `x′′(·), and `x′′′(·) have the same intercept, then we can eliminate

one of the lines from the set {`x(·) :x∈F} without changing the function LP(·). Thus, the number

of lines in the set {`x(·) : x ∈ F} that is necessary to describe the function LP(·) is twice the

number of different intercepts for these lines. The intercept of the line `x(·) is
∑

i∈N rj vj xj, which

is an integer between zero and
∑

i∈N ri vi, so we get at most 1 +nmaxi∈N ri vi different intercepts,

yielding at most 2 + 2nmaxi∈N vi breakpoints.

Note that since the bound (m+ n)1+m is based on counting the extreme point solutions of an

LP, it holds even when vi and ri vi are not integers.

Efficient Frontier for the Revenue-Utility Tradeoff: The parameter λ in the Revenue-Utility

problem controls the tradeoff between the expected revenue and the expected utility. Often, we

want to understand how the optimal expected revenue and expected utility, along with the optimal

solution to the Revenue-Utility problem, change as a function of the parameter λ. Letting x∗λ be an

optimal solution to the Revenue-Utility problem as a function of λ, we want to compute Rev(x∗λ;r)

and Util(x∗λ) for all λ≥ 0 simultaneously. Here, the key observation is that the parameter λ does

not play any role in the Candidate LP. Thus, the Collection of Candidate Assortments given by

{x`Cand : `= 1, . . . ,L} includes an optimal solution to the Candidate LP for every possible value of

γ ∈R, and this collection of candidate assortments is independent of the value of the parameter λ.

Therefore, when solving the Revenue-Utility problem for any value of λ≥ 0, we can use the same

candidate assortments; thus, for all λ≥ 0, x∗λ = arg max
{
Rev(x`Cand;r) +λUtil(x`Cand) : `= 1, . . . ,L

}
.

Figure 2 shows the efficient frontier of attainable expected revenue-utility pairs for a certain

problem instance. The crosses correspond to the pairs {(Rev(x∗λ;r),Util(x∗λ)) : λ ≥ 0}. Naturally,

larger expected utility comes at the expense of smaller expected revenue.

5. A Discretization Method for Dealing with Many Candidate Assortments

When the number of candidate assortments is large, a natural question is whether we can come up

with a smaller collection of candidate assortments while ensuring that we can obtain a near-optimal

solution to the Revenue-Utility problem by using the smaller collection. In this section, we give a

discretization method that allows us to consider only a small number of candidate assortments

while controlling the quality of the solutions we obtain by doing so. By Theorem 3.2, if (t∗,x∗)
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Figure 2 The efficient frontier for a particular problem instance with n= 100, F = {x∈ {0,1}n :
∑

i∈N xi ≤ 50},

v0 = 1, and for each i∈N , ri is uniformly generated over [0,1] and vi = 1− r2i .

is an optimal solution to the Parametric problem, then we can obtain an optimal solution to the

Revenue-Utility problem by solving the problem maxx∈F Rev(x;r+λ (1+t∗)e). In our discretization

method, we build a one-dimensional geometric grid that covers the interval [Vmin, nVmax].

For each value of t in the grid, we solve the problem maxx∈F Rev(x;r+λ (1 + t)e) to get

a candidate assortment. We check the objective value of each candidate assortment for the

Revenue-Utility problem and pick the best one. The formal description of our discretization method

is presented below.

Discretization Method for Revenue-Utility Maximization

Initialization: Pick a grid size ρ > 0. Using d·e and b·c to denote the round up and round down

functions, define the geometric grid over the interval [Vmin, nVmax] as

Grid=
{

(1 + ρ)k : k= dlogVmin/ log(1 + ρ)e, . . . , blog(nVmax)/ log(1 + ρ)c
}
∪
{
Vmin, nVmax

}
.

Description of the Method: For each t ∈ Grid, let x̂t be an optimal solution to the problem

maxx∈F Rev(x,r+λ (1 + t)e).

Output: Return the assortment x̂ from the collection {x̂t : t∈Grid} with the largest objective

value for the Revenue-Utility problem; that is, x̂= arg max
t∈Grid Rev(x̂t,r) +λ log(1 +V (x̂t)).

Our main results are stated in the next two theorems. The first theorem shows that the output of

the discretization method provides a 1/(1+ρ)-approximate solution to the Revenue-Utility problem.

The second theorem shows that for each t∈Grid, x̂t can be computed by solving an LP.
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Theorem 5.1 (Performance) The output x̂ is a 1/(1 + ρ)-approximation to the Revenue-Utility

problem; that is, Rev
(
x̂;r

)
+λ log(1 +V (x̂))≥Z∗λ/(1 + ρ).

Proof: Let x∗ be an optimal solution to the Revenue-Utility problem. Since V (x∗) ∈ [Vmin, nVmax],

let t̂∈Grid be such that t̂≤ V (x∗)≤ (1 + ρ) t̂. By the definition of x̂, we get

Rev (x̂ ; r) +λ log
(
1 +V (x̂)

)
≥ Rev (x̂t̂ ; r) +λ log

(
1 +V (x̂t̂)

)

(a)

≥ Rev
(
x̂t̂ ; r+λ (1 + t̂ )e

)
+λ

(
log(1 + t̂ )− t̂

)

(b)

≥ Rev
(
x∗ ; r+λ (1 + t̂ )e

)
+λ

(
log(1 + t̂ )− t̂

)
,

where (a) follows from using Lemma 3.1 with x = x̂t̂ and t = t̂, whereas (b) follows because, by

definition of the discretization method, x̂t̂ = arg maxx∈F Rev(x ; r+λ ( 1 + t̂ )e).

We have Rev(x∗;r+λ ( 1 + t̂ )e) = Rev(x∗;r) + λ ( 1+t̂ )V (x∗)
1+V (x∗) by the identity at the beginning of

the proof of Lemma 3.1, and thus,

Rev
(
x∗ ; r+λ (1 + t̂ )e

)
+λ

(
log(1 + t̂ )− t̂

)
= Rev (x∗;r) +λ

{
(1 + t̂ )V (x∗)

1 +V (x∗)
− t̂

}
+λ log

(
1 + t̂

)

(c)

≥ Rev (x∗;r) +λ log
(
1 + t̂

)

(d)

≥ Rev (x∗;r) +λ log

(
1 +

V (x∗)

1 + ρ

)
,

where (c) holds because a
1+a

is increasing in a and V (x∗) ≥ t̂, so we get V (x∗)
1+V (x∗) ≥ t̂

1+t̂
, and (d)

follows from the fact that (1 + ρ) t̂≥ V (x∗).

For all a∈R+ and ρ∈R+, we have the inequality (1 +a)1+ρ ≥ 1 + (1 +ρ)a. Using this inequality

with a= V (x∗)/(1 + ρ), we get
(

1 + V (x∗)
1+ρ

)1+ρ

≥ 1 +V (x∗). Therefore, we have

Rev(x∗;r) + λ log

(
1 +

V (x∗)

1 + ρ

)
≥ Rev(x∗;r) +

λ log(1 +V (x∗))

1 + ρ
(e)

≥ 1

1 + ρ

{
Rev(x∗;r) + λ log(1 +V (x∗))

}

=
Z∗λ

1 + ρ
,

where (e) holds because Rev(x∗;r) ≥ 0. By the three chains of displayed inequalities above, we

have Rev
(
x̂;r

)
+λ log(1 +V (x̂))≥Z∗λ/(1 + ρ), as desired.

Since our discretization method constructs one candidate assortment for each point in Grid

and there are O
(

log(nVmax)−log(Vmin)

log(1+ρ)

)
= O

(
1
ρ

log(nVmax/Vmin)
)

points in Grid, we can find a

1/(1 + ρ)-approximate solution to the Revenue-Utility problem by checking the objective values
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of O
(

1
ρ

log(nVmax/Vmin)
)

candidate assortments. In the discretization method, we need to solve

the problem maxx∈F Rev(x,r + λ (1 + t)e) for each value of t ∈ Grid. This problem finds an

assortment that maximizes only the expected revenue under totally unimodular constraints on

offered assortments. Setting α = λ (1 + t) for notational brevity, the last problem is of the form

maxx∈F Rev(x,r+αe). Using the decision variables y = (y1, . . . , yn) ∈ Rn+ and y0 ∈ R+, the next

theorem shows that the optimal objective value of the problem maxx∈F Rev(x,r+αe) can be

obtained by solving the following LP:

ZRev = max
(y,y0)∈Rn+1

+

{∑

i∈N
(ri +α)vi yi

∣∣∣ Ay≤ y0 b, yi ≤ y0 ∀ i∈N , v0 y0 +
∑

i∈N
vi yi = 1

}
. (Revenue LP)

Moreover, after obtaining the optimal objective value of the problem maxx∈F Rev(x;r+ αe), we

can obtain an optimal solution to this problem simply by solving the Candidate LP.

Theorem 5.2 (LP for Revenue Optimization) Let γ∗ denote the optimal objective value of

the problem maxx∈F Rev(x;r+αe). Then, the optimal objective value of the Revenue LP is also γ∗;

that is, ZRev = γ∗. Furthermore, if x∗ is an optimal solution to the Candidate LP with γ = γ∗−α,

then x∗ is also an optimal solution to the problem maxx∈F Rev(x;r+αe).

Proof: We first claim that v0 γ
∗ = LP(γ∗ −α), where LP(γ∗ −α) is the optimal objective value of

the Candidate LP with γ = γ∗−α. Let x̃ be an optimal solution to maxx∈F Rev(x,r+αe), so

γ∗ = Rev(x̃ ; r+αe) =

∑
i∈N (ri +α)vi x̃i

v0 +
∑

i∈N vi x̃i
.

Focusing on the first and third expressions above and rearranging the terms, we get

v0 γ
∗ =
∑

i∈N (ri− γ∗+α)vi x̃i. Since x̃ is a feasible, but not necessarily an optimal, solution to

the Candidate LP with γ = γ∗ − α, we have LP(γ∗−α) ≥∑i∈N (ri − γ∗ + α)vi x̃i = v0 γ
∗. Hence,

v0 γ
∗ ≤ LP(γ∗ − α). On the other hand, letting x∗ be an optimal solution to the Candidate LP

with γ = γ∗ − α, since x∗ is a feasible, but not necessarily an optimal, solution to the problem

maxx∈F Rev(x;r + αe), we have γ∗ ≥ Rev(x∗;r + αe) =
∑

i∈N (ri+α)vi x
∗
i

v0+
∑

i∈N vi x
∗
i

, in which case focusing

on the first and third expressions in this chain of inequalities and rearranging the terms, we get

v0 γ
∗ ≥∑i∈N (ri− γ∗+α)vi x

∗
i = LP(γ∗−α). Hence, v0 γ

∗ ≥ LP(γ∗−α). This proves the claim.

Note that ZRev is the optimal objective value of the Revenue LP. First, we show that ZRev ≥ γ∗.
Let x̃ be an optimal solution to the problem maxx∈F Rev(x;r+αe). Setting Ṽ = v0 +

∑
i∈N vi x̃i

for notational brevity, we define the solution (ỹ, y0) to the Revenue LP as yi = x̃i/Ṽ for all i ∈N
and ỹ0 = 1/Ṽ . Since x̃ ∈F , we have Ax̃≤ b, in which case it is straightforward to check that the

solution (ỹ, ỹ0) is feasible to the Revenue LP. Moreover, for the Revenue LP, this solution provides
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an objective value of
∑

i∈N (ri + α)vi ỹi =
∑

i∈N (ri + α)vi x̃i/Ṽ = Rev(x̃;r+ αe) = γ∗. Hence, we

have ZRev ≥ γ∗.

Second, we show that ZRev ≤ γ∗. Using the dual variables µ = (µ1, . . . , µm), σ = (σ1, . . . , σn),

and γ, the duals of the Revenue LP and the Candidate LP with γ = γ∗−α are

ZRev = min
(µ,σ,γ)∈Rm+n

+ ×R

{
γ
∣∣∣
∑

`∈M
a`i µ` +σi + vi γ ≥ (ri +α)vi ∀ i∈N ,

∑

`∈M
b` µ` +

∑

i∈N
σi = v0 γ

}
,

LP(γ∗−α) = min
(µ,σ)∈Rm+n

+

{∑

`∈M
b` µ` +

∑

i∈N
σi

∣∣∣
∑

`∈M
a`i µ` +σi ≥ (ri− γ∗+α)vi ∀ i∈N

}
,

where we use M= {1, . . . ,m} to index the rows of the matrix A and let a`i be the (`, i)th entry

of A and b` be the `th entry of b. As long as F includes a nonempty assortment, the Revenue LP

and the Candidate LP are feasible and bounded, so strong duality holds and the optimal objective

values of the duals are equal to those of the primals. Let (µ∗,σ∗) be an optimal solution to

the dual of the Candidate LP above. Therefore, we have
∑

`∈M a`i µ
∗
` + σ∗i ≥ (ri − γ∗ + α)vi for

all i ∈ N and
∑

`∈M b` µ
∗
` +

∑
i∈N σ

∗
i = LP(γ∗ − α) = v0 γ

∗, where the last equality uses the fact

that LP(γ∗−α) = v0 γ
∗, as shown at the beginning of the proof. The last inequality and chain

of equalities show that the solution (µ∗,σ∗, γ∗) is feasible to the dual of the Revenue LP above.

Furthermore, for the dual of the Revenue LP above, this solution provides an objective value of γ∗.

Hence, ZRev ≤ γ∗. Thus, we get ZRev = γ∗, so the optimal objective value of the Revenue LP is γ∗.

Lastly, we show that if x∗ is an optimal solution to the Candidate LP with γ = γ∗ − α,

then x∗ is also an optimal solution to the problem maxx∈F Rev(x;r + αe). Using the fact that

v0 γ
∗ = LP(γ∗−α), we have v0 γ

∗ = LP(γ∗−α) =
∑

i∈N (ri−γ∗+α)vi x
∗
i . Solving for γ∗ in this chain

of equalities, we get γ∗ =
∑

i∈N (ri+α)vi x
∗
i

v0+
∑

i∈N vi x
∗
i

=Rev(x∗;r+αe). Thus, since γ∗ = maxx∈F Rev(x;r+αe),

x∗ is an optimal solution to the problem maxx∈F Rev(x;r+αe).

In certain applications, we may be interested in finding an assortment that maximizes only the

expected revenue. By Theorem 5.2, it follows that in such cases we can simply solve an LP.

6. Applications of Totally Unimodular Constraints

In this section, we give examples of assortment optimization settings that fit our formulation

with totally unimodular constraints. For each of these settings, we can use our approach to solve

the Revenue-Utility problem, yielding an assortment that maximizes the linear combination of the

expected revenue and expected utility. Of course, setting λ= 0 in the Revenue-Utility problem, we

obtain an assortment that maximizes only the expected revenue.
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6.1 Cardinality Constraints and Their Variants

In certain applications, due to limited space in a physical store or on a web page, we are interested in

limiting the cardinality of the offered assortment. Using b to denote the upper bound on the number

of products that we can offer, the set of feasible assortments is F = {x∈ {0,1}n :
∑

i∈N xi ≤ b}.
Here, the constraint matrix A = (1, . . . ,1) has a single row consisting of all ones. Therefore,

A is totally unimodular, in which case we can use our approach to find an assortment that

maximizes the linear combination of the expected revenue and the expected utility. It turns

out that our approach can handle slightly more general cardinality constraints, which we call

nested cardinality constraints. In particular, consider the case in which we have a collection

of subsets of products {Sk ⊆N : k= 1, . . . ,K}, where for any pair of subsets, either one subset

includes the other or their intersection is empty; that is, for all k, ` = 1, . . . ,K, we have Sk ⊆ S`
or S` ⊆ Sk or Sk ∩S` =∅. In nested cardinality constraints, the cardinality of the products

that we can offer within each subset Sk is limited to bk. Thus, the set of feasible assortments

is F = {x∈ {0,1}n :
∑

i∈Sk xi ≤ bk ∀k= 1, . . . ,K}. Using the fact that Sk ⊆ S` or S` ⊆ Sk or

Sk ∩S` =∅, we can arrange the columns of this constraint matrix in such a way that each

row includes only consecutive ones. Such a matrix is called an interval matrix, and it is totally

unimodular; see Corollary 2.10 in Chapter III.1 in Nemhauser and Wolsey (1988).

For example, if we choose an assortment of shirts to offer with S1 being the set of all available

shirts, S2 being the set of all long-sleeved shirts, and S3 being the set of all short-sleeved shirts,

then S2 ⊆ S1, S3 ⊆ S1, and S2 ∩S3 =∅. In this case, the nested cardinality constraints ensure that

the number of offered shirts is at most b1, the number of offered long-sleeved shirts is at most b2,

and the number of offered short-sleeved shirts is at most b3. If, in addition, S4 is the set of all blue

long-sleeved shirts, then S4 ⊆ S1, S4 ⊆ S2, and S4 ∩ S3 = ∅, in which case the nested cardinality

constraints ensure that the number of offered blue long-sleeved shirts is at most b4.

6.2 Display Location Effects

Consider the case in which the preference weight of each product depends on the location where

the product is displayed. In brick and mortar retail, when a product is displayed at a prominent

location, it is more likely to be noticed by customers than when it is displayed at an inconspicuous

location. In online retail, when a product is displayed at the top of the search results, it is more likely

to be chosen by customers than when it is displayed at the bottom. To model the display location

effects, we use N = {1,2, . . . , n} to index the items that we can offer to the customers. If we display

item i at location `, then its preference weight is vi`. We use N also to index the possible locations
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at which we can display the items. If the number of possible locations is less than the number of

items, then we can define additional locations with vi` = 0 for each item i and for each additional

location `, in which case displaying an item at an additional location is equivalent to not displaying

the item at all. We capture our assortment decisions by x= {xi` : i∈N , `∈N} ∈ {0,1}n×n, where

xi` = 1 if and only if we offer item i at location `. Therefore, the set of products is N ×N , and

offering the product (i, `) corresponds to displaying item i at location `.

The expected revenue and the expected utility from our assortment decisions, along with the set

of feasible assortments, are given by

Rev(x;r) =

∑
(i,`)∈N×N ri vi` xi`

v0 +
∑

(i,`)∈N×N vi` xi`
, Util(x) = log

(
1 +

∑

(i,`)∈N×N

vi`
v0
xi`

)

F =

{
x∈ {0,1}n×n :

∑

`∈N
xi` ≤ 1 ∀ i∈N ,

∑

i∈N
xi` ≤ 1 ∀ `∈N

}
,

where the first constraint ensures that each item is displayed in at most one location and the second

constraint ensures that each location is used by at most one item. Here, the constraint matrix is

the constraint matrix of an assignment problem, which is known to be totally unimodular; see

Corollary 2.9 in Chapter III.1 in Nemhauser and Wolsey (1988). Note that if the locations have a

natural sequence, as in online search results, then our formulation allows skipping a location, but

if vi1 ≥ vi2 ≥ . . .≥ vin for all i∈N , so that locations with smaller indices are more preferable, then

it is straightforward to show that it is not optimal to skip any of the locations.

6.3 Pricing with Discrete Price Menus

In our problem setup up to this point, the prices of the products are fixed. Consider the case

in which the price of each product is a decision variable rather than being fixed. The preference

weight of each product depends on its price. Given a finite set of possible price levels, we want to

choose the assortment of products to offer and the corresponding prices. We use N = {1,2, . . . , n}
to index the items that we can offer to the customers and K= {1,2, . . . ,K} to index the possible

price levels that we can choose for the items. The price that corresponds to price level k is rk, so

the set of possible prices for the items is {rk : k ∈ K}. If we use the price level k for item i, then

its preference weight is vik. Note that we do not require a specific functional form between the

preference weight of an item and its price. The price-demand relationship can be arbitrary. Our

notation indicates that the set of possible prices for each item is the same, but it is straightforward

to extend our formulation to incorporate different sets of possible prices for different items. To

capture our assortment decisions, we use the vector x = {xik : i ∈ N , k ∈ K} ∈ {0,1}n×K , where
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xik = 1 if and only if we offer item i at price level k. In this case, the set of products is N ×K, and

offering the product (i, k) corresponds to offering item i at price level k.

The expected revenue and the expected utility from our assortment decisions and the set of

feasible assortments are given by

Rev(x;r) =

∑
(i,k)∈N×K rk vik xik

v0 +
∑

(i,k)∈N×K vik xik
, Util(x) = log

(
1 +

∑

(i,k)∈N×K

vik
v0
xik

)

F =

{
x∈ {0,1}n×K :

∑

k∈K
xik ≤ 1 ∀ i∈N

}
.

The constraint ensures that each item, if offered, has one price level. Each row of the constraint

matrix corresponds to an item i and includes consecutive ones, corresponding to the different price

levels for item i. Thus, the constraint matrix is an interval matrix, which is totally unimodular. If

we want to impose a limit of b on the number of products we offer, then we can add the constraint
∑

(i,k)∈N×K xik ≤ b to the constraints above. The additional constraint amounts to adding a row of

ones to the constraint matrix, in which case the constraint matrix remains totally unimodular. In

many formulations of the pricing problem under the multinomial logit model, there is a specific

relationship between the prices and the preference weights. For example, a common approach is

that if the price of the product i is p, then its preference weight is eαi−βi p, which arises when the

mean utility of the product is linear in its price. In our formulation, the relationship between the

prices and the preference weights can be arbitrary.

6.4 Pricing with a Price Ladder Constraint

We can extend the pricing model presented in the previous section to accommodate a price

ladder constraint that imposes an ordering of the prices. Suppose there is an inherent ordering

1� 2� . . .� n among the products, where, in some sense, product 1 is the best product and

product n is the worst. Such an ordering occurs when the products have a clear ordering in terms

of quality, richness of features, or durability. We want to choose the prices of the products in

a way that is consistent with their rank; that is, better products have higher prices. We refer

to such constraints on the prices as price ladder or quality consistency constraints. Price ladder

constraints appear in practice frequently. Rusmevichientong et al. (2006) describe an application

in automobile pricing in which a vehicle with more features must have a higher price than a

vehicle of the same model with fewer features. Jagabathula and Rusmevichientong (2017) present

additional applications of price ladder constraints. We index the items by N = {1, . . . , n} and the

possible price levels by K= {1, . . . ,K}. Without loss of generality, we order the prices {rk : k ∈K}
corresponding to the different price levels so that r1 ≥ r2 ≥ . . .≥ rK . If the price of product i is rk,
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then its preference weight is vik. The price ladder constraint is such that the price of product i

should be no larger than the price of product i− 1. To capture our assortment decisions, we use

the vector x= {xik` : i ∈N , k ∈K, ` ∈K, k≥ `} ∈ {0,1}n×K×(K+1)/2, where xik` = 1 if and only if

we offer item i at price level k and item i− 1 at price level `. Therefore, we offer item i at price

level k if and only if
∑k

`=1 xik` = 1. For item i= 1, although we do not have an item indexed by

zero, we still use the decision variables {x1k` : k, ` ∈K, k ≥ `} to capture our pricing decisions for

item 1. We offer item 1 at price level k if and only if
∑k

`=1 x1k` = 1.

The expected revenue and the expected utility from our assortment decisions and the set of

feasible assortments are given by

Rev(x;r) =

∑
i∈N

∑
k∈K

∑k

`=1 rk vik xik`

v0 +
∑

i∈N
∑

k∈K
∑k

`=1 vik xik`
, Util(x) = log

(
1 +

∑

i∈N

∑

k∈K

k∑

`=1

vik
v0
xik`

)

F =

{
x∈ {0,1}n×K×(K+1)/2 :

∑

k∈K

k∑

`=1

x1k` = 1,
k∑

`=1

xi−1,k` =
K∑

`=k

xi`k ∀ i= 2, . . . , n, k ∈K
}
.

The first constraint ensures that we charge some price for item 1. The second constraint ensures

that if we charge the price level k for item i−1, then we can charge one of the price levels k, . . . ,K

for item i. In particular, the left side of the constraint takes a value of one if we charge price level k

for item i− 1. Noting the definition of the decision variable xik`, the right side of the constraint

takes a value of one if we charge one of the price levels k, . . . ,K for item i and the price level k for

item i− 1. In the next proposition, we show that the constraints above correspond to flow balance

constraints over a certain graph, which implies that the constraint matrix is totally unimodular;

see Proposition 3.1 in Chapter III.1 in Nemhauser and Wolsey (1988).

Proposition 6.1 (Connection to Network Flow) The constraints for the price ladder are flow

balance constraints in a directed graph with (n− 1)K + 2 vertices and nK(K + 1)/2 edges.

Proof: Consider a directed graph whose vertices are indexed by {(i, k) : i = 2, . . . , n, k ∈ K} ∪
{source, sink} and whose edges are indexed by {(i, k, `) : i ∈ N , k ∈ K, ` ∈ K, k ≥ `}. For

i= 2, . . . , n− 1, the edge (i, k, `) leaves the vertex (i, `) and enters the vertex (i+ 1, k). The edge

(1, k, `) leaves the vertex source and enters the vertex (2, k). The edge (n,k, `) leaves the vertex (n, `)

and enters the vertex sink. The decision variable xik` in our price ladder constraints corresponds to

the flow on the edge (i, k, `). The first constraint is the flow balance constraint of the vertex source.

The second constraint is the flow balance constraint of the vertex (i, k). The supply at the vertex

source is +1. The demand at the vertex sink is −1. The flow balance constraint for the vertex sink

is redundant, so we do not write these constraints explicitly in our formulation of the price ladder
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Figure 3 The graph corresponding to the price ladder constraints for a problem instance with n = 4 products

and K = 3 price levels.

constraints. In Figure 3, we show the construction of the graph for the price ladder constraints for

a problem instance with n= 4 products and K = 3 price levels.

In our price ladder, we use a complete ordering of the products with 1� 2� . . .� n. By slightly

modifying the graph in Figure 3, we can handle a partial ordering. For example, consider the

partial ordering 1� {2,3,4} � 5, meaning that item 1 must have a price higher than the prices of

items 2, 3, and 4, but there is no fixed ordering among the prices of items 2, 3, and 4. Building on

the approach described in this section, we can present this partial order using totally unimodular

constraints as well. Lastly, in our formulation, the only decision variable is the price to charge for

each item. Once again, we can slightly modify the graph in Figure 3 to handle the case in which

we choose the products to offer, as well as their prices, while satisfying a price ladder constraint.

6.5 Product Precedence Constraints

We focus on assortment problems in which a particular product cannot be offered unless a certain

set of related products is also offered. This kind of a constraint may arise when a company is

prohibited, by company policy or law, from offering a more expensive or sophisticated version of

the product unless an inexpensive or basic version is also offered. For example, it may not be

possible to offer the brand name version of a drug unless the generic version is also offered. To

model such product precedence constraints, we use Si ⊆N to denote the set of products that we

need to offer in order to be able to offer product i. Thus, the set of feasible assortments is given by

F = {x∈ {0,1}n : xi−xj ≤ 0 ∀ i∈N , j ∈ Si}, indicating that we can have xi = 1 only when xj = 1

for all j ∈ Si. In this constraint matrix, each row includes only a +1 and a −1. Such matrices are
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known to be totally unimodular; see Proposition 2.6 in Chapter III.1 in Nemhauser and Wolsey

(1988). Note that the subsets {Si : i∈N} in the product precedence constraints can be arbitrary. In

particular, they can be overlapping and products can have circular dependencies on each other.

7. Computational Experiments

We perform computational experiments on assortment problems with display location effects as

well as on pricing problems with discrete price menus. For both problem classes, we work with

a large number of randomly generated problem instances. Our goal is to demonstrate that our

parametric LP is a viable approach for generating candidate assortments and that the practical

performance of our discretization method is substantially better than its theoretical guarantee.

7.1 Computational Results for Display Location Effects

We focus on assortment problems with display location effects, which correspond to the application

discussed in Section 6.2. We use the following approach to generate our test problems. In all test

problems, we have n= 60 items. There are K possible locations indexed by K= {1, . . . ,K}, where

K is a parameter that we vary. We follow the convention that location 1 is the most desirable

and location K is the least desirable. We sample the revenue ri of item i from the uniform

distribution over [0,10]. To come up with the preference weights associated with the item-location

pairs, we sample β from the uniform distribution over [0,1]. For each item i, we sample αi from

the uniform distribution over [0,2] and set the preference weight vik of item i when offered at

location k as vik = eαi+(0.1×(K−k))−(β×ri). Therefore, the items with larger prices tend to be less

attractive, and β captures the price sensitivity. To come up with the preference weight of the

no-purchase option, letting NK be the set of K items with the smallest values for {viK : i∈N}, we

set v0 = p0
∑

i∈NK
viK/(1− p0), where p0 is another parameter that we vary. In this case, ignoring

the fact that we can place at most one product at each location, even if we offer all products at

the least desirable location, a customer leaves without making a purchase with a probability of p0.

Parametric LP and Efficient Frontier: Varying K ∈ {15,30,45,60} and p0 ∈ {0.1,0.3,0.5},
we obtain 12 parameter configurations. For each parameter configuration, we generate 50 individual

test problems by using the approach described in the previous paragraph. For each test problem,

we construct a collection of candidate assortments that is guaranteed to include an optimal

solution to the Revenue-Utility problem. Constructing the candidate assortments requires obtaining

an optimal solution to the Candidate LP for each value of γ ∈ R by using a parametric LP.

Using these candidate assortments, we also construct an efficient frontier that shows all attainable

optimal expected revenue-utility pairs in the Revenue-Utility problem as we vary λ ∈ R+. From



Sumida et al. Revenue-Utility Tradeoff for Assortment Optimization under the Multinomial Logit Model 25

Param. # Cand. # Opt. CPU
(K,p0) Assr. Assr. Secs.

(15,0.1) 399.7 115.0 42.4
(15,0.3) 412.1 115.1 44.1
(15,0.5) 410.3 116.4 45.4

(30,0.1) 970.5 312.3 229.9
(30,0.3) 993.7 319.4 235.1
(30,0.5) 979.9 317.5 224.7

Param. # Cand. # Opt. CPU
(K,p0) Assr. Assr. Secs.

(45,0.1) 1,426.7 393.2 593.7
(45,0.3) 1,369.8 507.1 564.9
(45,0.5) 1,407.4 462.0 588.6

(60,0.1) 1,566.8 468.7 1,098.9
(60,0.3) 1,507.9 643.4 1,089.6
(60,0.5) 1,537.1 577.3 1,090.7

Table 1 The number of candidate assortments, number of optimal assortments, and CPU seconds for assortment

problems with display location effects.

the discussion presented immediately before Theorem 4.2, the Collection of Candidate Assortments

is given by {x`Cand : `= 1, . . . ,L}, and the optimal objective value for the Revenue-Utility problem

is given by Z∗λ = max`=1,...,LRev(x
`
Cand;r) +λUtil(x`Cand). For each candidate assortment x`Cand, the

function λ 7→Rev(x`Cand;r) +λUtil(x`Cand) is linear and increasing in λ. Therefore, the function

λ 7→Z∗λ is the pointwise maximum of L linear and increasing functions, so it is continuous, piecewise

linear, increasing, and convex in λ. Between successive breakpoints of this function, the optimal

solution to the Revenue-Utility problem does not change. Thus, constructing the efficient frontier

requires finding the pointwise maximum of L linear functions, which can be done in O(L logL)

operations (Kleinberg and Tardos 2005).

We present our computational results in Table 1. The first column shows the parameter

configuration (K,p0). Recall that we generate 50 test problems in each parameter configuration.

The second column shows the average number of candidate assortments that we generate, where

the average is computed over the 50 test problems in each parameter configuration. The third

column shows the average number of candidate assortments that actually turn out to be an optimal

solution to the Revenue-Utility problem for some λ∈R+, corresponding to the average number

of assortments that appear on the efficient frontier. The collection of candidate assortments is

guaranteed to include an optimal solution to the Revenue-Utility problem. However, some candidate

assortments may never be optimal, regardless of what value of λ we consider, and these assortments

will not appear on the efficient frontier. The fourth column shows the average CPU seconds needed

to generate all the candidate assortments for a test problem. We carried out our computational

experiments in Java 1.8.0 on a 2.0 GHz AMD EPYC 7501 32-Core Processor with 4 GB of RAM.

For the smaller test problems with K = 15 locations, we can generate all candidate assortments

within a minute. For the larger test problems with K = 60 locations, this computational effort

increases to 18 minutes. After generating the candidate assortments, in each of our test problems,

it took less than 0.1 seconds to construct the efficient frontier. The second column in Table 1

shows that the number of candidate assortments L increases approximately linearly with the

number of products. In particular, in the assortment problem with display location effects, the
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Figure 4 The efficient frontier for a particular instance of the assortment problem with display location effects

with K = 60 and p0 = 0.3.

number of products corresponds to the number of item-location pairs, which is nK. To normalize

the number of candidate assortments, we divide L by nK; we observe that the average value of

L/(nK) is roughly constant. Specifically, for the test problems with 15, 30, 45, and 60 locations,

the average values of L/(nK) are, respectively, 0.45, 0.55, 0.52, and 0.43. This result is consistent

with Theorem 4.2, which shows that the number of candidate assortments is bounded above by an

expression that is linear in the number of products. Figure 4 illustrates the efficient frontier for a

problem instance with K = 60 and p0 = 0.3. Each data point corresponds to a different value of λ

that yields a different optimal solution for the Revenue-Utility problem. Between successive data

points, the optimal solution to the Revenue-Utility problem does not change.

Discretization Method: Thus far, our discussion has focused on solving the Revenue-Utility

problem exactly. We now discuss the performance of our discretization method when we solve

the Revenue-Utility problem approximately for some representative values of λ. By the discussion

presented earlier in this section, the optimal objective value Z∗λ of the Revenue-Utility problem is

a continuous, piecewise linear, increasing, and convex function of λ. We use {λf : f = 1, . . . ,F} to

denote the breakpoints of this function, where F is the number of assortments that appear on the

efficient frontier. To choose representative values of λ, we focus on the 10th, 30th, 50th, and 70th

percentiles of the data {λf : f = 1, . . . ,F}. Letting λ10, λ30, λ50, and λ70 denote these percentiles,

for each of the 50 test problems in a parameter configuration, we use our discretization method

to obtain an approximate solution to the Revenue-Utility problem with λ ∈ {λ10, λ30, λ50, λ70}. We

use representative values for λ because the Revenue-Utility problem may become simple to solve for
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extreme values of λ. In particular, if λ is too large, then we put excessive weight on the expected

utility, in which case it is near-optimal to maximize the total preference weight of the offered

products. Noting that A is totally unimodular, we can find an assortment that maximizes the total

preference weight of the offered products by maximizing the objective function
∑

i∈N vi xi subject

to the constraints that Ax ≤ b and x ∈ [0,1]n. If λ is too small, then we put excessive weight

on the expected revenue, in which case it is near-optimal to maximize the expected revenue. By

Theorem 5.2, we can maximize the expected revenue by solving a single LP.

We present our computational results in Table 2. The first column shows the parameter

configuration (K,p0). The second column shows the value of λ∈ {λ10, λ30, λ50, λ70} that we focus on.

The remainder of the table consists of two blocks, each containing three columns. The two blocks,

respectively, show the performance of the discretization method when we use our discretization

method with the grid sizes of ρ= 1 and ρ= 0.1. In each block, the first column shows the maximum

percent optimality gap of the solutions obtained by the discretization method, where the maximum

is computed over the 50 test problems in a parameter configuration. The second column shows the

average CPU seconds for the discretization method. The third column shows the average number

of candidate assortments generated by the discretization method. Our results indicate that the

discretization method can find near-optimal solutions for the Revenue-Utility problem rather quickly.

For the larger test problems with K = 60 locations, using the smallest grid size of ρ = 0.1, the

average number of CPU seconds is 7.8 and the discretization method finds solutions with optimality

gaps no larger than 0.008% by using an average of 205.2 candidate assortments. Furthermore,

the practical performance of the discretization method is substantially better than its theoretical

guarantee. In particular, even when we use our discretization method with a grid size of ρ = 1,

which corresponds to a performance guarantee of 1/2, the optimality gap of the solutions that we

found is at most 0.54%.

7.2 Computational Results for Pricing with Discrete Price Menus

In this set of computational experiments, we focus on pricing problems with discrete price menus, as

discussed in Section 6.3. We use the following approach to generate our test problems. The number

of items is fixed at n= 100. There are K possible price levels indexed by K= {1, . . . ,K}, where K

is a parameter that we vary. The possible prices for an item are {rk : k ∈K}, evenly spread over the

interval [1,K], where r1 =K is the largest possible price and rK = 1 is the smallest possible price.

To come up with the preference weights associated with item i, we sample αi from the uniform

distribution over [0,1] and βi from the uniform distribution over [0,0.1] and set vik = eαi−(βi×rk) for
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ρ= 1 ρ= 0.1
Param. Max. CPU # Max. CPU #
(K,p0) λ Perc. Secs. Cand. Perc. Secs. Cand.

(%) Assr. (%) Assr.

(15,0.1) λ10 0.044 0.4 23.4 0.001 1.8 157.4
λ30 0.289 0.4 23.4 0.003 1.9 157.4
λ50 0.187 0.4 23.4 0.007 1.9 157.4
λ70 0.316 0.4 23.4 0.006 1.9 157.4

(15,0.3) λ10 0.050 0.5 24.6 0.000 2.3 165.4
λ30 0.157 0.5 24.6 0.002 2.1 165.4
λ50 0.185 0.4 24.6 0.004 2.0 165.4
λ70 0.307 0.4 24.6 0.003 2.0 165.4

(15,0.5) λ10 0.032 0.5 24.8 0.000 2.0 168.4
λ30 0.168 0.4 24.8 0.003 1.9 168.4
λ50 0.540 0.4 24.8 0.009 2.1 168.4
λ70 0.193 0.4 24.8 0.010 2.2 168.4

(30,0.1) λ10 0.028 1.1 29.0 0.001 4.5 197.4
λ30 0.175 1.3 29.0 0.004 4.5 197.4
λ50 0.196 1.1 29.0 0.005 4.2 197.4
λ70 0.284 1.1 29.0 0.006 4.4 197.4

(30,0.3) λ10 0.031 1.1 28.4 0.000 3.7 192.0
λ30 0.227 1.1 28.4 0.003 3.9 192.0
λ50 0.248 1.0 28.4 0.005 3.8 192.0
λ70 0.287 1.1 28.4 0.005 4.0 192.0

(30,0.5) λ10 0.022 0.9 24.8 0.001 3.2 167.8
λ30 0.165 0.9 24.8 0.004 3.2 167.8
λ50 0.290 0.9 24.8 0.008 3.2 167.8
λ70 0.291 0.9 24.8 0.005 3.4 167.8

ρ= 1 ρ= 0.1
Param. Max. CPU # Max. CPU #
(K,p0) λ Perc. Secs. Cand. Perc. Secs. Cand.

(%) Assr. (%) Assr.

(45,0.1) λ10 0.037 1.8 27.8 0.002 5.6 193.0
λ30 0.199 1.8 27.8 0.004 5.7 193.0
λ50 0.208 1.8 27.8 0.005 5.6 193.0
λ70 0.206 1.9 27.8 0.004 6.0 193.0

(45,0.3) λ10 0.041 2.0 28.4 0.001 6.9 197.4
λ30 0.193 1.8 28.4 0.004 6.1 197.4
λ50 0.211 2.1 28.4 0.008 6.9 197.4
λ70 0.215 2.0 28.4 0.008 6.9 197.4

(45,0.5) λ10 0.029 1.8 29.8 0.001 6.3 204.2
λ30 0.163 1.9 29.8 0.002 6.7 204.2
λ50 0.361 1.9 29.8 0.008 6.6 204.2
λ70 0.259 2.0 29.8 0.005 6.9 204.2

(60,0.1) λ10 0.051 2.9 31.6 0.001 7.8 218.4
λ30 0.193 2.9 31.6 0.004 8.2 218.4
λ50 0.252 2.7 31.6 0.005 7.8 218.4
λ70 0.137 2.8 31.6 0.008 8.1 218.4

(60,0.3) λ10 0.044 2.7 28.4 0.002 7.1 194.0
λ30 0.313 2.8 28.4 0.005 7.6 194.0
λ50 0.247 2.7 28.4 0.004 7.3 194.0
λ70 0.273 2.6 28.4 0.005 7.1 194.0

(60,0.5) λ10 0.035 2.8 30.0 0.001 8.7 205.2
λ30 0.204 2.6 30.0 0.004 7.9 205.2
λ50 0.306 3.0 30.0 0.006 8.4 205.2
λ70 0.279 2.8 30.0 0.007 8.7 205.2

Table 2 Performance of the discretization method for assortment problems with display location effects.

all k ∈ K. For the preference weight of the no-purchase option, we set v0 = p0
∑

i∈N viK/(1− p0),
where p0 is another parameter that we vary. In this case, if we offer all items at their lowest

possible prices, then a customer leaves without making a purchase with probability p0. Varying

K ∈ {20,40,60,80} and p0 ∈ {0.1,0.3,0.5}, we obtain 12 different parameter configurations. In each

parameter configuration, we generate 50 test problems by using the approach described in this

paragraph. As in our computational experiments for assortment problems with display location

effects, for each test problem, we construct a collection of candidate assortments that is guaranteed

to include an optimal solution to the Revenue-Utility problem. Using these candidate assortments,

we also construct an efficient frontier showing all attainable expected revenue-utility pairs. In

addition, we test the performance of our discretization method to check its ability to obtain near-

optimal solutions for the Revenue-Utility problem.

Parametric LP and Efficient Frontier: We present our computational results in Table 3.

The layout of this table is identical to that of Table 1. For the smaller test problems with

K = 15 possible price levels, we can generate the efficient frontier in two minutes, whereas the

corresponding computational effort for the larger test problems with K = 80 possible price levels is

about 30 minutes. Given that there are more than 6,000 candidate assortments for the largest test

problems, such computational effort corresponds to about 0.3 seconds to generate each candidate

assortment. Similar to our results for assortment problems with display location effects, once we
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generate the candidate assortments, we can quickly construct the efficient frontier. More specifically,

for each of our test problems, we can construct the efficient frontier in 0.8 seconds. Lastly, as in

the previous section, the number candidate assortments L increases approximately linearly with

the number of products, which is nK in this setting, corresponding to the number of item-price

combinations, because we have one product for each item-price combination in our formulation of

the pricing problem with a discrete price menu. For the test problems with 20, 40, 60, and 80 price

levels, the average values of L/(nK) are, respectively, 0.66, 0.77, 0.79, and 0.79. These results are

consistent with Theorem 4.2.

Param. # Cand. # Opt. CPU
(K,p0) Assr. Assr. Secs.

(20,0.1) 870.5 757.8 68.3
(20,0.3) 1516.6 1299.0 112.8
(20,0.5) 1590.1 1426.9 121.4

(40,0.1) 2659.3 1912.6 366.0
(40,0.3) 3252.7 2311.3 440.8
(40,0.5) 3279.2 2254.9 453.5

Param. # Cand. # Opt. CPU
(K,p0) Assr. Assr. Secs.

(60,0.1) 4421.3 2675.1 872.5
(60,0.3) 4852.1 2844.2 978.6
(60,0.5) 4874.0 2723.6 988.0

(80,0.1) 6087.9 3101.4 1,618.8
(80,0.3) 6436.9 3178.8 1,783.4
(80,0.5) 6439.6 3073.4 1,810.8

Table 3 The number of candidate assortments, number of optimal assortments, and CPU seconds for pricing

problems with discrete price menus.

Discretization Method: Table 4 shows the performance of our discretization method. The

layout of this table is identical to that of Table 2. The discretization method continues to obtain

solutions with remarkably small optimality gaps by using a substantially smaller number of

candidate assortments. For the larger test problems with K = 80 price levels, using the grid size

of ρ= 0.1, the discretization method obtains solutions with optimality gaps of at most 0.008% in

about a minute by using 186.4 candidate assortments on average. Using the grid size of ρ= 1, the

largest optimality gap is 0.328%, with computational effort under four seconds.

8. Conclusion

We examined assortment problems that consider the tradeoff between the expected revenue and

the expected utility under the multinomial logit model and totally unimodular constraints. Our

characterization of the optimal assortment showed that we can obtain an optimal assortment by

shifting the revenues of all products by the same constant and finding an assortment that maximizes

only the expected revenue. This characterization enabled us to develop a solution method based on

a parametric LP. Furthermore, we proposed a discretization method that approximates the optimal

objective value within any prespecified degree of accuracy. The discretization method exploits the

fact that we can solve an LP to find an assortment that maximizes only the expected revenue.
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ρ= 1 ρ= 0.1
Param. Max. CPU # Max. CPU #
(K,p0) λ Perc. Secs. Cand. Perc. Secs. Cand.

(%) Assr. (%) Assr.

(20,0.1) λ10 0.093 0.7 17.0 0.005 10.3 111.4
λ30 0.328 0.7 17.0 0.008 10.2 111.4
λ50 0.011 0.7 17.0 0.007 10.6 111.4
λ70 0.013 0.8 17.0 0.004 10.9 111.4

(20,0.3) λ10 0.038 0.6 17.0 0.001 10.3 111.6
λ30 0.261 0.6 17.0 0.007 10.2 111.6
λ50 0.167 0.6 17.0 0.010 10.3 111.6
λ70 0.018 0.6 17.0 0.003 10.4 111.6

(20,0.5) λ10 0.003 0.5 17.2 0.000 9.7 110.8
λ30 0.100 0.6 17.2 0.002 9.7 110.8
λ50 0.169 0.6 17.2 0.005 9.8 110.8
λ70 0.029 0.6 17.2 0.003 9.8 110.8

(40,0.1) λ10 0.042 1.9 21.0 0.001 24.9 138.6
λ30 0.202 2.0 21.0 0.005 25.5 138.6
λ50 0.262 2.0 21.0 0.007 26.0 138.6
λ70 0.013 2.1 21.0 0.006 27.1 138.6

(40,0.3) λ10 0.014 1.8 21.0 0.000 25.2 137.6
λ30 0.022 1.8 21.0 0.002 25.3 137.6
λ50 0.319 1.9 21.0 0.009 25.6 137.6
λ70 0.012 1.9 21.0 0.006 26.0 137.6

(40,0.5) λ10 0.007 1.8 20.2 0.000 26.5 138.6
λ30 0.022 1.9 20.2 0.002 27.2 138.6
λ50 0.231 2.0 20.2 0.004 27.3 138.6
λ70 0.030 2.1 20.2 0.003 27.8 138.6

ρ= 1 ρ= 0.1
Param. Max. CPU # Max. CPU #
(K,p0) λ Perc. Secs. Cand. Perc. Secs. Cand.

(%) Assr. (%) Assr.

(60,0.1) λ10 0.011 3.8 24.0 0.000 46.7 165.0
λ30 0.064 3.9 24.0 0.002 48.1 165.0
λ50 0.276 3.9 24.0 0.005 48.1 165.0
λ70 0.016 4.0 24.0 0.008 48.5 165.0

(60,0.3) λ10 0.008 3.7 24.0 0.000 48.0 164.0
λ30 0.054 3.8 24.0 0.002 48.5 164.0
λ50 0.295 3.9 24.0 0.006 49.5 164.0
λ70 0.012 4.0 24.0 0.006 49.9 164.0

(60,0.5) λ10 0.005 3.8 24.0 0.000 47.9 163.2
λ30 0.008 4.0 24.0 0.002 49.0 163.2
λ50 0.220 4.1 24.0 0.005 49.9 163.2
λ70 0.023 4.2 24.0 0.002 50.4 163.2

(80,0.1) λ10 0.008 3.0 27.6 0.000 56.6 186.6
λ30 0.079 2.9 27.6 0.002 56.8 186.6
λ50 0.111 2.9 27.6 0.005 57.4 186.6
λ70 0.024 2.8 27.6 0.008 58.6 186.6

(80,0.3) λ10 0.002 2.8 27.8 0.000 59.4 188.0
λ30 0.090 2.9 27.8 0.002 61.0 188.0
λ50 0.277 2.8 27.8 0.008 61.1 188.0
λ70 0.013 2.7 27.8 0.005 60.9 188.0

(80,0.5) λ10 0.003 2.7 27.2 0.000 60.6 186.4
λ30 0.010 2.8 27.2 0.001 60.5 186.4
λ50 0.229 2.7 27.2 0.005 60.7 186.4
λ70 0.036 2.5 27.2 0.001 60.0 186.4

Table 4 Performance of the discretization method for pricing problems with discrete price menus.

Incorporating customer-centric performance measures into assortment and pricing problems opens

up numerous possibilities for future research. In this study, we used the expected utility as the

customer-centric performance measure. It would be interesting to investigate other customer-centric

objectives that are amenable to efficient optimization. Furthermore, there are other choice models,

such as the nested and paired combinatorial logit models, that are based on the random utility

maximization principle. It would be interesting to incorporate the expected utility as a performance

measure into the assortment and pricing problems under these choice models. Lastly, it is useful

to identify additional applications that can be captured by totally unimodular constraints.
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Online Appendix

Revenue -Utility Tradeoff in Assortment Optimization
under the Multinomial Logit Model with

Totally Unimodular Constraints

Appendix A: Proof of Theorem 4.2

We establish an upper bound of (m+n)1+m on the number of candidate assortments. To prove this

result, we show that as γ varies over R, the number of optimal solutions of the Candidate LP is at

most (1 +n)(n+m)m/m! for m≥ 1. Using M= {1, . . . ,m} to index the rows of the matrix A, let

a`i be the (`, i)th entry of the matrix A and b` be the `th entry of the vector b. Since there exists a

nonempty assortment in F , the Candidate LP is feasible and bounded, so the strong duality holds.

Using the variables µ= (µ1, . . . , µm) and σ= (σ1, . . . , σn), the dual of the Candidate LP is

LP(γ) = min
(µ,σ)∈Rm+n

+

{∑

`∈M
b` µ` +

∑

i∈N
σi

∣∣∣
∑

`∈M
a`i µ` +σi ≥ (ri− γ)vi ∀ i∈N

}

= min
(µ,σ,ζ)∈Rm+2n

+

{∑

`∈M
b` µ` +

∑

i∈N
σi

∣∣∣
∑

`∈M
a`i µ` +σi− ζi = (ri− γ)vi ∀ i∈N

}
,

where the last equality follows from introducing the slack variables ζ = (ζ1, . . . , ζn). To complete the

proof, it suffices to show that the function LP(·) has at most (1 +n)(m+n)m/m!− 1 breakpoints.

Let (µ∗(γ),σ∗(γ),ζ∗(γ)) denote a basic optimal solution to the dual of the Candidate LP. The

constraint coefficients of the decision variables σi and ζi are linearly dependent, so both of these

decision variables cannot be basic at the same time. Therefore, we can partition the set of products

N into three disjoint sets given by

N̂0(γ) = {i∈N : σ∗i (γ) is nonbasic and ζ∗i (γ) is nonbasic}

N̂1(γ) = {i∈N : σ∗i (γ) is nonbasic and ζ∗i (γ) is basic}

N̂2(γ) = {i∈N : σ∗i (γ) is basic and ζ∗i (γ) is nonbasic} .

Furthermore, we let M̂0(γ) = {`∈M : µ∗`(γ) is basic}. We refer to a pair (M̂0(γ), N̂0(γ)) as a

basis, although we also need to fix N̂1(γ) and N̂2(γ) to fully specify a basis. Nevertheless, it will

shortly become clear that specifying (M̂0(γ), N̂0(γ)) is enough to compute the values of all of the

decision variables (µ∗(γ),σ∗(γ),ζ∗(γ)) in a basic optimal solution to the dual of the Candidate

LP. In the next lemma, we show that we can limit the number of bases {(M̂0(γ), N̂0(γ)) : γ ∈R}
to (m+n)m/m! as γ ranges over R.
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Lemma A.1 There exists a collection of bases {(Mk
0 ,N k

0 ) : k= 1, . . . ,K} with Mk
0 ⊆M, N k

0 ⊆N
and K ≤ (m+n)m/m! such that {(M̂0(γ), N̂0(γ)) : γ ∈R} ⊆ {(Mk

0 ,N k
0 ) : k= 1, . . . ,K}.

Proof: Because there are n constraints in the dual of the Candidate LP, the number of basic

variables satisfies |N̂1(γ)|+ |N̂2(γ)|+ |M̂0(γ)|= n. Since N = N̂0(γ)∪ N̂1(γ)∪ N̂2(γ), we also have

n= |N̂0(γ)|+ |N̂1(γ)|+ |N̂2(γ)|. The last two equalities imply that |M̂0(γ)|= |N̂0(γ)|. Furthermore,

there are n products in the dual of the Candidate LP, so |N̂0(γ)| ≤ n. Noting that |M̂0(γ)| ≤m,

we get |M̂0(γ)| = |N̂0(γ)| ≤ min{n,m}. Thus, the number of bases {(M̂0(γ), N̂0(γ)) : γ ∈ R} as

γ ranges over R is bounded by the number of pairs (M0,N0) with M0 ⊆ M, N0 ⊆ N and

|M0|= |N0| ≤min{m,n}. Using the fact that
(
x
y

)
≤ xy

y!
for any 1≤ y ≤ x, the number of possible

such pairs is upper bounded by

min{m,n}∑

k=0

(
m

k

)(
n

k

)
=

min{m,n}∑

k=0

(
m

m− k

)(
n

k

)
≤

min{m,n}∑

k=0

mm−k

(m− k)!

nk

k!

≤
m∑

k=0

mm−k

(m− k)!

nk

k!
=

1

m!

m∑

k=0

(
m

k

)
mm−knk =

(m+n)m

m!
.

In the next lemma, we show that specifying (M̂0(γ), N̂0(γ)) is enough to compute the values of

the decision variables (µ∗(γ),σ∗(γ),ζ∗(γ)) in a basic optimal solution to the dual of the Candidate

LP. In this lemma, we use Ik to denote the set of values of γ ∈ R such that the optimal basis

(M̂0(γ), N̂0(γ)) in the dual of the Candidate LP is (Mk
0 ,N k

0 ); that is, we have

Ik =
{
γ ∈R : (M̂0(γ), N̂0(γ)) = (Mk

0 ,N k
0 )
}
.

Lemma A.2 There exist linear functions {fk` (·) : ` ∈M} and {gki (·) : i ∈ N} such that, for each

γ ∈ Ik, we have µ∗`(γ) = fk` (γ) for all `∈M and σ∗i (γ) = [gki (γ)]+ for all i∈N .

Proof: Fix γ ∈ Ik so that M̂0(γ) =Mk
0 and N̂0(γ) =N k

0 . By the same argument at the beginning of

the proof of Lemma A.1, we have |Mk
0 |= |N k

0 |. By the definition of N̂0(γ), we have σ∗i (γ) = ζ∗i (γ) = 0

for all i∈N k
0 . Moreover, by the definition of M̂0(γ), we have µ∗`(γ) = 0 for all `∈M\Mk

0 . Thus,

the constraints of the dual of the Candidate LP implies that

∑

`∈Mk
0

a`i µ
∗
`(γ) = (ri− γ)vi ∀ i∈N k

0 .

Because |Mk
0 | = |N k

0 |, the above system of equations has |N k
0 | unknowns and |N k

0 | equations.

Moreover, since {µ∗`(γ) : `∈Mk
0} are basic variables, their constraint coefficients must be linearly

independent. Therefore, the values of {µ∗`(γ) : ` ∈Mk
0} are given by the inverse of the matrix
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with entries {a`i : ` ∈Mk
0 , i ∈ N k

0 } multiplied by the vector with entries {(ri − γ)vi : i ∈ N k
0 }.

Thus, for all `∈Mk
0 , µ∗`(γ) is a linear function of γ and this function is completely determined by

(Mk
0 ,N k

0 ). On the other hand, µ∗`(γ) = 0 for all ` ∈M\Mk
0 . Therefore, for all ` ∈M, µ∗`(γ) is a

linear function of γ and this function is completely determined by (Mk
0 ,N k

0 ). Thus, for all `∈M,

we have µ∗`(γ) = fk` (γ) for some fk` (·), where fk` (γ) is linear in γ. Lastly, noting the constraints of

the dual of the Candidate LP, in an optimal solution to this problem, we have

σ∗i (γ) =
[
(ri− γ)vi−

∑

`∈M
a`i µ

∗
`(γ)

]+
=
[
(ri− γ)vi−

∑

`∈M
a`i f

k
` (γ)

]+
.

Because (ri− γ)vi−
∑

`∈M a`i f
k
` (γ) is linear in γ, it follows that σ∗i (γ) = [gki (γ)]+ for some gki (·),

where gki (γ) is linear in γ.

It is a standard result in parametric LP that Ik is a finite union of closed intervals except

that the first and last of these intervals can be of the form (−∞, a] and [a,∞) for some a ∈ R

(Chapter 5.5, Bertsimas and Tsitsiklis 1997). Let γk = max{γ : γ ∈ Ik} and γk = min{γ : γ ∈ Ik}.
Using the functions {fk` (·) : `∈M} and {gki (·) : i∈N} in Lemma A.2, we define

LPk(γ) =

{∑
`∈M b` f

k
` (γ) +

∑
i∈N [gki (γ)]+ if γ ∈ [γk, γk]

+∞ otherwise.

The expression in the first case above corresponds to the objective function of the dual of the

Candidate LP evaluated at the solution (µ,σ,ζ) with µ` = fk` (γ) for all `∈M and σi = [gki (γ)]+ for

all i∈N . By Lemma A.2, if γ ∈ Ik, then this solution is optimal to the dual of the Candidate LP,

but if γ ∈ [γk, γk] \ Ik, then this solution is not necessarily optimal.

In the next lemma, we use the functions {LPk(·) : k= 1, . . . ,K} to construct the function LP(·),
which corresponds to the optimal objective value of the dual of the Candidate LP.

Lemma A.3 For each γ ∈R, we have

LP(γ) = min{LPk(γ) : k= 1, . . . ,K}.

Proof: Fix γ̂ ∈R and let k= 1, . . . ,K be such that γ̂ ∈ Ik. By Lemma A.2, the solution (µ∗,σ∗,ζ∗)

with µ∗` = fk` (γ̂) for all ` ∈ M and σ∗i = [gki (γ̂)]+ for all i ∈ N is optimal to the dual of the

Candidate LP with γ = γ̂, so we have LP(γ̂) = LPk(γ̂). Thus, if we can show that LPt(γ̂)≥ LP(γ̂)

for all t∈ {1, . . . ,K} \ {k}, then the desired result follows. Choose an arbitrary t 6= k. If γ̂ 6∈ [γt, γt],

then LPt(γ̂) =∞, so LPt(γ̂)≥ LP(γ̂). In the rest of the proof, we assume that γ̂ ∈ [γt, γt].

By the definition of γt, we have γt ∈ It. Thus, by Lemma A.2, the solution (µ,σ,ζ) with

µ` = f t` (γ
t) for all `∈M and σi = [gti(γ

t)]+ for all i∈N is optimal to the dual of the Candidate LP
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when we solve this problem with γ = γt. Noting that the decision variable µ` is nonnegative in

the dual of the Candidate LP, it must be the case that f t` (γ
t) ≥ 0 for all ` ∈M. Using the same

argument, we also have f t` (γ
t) ≥ 0 for all ` ∈M. In this case, since f t` (γ

t) ≥ 0, f t` (γ
t) ≥ 0 and

γ̂ ∈ [γt, γt], using the fact that f t` (γ) is linear in γ, we get f t` (γ̂)≥ 0 for all `∈M. Thus, the solution

(µ,σ,ζ) with µ` = f t` (γ̂) for all `∈M and

σi =
[
(ri− γ̂)vi−

∑

`∈M
a`i f

t
` (γ̂)

]+

for all i∈N satisfies the constraints of the dual of the Candidate LP, along with the nonnegativity

constraints, when we solve this problem with γ = γ̂. By the definition of gti(·) in the proof of Lemma

A.2, the right side of the above expression is [gti(γ̂)]+. Thus, the solution (µ,σ,ζ) with µ` = f t` (γ̂)

for all ` ∈M and σi = [gti(γ̂)]+ for all i ∈ N is feasible to the dual of the Candidate LP when we

solve this problem with γ = γ̂. Furthermore, by the definition of LPt(·), this solution provides the

objective value of LPt(γ̂) for the dual of the Candidate LP, so LPt(γ̂)≥ LP(γ̂).

We need one more lemma to show the final result.

Lemma A.4 Let α(γ) and β(γ) be piecewise linear and convex in γ and θ(γ) = min{α(γ), β(γ)} be

convex in γ. Then, the number of breakpoints of θ(·) is at most the sum of the number of breakpoints

of α(·) and β(·).

Proof: If there exists a breakpoint of θ(·) that is not a breakpoint of α(·) or β(·), then α(·) and β(·)
must intersect at this point. Since θ(γ) = min{α(γ), β(γ)} and the minimum of two intersecting

lines is concave, θ(·) cannot be convex in a small neighborhood of this intersection point.

Here is the proof of Theorem 4.2. Noting the term
∑

i∈N [gki (γ)]+ in the definition of LPk(γ), since

gki (γ) is linear in γ, LPk(·) is piecewise linear and convex and it has n+ 2 breakpoints, including

γk and γk. Furthermore, LP(γ) is convex in γ by linear programming duality. So, by Lemmas A.3

and A.4, the number of breakpoints of LP(·) is at most K (n+ 2). If γk 6=∞, then it is a common

breakpoint for at least two of the functions {LPk(·) : k= 1, . . . ,K} and we drop the double-counted

breakpoints. Dropping also ∞ and −∞, the number of remaining breakpoints of LP(·) is at most

K (n+ 2)− (K − 1)− 2≤ (n+ 1) (m+n)m/m!− 1, where the inequality uses Lemma A.1.


