
Dynamic Pricing under a General Parametric Choice Model

Josef Broder

Cornell University

jmb344@cornell.edu

Paat Rusmevichientong

Cornell University

paatrus@cornell.edu

September 3, 2010

Abstract

We consider a stylized dynamic pricing model in which a monopolist prices a product to a se-

quence of T customers, who independently make purchasing decisions based on the price offered

according to a general parametric choice model. The parameters of the model are unknown to

the seller, whose objective is to determine a pricing policy that minimizes the regret, which is

the expected difference between the seller’s revenue and the revenue of a clairvoyant seller who

knows the values of the parameters in advance, and always offers the revenue-maximizing price.

We show that the regret of the optimal pricing policy in this model is Θ(
√
T ), by establishing

an Ω(
√
T ) lower bound on the worst-case regret under an arbitrary policy, and presenting a

pricing policy based on maximum likelihood estimation whose regret is O(
√
T ) across all prob-

lem instances. Furthermore, we show that when the demand curves satisfy a “well-separated”

condition, the T -period regret of the optimal policy is Θ(log T ). Numerical experiments show

that our policies perform well.

1. Introduction

Consider the problem of a retailer choosing a price at which to sell a new product, with the objective

of maximizing his expected revenue. If the retailer had full information about the demand at every

price level, then he could determine the revenue-maximizing price for the good. However, full

information about the demand curve is typically not available in practice, because the relationship

between price and customer purchase probability is generally not known to the seller in advance. To

address this problem, recent studies in revenue management consider dynamic pricing strategies, in

which a seller adjusts the price of the good to gain information about the demand curve, and then

exploits this information to offer a near-optimal selling price.

Regardless of the model, there are two fundamental questions that apply to virtually any dy-

namic pricing formulation. First, what is the value of knowing the demand curve; in other words,
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what is the magnitude of the revenue lost due to uncertainty about the relationship between price

and demand? Secondly, how should good pricing strategies balance price experimentation (ex-

ploration) and best-guess optimal pricing (exploitation)? The answers to both of these questions

depends intrinsically on the nature of the demand uncertainty facing the seller.

To investigate these questions, we consider dynamic pricing under a general parametric model of

customer behavior. We measure the performance of a pricing strategy in this model in terms of the

regret : the difference between the expected revenue gained by the pricing strategy, and the revenue

gained by an omniscient strategy that has full information about the demand curve in advance. We

classify the order of the regret of the optimal pricing policy under two scenarios: the fully general

case, and a special case in which the parametric family of demand curves satisfies a “well-separated”

condition.

By analyzing the performance of pricing policies under these two scenarios, we derive a number

of insights into the above questions. We demonstrate that, in the general case, a parametric family

of demand curves may include an “uninformative” price, whose presence makes dynamic pricing

difficult. We demonstrate this difficulty by showing that the worst-case regret for any pricing

policy in the presence of uninformative prices must be large. On the other hand, when the demand

curves satisfy a well-separated condition that precludes the possibility of an uninformative price,

we demonstrate the effectiveness of a “greedy” policy that simultaneously explores the demand

curve and exploits at the best-guess optimal price. Intuitively, when the demand curves are “well-

separated,” a seller can learn from customer responses at every price level, making simultaneous

exploration and exploitation possible, and leading to small regret.

We quantify the magnitude of the revenue lost due to demand uncertainty by providing a

complete regret profile of dynamic pricing under a general parametric model, demonstrating a

significant difference in the magnitude of the regret between the general and the well-separated

cases. We give a detailed outline of our contributions and their organization in Section 1.3.

1.1 The Model

We assume that customers arrive in discrete time steps. For each t ≥ 1, when the tth customer

arrives, he is quoted a price by the seller, and then decides whether to purchase the good at

that price based on his willingness-to-pay Vt. We assume that {Vt : t ≥ 1} are independent

and identically distributed random variables whose common distribution function belongs to some

family parameterized by z ∈ Z ⊂ Rn. Let d( · ; z) : R+ → R+ denote the complementary cumulative

distribution function of Vt, that is, for all p ≥ 0,

d(p ; z) = Prz {Vt ≥ p} . (1)
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We assume that each customer purchases the product if and only if his willingness-to-pay is at least

as large as the product price. Thus, we will also refer to d( · ; z) as the demand curve because it

determines the probability that the customer will purchase a product at a given price. For any

p ≥ 0, the expected revenue r(p ; z) under the price p is given by

r(p ; z) = p d(p ; z) . (2)

We will restrict our attention to families of demand curves for which the corresponding revenue

function r( · ; z) has a unique maximum.

We will consider a problem class C to be a tuple C = (P,Z, d), where Z ⊂ Rn is a compact and

convex parameter set, P = [pmin, pmax] is a closed pricing interval with pmin ≥ 0, and d : P ×Z →

[0, 1] is a smooth parametric family of demand curves such that p 7→ d(p; z) is non-increasing for

each z ∈ Z. Finally, we assume that p∗(z) ∈ P for all z ∈ Z.

For any t ≥ 1, we denote by yt = (y1, . . . , yt) ∈ {0, 1}t a history of customer purchasing decisions,

where y` = 1 if the `th customer decided to purchase the product, and y` = 0 otherwise. A pricing

policy ψ = (ψ1, ψ2, . . .) is a sequence of functions such that ψt : {0, 1}t−1 → P sets the price in

period t based on the observed purchasing decisions in the preceding t − 1 periods. To model the

relationship between a pricing policy ψ and customer behavior, we consider the distribution Qψ,zt

on t-step customer response histories induced by the policy ψ, which we define as follows. For any

policy ψ and z ∈ Z, let Qψ,zt : {0, 1}t → [0, 1] denote the probability distribution of the customer

responses Yt = (Y1, . . . , Yt) in the first t periods when the policy ψ is used and the underlying

parameter is z; that is, for all yt = (y1, . . . , yt) ∈ {0, 1}t,

Qψ,zt (yt) =
t∏

`=1

d(p`; z)y`(1− d(p`; z))1−y` , (3)

where p` = ψ` (y`−1) denotes the price in period ` under the policy ψ. It will also be convenient to

consider the distribution on customer responses to a sequence of fixed prices p = (p1, . . . , pk) ∈ Pk,

rather than the prices set by a pricing policy. We represent these distributions by

Qp,z(y) =

k∏
`=1

d(p`; z)y`(1− d(p`; z))1−y` ,

where y ∈ {0, 1}k, and p` denotes the `th component of the price vector p ∈ Pk.

Finally, we formalize the performance measure used to evaluate pricing policies. For a problem

class C = (P,Z, d), a parameter z ∈ Z, a policy ψ setting prices in P, and a time horizon T ≥ 1,

the T -period cumulative regret under ψ is defined to be

Regret(z, C, T, ψ) =

T∑
t=1

Ez [r (p∗(z); z)− r(Pt; z)] ,

3



where P1, P2, . . . denotes the sequence of prices under the policy ψ, and Ez [ · ] denotes the expec-

tation when the underlying parameter vector of the willingness-to-pay distribution is z. We note

that when the parameter z is known, minimizing the T -period cumulative regret is equivalent to

maximizing the total expected reward over T periods.

As a convention, we will denote vectors in bold, and scalars in regular font. A random variable

is denoted by an uppercase letter while its realized values are denoted in lowercase. We denote by

R+ the set of non-negative real numbers, while R++ denotes the set of positive numbers. We use

‖ · ‖ to denote the Euclidean norm, and for any set S ⊂ Rn and any element y ∈ Rn, we define

S − y = {x − y : x ∈ S}. We use log( · ) to denote the natural logarithm. For any symmetric

matrix A, let λmin(A) denote its smallest eigenvalue.

Before proceeding with a review of the relevant literature, we note several assumptions about

the retail environment implicit in our model. We assume that the seller is a monopolist offering

an unlimited supply of a nonperishable single product, with no marginal cost of production. We

also assume that the seller has the ability to adjust prices and receive feedback in real time, at the

level of individual customers. Although quite stylized, this model allow us to conduct a simple and

tractable analysis of demand learning under parametric uncertainty, and clearly illustrate some of

the difficulties facing a seller in such a scenario. Moreover, these assumptions have been adopted

by previous works (e.g., Cope, 2006; Kleinberg and Leighton, 2003; Carvalho and Puterman, 2005;

Besbes and Zeevi, 2009), and provide a convenient framework in which to study dynamic pricing.

We now proceed to place our paper in context with a review of the existing literature.

1.2 Literature Review

At a high level, many recent studies in the dynamic pricing literature focus on two natural questions.

First, what are the qualitative obstacles to pricing well under demand uncertainty, and secondly,

how should one design pricing strategies to overcome these obstacles? Many recent works in dynamic

pricing investigate these questions by considering numerical evaluations of heuristic policies, focusing

mainly on the second question posed above. Carvalho and Puterman (2005) consider a dynamic

pricing formulation in which the demand has a logistic distribution with two unknown parameters.

The authors perform a numerical evaluation of several heuristic strategies, and demonstrate that

a “one-step lookahead” policy, which sacrifices immediate revenue to compute a better estimate of

the unknown demand parameters, outperforms a myopic policy. Lobo and Boyd (2003) consider a

linear demand model with Gaussian noise, and investigate through numerical experiments a “price-

dithering” policy, which adds a random perturbation to the myopically optimal price. Bertsimas

and Perakis (2003) consider a similar demand model, and show through numerical experiments that
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approximate dynamic programming policies that balance immediate revenue rewards with long-term

learning can outperform a myopic policy.

The above works provide empirical evidence that, in a variety of settings, pricing policies that

perform some sort of active exploration will outperform myopically greedy policies, indicating that

there is some intrinsic value to price experimentation. Several other recent papers conduct a more

theoretical investigation into the value of price experimentation. In Besbes and Zeevi (2009), the

authors consider demand learning under an uncapacitated Bernoulli demand model, in which the

seller knows the initial demand curve. At some point in time unknown to the seller, the demand

curve switches to a different (but known in advance) function of the price. The authors show

that when the two demand curves satisfy a well-separated condition, a myopically greedy policy

is optimal. Additionally, they show that when the demand curves intersect, corresponding to the

presence of an uninformative price, then the magnitude of the worst-case regret is larger, and exhibit

an optimal policy that performs some forced exploration. Our work in this paper is thematically

related to Besbes and Zeevi (2009), in that we conduct a similar analysis of the worst-case regret

under a well-separated versus intersecting demand model, and in that we consider myopic versus

forced exploration policies. One may view our work as complementary to Besbes and Zeevi (2009),

in that we consider demand learning in a stationary, parameter learning framework, while they

consider a similar learning problem under a non-stationary, two-hypothesis testing setting.

A second related paper by the same authors is Besbes and Zeevi (2008). Here, the authors

consider demand learning in a general parametric (as well as non-parametric) setting, and present

policies based on maximum likelihood estimation. They suggest that the structure and performance

of a rate-optimal pricing policy should be different in the general versus the well-separated case, but

they provide the same lower bound on the performance measure for both cases. We complement the

theme of their work by exhibiting a dynamic pricing formulation in which the regret profiles between

the two cases are entirely different. Specifically, we prove in Theorem 3.1 that in the general case,

the worst case regret under an arbitrary policy must be at least Ω(
√
T ). On the other hand, in

the well-separated case, there is a policy whose regret is at most O(log T ) in all problem instances

(Theorem 4.8). Aside from these thematic similarities, several crucial features differentiate this work

from ours, including the presence of a known, finite time horizon, the presence of a known capacity

constraint, and a performance measure that is parameterized by initial capacity and demand rate,

rather than the time horizon. While we present pricing policies with similar structure to those

presented in Besbes and Zeevi (2008), the aforementioned differences make direct comparisons

difficult, and lead to a significantly different analysis.

Other recent related results include Lim and Shanthikumar (2007), which considers dynamic
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pricing strategies that are robust in the face of model uncertainty, using the classical pricing frame-

work of Gallego and van Ryzin (1994). Harrison et al. (2010) considers a stationary, two-hypothesis

dynamic pricing problem from a Bayesian standpoint. As in Besbes and Zeevi (2009) and this paper,

they consider problem instances in which there exists an “uninformative price,” and demonstrate

that a myopically greedy Bayesian policy can perform poorly in the presence of these uninformative

prices. The authors then analyze variants of the myopic Bayesian policy that perform active explo-

ration, and show that the revenue loss of these policies does not grow with the time horizon. den

Boer and Zwart (2010) consider dynamic pricing in a two-parameter linear demand model, with

Gaussian noise. The authors consider a myopically greedy policy based on least-squares parame-

ter estimation, and show that with positive probability, the prices generated by the myopic policy

do not converge to the optimal price. The authors then propose an alternative to the myopically

greedy policy, called “controlled variance pricing,” that maintains a “taboo” interval around the

average of the prices offered up to time t, and then offers the best-guess optimal price outside of this

interval. The size of the interval is carefully controlled to balance immediate revenue maximization

with long-term demand learning, resulting in a policy that is essentially optimal, up to logarithmic

factors.

Finally, we note that our pricing problem can be viewed as a special case of a general stochastic

optimization problem, in which one wishes to iteratively approximate the minimizer of an unknown

function, based only on noisy evaluation of the function at points inside a (usually uncountable)

feasible set. A full review of the literature on this topic is beyond the scope of this paper; however,

several notable references from the stochastic approximations literature include Kiefer and Wolfowitz

(1967), Fabian (1967), and more recently, Broadie et al. (2009) and Cope (2009), which examine

the convergence properties of stochastic gradient-descent type schemes. Another standard approach

is to apply the classical multi-armed bandit algorithm (Lai and Robbins, 1985 and Auer et al.,

2002) to the general stochastic optimization setting via a discretization approach; see, for example,

Agrawal (1995) and Auer et al. (2007), and Kleinberg and Leighton (2003) for an application of

these techniques in the context of dynamic pricing. As a key distinction, we note that both of the

aforementioned techniques are non-parametric, and thus the parametric, maximum-likelihood-based

policies presented in this paper are significantly different in both their structure and analysis.

We now proceed with a summary of our main contributions and organization.

1.3 Contributions and Organization

One of the main contributions of our work is a complete regret profile for the dynamic pricing

problem under a general parametric choice model. In Section 3.1, we prove in Theorem 3.1 that in
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the general case, the regret of an arbitrary pricing policy is Ω(
√
T ), by exploiting the presence of

“uninformative prices,” which force a tradeoff between reducing uncertainty about the parameters

of the demand curve and exploiting the best-guess optimal price.1 In Section 3.2, we present a

pricing policy based on maximum-likelihood estimation whose regret is O(
√
T ) across all problem

instances (Theorem 3.6).

In Section 4, we consider dynamic pricing when the family of demand curves satisfies a “well-

separated” condition, which precludes the presence of uninformative prices. We show that in this

scenario, the regret of the optimal policy is Θ(log T ). In Section 4.1, we establish a regret lower

bound of Ω(log T ) for all policies (Theorem 4.1), based on a Cramér-Rao-type inequality. We also

describe a pricing policy based on maximum-likelihood estimates (MLE) that achieves a matching

O(log T ) upper bound (Theorem 4.8). The key observation is that in the well-separated case,

demand learning is easier, in that a pricing policy can learn about the parameters of the demand

curve from customer responses to any price.

As a by product of our analysis, we also provide a novel large deviation inequality and bound

on mean squared errors for a maximum-likelihood estimator based on samples that are dependent

and not identically distributed (Theorem 4.7). The proof techniques used here are of independent

interest because they can be extended to other MLE-based online learning strategies.

2. Assumptions and Examples

Recall that a problem class C is a tuple (P,Z, d), where P = [pmin, pmax] ⊂ R+ is a feasible pricing

interval, Z ⊂ Rn is a compact and convex feasible parameter set, and d : P × Z → [0, 1] is a

parametric family of smooth demand functions such that p 7→ d(p; z) is non-increasing for each

z ∈ Z. Throughout the paper, we restrict our attention to problem classes C satisfying the following

basic assumptions.

Assumption 1 (Basic Assumptions). There exists positive constants dmin, dmax, L, and cr such

that

(a) 0 < dmin ≤ d(p; z) ≤ dmax < 1 for all p ∈ P and z ∈ Z.

(b) The revenue function p 7→ r(p; z) has a unique maximizer p∗(z) ∈ P.

(c) The function z 7→ p∗(z) is L-Lipschitz, that is, |p∗(z)− p∗(z̄)| ≤ L ‖z− z̄‖ for all z, z̄ ∈ Z.

(d) The revenue function p 7→ r(p; z) is twice differentiable with supp∈P,z∈Z |r′′(p; z)| ≤ cr.

Under Assumption 1(a), the demand is bounded away from zero and one on the pricing interval;

1We use the notation O( · ) and Ω( · ) to represent upper and lower bounds, respectively, on the performance

measure of interest (see Knuth, 1997 for more details).
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that is, we will not offer prices at which customers will either purchase or decline to purchase

with probability one. Assumption 1(b) is self-explanatory, and Assumption 1(c) says that if we

vary the parameter z by a small amount, then the optimal price p∗(z) will not vary too much.

Assumption 1(d) imposes a smoothness condition on the demand curve p 7→ d(p; z).

In addition to these structural assumptions about the demand curve, we will also impose the

following statistical assumption about the family of distributions {Qp,z : z ∈ Z}.

Assumption 2 (Statistical Assumption). There exists a vector of exploration prices p̄ ∈ Pk such

that the family of distributions {Qp̄,z : z ∈ Z} is identifiable, that is, Qp̄,z( · ) 6= Qp̄,z̄( · ) whenever

z 6= z̄. Moreover, there exists a constant cf > 0 depending only on the problem class C and p̄ such

that λmin{I(p̄, z)} ≥ cf for all z ∈ Z, where I(p̄, z) denotes the Fisher information matrix given

by [
I(p̄, z)

]
i,j

= Ez

[
− ∂2

∂zi∂zj
logQp̄,z(Y)

]
=

n∑
k=1

{
∂
∂zi
d(p̄k, z)

}
×
{

∂
∂zj
d(p̄k, z)

}
d(p̄k, z)(1− d(p̄k, z))

.

Assumption 2 is a standard assumption, which guarantees that we can estimate the demand param-

eter based on the purchase observations at the exploration prices p̄ (see, for example, Besbes and

Zeevi, 2008). As shown in the following examples, Assumptions 1 and 2 encompass many families

of parametric demand curves (see Talluri and van Ryzin, 2004 for additional examples).

Example 2.1 (Logit Demand). Let P = [1/2, 2] ⊂ R, Z = [1, 2]× [−1, 1] ⊂ R2 and let

d(p, z) =
e−z1p−z2

1 + e−z1p−z2

be the family of logit demand curves. It is straightforward to check that (P,Z, d) satisfies the

conditions stated in Assumption 1 with dmin = e−5/(1+e−5), dmax = e1/2/(1+e1/2), L = 2+log(2),

and cr = 2e. It is also straightforward to check that for any p̄ = (p̄1, p̄2) ∈ P2 with p̄1 6= p̄2, the

associated family {Qp̄,z : z ∈ Z} is identifiable. Moreover, for any p ∈ R+ and z ∈ Z, we have that

∂

∂z1
d(p, z) = −pd(p, z)(1− d(p, z)) and

∂

∂z2
d(p, z) = −d(p, z)(1− d(p, z)) ,

which implies that the Fisher information matrix is given by

I(p̄, z) = d(p̄1, z)(1− d(p̄1, z))

 p̄2
1 p̄1

p̄1 1

+ d(p̄2, z)(1− d(p̄2, z))

 p̄2
2 p̄2

p̄2 1


By applying the trace-determinant formula, we can show that for all z ∈ Z,

λmin{I(p̄, z)} ≥ (p̄1 − p̄2)2

p̄2
1 + p̄2

2 + 2
· d2

min(1− dmax)2 > 0
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Example 2.2 (Linear Demand). Let P = [1/3, 1/2], let Z = [2/3, 3/4]× [3/4, 1], and let

d(p; z) = z1 − z2p

be a linear demand family. Then it is straightforward to check that this family satisfies Assumption 1

with dmin = 1/6, dmax = 1/2, L = 2, and cr = 2. Moreover, for any p̄ = (p̄1, p̄2) ∈ P2 with p̄1 6= p̄2,

the associated family {Qp̄,z : z ∈ Z} is identifiable. A similar computation shows that the Fisher

information matrix is given by

I(p̄, z) =
1

d(p̄1, z)(1− d(p̄1, z))

 1 p̄1

p̄1 p̄2
1

+
1

d(p̄2, z)(1− d(p̄2, z))

 1 p̄2

p̄2 p̄2
2

 ,

and using the same argument as above, we can show that

λmin{I(p̄, z)} ≥ (p̄1 − p̄2)2

p̄2
1 + p̄2

2 + 2
· 1

d2
max(1− dmin)2

> 0 .

Example 2.3 (Exponential Demand). Let P = [1/2, 1], let Z = [1, 2]× [0, 1], and let

d(p; z) = e−z1p−z2

be an exponential demand family. Then by the same techniques used in Examples 2.1 and 2.2, one

may check that this problem class satisfies Assumptions 1 and 2, and that the associated family

{Qp̄,z : z ∈ Z} is identifiable for any p̄ = (p1, p2) ∈ P2 for which p1 6= p2.

We now discuss an important observation that will motivate the design of pricing policies in our

model. Suppose that the unknown model parameter vector is z, and let ẑ denote some estimate of

z. We might consider pricing the product at p∗(ẑ), which is optimal with respect to our estimate.

When ẑ is close to the true parameter vector, we would expect that p∗(ẑ) yields a near optimal

revenue. We make this intuition precise in the following corollary, which establishes an upper bound

on the loss in revenue from inaccurate estimation.

Corollary 2.4 (Revenue Loss from Inaccurate Estimation). For any problem class C = (P,Z, d)

satisfying Assumption 1 and for any z, ẑ ∈ Z,

r(p∗(z); z)− r(p∗(ẑ); z) ≤ cr L
2 ‖z− ẑ‖2 .

Proof. First we will show that as a consequence of Assumption 1(b) and Assumption 1(d), we have

that for z ∈ Z and p ∈ P,

0 ≤ r(p∗(z); z)− r(p; z) ≤ cr (p∗(z)− p)2 .

The result then follows from Assumption 1(c) (the Lipschitz continuity of the optimal price).
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We will establish the quadratic inequality for p > p∗(z). The same argument applies to the case

where p < p∗(z). For any u ∈ R+, let r′(u; z) and r′′(u; z) denote the first and second derivatives

of the revenue function at u, respectively. Since r′(p∗(z); z) = 0, it follows that

|r(p∗(z); z)− r(p; z)| =

∣∣∣∣∣
∫ p

p∗(z)

∫ t

p∗(z)
r′′(u; z) du dt

∣∣∣∣∣
≤ sup

u∈P

∣∣r′′(u; z)
∣∣ ∫ p

p∗(z)

∫ t

p∗(z)
du dt =

1

2
sup
u∈P

∣∣r′′(u; z)
∣∣ (p∗(z)− p)2

≤ cr(p
∗(z)− p)2

Corollary 2.4 suggests a method for constructing a pricing policy with low regret. We construct

an estimate of the underlying parameter based on the observed purchase history, then offer the

greedy optimal price according to this estimate. If our estimate has a small mean square error, then

we expect that the loss in revenue should also be small. However, the variability of our estimates

depends on the past prices offered. As we will see, there is a nontrivial tradeoff between pricing

to form a good estimate (exploration) and pricing near the greedy optimal (exploitation), and the

optimal balance between these two will be quite different depending on the nature of the demand

uncertainty facing the seller.

3. The General Case

In this section, we consider dynamic pricing under the general parametric model satisfying Assump-

tions 1 and 2. In Section 3.1, we show that the worst-case regret of any pricing policy must be at

least Ω(
√
T ), by constructing a problem class with an “uninformative price” that impedes demand

learning. Then, in Section 3.2, we describe a pricing policy based on maximum likelihood estimation

whose regret is O(
√
T ) across all problem instances, thus establishing that the order of regret for

the optimal pricing policy in the general case is Θ(
√
T ).

3.1 A Lower Bound for the General Case

In this section, we establish a lower bound on the T -period cumulative regret for the general case.

The main result is stated in the following theorem.

Theorem 3.1 (General Regret Lower Bound). Define a problem class CGenLB = (P,Z, d) by letting

P = [3/4, 5/4], Z = [1/3, 1], and d(p; z) = 1/2 + z − zp. Then for any policy ψ setting prices in P,

and any T ≥ 2, there exists a parameter z ∈ Z such that

Regret(z, CGenLB, T, ψ) ≥
√
T

483
.
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Using the same proof technique as in Example 2.2, one can show that the problem class CGenLB
satisfies Assumptions 1 and 2, with dmin = 1/4, dmax = 3/4, p∗(z) = (1 + 2z)/(4z), L = 3, and

cr = 2. Before we proceed to the proof of Theorem 3.1, let us discuss the intuition underlying our

arguments. Figure 1(a) shows examples of demand curves in the family given by CGenLB. Note that

for all z ∈ Z, d(1; z) = 1/2, and thus all demand curves in this family intersect at common price

p = 1. Note also that this price is the optimal price for some demand curve in this family, that is,

p∗(z0) = 1 for z0 = 1/2 (see Figure 1(b) for examples of the revenue curves). Since the demand is

the same at p∗(z0) regardless of the underlying parameter, the price p∗(z0) is “uninformative,” in

that no policy can gain information about the value of the parameter while pricing at p∗(z0). To

establish Theorem 3.1, we show that uninformative prices lead to a tension between demand learning

(exploration) and best-guess optimal pricing (exploitation), which forces the worst-case regret of

any policy to be Ω(
√
T ). This tension is made precise in two lemmas. We show in Lemma 3.3 that

for a policy to reduce its uncertainty about the unknown demand parameter, it must necessarily set

prices away from the uninformative price p∗(z0), and thus incur large regret when the underlying

parameter is z0. Then, in Lemma 3.4, we show that any policy that does not reduce its uncertainty

about the demand parameter z must also incur a cost in regret.

(a) expected demand (b) expected revenue

Figure 1: Family of linear demand and revenue curves under CGenLB for z ∈ {1/3, 1/2, 2/3, 5/6, 1}.

For z = 1/2, the optimal price is p∗(1/2) = 1, which is also the common intersection points for all

demand curves in this family.

To give precise statements of Lemmas 3.3 and 3.4, we will need to quantify the heuristic notion

of “uncertainty” about the unknown demand parameter. In our analysis, we will use a convenient

quantitative measure of uncertainty, known as the KL divergence.

Definition 3.2 (Definition 2.26 in Cover and Thomas, 1999). For any probability measures Q0 and
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Q1 on a discrete sample space Y, the KL divergence of Q0 and Q1 is

K (Q0;Q1) =
∑
y∈Y

Q0(y) log

(
Q0(y)

Q1(y)

)
.

Intuitively, the KL divergence is a measure of distinguishability between two distributions; if

the KL divergence between Q0 and Q1 is large, then Q0 and Q1 are easily distinguishable, and if

K(Q0;Q1) is small, then Q0 and Q1 are difficult to distinguish. Thus, we say that a pricing policy ψ

has a large degree of certainty that the true underlying demand parameter is z0, rather than some

counterfactual parameter z, if the quantity K(Qψ,z0t ;Qψ,zt ) is large.

With this interpretation of the KL divergence, we now state Lemma 3.3. This lemma establishes

that reducing uncertainty about the underlying parameter is costly, by establishing a lower bound

on the regret incurred by an arbitrary pricing policy in terms of the KL divergence.

Lemma 3.3 (Learning is Costly). For any z ∈ Z, t ≥ 1, and any policy ψ setting prices in P,

K
(
Qψ,z0t ;Qψ,zt

)
≤ 9

16
(z0 − z)2 Regret (z0, CGenLB, t, ψ) ,

where z0 = 1/2.

The proof of Lemma 3.4 is deferred to Appendix A.1, but here we give a high level description

of the argument. Suppose the underlying demand parameter is z0, and suppose a pricing policy

ψ has the goal of reducing its uncertainty about whether the underlying demand parameter is in

fact z0, as opposed to some other value z. We may restate this goal of “reducing uncertainty” in

terms of the KL divergence, by saying that the policy ψ wishes to offer a sequence of prices such

that the KL divergence between the induced distributions Qψ,z0t and Qψ,zt of customer responses

is large. To accomplish this, ψ must offer prices at which the customer purchase probability will

be significantly different under z0 versus z; however, for all prices in a small neighborhood of the

uninformative price p∗(z0), the probability of a customer purchase is virtually the same under z0

and z. Thus, to distinguish the two cases (that is, increase the KL divergence K(Qψ,z0t ;Qψ,zt )), the

policy ψ must offer prices away from p∗(z0), and thus incur large regret Regret (z0, CGenLB, t, ψ) when

the underlying parameter is in fact z0.

We have now established in Lemma 3.3 that reducing uncertainty about the underlying demand

curve is costly. However, this result alone is not enough to prove a lower bound on the regret. To

establish the desired lower bound on regret, we need a complementary result, showing that any

pricing policy that does not decrease its uncertainty about the demand curve must also incur a cost

in regret. We establish this complement to Lemma 3.3 in the following lemma.

12



Lemma 3.4 (Uncertainty is Costly). Let ψ be any pricing policy setting prices in P Then, for any

T ≥ 2 and for demand parameters z0 = 1/2 and z1 = z0 + 1
4T
−1/4, we have

Regret(z0, CGenLB, T, ψ) + Regret(z1, CGenLB, T, ψ) ≥
√
T

12(482)
e−K(Q

ψ,z0
T ;Q

ψ,z1
T ) .

The intuition for Lemma 3.4 is the following. Let us choose the special parameter z0 = 1/2 such

that the corresponding optimal price p∗(z0) is the uninformative price, and let us choose a second

demand parameter z1 = z0+ 1
4T
−1/4. The parameters z0 and z1 are chosen so that the optimal prices

p∗(z0) and p∗(z1) are not too close to each other; in other words, z0 and z1 are far enough apart

(with respect to the time horizon T ) such that a near-optimal pricing decision when the demand

parameter is z0 will be sub-optimal when the demand parameter is z1, and vice versa. Thus, for a

pricing policy ψ to price well under both z0 and z1, it must be able to distinguish which of the two is

the true demand parameter, based on observed responses to the past prices offered. Consequently,

if ψ cannot distinguish between the two cases z0 and z1 based on past prices offered (that is, the

KL divergence K(Qψ,z0t ;Qψ,z1t ) is small), then the worst-case regret of ψ must necessarily be large,

as seen in the inequality of Lemma 3.4.

The proof of Lemma 3.4 follows from standard results on the minimum error probability of a

two-hypothesis test, and we give a fully detailed proof in Appendix A.2. Equipped with Lemmas

3.3 and 3.4, we can immediately deduce the main result.

Proof of Theorem 3.1. Since Regret(z1, CGenLB, T, ψ) is non-negative, and since z1 = z0 + 1
4T
−1/4 by

definition, it follows from Lemma 3.3 and the choice of z1 that

Regret(z0, CGenLB, T, ψ) + Regret(z1, CGenLB, T, ψ) ≥
√
T

9
K
(
Qψ,z0T ;Qψ,z1T

)
.

Adding this inequality to the result of Lemma 3.4, and using the fact that the KL divergence is

non-negative, we have

2 {Regret(z0, CGenLB, T, ψ) + Regret(z1, CGenLB, T, ψ)}

≥
√
T

9
K
(
Qψ,z0T ;Qψ,z1T

)
+

√
T

12(482)
e−K(Q

ψ,z0
T ;Q

ψ,z1
T )

≥
√
T

12(482)
·
{
K
(
Qψ,z0T ;Qψ,z1T

)
+ e−K(Q

ψ,z0
T ;Q

ψ,z1
T )

}
≥

√
T

12(482)
.

To see the last inequality, note that K
(
Qψ,z0T ;Qψ,z1T

)
+e−K(Q

ψ,z0
T ;Q

ψ,z1
T ) ≥ 1, since x+e−x ≥ 1 for all

x ∈ R+. Thus, the tension between pricing optimally and learning the parameters of the demand

curve is captured explicitly by the sum K
(
Qψ,z0T ;Qψ,z1T

)
+e−K(Q

ψ,z0
T ;Q

ψ,z1
T ). The first term in the sum

captures the cost of learning the parameters of the demand curve, while the second term in the sum

13



captures the cost of uncertainty. The fact that this sum cannot be driven to zero, regardless of the

choice of the pricing policy, captures the tradeoff between learning and exploiting in the presence

of uninformative prices. The desired result follows from the fact that

max
z∈{z0,z1}

Regret(z, CGenLB, T, ψ) ≥ Regret(z0, CGenLB, T, ψ) + Regret(z1, CGenLB, T, ψ)

2
≥
√
T

483

Remark 3.5 (Statistical Identifiability). The result of Theorem 3.1 leverages the presence of an

“uninformative price” p∗(z0). Note that the family of distributions {Qp∗(z0),z : z ∈ Z} is not

identifiable, that is, one cannot uniquely identify the true value of the underlying demand parameter

z from observing customer responses to the single price p∗(z0). However, by the arguments of

Example 2.2, the family {Qp̄,z : z ∈ Z} is identifiable for any p̄ = (p1, p2) ∈ P2 with p1 6= p2,

that is, one can uniquely identify the value of the underlying parameter from observing customer

responses to two distinct prices.

Before we proceed with Section 3.2, we briefly remark on the related literature. A very general

version of the result of Theorem 3.1 was previously known in the computer science literature; Klein-

berg and Leighton (2003) contains eight sufficient conditions under which a one-parameter family

of demand curves yields regret that is not o(
√
T ). It is worth noting that the family constructed in

Theorem 3.1 does not satisfy the sufficient conditions provided by Kleinberg and Leighton (2003);

in particular, the family presented in Theorem 3.1 contains an “uninformative price,” while their

lower bound proof exploits alternative properties.

The techniques used in the proof of Theorem 3.1 have appeared in several recent papers. A

recent work in dynamic pricing is Besbes and Zeevi (2009), which contains a related lower bound

result in a non-stationary demand learning framework. Examples of these techniques in the more

general online learning literature can be found in Goldenshluger and Zeevi (2008) and Goldenshluger

and Zeevi (2009), which concern optimal learning in a two-armed bandit setting.

3.2 A General Matching Upper Bound

In this section, we present a pricing policy called MLE-CYCLE whose regret is O(
√
T ) across all

problem instances, matching the order of the lower bound of Section 3.1. We describe the policy

MLE-CYCLE in detail below, but first we describe the general intuition behind the policy.

Suppose we had access to a good estimate of the underlying demand parameter. Then this

would give us a good approximation of the true demand curve, and we would be able to price

near-optimally (per the result of Corollary 2.4). However, any estimate of the demand parameter

will depend on customer responses to the past prices offered, and as seen in Theorem 3.1, observing
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responses to prices near an “uninformative price” will do little to reduce uncertainty about the

demand parameter. Thus, to learn the demand curve adequately, a pricing policy should be careful

to offer prices at which a good estimate of the demand parameter can be computed.

Motivated by this discussion, we present a policy MLE-CYCLE based on maximum likelihood

parameter estimation. The policy MLE-CYCLE operates in cycles, and each cycle consists of an

exploration phase followed by an exploitation phase. These cycles are simply a scheduling device,

designed to maintain the appropriate balance between exploration and exploitation. During the

exploration phase of a given cycle c, we offer the product to consecutive customers at a sequence

of exploration prices p ∈ Pk, and then compute a maximum likelihood estimate of the underlying

parameter based on the observed customer selections. The exploration prices p are fixed, and are

chosen so that a good estimate of the demand parameter can be computed from the corresponding

customer responses. Following the exploration phase of cycle c, there is an exploitation phase of c

periods, during which we offer the best-guess optimal price corresponding to the current estimate

of the demand parameter to c consecutive customers. Thus, the cth cycle of MLE-CYCLE consists of

(k+ c) periods: k periods in which we offer each of the k exploration prices, followed by c periods in

which we offer the optimal price corresponding to our most recent estimate of the demand parameter.

The cycle-based scheduling of MLE-CYCLE is carefully chosen to optimize the balance the amount

of demand learning (exploration) with best-guess optimal pricing (exploitation). While we make

this balance precise in the analysis of the policy, we note that the scheduling makes intuitive sense:

the ratio of exploration steps to exploitation steps in MLE-CYCLE is high in the early time periods,

when little is known about the demand curve, and is low in the later time periods, when the demand

curve is known to a good approximation.

We now proceed with a formal description of the policy MLE-CYCLE.

We state the regret guarantee of MLE-CYCLE in the following theorem.

Theorem 3.6 (General Regret Upper Bound). For any problem class C = (P,Z, d) satisfying

Assumptions 1 and 2 with corresponding exploration prices p̄ ∈ Pk, there exists a constant C1

depending only on the exploration prices p̄ and the problem class C such that for all z ∈ Z and

T ≥ 2, the policy MLE-CYCLE satisfies

Regret(z, C, T,MLE-CYCLE) ≤ C1

√
T .

The main idea of the proof of Theorem 3.6 is the following. For a given time horizon T, it is

straightforward to check that the number of cycles up to time T is O(
√
T ), and so to prove that the

regret of MLE-CYCLE is O(
√
T ), it is enough to show that the regret in each cycle is O(1). Since

each cycle consists of an exploration phase followed by an exploitation phase, it’s enough to show
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Policy MLE-CYCLE(C,p)

Inputs: A problem class C = (P,Z, d) and exploration prices p̄ = (p̄1, . . . , p̄k) ∈ Pk.

Description: For each cycle c = 1, 2, . . . ,

• Exploration Phase (k periods): Offer the product at exploration prices p̄ = (p̄1, . . . , p̄k) and

let Y(c) = (Y1(c), . . . , Yk(c)) denote the corresponding customer selections. Let Ẑ(c) denote

the maximum likelihood estimate (MLE) based on observed customer selections during the

exploration phases in the past c cycles, that is,

Ẑ(c) = arg max
z∈Z

c∏
s=1

Qp̄,z(Y(s)) ,

where for each 1 ≤ s ≤ c, Y(s) = (Y1(s), . . . , Yk(s)) denotes the observed customer responses

to the exploration prices offered in the exploration phase of cycle s.

• Exploitation Phase (c periods): Offer the greedy price p∗
(
Ẑ(c)

)
based on the estimate Ẑ(c).

that for an arbitrary cycle c, the regret incurred in the exploration phase is O(1), and the regret

incurred during the exploitation phase is O(1).

First, to show that the regret during the exploration phase of an arbitrary cycle is O(1), note

that during the exploration phase, MLE-CYCLE offers k exploration prices, and the regret incurred

from offering each of these exploration prices is O(1), by the smoothness of the revenue function, and

the compactness of the pricing interval. Thus, the total regret incurred during the exploration phase

is O(1). Secondly, to show that the regret incurred during the exploitation phase of an arbitrary

cycle is O(1), recall that the price offered during the exploitation phase of cycle c is p∗(Ẑ(c)). This

price is offered to c customers, and by Corollary 2.4, the instantaneous regret incurred for each

customer is O
(
Ez
[
||z− Ẑ(c)||2

])
. But since Ẑ(c) is a MLE computed from c samples, it follows

from a standard result that Ez
[
||z− Ẑ(c)||2

]
= O(1/c). Since this prices is offered to c customers,

the total regret incurred during the exploitation phase is c · O(1/c) = O(1), as claimed.

We now proceed with a rigorous proof based on the above intuition. We begin by stating a

bound on the mean squared error of the maximum likelihood estimator formed by MLE-CYCLE.

Lemma 3.7 (Mean Squared Errors for MLE based on IID Samples, Borovkov (1998)). For any

c ≥ 1, let Ẑ(c) denote the maximum likelihood estimate formed by the MLE-GREEDY policy after

c exploration cycles. Then there exists a constant Cmle depending only on the exploration prices p

and the problem class C such that

Ez

[∥∥∥Ẑ(c)− z
∥∥∥2
]
≤ Cmle

c
.
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The proof of Lemma 3.7 follows from standard results on the mean-squared error of maximum-

likelihood estimators, is given in detail in Appendix B. We now given the proof of Theorem 3.6.

Proof. Fix a problem class C = (P,Z, d) with corresponding exploration prices p̄, and consider an

arbitrary cycle c. First, we show that the regret incurred during the exploration phase of cycle c

is O(1). Since the revenue function is smooth by assumption, and since the pricing interval P is

compact, it follows that there exists a constant D̄1 depending only on the problem class C such that

r(p∗(z); z)− r(p; z) ≤ D̄1

for all z ∈ Z and all p ∈ P. Consequently, the regret during the exploration phase of cycle c satisfies

k∑
`=1

Ez[r(p∗(z); z)− r(p̄`; z)] ≤ kD̄1.

Next, we show that the regret incurred during the exploitation phase of cycle c is also O(1). During

the exploitation phase of cycle c, we use the greed price p∗
(
Ẑ(c)

)
, and we offer this price for c

periods. It follows from Corollary 2.4 and Theorem B.1 that the instantaneous regret during the

exploitation phase satisfies

Ez

[
r(p∗(z); z)− r(p∗(Ẑ(c)); z)

]
≤ cr L2 Ez

[∥∥∥z− Ẑ(c)
∥∥∥2
]
≤ crL

2Cmle
c

,

and since the price p∗(Ẑ(c)) is offered for c periods during the exploitation phase of cycle c, we have

that the total regret incurred during the exploitation phase of cycle c is bounded above by crL
2Cmle.

Putting everything together, we have that the cumulative regret over K cycles (corresponding to

2K +
∑K

c=1 c periods) satisfies

Regret(z, C, 2K +
K∑
c=1

c,MLE-CYCLE) ≤
(
kD̄1 + crL

2Cmle
)
K .

Now, consider an arbitrary time period T ≥ 2 and let K0 = d
√

2T e. Note that the total number of

time periods after K0 cycles is at least T because 2K0 +
∑K0

c=1 c ≥
∑K0

c=1 c = K0(K0 + 1)/2 ≥ T .

The desired result follows from the fact that

Regret(z, C, T,MLE-CYCLE) ≤ Regret(z, C, 2K0 +

K0∑
c=1

c,MLE-CYCLE).
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4. The Well-Separated Case

In the general case studied in Section 3.1, there are two major obstacles to pricing that force any

policy to have Ω(
√
T ) worst-case regret. The first obstacle is the stochastic nature of the demand.

A pricing policy never observes a noise-free value of the demand curve at a given price; it observes

only a random variable whose expected value is the demand at that price. The second and more

prominent obstacle is that of “uninformative prices,” at which no pricing policy can reduce its

uncertainty about demand.

Given this observation, a natural question is the following: how much does each of the two

obstacles contribute to the difficulty of dynamic pricing? More specifically, are uninformative prices

so difficult to deal with that they force a minimum regret of Ω(
√
T ), or is it simply the stochastic

nature of the demand that forces this lower bound? In this section, we shed light on this issue

by considering demand curves that satisfy a “well-separated” condition (Assumption 3), which

precludes the possibility of uninformative prices. Under this assumption, we show in Section 4.1

a lower bound of Ω(log T ) on the T -period cumulative regret under an arbitrary policy. Then, in

Section 4.2, we show that a greedy policy achieves regret matching the order of the lower bound.

We now state Assumption 3, which guarantees that it is possible to estimate demand from

customer responses at any price in P.

Assumption 3 (Well Separated Assumption). The problem class C = (P,Z, d) has a parameter

set Z ⊂ R, and for all prices p ∈ P,

(a) The family of distributions {Qp,z : z ∈ Z} is identifiable.

(b) There exists a constant cf > 0 depending only on the problem class C such that the Fisher

information I(p, z), given by

I(p, z) = Ez
[
− ∂2

∂z2
logQp,z(Y )

]
satisfies I(p, z) ≥ cf for all z ∈ Z.

Remark 4.1 (Geometric Interpretation of Assumption 3). To make the notion of well separated

more concrete, one may show that any problem class C = (P,Z, d) satisfying Assumption 3 also

has the following property: there exists some constant cd > 0 depending only on C such that

|d(p; z)− d(p; ẑ)| ≥ cd |z − ẑ|

for any price p ∈ P, and any z, ẑ ∈ Z⊂ R. We defer the details of this derivation to Appendix E.1.

Thus, for any fixed price p ∈ P, if we vary the demand parameter z to some other value ẑ, then the

demand at price p will vary by an amount proportional to |z − ẑ| . An obvious consequence of this
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property and the smoothness of the demand curves is that for any two demand parameters z 6= ẑ,

it must be the case that either d(p; z) > d(p; ẑ) for all p ∈ P, or d(p; z) < d(p; ẑ) for all p ∈ P. Thus,

we refer to this condition as a “well-separated” condition, since it implies that for any two demand

parameters z 6= ẑ, the corresponding demand curves do not intersect with each other.

Since we will use the maximum likelihood estimator in our pricing model and this estimator

is the minimizer of the function z 7→ − log Qp,z
t (Yt), we now state Assumption 4, which gives

a convenient property of the likelihood function that allows for a simple analysis of the likelihood

process. As shown in Examples 4.2, 4.3, and 4.4, Assumptions 3 and 4 are satisfied by many demand

families of interest, including the linear, logistic, and exponential.

Assumption 4 (Likelihood Assumptions). For any sequence of prices p = (p1, . . . , pt) ∈ Pt, the

function

z 7→ − logQp,z
t (Yt)

is convex on Z ⊂ R.

We now state some examples of problem classes satisfying Assumptions 3 and 4.

Example 4.2 (One-Parameter Logit Family). Let P = [1/2, 2] and let Z = [1, 2]. Define a family

of logistic demand curves by

d(p, z) =
e−zp

1 + e−zp
.

Then by Example 2.1, we know that this problem instances satisfies the conditions of Assumption 1.

It is also straightforward to check that for any p̄ ∈ P, the associated family {Qp̄,z : z ∈ Z} is

identifiable. Moreover, for any p̄ ∈ P and z ∈ Z, we have that

d

dz
d(p̄; z) = −p̄ d(p̄; z)(1− d(p̄; z)) ,

and so by the formula given in Assumption 2, we have that the Fisher information is given by

I(p̄, z) = p̄2 d(p̄; z)(1− d(p̄; z)) ≥ p2
min dmin(1− dmax) .

Finally, it is a standard result (see, for example, Ben-Akiva and Lerman, 1985) that for the logit

model, the negative log-likelihood function is globally convex, and so Assumption 4 is satisfied.

Example 4.3 (One-Parameter Linear Family). Let P = [1/3, 1/2], let Z = [3/4, 1], and let b = 2/3

be a fixed constant. Define a linear family of demand curves by d(p; z) = b−zp. By Example 2.2, we

know that this problem instances satisfies the conditions of Assumption 1. It is also straightforward
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(a) expected demand (b) expected revenue

Figure 2: Family of well separated logit demand and revenue curves from Example 4.2 for z ∈

{1, 5/4, 6/4, 7/4, 2}.

to check that for any p̄ ∈ P, the associated family {Qp̄,z : z ∈ Z} is identifiable. Moreover, for any

p̄ ∈ P and z ∈ Z, we have that
d

dz
d(p̄; z) = −p̄ ,

and we have that the Fisher information is given by

I(p̄, z) =
p̄2

d(p̄; z)(1− d(p̄; z))
≥ p2

min

dmax(1− dmin)
.

Finally, to verify Assumption 4, we have that for any vector of prices p = (p1, . . . , pt) ∈ Pt,

Qp,z
t (yt) =

t∏
`=1

(b− zp`)y`(1− b+ zp`)
1−y` ,

so that

− logQp,z
t (yt) = −

t∑
`=1

{y` log(b− zp`) + (1− y`) log(1− b+ zp`)} .

Taking derivatives twice, we have

d2

dz2

{
− logQp,z

t (yt)
}

=

t∑
`=1

y`p
2
`

(b− zp`)2
+

(1− y`)p2
`

(1− b+ zp`)2
> 0 ,

which implies that the negative log-likelihood function is globally convex, as desired.

Example 4.4 (One-Parameter Exponential Family). Let P = [1/2, 1] and let Z = [1, 2]. Define an

exponential family of demand curves by

d(p; z) = e−zp.
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By the same techniques used in Examples 4.2 and 4.3, one can check that this problem class satisfies

all the conditions of Assumptions 1 and 3. Moreover, to verify Assumption 4, one can check that

for any vector of prices p = (p1, . . . , pt) ∈ Pt,

d2

dz2

{
− logQp,z

t (yt)
}

=

t∑
`=1

(1− y`)p2
`e
−z`p

(1− e−z`p)2
> 0 ,

which implies that the negative log-likelihood function is globally convex, as desired.

4.1 A Lower Bound

In this section we establish a lower bound of Ω(log T ) for the well-separated case. The main result

of this section is stated in the following theorem.

Theorem 4.5 (Well-Separated Lower Bound). Define a problem class CWellSepLB = (P,Z, d) by

letting P = [1/3, 1/2], Z = [2, 3], and letting d(p; z) = 1 − (pz)/2. Then for any policy ψ setting

prices in P and any T ≥ 1, there exists a constant z ∈ Z such that

Regret(z, CWellSepLB, T, ψ) ≥ 1

405π2
log T .

There are two key observations that lead to the proof of Theorem 4.5. First, recall that in our

model, the price offered by a pricing policy ψ to the tth customer is given by Pt = ψt(Yt−1), where

ψt : {0, 1}t−1 → P is any function and Yt−1 is a vector of observed customer responses. Thus,

we may think of Pt as an “estimator,” since Pt is just a function ψt of the observed data Yt−1.

Consequently, we may apply standard results on the minimum mean squared error of an estimator

to show that E[(p∗(Z) − Pt)2] = Ω(1/t). We make this precise in Lemma 4.6 whose proof is given

in Appendix C.

Secondly, as a converse to Corollary 2.4, we will see that it is easy to construct problem classes

under which the instantaneous regret in time t is bounded below by the mean squared error of the

price Pt with respect to the optimal price p∗(z) (times some constant factors). Combining this

result with the above estimate on the minimum mean squared error of Pt established the theorem.

Our proof technique follows that of Goldenshluger and Zeevi (2009), who have used van Trees’

inequality to prove lower bounds on the performance of sequential decision policies.

Lemma 4.6 (Instantaneous Risk Lower Bound). Let CWellSepLB = (P,Z, d) be the problem class

defined in Theorem 4.5, and let Z be a random variable taking values in Z, with density λ : Z → R+

given by λ(z) = 2{cos(π(z− 5/2))}2. Then for any pricing policy ψ setting prices in P, and for any

t ≥ 1,

E
[
(p∗(Z)− Pt+1)2

]
≥ 1

405π2
· 1

t
,
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where Pt+1 is the price offered by ψ at time t+ 1, and E[ · ] denotes the expectation with respect to

the joint distribution of Pt and the prior density λ of the parameter Z ∈ Z = [2, 3].

Here is the proof of Theorem 4.5.

Proof of Theorem 4.5. By checking first and second order optimality conditions, it is straightfor-

ward to check that p∗(z) = 1/z. By noting that r′(p∗(z); z) = 0 and r′′(p; z) = −z ≤ −2, it follows

from a standard result that for any z ∈ Z and p ∈ P,

r(p∗(z); z)− r(p; z) ≥ (p∗(z)− p)2 .

Applying this fact and Lemma 4.6, we have

sup
z∈Z

Regret(z, CWellSepLB, T, ψ) ≥ sup
z∈Z

Ez

[
T−1∑
t=1

[r(p∗(Z);Z)− r(Pt+1;Z)]

]

≥ E

[
T−1∑
t=1

r(p∗(Z);Z)− r(Pt+1;Z)

]
≥ 1

405π2

T−1∑
t=1

1

t
≥ 1

405π2
log T

where the last line follows from the fact that
∑T−1

t=1
1
t ≥

∫ T
1

dx
x = log T .

4.2 A Matching Upper Bound for Well Separated Problem Class

In this section, we present a simple greedy pricing strategy called MLE-GREEDY whose regret

is O(log T ) across all well separated problem instances, matching the order of the lower bound

established in Section 4.1. We describe MLE-GREEDY in detail below, but here we sketch the

intuition behind the policy.

Intuitively, we know that if we form a good estimate of the underlying demand parameter, then

the optimal price corresponding to this estimate will be close to the true optimal price. More

specifically, Corollary 2.4 establishes that if we compute an estimator whose mean squared error is

O(1/t) in each time period t, then by offering the optimal prices corresponding to these estimates, we

will incur instantaneous regret O(1/t) in each time period t, and thus incur regret that is O(log T )

up to time T. Thus, a natural approach is to compute an estimate of the demand parameter based

on the observed customer responses to past prices offered, and then offer the best-guess optimal

price corresponding to this estimate.

Although this intuition is essentially correct, there is a wrinkle to the analysis. Suppose that

in time periods 1, . . . , t, we could observe the actual willingness-to-pay of each customer; that is,

if we could observe the realized values (v1, . . . , vt) of the i.i.d. willingness-to-pay random variables

(V1, . . . , Vt). Then by standard results on maximum likelihood estimation (e.g. Theorem B.1), we

could compute an estimator whose mean squared error was O(1/t), and by Corollary 2.4, incur
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regret O(1/t) by offering the optimal price corresponding to our estimator. However, in our model,

a pricing policy does not have access to the actual willingness-to-pay of each customer. Rather, the

policy observes a Bernoulli random variable Yt = 1[Vt ≥ Pt] specifying whether the willingness-to-

pay Vt of customer t exceeded the price offered Pt. Consequently, the observations Y1, Y2, . . . , Yt are

dependent random variables, because for any `, Y` is a function of the price P` in period `, which

depends on the customer responses Y1, . . . , Y`−1 in the preceding ` − 1 periods. Thus, a pricing

policy must form an estimate based on samples that are dependent and not identically distributed,

and the standard bound for MLE estimates (Theorem B.1) does not apply. Thus, to establish an

upper bound on the regret of MLE-GREEDY using the approach described above, it is enough to

establish that the mean squared error of the estimate formed by MLE-GREEDY from t samples is

in fact O(1/t).

With this intuition, we proceed with our analysis of the greedy pricing policy. For brevity in the

following analysis, we denote by G = (G1,G2, . . .) the pricing policy MLE-GREEDY described below.

Policy MLE-GREEDY(C, p1)

Inputs: A problem class C = (P,Z, d), and an initial price p1 ∈ P.

Initialization: At time t = 1, offer the initial price p1, and observe the corresponding customer

decision Y1 = 1[V1 ≥ p1].

Description: For time t = 2, 3, . . .,

• Compute the maximum likelihood estimate Ẑ(t− 1) given by

Ẑ(t− 1) = arg max
z∈Z

QG,zt−1(Yt−1) ,

where Yt−1 = (Y1, . . . , Yt−1) denotes the observed customer responses in the first t−1 periods.

• Offer the greedy price p∗
(
Ẑ(t− 1)

)
based on the estimate Ẑ(t− 1).

We now state the main result on the mean squared error on the maximum-likelihood estimator

computed by MLE-GREEDY, which we prove in Appendix D.

Theorem 4.7 (MLE Deviation Inequality for Dependent Samples). Let Ẑ(t) = arg maxz∈Z Q
G,z
t (Yt)

be the maximum-likelihood estimate formed by the MLE-GREEDY policy. Then for any t ≥ 1, z ∈ Z,

and ε ≥ 0,

Prz{|Ẑ(t)− z| > ε} ≤ 2 e−tcHε
2/2 and Ez[(Ẑ(t)− z)2] ≤ 4

cH
· 1

t
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The above theorem immediately yields the upper bound the regret, which is the main result of

this section.

Theorem 4.8 (Well-separated Regret Upper Bound). For any problem class C = (P,Z, d) satis-

fying Assumptions 1, 3, and 4, and any initial price p1 ∈ P, there exists a constant C2 depending

only C and p1 such that for all z ∈ Z and T ≥ 2, the MLE-GREEDY policy satisfies

Regret(z, C, T,MLE-GREEDY) ≤ C2 · log T .

Proof. To bound the regret incurred by MLE-GREEDY in the first period, note that since the revenue

function is a smooth on the compact set P × Z, there exists a constant D̄2 depending only on C

such that r(p∗(z); z)− r(p1; z) ≤ D̄2 for any choice of p1 and any z ∈ Z.

To bound the regret in the subsequent periods, we apply Corollary 2.4 and Theorem 4.7 to see

that

Ez

[
T−1∑
t=1

r(p∗(z); z)− r(p∗(Ẑ(t)); z)

]
≤ crL

2
T−1∑
t=1

Ez
[
(Ẑ(t)− z)2

]
≤ 4crL

2

cH

T−1∑
t=1

1

t
.

Taking C2 = D̄2 + 4crL
2cH/(4 log 2) proves the claim.

5. Numerical Experiments

In this section, we evaluate the empirical performance of the MLE-CYCLE and MLE-GREEDY policies

described in Sections 3.2 and 4.2. We investigate their rates of regret, and compare their performance

to the performance of several alternative policies, over a variety of problem instances. For all of our

simulations, we focus on a logistic demand problem class given by P = [1/2, 8], Z = [0.2, 2]× [−1, 1]

and

d(p; z) =
e−z1p−z2

1 + e−z1p−z2
.

5.1 First Simulation: Rates of Regret

For our first simulation, we investigate the rates of regret of MLE-CYCLE and MLE-GREEDY on a

specific problem instance from the problem class described above. We compute the average regret

of both policies over 50 independent trials for parameter values z1 = 1 and z2 = −1, normalizing the

regret by the maximum possible per-period revenue for this instance. For MLE-CYCLE, we fix the

exploration prices to be p̄1 = 1/2 and p̄2 = 4.25, corresponding to the left endpoint and midpoint

of the pricing interval, and we fix the time horizon to be T = 105. For MLE-GREEDY, we fix the

initial price to be p̄1 = 4.25, and we fix the time horizon to be T = 104.
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(a) Average Regret of MLE-CYCLE (b) Average Regret of MLE-GREEDY

Figure 3: An illustration of the rates of regret of MLE-CYCLE and MLE-GREEDY. In Figure 3 (a),

the line of best fit in the log-log plot of expected regret versus T has slope 0.49, indicating that

the rate of regret of MLE-CYCLE is approximately Θ(
√
T ). In Figure 3 (b), the expected regret of

MLE-GREEDY versus log(T ) is approximately linear, indicating that the rate of regret is Θ(log T ).

In Figure 3 (a), we plot the logarithm of the average regret of MLE-CYCLE versus log(t). We

note that the line of best fit to the mean regret values has a slope of 0.49, which is consistent

with the Θ(
√
T ) rate of regret established in Section 3. In Figure 3 (b), we plot the average regret

of MLE-GREEDY versus log(t). The linear trend of the mean regret values is consistent with the

Θ(log T ) rate of regret established in Section 4. These results provide a simple empirical example

of the rates of regret of the two policies.

5.2 Second Simulation: The General Case

For our second simulation, we compare the performance of MLE-CYCLE with several alternative

heuristics. We describe these alternative heuristics below.

1. FP: As a baseline for comparison, we consider a fixed-price policy FP that chooses a price

uniformly at random from the pricing interval, and offers this price for all time periods. Note

that this policy will have regret that is linear in T.

2. MLE-CYCLE-S: The MLE-CYCLE-S policy is a variant of MLE-CYCLE that uses samples from

both the exploration and exploitation phases to compute its estimates of the unknown pa-

rameters (recall that the MLE-CYCLE policy computes estimates only from its explorations

periods).

3. MLE-CYCLE-SU: The MLE-CYCLE-SU policy is a further refinement of MLE-CYCLE, in which

all samples are used for computing the estimates, and in addition, the exploration prices are
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updated at each step to be close to the estimated optimal price. Specifically, at the beginning

of each cycle, we choose the first exploration price P1 to be equal to the current estimated

optimal price, and we set the second exploration price P2 to be P1 + t−1/4, where t is the

current time period. This scheme balances the competing objectives of having the exploration

prices close to the optimal price, and having them far enough apart to provide good estimates

of the demand parameters. We note that this scheme is closely related to the Controlled

Variance Pricing idea introduced in den Boer and Zwart (2010).

4. KW: To compare our policies with general stochastic optimization techniques, we will consider

a Kiefer-Wolfowitz-type stochastic optimization policy. Given a current price Pt, the KW

policy sets

Pt+1 = Pt + cn Pt+2 = Pt − cn Pt+3 = Pt + at
Yt+1Pt+1 − Yt+2Pt+2

2ct
,

where Yt+1 = 1[Vt+1 ≥ Pt+1] and Yt+2 = 1[Vt+2 ≥ Pt+2]. This is a stochastic gradient-ascent

optimization scheme, and we implement this scheme with at = t−1 and ct = t−1/4.

Recall that in Section 3.2, we were concerned with describing a pricing policy whose regret

matched the order of the Ω(
√
T ) lower bound established in Section 3.1. The MLE-CYCLE policy

proposed in Section 3.2 was sufficient to achieve this goal, and its simple structure facilitated

a straightforward analysis of its regret, which was desirable for the theoretical development of

Section 3. However, although MLE-CYCLE achieves the optimal O(
√
T ) regret, there are a number

of natural modifications of this policy that one might suspect would improve its performance –

specifically, the use of all samples to compute estimates of the demand parameters, and the updating

of exploration prices as information is gained. We empirically investigate both of these modifications

is this section by studying the performance of MLE-CYCLE-S and MLE-CYCLE-SU.

We investigate the performance of all pricing policies on an ensemble of problem instances

drawn from a Gaussian distribution over the parameter set. We generate 500 independent random

samples (z1, . . . , z500), by drawing independent random values zi1 in the interval [0.2, 2] according

to a Gaussian distribution with mean (2 + 0.2)/2 and variance (2 − 0.2)/4, truncating so that all

samples lie in the interval. We then generate 500 independent random samples zi2 for the interval

[−1, 1] in a similar fashion, and set zi = (zi1, z
i
2).

To evaluate the performance of each policy, we consider the Percentage Revenue Loss, which

is defined to be the average over the random sample of problem instances of the cumulative regret

divided by the total optimal revenue. Thus, if z1, . . . , zm ∈ Z is the sample of problem parameters,
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we have

Percentage Revenue Loss (T ) ,
1

m

m∑
i=1

∑T
s=1 r(p

∗(zi); zi)− r(P is ; zi)
T · r(p∗(zi); zi)

× 100% .

Equivalently, this quantity describes the total amount of revenue lost by each policy with respect

to the optimal policy, as a percentage of the total optimal revenue.

In Table 1, we report the results of these experiments. For all simulations, the exploration prices

for MLE-CYCLE and its variants, and the initial price for the KW policy, are chosen uniformly at

random from the pricing interval. The standard error of the figures reported in the Percentage

Revenue Loss columns is less than 0.2% for MLE-CYCLE, MLE-CYCLE-S, and MLE-CYCLE-SU,

and is less than 1.8% for FP and KW, at all reported values of T.

Percentage Revenue Loss

T × 103 FP KW MLE-CYCLE MLE-CYCLE-S MLE-CYCLE-SU

1 61.9 % 58.7 % 20.4 % 14.3 % 6.0 %

2 61.9 % 58.0 % 16.1 % 10.7 % 5.0 %

3 61.9 % 57.6 % 13.9 % 9.0 % 4.5 %

4 61.9 % 57.3 % 12.5 % 7.8 % 4.2 %

5 61.9 % 57.1 % 11.5 % 7.1 % 4.0 %

Table 1: Comparison of the Percentage Revenue Loss of the heuristics on the Gaussian instance.

First, we note that all policies lose a smaller percentage of the optimal revenues than the FP

policy, and more importantly, all policies have a percentage revenue loss that is decreasing with the

number of time steps. We note that all three variants of MLE-CYCLE lose a significantly smaller

proportion of the optimal revenue than the FP and KW policies; moreover, we see that both the use

of all samples to compute the estimates of the demand parameters, as well as the updating of the

exploration prices, lead to a significant improvement in the percentage revenue lost.

5.3 Third Simulation: The Well-Separated Case

As a final simulation, we will investigate the percentage revenue loss of MLE-GREEDY when problem

parameters are drawn from two different distributions. Recall that to prove the lower bound of

Section 4.1 on the performance of MLE-GREEDY, we showed that expected regret was Ω(log T ),

when the problem parameters were drawn from a specially chosen distribution. A natural question is
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whether this distribution is somehow pathological, or whether the expected regret of MLE-GREEDY

would be similar when problem parameters are drawn from some other type of distribution. To

address this question, we generate three sets of 100 independent random problem instances for the

logistic demand problem class described at the beginning of this section. Each set is generated by

fixing z2 = 0, and drawing z1 from one of two distributions over the interval [0.2, 2] (note that the

value of z2 = 0 is known to MLE-GREEDY). The first is the distribution 10
9

{
cos
(

5π
9

(
x− 11

10

))}2
,

similar to the one used in the proof of the lower bound of Section 4.1, and the second is the uniform

distribution on [0.2, 2]. For all simulations, the starting price of MLE-GREEDY is chosen uniformly at

random from the pricing interval. In Table 2, we report the percentage revenue loss of MLE-GREEDY

for each of the three experiments.

Percentage Revenue Loss

Lower Bound Uniform

T × 103 FP MLE-GREEDY FP MLE-GREEDY

1 65.2 % 1.20 % 62.3 % 1.10 %

2 65.2 % 0.67 % 62.3 % 0.61 %

3 65.2 % 0.48 % 62.3 % 0.43 %

4 65.2 % 0.37 % 62.3 % 0.34 %

5 65.2 % 0.30 % 62.3 % 0.28 %

Table 2: Comparison of the Percentage Revenue Loss of MLE-GREEDY on two distributions

The standard error for all percentage revenue loss figures reported in Table 2 is less that 0.07%.

We note that the percentage revenue loss of MLE-GREEDY is much smaller than that of the fixed

price policy, as well as all of the policies tested in the simulation for the general case. Moreover, we

note that when averaged over 100 trials, the percentage revenue loss of MLE-GREEDY is practically

identical for both problem distributions. This suggests that the lower bound distribution used

in Section 4.1 is not pathological, and that we should expected similar average-case behavior for

MLE-GREEDY when instances are drawn from other natural distributions.
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6. Conclusion

We studied a stylized dynamic pricing problem under a general parametric choice model. For the

general case, we constructed a forced-exploration policy based on maximum likelihood estimation

that achieved the optimal O(
√
T ) order of regret. We also considered the special case of a “well-

separated” demand family, for which a myopic maximum likelihood policy achieved the optimal

O(log T ) order of regret. Finally, we performed an empirical investigation of the rate of regret of

our policies, and compared the performance of several variations thereof. There are many possible

extensions of this work, including extensions to account for the sale of multiple products and for

competition among sellers. Other interesting directions would involve a more complex model of

customer behavior, accounting for strategic customer decision making, or a model in which the

parameter values varied over time.

References

Agrawal, R. 1995. The continuum-armed bandit problem. SIAM Journal of Control and Optimiza-

tion 33(6) 1926–1951.

Auer, P., N. Cesa-Bianchi, P. Fischer. 2002. Finite-time analysis of the multiarmed bandit problem.

Machine Learning 47(2) 235–256.
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A. Proofs from Section 3.1

The proof of Lemmas 3.3 and 3.4 will make use of the following properties of the problem class C

define in the statement of Theorem 3.1.

Lemma A.1 (Properties of C). For all p ∈ P and z ∈ Z,

1. p∗(z) = (1 + 2z)/(4z)

2. p∗(z0) = 1 for z0 = 1/2.

3. d(p∗(z0); z) = 1/2 for all z ∈ Z

4. r(p∗(z); z)− r(p; z) ≥ 1
3(p∗(z)− p)2

5. |p∗(z)− p∗(z0)| ≥ 1
4 |z − z0|

6. |d(p; z)− d(p; z0)| ≤ |p∗(z0)− p| |z − z0|

Proof. Property 1 follows from checking first and second order optimality conditions of the revenue

function r(p; z) = pd(p; z). Properties 2 and 3 follow by simple calculations using the formulas for

p∗(z) and d(p; z). Property 4 follows from the fact that r′(p∗(z); z) = 0 and r′′(p; z) = −2z ≤ −2/3

for all (p, z) ∈ P ×Z. Property 5 follows from an application of the Mean Value Theorem, and the

fact that d
dzp
∗(z) = −1/(4z2) ≤ 1/4 for all z ∈ Z. Finally, Property 6 follows from the calculation

|d(p; z)− d(p; z0)| = |1/2 + z − pz − 1/2− z0 + pz0| = |z − z0| · |1− p| = |z − z0| · |p∗(z0)− p|

since p∗(z0) = 1 by construction.
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The proof of Lemma 3.3 also makes use of the following standard results, which gives an upper

bound on the KL-divergence between two Bernoulli distributions.

Lemma A.2 (Corollary 3.1 in Taneja and Kumar, 2004). Suppose B1 and B2 are distributions of

Bernoulli random variables with parameters q1 and q2, respectively, with q1, q2 ∈ (0, 1). Then

K(B1;B2) ≤ (q1 − q2)2

q2(1− q2)
.

A.1 Proof of Lemma 3.3

Consider a policy ψ setting prices in P = [3/4, 5/4] and some s ≥ 1. To prove the lemma, we appeal

to the Chain Rule for KL divergence (Theorem 2.5.3, Cover and Thomas, 1999), which states that

K(Qψ,z0t ;Qψ,zt ) =

t∑
s=1

K(Qψ,z0s ;Qψ,zs |Ys−1),

where each term in the sum is the conditional KL divergence, defined as

K(Qψ,z0s ;Qψ,zs |Ys−1) ,
∑

ys∈{0,1}s
Qψ,z0s (ys) log

(
Qψ,z0s (ys|ys−1)

Qψ,zs (ys|ys−1)

)
.

In light of this fact, we may prove the inequality of the lemma as follows. First, show that the

conditional KL divergence in each time period is bounded above by the instantaneous regret in that

time period (times some additional terms), and then apply the Chain Rule to show that the total

KL divergence is bounded above by the cumulative regret (times additional terms).

To proceed along these lines, let ps = ψ(ys−1). We have

K(Qψ,z0s ;Qψ,zs |Ys−1) =
∑

ys∈{0,1}s
Qψ,z0s (ys) log

(
Qψ,z0s (ys|ys−1)

Qψ,zs (ys|ys−1)

)

=
∑

ys−1∈{0,1}s−1

Qψ,z0s−1 (ys−1)
∑

ys∈{0,1}

Qψ,z0s (ys|ys−1) log

(
Qψ,z0s (ys|ys−1)

Qψ,zs (ys|ys−1)

)

≤ 1

d(ps; z) (1− d(ps; z))

∑
ys∈{0,1}s−1

Qψ,z0s−1 (ys−1) (d(ps; z0)− d(ps; z))
2 ,

≤ 3

16

∑
ys∈{0,1}s−1

Qψ,z0s−1 (ys−1) (d(ps; z0)− d(ps; z))
2 .

The first line follows from the definition of conditional KL divergence. The second line follows from

an algebraic manipulation using the relation Qψ,z0s (ys) = Qψ,z0s (ys|ys−1)Qψ,z0s (ys−1), and the fact

that Qψ,z0s (ys−1) = Qψ,z0s−1 (ys−1). The third line follows from Lemma A.2 and the fact that

Qψ,z0s (ys|ys−1) = d(ps; z0)ys(1− d(ps; z0))1−ys ,
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and the fourth line follows from the fact that d(p; z) ∈ [1/4, 3/4] for all p ∈ P and z ∈ Z.

By Property 6 in Lemma A.1, we have that (d(ps; z0)− d(ps; z))
2 ≤ (z0 − z)2 (p∗(z0) − ps)2,

which implies

K(Qψ,z0s ;Qψ,zs |Ys−1) ≤ 3

16
(z0 − z)2

∑
ys∈{0,1}s−1

Qψ,z0s−1 (ys−1) (p∗(z0)− ps)2

=
3

16
(z0 − z)2 Ez0

[
(p∗(z0)− Ps)2

]
.

Summing over all s and using the Chain Rule for KL-divergence, we have that

K(Qψ,z0t ;Qψ,zt ) =

t∑
s=1

K(Qψ,z0s ;Qψ,zs |Ys−1) ≤ 3

16
(z0 − z)2

t∑
s=1

Ez0
[
(p∗(z0)− Ps)2

]
≤ 9

16
(z0 − z)2

t∑
s=1

Ez0 [r(p∗(z0); z0)− r(Ps; z0)]

≤ 9

16
(z0 − z)2 Regret(z0, C, t, ψ) ,

where the last inequality follows from Property 4 in Lemma A.1. This concludes the proof.

We now proceed to the proof of Lemma 3.4. The proof of this lemma uses the following standard

result on the minimal error of a two-hypothesis test, which is derived from Theorem 2.2 of Tsybakov

(2009).

Lemma A.3 (Theorem 2.2, Tsybakov, 2009). Let Q0 and Q1 be two probability distributions on a

finite space Y, with Q0(y), Q1(y) > 0 for all y ∈ Y. Then for any function J : Y → {0, 1},

Q0{J = 1}+Q1{J = 0} ≥ 1

2
e−K(Q0;Q1),

where K(Q0;Q1) denotes the KL divergence of Q0 and Q1.

A.2 Proof of Lemma 3.4

Let z0 = 1/2 be as in Lemma A.1, and fix a time horizon T ≥ 2. Let z1 = z0 + 1
4T
−1/4, and define

two intervals Cz0 ⊂ P and Cz1 ⊂ P by

Cz0 =

{
p : |p∗(z0)− p| ≤ 1

48T 1/4

}
and Cz1 =

{
p : |p∗(z1)− p| ≤ 1

48T 1/4

}
.

Note that Cz0 and Cz1 are disjoint, since Property 5 in Lemma A.1 gives that |p∗(z0)− p∗(z1)| ≥
1
4 |z0 − z1| = 1

16T 1/4 . It follows from Property 4 in Lemma A.1 that for each z ∈ {z0, z1}, if p ∈ P\Cz,

then the instantaneous regret is at least 1
3(482)

√
T

because

r(p∗(z); z)− r(p; z) ≥ 1

3
(p− p∗(z))2 ≥ 1

3(48)2
√
T

=
1

3(48)2 ·
√
T
.
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Let P1, P2, . . . denote the sequence of prices under the policy ψ. Then,

Regret (z0, C, T, ψ) + Regret (z1, C, T, ψ)

≥
T−1∑
t=1

Ez0 [r(p∗(z0); z0)− r(Pt+1; z0)] + Ez1 [r(p∗(z1); z1)− r(Pt+1; z1)]

≥ 1

3(48)2 ·
√
T

T−1∑
t=1

Prz0 {Pt+1 /∈ Cz0}+ Prz1 {Pt+1 /∈ Cz1}

≥ 1

3(48)2 ·
√
T

T−1∑
t=1

Prz0 {Jt+1 = 1}+ Prz1 {Jt+1 = 0} ,

where for all t ≥ 1, Jt+1 = 1[Pt+1 ∈ Cz1 ] is a binary random variable that takes the value of 1 when

Pt+1 is in Cz1 , and zero otherwise. The second inequality follows from the fact that when Jt+1 = 1,

we have Pt+1 ∈ Cz1 ⊂ P \ Cz0 , and thus Pt+1 /∈ Cz0 , so that Prz0 {Jt+1 = 1} ≤ Prz0 {Pt+1 /∈ Cz0}.

Now a standard result on the minimum error in a simple hypothesis test (Lemma A.3) implies that

for all t,

Prz0 {Jt+1 = 1}+ Prz1 {Jt+1 = 0} ≥ 1

2
e
−K

(
Q
ψ,z0
t ;Q

ψ,z1
t

)
.

Now putting things together and summing over t, we have

Regret(z0, C, T, ψ) + Regret(z1, C, T, ψ) ≥ 1

3(48)2
√
T
· 1

2

T−1∑
t=1

e
−K

(
Q
ψ,z0
t ;Q

ψ,z1
t

)

≥ 1

3(48)2
√
T
· T − 1

2
e
−K

(
Q
ψ,z0
T ;Q

ψ,z1
T

)

≥
√
T

12(482)
e
−K

(
Q
ψ,z0
T ;Q

ψ,z1
T

)
.

where the second inequality follows from the standard fact that K
(
Qψ,z0t ;Qψ,z1t

)
is non-decreasing in

t (see, for example, Theorems 2.5.3 and 2.6.3 in Cover and Thomas, 1999), and the third inequality

follows from the fact that (T − 1)/(2
√
T ) ≥

√
T/4 for all T ≥ 2. This completes the proof.

B. Proof of Lemma 3.7

The proof of Lemma 3.7 is a direct application of the following standard result on the finite-sample

mean-squared error of a maximum-likelihood estimator.

Theorem B.1 (Tail Inequality for MLE based on IID Samples, Theorem 36.3 in Borovkov, 1998).

Let Z ⊂ Rn be compact and convex, and let {Qz : z ∈ Z} be family of distributions on a dis-

crete sample space Y parameterized by Z. Suppose Y is a random variable taking value in Y with

distribution Qz, and the following conditions hold.

(i) The family {Qz : z ∈ Z} is identifiable.
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(ii) For some s > k, supz∈Z Ez [‖∇ logQz(Y )‖s] = γ <∞.

(iii) The function z 7→
√
Qz is differentiable on Z.

(iv) The Fisher information matrix, whose (i, j)th entry is given by Ez

[
− ∂2

∂zi∂zj
logQz(Y)

]
, is

positive definite.

Let Y1, Y2, . . . be a sequence of i.i.d. random variables taking value in Y with distribution Qz,

and let Ẑ(t) = arg maxz∈Z
∏t
`=1Q

z(Y`) denote the maximum likelihood estimate based on t i.i.d.

samples. Then, there exists a constants η1 > 0 and η2 > 0 depending only on s, k, Qz and Z such

that for any t ≥ 1 and any ε ≥ 0,

Prz

{∥∥∥Ẑ(t)− z
∥∥∥ ≥ ε} ≤ η1 e

−tη2 ε2 .

To apply Theorem B.1 to our setting, we first check that the hypothesis hold for the family

{Qp̄,z : z ∈ Z} for the exploration prices p̄ satisfying Assumption 2. For any problem class

C = (P,Z, d), the parameter set Z is compact and convex, by assumption. Conditions (i) and (iv)

hold by Assumption 2, so it is enough to check conditions (ii) and (iii). To verify condition (ii),

recall that for any y ∈ {0, 1}k,

Qp̄,z(y) =
k∏
`=1

d(p̄`; z)y`(1− d(p̄`; z))1−y` ,

where d : P × Z → [dmin, dmax] is smooth, with dmin, dmax ∈ (0, 1). Thus, we have

∇ logQp̄,z(y) = ∇
k∑
`=1

logQp̄`,z(y`) =
k∑
`=1

y`∇ log d(p̄`; z) + (1− y`)∇ log(1− d(p̄`; z)),

and it follows that

∥∥∇ logQp̄,z(y)
∥∥ ≤ k∑

`=1

‖∇ log d(p̄`; z)‖+ ‖∇ log(1− d(p̄`; z))‖ .

Now since d(p̄; ·) is a smooth function that is bounded away from zero and one, we have that

∇ log d(p̄`; z) and ∇ log(1 − d(p̄`; z)) are smooth functions on the compact set Z for each `, and

it follows that there exists a constant D̄3 depending only on the problem instance C such that

‖∇ logQp̄,z(y)‖ ≤ D̄3. It follows that with probability one, we have ‖∇ logQp̄,z(y)‖s ≤ D̄s, which

is the desired result.

To verify condition (iii), note that Qp,z(y) is smooth on P × Z, since Qp,z(y) is a product of

smooth functions on P ×Z. We also have that Qp,z(y) is bounded away from zero, since Qp,z(y) ≥

(dmin)k, so it follows that z 7→
√
Qp,z(y) is differentiable on Z for any p ∈ Pk. Thus, we also have

that z 7→
√
Qp̄,z(y) is differentiable on Z.
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Now the result of Lemma 3.7 follows from a direct application of this theorem. Since the

estimator Ẑ(c) is formed from c i.i.d. samples, we have by Theorem B.1

Ez

[∥∥∥Ẑ(c)− z
∥∥∥2
]

=

∫ ∞
0

Prz

{∥∥∥Ẑ(c)− z
∥∥∥2
≥ u

}
du ≤

∫ ∞
0

η1e
−cη2u du =

η1

cη2
.

Taking Cmle = η1/η2 proves the claim.

C. Proof of Lemma 4.6

The proof of Lemma 4.6 depends on van Trees’ inequality, which we state below.

Lemma C.1 (van Trees’ Inequality, Gill and Levit, 1995). For a closed interval Z ⊂ R, let {Qz :

z ∈ Z} be a family of distributions on a discrete sample space Y, and let Z be a random variable

taking values in Z with density λ : Z → R+. Suppose that the following conditions hold:

1. For each y ∈ Y, the function z 7→ Qz(y) is absolutely continuous on Z.

2. λ is absolutely continuous on Z, and λ→ 0 at the endpoints of Z.

3. Ez
[
d
da logQz(Y )

]
= 0

where Ez denotes expectation of the random variable Y having the distribution Qz. Then, for any

smooth function g : Z → R and any function ĝ : Y → R,

E[(ĝ(Y )− g(Z))2] ≥
(E[ ddzg(Z)])2

E
[(

d
dz logQZ(Y )

)2]
+ E

[(
d
da log λ(Z)

)2] , (4)

where E[ · ] denotes the expectation with respect to the joint distribution of Qz and λ.

To apply the above result to our setting, recall the problem class C = (P,Z, d) defined in

Theorem 4.5, which has P = [1/3, 1/2], Z = [2, 3], and d(p; z) = 1 − (pz)/2. For any policy ψ

setting prices in P and any t ≥ 1, we define the sample space to be Y = {0, 1}t, and we consider the

family of distributions
{
Qψ,zt : z ∈ Z

}
, where Qψ,zt : {0, 1}t → [0, 1] is the distribution of customer

decisions induced by the policy ψ up to time t. That is,

Qψ,zt =

t∏
`=1

(1− (p`z)/2)y`((p`z)/2)1−y` .

A convenient choice of the density λ(z) : [2, 3]→ R+ is λ(z) = 2{cos(π(z − 5/2))}2.

To check that the hypotheses of Lemma C.1 hold under these assumptions, note that Conditions

1 and 2 of Lemma C.1 follow immediately from our construction. Condition 3 is also satisfied because

Ez
[
d

dz
logQψ,zt (Yt)

]
=

∑
yt∈{0,1}t

(
d
dzQ

ψ,z
t (yt)

Qψ,zt (yt)

)
Qψ,zt (yt) =

d

dz

∑
yt∈{0,1}t

Qψ,zt (yt) =
d

dz
(1) = 0 .
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By checking first and second order optimality conditions, it is straightforward to check that p∗(z) =

1/z, and so p∗(z) is a smooth function of z on Z. Therefore all of the conditions of Lemma C.1 are

satisfied, and we can apply van Trees’ Inequality to our problem.

To complete the proof, we will now compute the values on the right-hand side of van Trees’

inequality (Equation 4) for our specific problem. Since p∗(z) = 1/z, we have that d
dzp
∗(z) = 1/z2 ≥

1/9 for all z ∈ Z. It follows that (E[ ddzp
∗(z)])2 ≥ 1/81. Recalling that λ(z) = 2{cos(π(z − 5/2))}2,

it is straightforward to compute that

E
[(

d

dz
log λ(Z)

)]
= 8π2

∫ 3

2
{sin(π(z − 5/2))}2 dz = 4π2.

Finally, for any z ∈ Z, we may compute that

Ez
[(

d

dz
logQψ,zt (Yt)

) ∣∣∣∣Yt−1 = yt−1

]
=

p

z(2− pz)
≤ (1/2)

2(2− 3/2)
=

1

2
,

where the last inequality follows from the fact that p ∈ P and z ∈ Z. Applying the Chain Rule for

Fisher Information (Lemma E.2), we have

Ez

[(
d

dz
logQψ,zt (Yt)

)2
]
≤ t

2
.

Since Pt+1 = ψt+1(Yt), we may apply Lemmas C.1 to get

E[(p∗(z)− Pt+1)2] ≥ (1/81)

4π2 + t/2
≥ 1

81(4π2 + 1/2)
· 1

t
≥ 1

405π2
· 1

t
,

which is the desired result.

D. Proof of Theorem 4.7

In contrast to the general case, MLE-GREEDY forms an estimate of the price sensitivity parameter

based on samples which are not i.i.d. Thus, we need to develop a new bound for our estimate.

The analysis relies on the Hellinger distance. For any t ≥ 1 and yt−1 ∈ {0, 1}t−1, we define the

conditional Hellinger distance

HG(z, u|yt−1) =
∑

yt∈{0,1}

(√
QG,zt (yt|yt−1)−

√
QG,z+ut (yt|yt−1)

)2

,

for all pairs z ∈ Z and u ∈ Z − z. Note that QG,zt (yt|yt−1) denotes the probability that Yt = yt

conditioned on the event that Yt−1 = yt−1, when the policy G is used and the parameter is a.

Lemma D.1 (Hellinger Distance Lower Bound). There exists a constant cH depending only on the

problem class C = (P,Z, d) such that for any t ≥ 1 and any yt−1 ∈ {0, 1}t−1, and for all pairs

z ∈ Z and u ∈ Z − z,

HG(z, u|yt−1) ≥ cH · u2.
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Proof. By Corollary 4.3 of Taneja and Kumar (2004), we have the following lower bound on the

conditional Hellinger distance in terms of the KL divergence.

HG(z, u|yt−1) ≥
√
dmin
2
K(Qψ,zt ( · |yt−1);Qψ,z+ut ( · |yt−1)) =

√
dmin
2
K(Qpt,z;Qpt,z+u),

where pt = ψ(yt−1). So, to prove the desired lower bound, it is enough to prove a quadratic lower

bound on the function u 7→ K(Qpt,z;Qpt,z+u). To do this, first note that

∂2

∂u2
K(Qpt,z;Qpt,z+u) =

∂2

∂u2
Ez
[
log

(
Qpt,z(Y )

Qpt,z+u(Y )

)]
= Ez

[
− ∂2

∂u2
logQpt,z+u(Y )

]
,

and by Assumption 3, this term is bounded below by cf > 0 for all pt ∈ P and all z ∈ Z. Also, we

have that
∂

∂u
K(Qpt,z;Qpt,z+u)

∣∣
u=0

= −Ez
[
∂

∂u
logQpt,z+u(Y )

∣∣
u=0

]
= 0

by a straightforward calculation. It follows from a standard result that

K(Qpt,z;Qpt,z+u) ≥
cf
2
u2

for all u ∈ Z − z. Taking cH = cf
√
dmin/4 proves the claim.

For all pairs z ∈ Z and u ∈ Z−z, let the likelihood ratio XG,at (u) and the conditional likelihood

ratio XG,at (u
∣∣Yt−1) be defined by

XG,at (u) =
QG,z+ut (Yt)

QG,zt (Yt)
and XG,at (u

∣∣Yt−1) =
QG,z+ut (Yt

∣∣ Yt−1)

QG,zt (Yt
∣∣ Yt−1)

.

The following lemma gives an upper bound on a moment of the likelihood ratio.

Lemma D.2 (Likelihood Ratio Moment Inequality). For all pairs z ∈ Z and u ∈ Z−z, and t ≥ 1,

we have

Ez
[√

XG,zt (u|Yt−1)

∣∣∣∣ Yt−1

]
≤ e−cHu2/2 ,

with probability one, and

Ez
[√

XG,zt (u)

]
≤ e−cH tu2/2.

Proof. To establish the first inequality, note that for all yt−1 ∈ {0, 1}t−1,

Ez
[√

XG,zt (u|Yt−1)

∣∣∣∣ Yt−1 = yt−1

]
=

∑
yt∈{0,1}

√
QG,z+ut (yt | yt−1)

QG,zt (yt | yt−1)
·QG,zt (yt | yt−1)

=
∑

yt∈{0,1}

√
QG,z+ut (yt | yt−1)

√
QG,zt (yt | yt−1)

= 1− H(z, u|yt−1)

2
≤ e−H(z,u|yt−1)/2 ≤ e−cHu2/2 ,
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which gives the desired result. Note that the last equality follows from the definition of H(z, u|yt−1)

which shows that

HG(z, u|yt−1) =
∑

yt∈{0,1}

(√
QG,at (yt|yt−1)−

√
QG,a+u
t (yt|yt−1)

)2

= 2

(
1−

∑
yt∈{0,1}

√
QG,at (yt|yt−1)

√
QG,a+u
t (yt|yt−1)

)

We will establish the second inequality of Lemma D.2 by induction on t. The case when t = 1

follows immediately from the above calculation. So, assume the claim holds for t− 1, that is,

Ez
[√

XG,zt−1(u)

]
≤ e−(t−1)cHu

2/2

Now, by definition, we have that

Ez
[√

XG,zt (u)

]
= Ez

[√
XG,zt−1(u) ·

√
XG,zt (u|Yt−1)

]
= Ez

[√
XG,zt−1(u) · Ez

[√
XG,zt (u|Yt−1)

∣∣∣∣ Yt−1

] ]
≤ e−cHu

2/2 · Ez
[√

Ez[XG,zt−1(u)]

]
≤ e−tcHu2/2 ,

where the first inequality follows from the first part of Lemma D.2, and the final inequality follows

from the inductive hypothesis. This completes the proof.

Here is the proof of Theorem 4.7.

Proof. Consider an arbitrary a ∈ Z. For all u ∈ Z − z, let LG,zt (u) = − logXG,zt (u). By Assump-

tion 4, LG,zt (u) is globally convex in u. Moreover, it is easy to verify that LG,zt (0) = 0. It follows

from the definition of Ẑ(t) that

Ẑ(t) = arg max
v∈Z

QG,vt (Yt) = z + arg max
u∈Z−z

XG,at (u) = z + arg min
u∈Z−z

LG,at (u)

Therefore, for any δ ∈ Z − z, if |Ẑ(t)− z| > |δ|, then the minimizer of LG,zt ( · ) must be outside the

interval [−δ, δ], which implies that either LG,zt (δ) ≤ 0 or LG,zt (−δ) ≤ 0. Hence, for any δ ∈ Z − z,

we have that

Prz{|Ẑ(t)− z| ≥ |δ|} ≤ Prz{LG,zt (δ) ≤ 0}+ Prz{LG,zt (−δ) ≤ 0} .

By Markov’s Inequality and Lemma D.2, it follows that

Prz{LG,zt (δ) ≤ 0} = Prz{XG,zt (δ) ≥ 1} = Prz

{√
XG,zt (δ) ≥ 1

}
≤ Ez

[√
XG,zt (δ)

]
≤ e−tcHδ

2/2 .
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A similar argument shows that Prz{LG,zt (−δ) < 0} ≤ e−tcHδ2/2, which implies that for any δ ∈ Z−z,

Prz{|Ẑ(t)− z| > |δ|} ≤ 2 e−tcHδ
2/2 .

Thus, for any 0 < ε ≤ max{|x| : x ∈ Z − z}, we have that

Prz{|Ẑ(t)− z| > ε} ≤ 2e−tcHε
2/2 .

On the other hand, if ε > max{|x| : x ∈ Z − z}, then Prz{|Ẑ(t) − z| > ε} = 0 by definition. This

gives the desired result.

The upper bound on the mean squared error follows immediately because

Ez[(Ẑ(t)− z)2] =

∫ ∞
0

Prz{(Ẑ(t)− z)2 > u} du ≤ 2

∫ ∞
0

e−tcH u/2 du =
4

cH
· 1

t

E. Proofs of Auxiliary Results

E.1 Proof of Remark 4.1

By Lemma A.2, we have that

(d(p; z)− d(p; z + u))2 ≥ dmin(1− dmax)K(Qp,z;Qp,z+u) .

Now by applying the arguments of Lemma D.1 and using Assumption 3, we have that

K(Qp,z;Qp,z+u) ≥
cf
2
u2.

Choosing cd = dmin(1− dmax)cf/2 establishes the inequality.

E.2 Chain Rule for Fisher Information

It is a standard result (e.g. Cover and Thomas, 1999, Exercise 11.19) that for distributions satisfying

mild regularity assumptions (which are satisfied in our model), the Fisher information may also be

written as

Ez

[(
d

dz
logQψ,zt (Yt)

)2
]

= −Ez
[
d2

dz2
logQψ,zt (Yt)

]
,

So it follows that

Ez

[(
d

dz
logQψ,zt (Yt)

)2
]

= −Ez

[
d2

dz2
log

t∏
`=1

Qψ,zt (Y` | Y`−1)

]

=

t∑
`=1

−Ez
[
d2

dz2
logQψ,zt (Y` | Y`−1)

]
=

t∑
`=1

Ez

[(
d

dz
logQψ,zt (Y` | Y`−1)

)2
]
.

This completes the proof.
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