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We consider assortment optimization problems when customers choose under a mixture of multinomial logit

and independent demand models. In the single-shot assortment optimization problem, each product has

a certain revenue associated with it. The customers choose among the products according to our mixture

choice model. The goal is to find an assortment that maximizes the expected revenue from a customer. We

show that we can find the optimal assortment by solving a linear program. We establish that the optimal

assortment becomes larger as the relative size of the customer segment with the independent demand model

increases. Moreover, we show that the Pareto-efficient assortments that maximize a weighted average of

the expected revenue and the total purchase probability are nested in the sense that the Pareto-efficient

assortments become larger as the weight on the total purchase probability increases. Considering the

single-shot assortment optimization problem with a cardinality constraint on the offered assortment, we show

that the problem is NP-hard. We give a fully polynomial-time approximation scheme. In the assortment-

based network revenue management problem, we have resources with limited capacities and each product

consumes a combination of resources. The goal is to find a policy for deciding which assortment of products

to offer to each arriving customer to maximize the total expected revenue over a finite selling horizon. A

standard linear programming approximation for this problem includes one decision variable for each subset of

products. We show that this linear program can be reduced to an equivalent one of substantially smaller size.

Our computational experiments indicate that using a mixture of multinomial logit and independent demand

models can significantly improve our ability to capture the choice behavior of the customers. Furthermore,

our linear programming formulation of smaller size can dramatically improve the computation times.

Keywords: Assortment optimization, choice model, multinomial logit, network revenue management.

1. Introduction

Over the past decade, the use of discrete choice models to capture the choice process of customers

has received significant attention in the revenue management literature. By using discrete choice

models, we can capture the fact that if a product is unavailable, then some customers may

substitute for this product, whereas others may simply leave the system without making a purchase.

A growing body of literature indicates that using choice models to capture the substitution

possibilities between products can provide significant improvements in the expected revenues

(Talluri and van Ryzin 2004, Vulcano et al. 2010, Dai et al. 2014). However, an inherent tension is
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involved in picking a choice model with which to capture the choice process of the customers. A

more sophisticated choice model may capture the choice process of the customers more faithfully,

whereas a simpler choice model may result in tractable optimization problems when finding the

optimal assortment of products to offer or prices to charge.

We consider assortment optimization problems under a mixture of multinomial logit and

independent demand models. The multinomial logit model is arguably one of the most prevalent

choice models for capturing customer choice behavior. It is based on random utility maximization,

so each customer associates a random utility with each product and the no-purchase option,

choosing the available alternative with the largest utility. In the independent demand model, a

customer arrives into the system with a particular product in mind. If this product is unavailable,

then she leaves without a purchase. The independent demand model has been a reliable workhorse,

because it is relatively simple to estimate and often yields tractable models for making operational

decisions (van Ryzin 2005). In this paper, we mix these two very common demand models, which

is, perhaps, the most natural approach to simultaneously improve the modeling flexibility of both

the multinomial logit and independent demand models. Some customers make a purchase under the

multinomial logit model, whereas others do so under the independent demand model. The demand

emerges as a mixture of these two customer segments.

Main Contributions: We give algorithms for numerous assortment problems, characterize the

structure of optimal assortments, and check the prediction effectiveness of our choice model.

Assortment Optimization. In the single-shot assortment optimization problem, we have a certain

revenue for each product. Customers choose among the offered products according to our mixture

choice model. The goal is to find an assortment of products that maximizes the expected revenue

obtained from a customer. We show that we can solve a linear program (LP) to find the optimal

assortment (Theorem 3.2). Thus, the assortment optimization problem under our mixture choice

model is efficiently solvable. Assortment optimization problems under mixtures of choice models

are notoriously difficult. For example, the assortment optimization problem under a mixture of just

two multinomial logit models is NP-hard (Rusmevichientong et al. 2014). To our knowledge, our

paper is the first to give an efficient method for assortment optimization under a mixture of choice

models. Our LP has three novel components. First, it uses decision variables whose values depend

on whether different pairs of products are offered. Second, its objective function is, on the surface,

quite different from the objective function of the assortment problem. Third, at its extreme point

solutions, the objective function gives expected revenues from different assortments.

Combinatorial Algorithm. We show that if a product, all else being equal, has a larger purchase

probability in the independent demand model or a smaller preference weight in the multinomial
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logit model, then it becomes more attractive to offer in the optimal assortment (Theorem 3.3).

Besides shedding light on the structure of the optimal assortment, this result allows us to give a

combinatorial algorithm for assortment optimization. Although a combinatorial algorithm exists,

our LP formulation ultimately becomes useful for network revenue management.

Comparative Statistics and Pareto-Efficient Assortments. We show that the optimal assortment

becomes larger when the relative size of the customer segment with the independent demand

model increases or when the revenue of each product increases by the same additive amount

(Theorem 4.1). Both comparative statistics have useful implications. The customers purchasing

under the independent demand model are inflexible. If the product they have in mind is unavailable,

then they leave without a purchase. By the first comparative statistic, if the relative size of the

inflexible customer segment increases, then it is optimal to offer a larger assortment. On the

other hand, maximizing expected revenue is beneficial for the firm, whereas maximizing the total

probability of purchase is beneficial for the customers, allowing a larger fraction of the customers

to find a product in which they are interested. Using the second comparative statistic, we are able

to argue that the Pareto-efficient assortments that maximize a weighted average of the expected

revenue and the total probability of purchase are nested in the sense that the Pareto-efficient

assortments become larger as the weight on the total probability of purchase increases.

Cardinality Constraints. We examine the single-shot assortment optimization problem with a

cardinality constraint on the number of products that we can offer. We show that the problem

is NP-hard (Theorem 5.1). It is surprising that our unconstrained assortment optimization

problem is well-behaved to the extent that we can give an LP formulation for this problem,

but introducing a cardinality constraint into such a well-behaved problem drastically changes its

difficulty. Motivated by our complexity result, we give a fully polynomial-time approximation

scheme (FPTAS) under a cardinality constraint (Theorem 5.2). Our FPTAS uses the connections

of our assortment optimization problem to the cardinality-constrained knapsack problem. Other

studies have used connections of various assortment optimization problems to the knapsack problem

to give approximation schemes (Desir et al. 2016, Feldman and Topaloglu 2018). Our work follows

a similar blueprint. We scale the preference weights of the products by the reciprocal of a fixed

accuracy parameter and round them to take integer values. Thus, our main contribution for the

cardinality-constrained assortment optimization problem is to establish its complexity.

Network Revenue Management. We consider assortment-based network revenue management

problems, where we have resources with limited capacities and the sale of each product consumes

a combination of resources. The goal is to find a policy for deciding which assortment of products

to offer to each arriving customer to maximize the total expected revenue over a finite selling
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horizon. We consider a previously proposed LP approximation in which the decision variables are

the probabilities with which we offer each subset of products to the customers. Thus, the number

of decision variables increases exponentially with the number of products. We show that if the

customers choose according to our mixture choice model, then we can immediately reduce the

LP approximation to a compact LP whose numbers of decision variables and constraints increase

only quadratically with the number of products (Theorem 6.1). We show that we can recover an

optimal solution to the original LP approximation by using an optimal solution to the compact

LP (Theorem 7.2). Lastly, in our computational experiments, we demonstrate that our mixture of

multinomial logit and independent demand models can significantly improve our ability to predict

customer purchase behavior compared to the pure multinomial logit benchmark. Also, our compact

LP substantially reduces the computation times.

Our mixture choice model is a natural way to enrich the flexibility of both the multinomial logit

and independent demand models, which are, perhaps, the two most prevalent demand models.

Mixtures of choice models often yield computationally difficult assortment optimization problems,

but under our mixture choice model, the problems remain surprisingly tractable. Our focus is

mostly on assortment optimization, but our numerical work indicates that mixing the multinomial

logit and independent demand models can yield better predictions of customer purchases.

Related Literature: Gallego et al. (2004) and Talluri and van Ryzin (2004) show that the

optimal assortment under the multinomial logit model is revenue ordered, including a certain

number of products with the largest revenues. This structure does not hold under our mixture

choice model. Rusmevichientong et al. (2010), Wang (2012), and Jagabathula (2016) examine the

assortment optimization problem under the multinomial logit model with various constraints on

the offered assortment. Bront et al. (2009), Mendez-Diaz et al. (2014), and Rusmevichientong et al.

(2014) show that the assortment optimization problem under a mixture of multinomial logit models

is NP-hard even when there are only two multinomial logit models in the mixture. The authors

give approximation schemes and integer programming formulations. Desir et al. (2016) show that

it is NP-hard to approximate the problem within a factor of O(1/m1−ε) for any ε > 0, where m is

the number of multinomial logit models in the mixture.

Researchers have developed LP formulations for assortment optimization problems. Gallego

et al. (2015) work with the generalized attraction model, whereas Feldman and Topaloglu (2017)

work with the Markov chain choice model. Both papers give LP formulations for the assortment

optimization problem. One can build on these LP formulations to obtain compact LP formulations

for network revenue management problems. The multinomial logit model is a special case of both

the generalized attraction and Markov chain choice models, but our mixture of multinomial logit
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and independent demand models is not a special case of these choice models. Thus, we resort to

entirely different techniques to obtain the LP formulations in our paper. Topaloglu (2013) gives a

compact formulation for a nonlinear program that appears when jointly making product stocking

and assortment decisions under the multinomial logit model. Sumida et al. (2019) give an LP

for assortment optimization under the multinomial logit model when there are constraints on the

offered assortment that can be captured by a totally unimodular constraint matrix.

Motivated by online retail, in which customers examine search results page by page, Flores et al.

(2019), Feldman and Segev (2019), and Liu et al. (2019) develop extensions of the multinomial logit

model that allow the customers to incrementally view the products in batches. The authors give

algorithms for finding the optimal sequence of product batches to offer. Wang and Sahin (2018),

Feldman and Topaloglu (2018), and Aouad et al. (2019) incorporate consideration sets, where

each customer focuses only on the set of products in her consideration set and chooses within the

consideration set under the multinomial logit model. Aouad et al. (2018b) and Aouad and Segev

(2019) focus on dynamic assortment optimization problems under the multinomial logit model,

where the assortments offered to the customers are dictated by the inventory remaining on the

shelf. We focus our literature review on the multinomial logit model, but assortment optimization

has been studied under other choice models. For representative approaches, we refer to Farias et al.

(2013), Aouad et al. (2016), Aouad et al. (2018a), and Feldman et al. (2019) for the preference-

list-based choice model, Blanchet et al. (2016) for the Markov chain choice model, Davis et al.

(2014), Gallego and Topaloglu (2014), Feldman and Topaloglu (2015), and Li et al. (2015) for the

nested logit model, and Zhang et al. (2019) for the paired combinatorial logit model.

Incorporating customer choice into network revenue management problems is an active area of

research. Gallego et al. (2004) and Liu and van Ryzin (2008) give an LP approximation for these

problems. The number of decision variables in their LP approximation increases exponentially

with the number of products. Under our mixture choice model, we are able to reduce the size of

their LP dramatically. Other approaches to these problems are based on approximating the value

functions. For such approaches, we refer to Zhang and Cooper (2005), Zhang and Adelman (2009),

Kunnumkal and Topaloglu (2010), Tong and Topaloglu (2013), and Vossen and Zhang (2015).

Organization: In Section 2, we formulate our assortment optimization problem. In Section 3,

we give the LP formulation for the problem. In Section 4, we give comparative statistics for the

optimal assortment. In Section 5, we examine the problem with cardinality constraints. In Section

6, we give a compact LP for the network revenue management problem. In Section 7, we show that

we can recover an optimal solution to the original LP approximation by using our compact LP. In

Section 8, we present computational experiments. In Section 9, we give conclusions.
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2. Problem Formulation

The set of products is N = {1, . . . , n}. There are two customer segments. The customers in the first

segment make a purchase according to the multinomial logit model. In the multinomial logit model,

we use vi > 0 to denote the preference weight of product i. We normalize the preference weight of

the no-purchase option to one. We let V (S) =
∑

i∈S vi to capture the total preference weight of the

products in the subset S ⊆N . In this case, if we offer the subset S ⊆N of products, then a customer

in the first segment purchases product i∈ S with probability vi/(1 +V (S)). The customers in the

second segment make a purchase according to the independent demand model. In the independent

demand model, we use θi > 0 to denote the probability that a customer is interested in product

i. In this case, if we offer the subset S ⊆N of products, then a customer in the second segment

purchases product i ∈ S with probability θi. The probability that an arriving customer is in the

first segment is β. Thus, if we offer the subset S ⊆ N of products, then a customer purchases

product i∈ S with probability β vi
1+V (S)

+ (1− β)θi. For notational brevity, throughout the paper,

we normalize the size of the first segment to one, in which case the size of the second segment

relative to the first one is λ= (1− β)/β. Thus, if we offer the subset S ⊆N of products, then a

customer purchases product i∈ S with the scaled probability vi
1+V (S)

+λθi. If a customer purchases

product i, then we obtain a revenue of ri. Our goal is to find a subset, or an assortment, to offer

that maximizes the expected revenue from a customer, yielding the problem

max
S⊆N

{∑
i∈S

ri

(
vi

1 +V (S)
+λθi

)}
. (Mixture)

Since we normalize the size of the first segment to one, we can have vi
1+V (S)

+λθi > 1, but we can

recover the purchase probabilities by scaling vi
1+V (S)

+λθi for all i∈N with β.

Working with such a mixture of the multinomial logit and independent demand models in the

Mixture problem introduces nontrivial challenges. If we do not have the independent demand model

in the mixture, then we can express the expected revenue under the multinomial logit model as a

fraction, whose numerator and denominator are both linear functions, allowing us to use fractional

programming techniques when solving the assortment optimization problem. We lose this fractional

structure in the Mixture problem, but we will show that we can still solve this problem efficiently.

Moreover, under only the multinomial logit model, there exists an optimal assortment that is

revenue ordered, where we offer a certain number of products with the largest revenues. We lose

the revenue-ordered structure of the optimal solution in the Mixture problem. In Table 1, considering

a problem instance with n = 3, (r1, r2, r3) = (50,10,5), (v1, v2, v3) = (0.5,5,0.01), (θ1, θ2, θ3) =

(0.05,0.25,0.7), and λ= 1, we show the expected revenue provided by each assortment. The optimal
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Assort. Exp. Rev.
∅ 0
{1} 19.17
{2} 10.83
{3} 3.55

Assort. Exp. Rev.
{1,2} 16.54
{1,3} 22.59
{2,3} 14.33
{1,2,3} 20.03

Table 1 Expected revenue provided by all possible assortments.

assortment is {1,3}, which does not offer the product with second largest revenue, but offers the

product with the smallest revenue. In this problem instance, noting that θ3 = 0.7, the customer

segment with the independent demand model is interested in product 3 with a relatively large

probability, so we offer product 3 to exploit this relatively large probability. Moreover, noting

that v2 = 5, the customer segment with the multinomial logit model associates a relatively large

preference weight with product 2, but the revenue of product 2 is much smaller than that of

product 1. Thus, product 2, if offered, attracts a significant fraction of the customer segment with

the multinomial logit model while providing much smaller revenue than product 1, so we do not

offer product 2. In the next section, we show that, roughly speaking, an optimal solution to the

Mixture problem prioritizes product i when θi/vi is larger, so a larger value for θi and a smaller

value for vi make product i more attractive to offer, which is consistent with the observation from

Table 1. Lastly, as discussed in the introduction, the multinomial logit model is a special case of

the Markov chain choice model. An example in Appendix A shows that the mixture of multinomial

logit and independent demand models is not a special case of the Markov chain choice model. Thus,

existing results under the Markov chain choice model do not apply to our problem.

3. Assortment Optimization

In this section, we give an LP formulation for the Mixture problem and show that there exists

an optimal solution that gives high priority to product i when θi/vi is large. Using the decision

variables x0, x= {xi : i∈N} and y= {yij : i, j ∈N}, we consider the LP

max
(x0,x,y)∈R×Rn+n2

+

{∑
i∈N

ri

(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)
: (Assortment LP)

x0 +
∑
i∈N

vi xi = 1,

xi ≤ x0 ∀ i∈N,

yij ≤ xi ∀ i, j ∈N, yij ≤ xj ∀ i, j ∈N

}
.

Before showing that we can obtain an optimal solution to the Mixture problem by using the

Assortment LP, we provide some intuition regarding the LP above. Using 1(·) to denote the indicator

function, given a solution Ŝ ⊆N to the Mixture problem, we construct a solution (x̂0, x̂, ŷ) to the
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Assortment LP by setting x̂0 = 1

1+V (Ŝ)
, x̂i = 1(i ∈ Ŝ) x̂0, and ŷij = 1(i ∈ Ŝ, j ∈ Ŝ) x̂0. Noting that∑

i∈N vi x̂i = x̂0

∑
i∈N vi 1(i ∈ Ŝ) = x̂0 V (Ŝ), we have x̂0 +

∑
i∈N vi x̂i = x̂0 (1 + V (Ŝ)) = 1, so the

solution (x̂0, x̂, ŷ) satisfies the first constraint in the Assortment LP. Moreover, since 1(i∈ Ŝ)≤ 1,

1(i∈ Ŝ, j ∈ Ŝ)≤ 1(i∈ Ŝ), and 1(i ∈ Ŝ, j ∈ Ŝ) ≤ 1(j ∈ Ŝ), the solution (x̂0, x̂, ŷ) satisfies the

remaining constraints in the Assortment LP as well. Furthermore, for the Assortment LP, this

solution provides an objective value of∑
i∈N

ri

(
(vi +λθi) x̂i +λθi

∑
j∈N

vj ŷij

)
=
∑
i∈N

ri

(
(vi +λθi)1(i∈ Ŝ) +λθi

∑
j∈N

vj 1(i∈ Ŝ, j ∈ Ŝ)

)
x̂0

=
∑
i∈N

ri

(
vi +λθi +λθi

∑
j∈N

vj 1(j ∈ Ŝ)

)
1(i∈ Ŝ) x̂0

=
∑
i∈N

ri

(
vi +λθi (1 +V (Ŝ))

)
1(i∈ Ŝ) x̂0 =

∑
i∈N

ri

(
vi

1 +V (Ŝ)
+λθi

)
1(i∈ Ŝ),

which is the objective function of the Mixture problem evaluated at Ŝ. Thus, given a solution to

the Mixture problem, we can construct a feasible solution to the Assortment LP, and the objective

values of the two solutions match. To show that the Assortment LP is equivalent to the Mixture

problem, we need to show the converse statement as well, which is what we do next. Note how

collecting the terms λθi x̂i and λθi
∑

j∈N ŷij above surprisingly yields the purchase probability of

product i in the customer segment with the independent demand model.

To establish the converse statement, we build on the next lemma, which shows an important

property of the basic feasible solutions to the Assortment LP.

Lemma 3.1 (Extreme Point Solutions) Let (x̂0, x̂, ŷ) be a basic feasible solution to the

Assortment LP. Then, we have x̂i ∈ {0, x̂0} for all i∈N .

The proof of Lemma 3.1 follows by showing that if x̂i ∈ (0, x̂0) for some i ∈ N , then we can

perturb the solution (x̂0, x̂, ŷ) to obtain two feasible solutions to the Assortment LP such that

(x̂0, x̂, ŷ) is a convex combination of the two feasible solutions. Note that perturbing x̂i may require

perturbing the other elements of the solution (x̂0, x̂, ŷ) to ensure feasibility. We give the proof in

Appendix B. In the next theorem, we use the above lemma to show that we can obtain an optimal

solution to the Mixture problem by using an optimal solution to the Assortment LP.

Theorem 3.2 (LP Formulation) For a basic optimal solution (x∗0,x
∗,y∗) to the Assortment LP,

let S∗ = {i∈N : x∗i > 0}. Then, S∗ is an optimal solution to the Mixture problem.

Proof: Let Ŝ be an optimal solution to the Mixture problem providing the optimal objective value ẑ,

and let z∗LP be the optimal objective value of the Assortment LP. By the discussion at the beginning
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of this section, given the solution Ŝ to the Mixture problem, we can construct a feasible solution to

the Assortment LP with the objective value of ẑ. Therefore, we have z∗LP ≥ ẑ. On the other hand,

by Lemma 3.1, we have x∗i = x∗0 for all i ∈ S∗ and x∗i = 0 for all i ∈ N \ S∗. Since (x∗0,x
∗,y∗) is

a feasible solution to the Assortment LP, by the first constraint, we get x∗0 +
∑

i∈S∗ vi x
∗
0 = 1, so

x∗0 = 1
1+V (S∗) = x∗i for all i∈ S∗. In this case, by the last two constraints, we also get y∗ij ≤ 1

1+V (S∗) for

all i, j ∈ S∗. If i 6∈ S∗ or j 6∈ S∗, then x∗i = 0 or x∗j = 0, so we have y∗ij = 0. Let Q∗ = {i∈ S∗ : ri < 0},

and recall that z∗LP is the optimal objective value of the Assortment LP and ẑ is the optimal objective

value of the Mixture problem. Since x∗i = 0 when i 6∈ S∗ and y∗ij = 0 when i 6∈ S∗ or j 6∈ S∗, evaluating

the objective function of the Assortment LP at its optimal solution, we get

z∗LP =
∑
i∈S∗

ri

(
(vi +λθi)x

∗
i +λθi

∑
j∈S∗

vj y
∗
ij

)

=
∑

i∈S∗\Q∗
ri

(
(vi +λθi)x

∗
i +λθi

∑
j∈S∗

vj y
∗
ij

)
+
∑
i∈Q∗

ri

(
(vi +λθi)x

∗
i +λθi

∑
j∈S∗

vj y
∗
ij

)
(a)

≤
∑

i∈S∗\Q∗
ri

(
vi +λθi

1 +V (S∗)
+λθi

∑
j∈S∗

vj
1 +V (S∗)

)
+
∑
i∈Q∗

ri

(
(vi +λθi)x

∗
i +λθi

∑
j∈S∗

vj y
∗
ij

)

=
∑

i∈S∗\Q∗
ri

(
vi

1 +V (S∗)
+λθi

)
+
∑
i∈Q∗

ri

(
(vi +λθi)x

∗
i +λθi

∑
j∈S∗

vj y
∗
ij

)

≤
∑

i∈S∗\Q∗
ri

(
vi

1 +V (S∗ \Q∗)
+λθi

)
+
∑
i∈Q∗

ri

(
(vi +λθi)x

∗
i +λθi

∑
j∈S∗

vj y
∗
ij

)
(b)

≤ ẑ+
∑
i∈Q∗

ri

(
(vi +λθi)x

∗
i +λθi

∑
j∈S∗

vj y
∗
ij

)
.

Here, (a) holds since ri ≥ 0 and x∗i = 1
1+V (S∗) for all i∈ S∗ \Q∗ and y∗ij ≤ 1

1+V (S∗) , whereas (b) holds

since S∗ \Q∗ is a feasible but not necessarily an optimal solution to the Mixture problem.

Noting that ri < 0 for all i ∈ Q∗, we have
∑

i∈Q∗ ri ((vi + λθi)x
∗
i + λθi

∑
j∈S∗ vj y

∗
ij) ≤ 0. If∑

i∈Q∗ ri ((vi + λθi)x
∗
i + λθi

∑
j∈S∗ vj y

∗
ij) < 0, then the above chain of inequalities yields z∗LP < ẑ,

contradicting the fact that z∗LP ≥ ẑ, which we established at the beginning of the proof. Therefore,

we have
∑

i∈Q∗ ri ((vi +λθi)x
∗
i +λθi

∑
j∈S∗ vj y

∗
ij) = 0, but since x∗i > 0, r∗i < 0 and vi +λθi > 0 for

all i∈Q∗, for the last equality to hold, we must have Q∗ =∅. Since Q∗ =∅, noting that zLP ≥ ẑ, all

the inequalities in the above chain of inequalities hold as equalities. In particular, since (b) holds as

an equality and Q∗ = ∅, the objective value provided by the solution S∗ \Q∗ = S∗ for the Mixture

problem is ẑ, so S∗ is an optimal solution to the Mixture problem.

The proof of Theorem 3.2 also shows that the Mixture problem and the Assortment LP have the

same optimal objective values. In the proof of the theorem, we do not assume that the revenues
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of the products are non-negative. We will build on Theorem 3.2 when examining network revenue

management problems. In that setting, the revenues of the products will be adjusted by the

opportunity costs of the capacities used by the products, in which case, the revenues of some of

the products can be negative. Nevertheless, when we focus only on solving the Mixture problem,

we can a priori drop from consideration all products with nonpositive revenues, since if we drop

such products, then the expected revenue from any assortment stays at least as large.

Prioritization of Products in an Optimal Assortment:

We give a result to intuitively suggest that there exists an optimal solution to the Mixture problem

that prioritizes product i when ri is larger or when θi/vi is larger. Besides providing insight into the

structure of the optimal assortment, this result allows us to construct a combinatorial algorithm for

solving the Mixture problem. We start by reformulating the Mixture problem. Define the decision

variables w = {wi : i ∈ N} ∈ {0,1}n, where wi = 1 if and only if we offer product i. Using z∗ to

denote the optimal objective value of the Mixture problem, we write this problem as

z∗ = max
w∈{0,1}n

{∑
i∈N

ri

(
vi

1 +
∑

j∈N vj wj
+λθi

)
wi

}

= max
w∈{0,1}n

{∑
i∈N ri (vi +λθi)wi +

(∑
i∈N viwi

)(∑
i∈N ri λθiwi

)
1 +

∑
i∈N viwi

}
, (1)

where the second equality follows by arranging the terms. As a function of w, let G(w) be the

expression in the numerator of the fraction on the right side of (1).

By (1), we have z∗ ≥ G(w)

1+
∑

i∈N viwi
for all w ∈ {0,1}n, and the inequality holds as equality at the

optimal solution w∗ to the Mixture problem. Thus, for all w ∈ {0,1}n, we have

z∗ ≥ G(w)− z∗
∑
i∈N

viwi =
∑
i∈N

ri (vi +λθi)wi +

(∑
i∈N

viwi

)(∑
i∈N

ri λθiwi

)
− z∗

∑
i∈N

viwi

=
∑
i∈N

vi

(
ri +λri

θi
vi
− z∗

)
wi +

(∑
i∈N

viwi

)(∑
i∈N

ri λθiwi

)
,

where the first equality follows by using the definition of G(w). Once again, the inequality above

holds for all w ∈ {0,1}n, and it holds as an equality at the optimal solution w∗ to the Mixture

problem. Thus, an optimal solution to the Mixture problem is a maximizer of the expression on the

right side above over all w ∈ {0,1}n. In other words, letting F (w) =
∑

i∈N vi (ri +λri
θi
vi
− z∗)wi +(∑

i∈N viwi
) (∑

i∈N ri λθiwi
)

capture the expression on the right side above as a function of w,

w∗ is an optimal solution to the problem maxw∈{0,1}n F (w).

In the next theorem, we use the discussion in the previous paragraph to provide insight into the

structure of an optimal solution to the Mixture problem.
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Theorem 3.3 (Prioritization of Products) There exists an optimal solution S∗ to the Mixture

problem that satisfies

min
i∈S∗

{
ri

(
1 +λ

θi
vi

(1 +V (S∗))

)}
> max

i∈N\S∗

{
ri

(
1 +λ

θi
vi

(1 +V (S∗))

)}
.

Proof: By the discussion preceding the theorem, letting w∗ be an optimal solution to problem (1),

we have w∗ = arg maxw∈{0,1}n F (w). If we drop all products with nonpositive revenues from an

assortment, then the expected revenue from the assortment stays at least as large, so we focus on

the case where ri > 0 for all i∈N . For each i∈N , the only term in F (w) that depends on wi in a

nonlinear fashion is vi ri λθiw
2
i . Thus, F (w) is directionally convex. In this case, we can relax the

binary constraints to get w∗ = arg maxw∈[0,1]n F (w). Let V ∗ =
∑

i∈N viw
∗
i and Θ∗ =

∑
i∈N ri λθiw

∗
i

for notational brevity. Differentiating F (w) by using its definition, we get

∂F (w)

∂wi

∣∣∣
w=w∗

= vi

(
ri +λri

θi
vi
− z∗

)
+ vi

(∑
j∈N

rj λθj w
∗
j

)
+

(∑
j∈N

vj w
∗
j

)
ri λθi

= vi

(
ri

(
1 +λ

θi
vi

(1 +V ∗)

)
− z∗+ Θ∗

)
.

We use fi(w
∗) to denote the derivative above. To show the result by contradiction, assume that

w∗k = 1 and w∗` = 0 for some k, `∈N , and rk(1 +λ θk
vk

(1 +V ∗))≤ r`(1 +λ θ`
v`

(1 +V ∗)).

Since w∗ = arg maxw∈[0,1]n F (w) and w∗k = 1, we have fk(w
∗)≥ 0. Otherwise, a small decrease in

wk strictly increases the value of F (w∗). Similarly, we have f`(w
∗)≤ 0. Thus, we obtain

f`(w
∗)

v`
= r`

(
1 +λ

θ`
v`

(1 +V ∗)

)
− z∗+ Θ∗ ≤ 0 ≤ rk

(
1 +λ

θk
vk

(1 +V ∗)

)
− z∗+ Θ∗ =

fk(w
∗)

vk
.

In this case, noting that rk(1+λ θk
vk

(1+V ∗))≤ r`(1+λ θ`
v`

(1+V ∗)), all the inequalities above must

hold as equalities. In particular, we have r`(1 +λ θ`
v`

(1 +V ∗))− z∗+ Θ∗ = 0.

Define the solution ŵ= {ŵi : i∈N} as ŵi =w∗i for all i∈N \{`} and ŵ` = 1. Using the fact that

the solutions ŵ and w∗ differ only in the decision variable w`, we have

F (ŵ)−F (w∗) = v`

(
r` +λr`

θ`
v`
− z∗

)
+ (V ∗+ v`)(Θ

∗+ r` λθ`)−V ∗Θ∗

= v`

(
r`

(
1 +λ

θ`
v`

(1 +V ∗)

)
− z∗+ Θ∗

)
+ v` r` λθ`

(a)
= v` r` λθ` > 0,

where (a) holds since r`(1 +λ θ`
v`

(1 +V ∗))− z∗+ Θ∗ = 0. Having F (ŵ)−F (w∗)> 0 contradicts the

fact that w∗ is an optimal solution to the problem maxw∈[0,1]n F (w).

By the theorem above, if product i has a larger value for ri or θi/vi, then the optimal assortment

prioritizes this product. Besides providing insight into the structure of the optimal assortment, we
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can use Theorem 3.3 to construct a combinatorial algorithm for solving the Mixture problem. If

we knew the value of V (S∗), then letting t = V (S∗), we could index the products such that

r1(1 +λ θ1
v1

(1 + t)) ≥ r2(1 + λ θ2
v2

(1 + t)) ≥ . . . ≥ rn(1 + λ θn
vn

(1 + t)), in which case an optimal

assortment would be of the form {1, . . . , i} for some i ∈ N . Thus, we would obtain an optimal

assortment by checking the expected revenue from O(n) candidate assortments, each of which is of

the form {1, . . . , i} for some i∈N . To deal with the fact that we do not know the value of V (S∗),

we adopt an approach from Rusmevichientong et al. (2010). Note that gi(t) = ri(1+λ θi
vi

(1+ t)) is a

linear function of t. The n lines {gi(·) : i∈N} intersect at O(n2) points. Let t1 ≤ t2 ≤ . . .≤ tK with

K =O(n2) be the intersection points of the n lines {gi(·) : i ∈N}. That is, for each k= 1, . . . ,K,

we have gi(t
k) = gj(t

k) for some i, j ∈N . Letting t0 = 0 and tK+1 =∞ for notational uniformity, for

each k = 0, . . . ,K, if t takes values in the interval [tk, tk+1), then the ordering between the values

{gi(t) : i∈N} does not change. To capture this ordering, we let the permutation (σk1 , . . . , σ
k
n)∈Nn

be such that gσk1
(t)≥ gσk2 (t)≥ . . .≥ gσkn(t) for all t∈ [tk, tk+1). In this case, we can obtain the optimal

assortment by checking the expected revenue from O(n3) candidate assortments, each of which is

of the form {σk1 , . . . , σki } for some i∈N , k= 0, . . . ,K.

Thus, we can solve the Mixture problem without using an LP, but the Assortment LP becomes

critical when we work with network revenue management problems.

4. Effect of Customer Segment Mix and Efficient Assortments

In this section, we show that the optimal solution to the Mixture problem becomes a larger

assortment when the relative size of the customer segment with the independent demand model

grows or when the revenue of each product increases by the same additive amount. The fact that

the optimal solution becomes a larger assortment when the revenue of each product increases

by the same additive amount has important implications when we want to find assortments

that trade off expected revenue with the probability of purchase. This result also becomes useful

when implementing policies in dynamic assortment optimization problems through protection

levels. Throughout this section, we focus on the Mixture problem after increasing the revenue of

each product by δ, which is given by

max
S⊆N

{∑
i∈S

(ri + δ)

(
vi

1 +V (S)
+λθi

)}
. (Parametric Mixture)

As a function of (λ, δ), we let S∗(λ, δ) be an optimal solution to the problem above. If there are

multiple optima, then we choose any one that has the largest cardinality.

In the next theorem, we examine how an optimal solution to the Parametric Mixture problem

changes as a function of λ and δ.
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Theorem 4.1 (Sensitivity of the Optimal Assortment) There exists an optimal solution

S∗(λ, δ) to the Parametric Mixture problem that satisfies the following properties.

(a) If λ> β, then S∗(λ, δ)⊇ S∗(β, δ).

(b) δ > 0, then S∗(λ, δ)⊇ S∗(λ,0).

Before we give a proof for the theorem, we discuss its implications. To interpret the first part

of the theorem, note that a customer in the segment with the independent demand model is not

willing to make substitutions. If such a customer is interested in product i and this product is

unavailable, then she leaves without a purchase. In that sense, the customers in the segment with

the independent demand model are inflexible. By the first part of the theorem, as the relative size

of the inflexible customer segment increases, to ensure that the customers in this segment can find

the product they are interested in, the optimal assortment becomes larger. To interpret the second

part of the theorem, letting Rev(S) =
∑

i∈S ri
(

vi
1+V (S)

+ λθi
)

and Dem(S) =
∑

i∈S

(
vi

1+V (S)
+λθi

)
,

we write the objective function of the Parametric Mixture problem as Rev(S) + δDem(S). Observe

that Rev(S) is the expected revenue from assortment S, whereas Dem(S) is the total purchase

probability from assortment S. While maximizing the expected revenue is beneficial for the firm,

maximizing the total purchase probability is beneficial for the customers, as a larger total purchase

probability indicates that a larger fraction of the customers can find a product in which they are

interested. The parameter δ characterizes the weight that we put on the total purchase probability

relative to the expected revenue. Solving the problem maxS⊆N
{
Rev(S) + δDem(S)

}
for all possible

values of δ, we can construct an efficient frontier of all attainable expected revenue-total purchase

probability pairs. By the second part of the theorem, the Pareto-efficient assortments that lie on

the efficient frontier have a nested structure, one assortment always being included in another one.

Since there can be at most n assortments that satisfy such a nested structure, there can be at most

n assortments on the efficient frontier. Furthermore, the Pareto-efficient assortments get larger as

the weight that we put on the total purchase probability increases. In Figure 1, we consider a

problem instance with 8 products and show the expected revenue-total purchase probability pairs

for the assortments on the efficient frontier. We label each assortment by the products that are

included in the assortment. The assortments on the efficient frontier are nested.

Having nested Pareto-efficient assortments has other important implications. Talluri and van

Ryzin (2004) investigate dynamic assortment optimization problems with a single resource, where

we offer assortments of products to customers arriving over time and the sale of a product

generates a revenue depending on the purchased product and consumes one unit of capacity of

the resource. It turns out that if the assortments on the efficient frontier are nested, then we
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Figure 1 Efficient frontier with n = 8, (r1, . . . , r8) = (0.96,0.81,0.34,0.29,0.19,0.09,0.04,0.03), (v1, . . . , v8) =

(0.40,0.35,0.54,0.10,0.11,0.21,0.12,0.04), (θ1, . . . , θ8) = (0.15,0.20,0.09,0,0.16,0.15,0.07,0.18), λ= 3
22

.

can implement the optimal policy by associating a protection level for each product. In this case,

it is optimal to offer a product only when the remaining capacity of the resource exceeds the

protection level of the product. On the other hand, Ma (2019) studies assortment auctions, where

each buyer submits a list of options she is willing to purchase and the seller allocates a limited

amount of inventory to buyers under only probabilistic information about the preferences of the

buyers. Having nested assortments on the efficient frontier plays an important role in giving a

Myersonian characterization of the optimal mechanism in these auctions.

Proof of Theorem 4.1:

In the rest of this section, we give a proof of Theorem 4.1. Results similar to this theorem appear

in the literature under the pure multinomial logit model, but our result, which is under a mixture

of multinomial logit and independent demand models, requires techniques that, to our knowledge,

have not been used. Consider two instances of the Mixture problem. In both instances, the preference

weight of product i in the multinomial logit model is vi > 0 and a customer in the independent

demand segment is interested in product i with probability θi > 0. The two instances differ in

the revenues of the products and the relative size of the customer segment with the independent

demand model. In the first instance, the revenue of product i is ri1 and the relative size of the

independent demand segment is λ1, whereas in the second instance, the revenue of product i is ri2

and the relative size of the independent demand segment is λ2. For `= 1,2, we use R`(S) to denote

the expected revenue from the segment with the multinomial logit model in instance `, given that

we offer the assortment S. In other words, we have R`(S) =
∑

i∈S ri` vi/(1 + V (S)). Lastly, for
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`= 1,2, we let S∗` be an optimal solution to the Mixture problem for instance `. In particular, S∗`

is an optimal solution to the problem

max
S⊆N

{∑
i∈N ri` vi

1 +V (S)
+λ`

∑
i∈N

ri` θi

}
= max

S⊆N

{
R`(S) +λ`

∑
i∈S

ri` θi

}
.

If there are multiple optimal solutions, then we choose any one that has the largest cardinality. We

break other ties according to a fixed lexicographical order between the assortments.

The way we will use the two instances is as follows. When showing the first part of Theorem

4.1, we will have ri1 = ri = ri2 and λ1 = λ > β = λ2, so that the two instances will differ only in

the relative size of the customer segment with the independent demand model. When showing

the second part of Theorem 4.1, we will have ri1 = ri, ri2 = ri + δ and λ1 = λ = λ2, so that two

instances will differ only in the revenues of the products. In the next lemma, we give an important

relationship between S∗1 and S∗2 . This result, rather than having an intuition, serves as a wrapper

for a key computation that we make multiple times when giving a proof for Theorem 4.1.

Lemma 4.2 (Comparing Instances) For `= 1,2, let S∗` be an optimal solution to the problem

maxS⊆N{R`(S) +λ`
∑

i∈S ri` θi} and

K = {i∈N : ri1 ≤R1(S
∗
1), i 6∈ S∗1 , i∈ S∗2}.

Then, the assortments S∗1 , S∗2 , and K satisfy S∗1 ∪K ⊇ S∗2 . Furthermore, if K 6=∅ and ri2 ≤R2(S
∗
2)

for all i∈K, then we have

R1(S
∗
1)−

∑
i∈K ri1 vi/V (K)

1 +V (S∗1 ∪K)
−λ1

∑
i∈K ri1 θi

V (K)
≥

R2(S
∗
2)−

∑
i∈K ri2 vi/V (K)

1 +V (S∗2)
−λ2

∑
i∈K ri2 θi

V (K)
. (2)

Proof: To show the first statement, we write the objective function of the Mixture problem for

instance ` as R`(S) + λ`
∑

i∈S ri` θi. As in the proof of Theorem 3.3, we consider the case ri1 > 0

for all i ∈N . Otherwise, we can drop all products with nonpositive revenues while ensuring that

the expected revenue from any assortment stays just as large. Consider i ∈ S∗2 . If i 6∈ S∗1 and

ri1 >R1(S
∗
1), then a standard lemma for the expected revenue under the multinomial logit model,

given as Lemma C.1 in Appendix C, implies that R1(S
∗
1 ∪{i})≥R1(S

∗
1). Moreover, since ri1 ≥ 0 for

all i∈N , we have
∑

j∈S∗1∪{i}
rj1 θj ≥

∑
j∈S∗1

rj1 θj. Thus, we get R1(S
∗
1 ∪{i}) +λ1

∑
j∈S∗1∪{i}

rj1 θj ≥

R1(S
∗
1) + λ1

∑
j∈S∗1

rj1 θj, which contradicts the fact that S∗1 is an optimal solution to the Mixture

problem for the first instance with the largest cardinality. Therefore, if i∈ S∗2 , then we have i∈ S∗1
or ri1 ≤ R1(S

∗
1). Consider i ∈ S∗2 and focus on two cases. First, if i ∈ S∗1 , then we trivially have

i ∈ S∗1 ∪K. Second, if i 6∈ S∗1 , then we must have ri1 ≤ R1(S
∗
1) by the earlier discussion in this

paragraph, but by the definition of K, having i∈ S∗2 , i 6∈ S∗1 and ri1 ≤R1(S
∗
1) implies that i∈K, so
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we get i∈ S∗1 ∪K. In both cases, having i∈ S∗2 implies that i∈ S∗1 ∪K, so we have S∗1 ∪K ⊇ S∗2 . To

show the second statement, we consider the case K 6=∅ and ri2 ≤R2(S
∗
2) for all i∈K.

Note that S∗1 ∩ K = ∅ by the definition of K. Moreover, by the definition of S∗1 , we have

R1(S
∗
1) +λ1

∑
i∈S∗1

ri1 θi ≥R1(S
∗
1 ∪K) +λ1

∑
i∈S∗1∪K

ri1 θi, which we write as

0 ≤ R1(S
∗
1)−R1(S

∗
1 ∪K)−λ1

∑
i∈K

ri1 θi = R1(S
∗
1)−

∑
i∈S∗1∪K

ri1 vi

1 +V (S∗1 ∪K)
−λ1

∑
i∈K

ri1 θi

(a)
= R1(S

∗
1)−

(
1 +V (S∗1)

1 +V (S∗1 ∪K)
R1(S

∗
1) +

V (K)

1 +V (S∗1 ∪K)

∑
i∈K ri1 vi

V (K)

)
−λ1

∑
i∈K

ri1 θi

(b)
=

V (K)

1 +V (S∗1 ∪K)

(
R1(S

∗
1)−

∑
i∈K ri1 vi

V (K)

)
−λ1

∑
i∈K

ri1 θi,

where (a) uses the fact that R1(S
∗
1) =

∑
i∈S∗1

ri1 vi/(1 + V (S∗1)) and (b) uses the fact that

V (S∗1 ∪K) = V (S∗1) +V (K) for S∗1 ∩K =∅ and arranges the terms.

We have K ⊆ S∗2 by the definition of K. Moreover, by the definition of S∗2 , we have

R2(S
∗
2) +λ2

∑
i∈S∗2

ri2 θi ≥R2(S
∗
2 \K) +λ2

∑
i∈S∗2\K

ri2 θi, which is equivalent to

0 ≥ R2(S
∗
2 \K)−R2(S

∗
2)−λ2

∑
i∈K

ri2 θi = R2(S
∗
2 \K)−

∑
i∈S∗2

ri2 vi

1 +V (S∗2)
−λ2

∑
i∈K

ri2 θi

(c)
= R2(S

∗
2 \K)−

(
1 +V (S∗2 \K)

1 +V (S∗2)
R2(S

∗
2 \K) +

V (K)

1 +V (S∗2)

∑
i∈K ri2 vi

V (K)

)
−λ2

∑
i∈K

ri2 θi

(d)
=

V (K)

1 +V (S∗2)

(
R2(S

∗
2 \K)−

∑
i∈K ri2 vi

V (K)

)
−λ2

∑
i∈K

ri2 θi

(e)

≥ V (K)

1 +V (S∗2)

(
R2(S

∗
2)−

∑
i∈K ri2 vi

V (K)

)
−λ2

∑
i∈K

ri2 θi ,

where (c) and (d) use the same argument as do (a) and (b), whereas (e) follows by using, once again,

Lemma C.1, which implies that since ri2 ≤R2(S
∗
2) for all i∈K, we have R2(S

∗
2 \K)≥R2(S

∗
2).

Combining the two chains of inequalities displayed above and dividing both sides of the inequality

by V (K), the second statement in the lemma holds.

Here is the proof of Theorem 4.1. As in the proof of Lemma 4.2, it is sufficient to consider the

case where ri > 0 for all i ∈N . To show the first part of Theorem 4.1, building on the notation

introduced immediately before Lemma 4.2, we define two instances of the Mixture problem with

ri1 = ri = ri2 for all i∈N and λ1 = λ, λ2 = β with λ> β. Note that since the revenues and preference

weights in the two instances are the same, we have R1(S) =R2(S) for all S ⊆N . Recall that S∗`
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is an optimal solution to the problem maxS⊆N
{
R`(S) + λ`

∑
i∈S ri` θi

}
, and thus, showing that

S∗(λ, δ)⊇ S∗(β, δ) is equivalent to showing that S∗1 ⊇ S∗2 . By the definition of S∗1 and S∗2 , we have

R1(S
∗
1) +λ1

∑
i∈S∗1

ri1 θi ≥ R1(S
∗
2) +λ1

∑
i∈S∗2

ri1 θi

R2(S
∗
2) +λ2

∑
i∈S∗2

ri2 θi ≥ R2(S
∗
1) +λ2

∑
i∈S∗1

ri2 θi.

Multiplying the first and second inequalities above by λ2 and λ1, respectively, adding them, and

noting that ri1 = ri2, we have λ1R2(S
∗
2)−λ2R1(S

∗
2)≥ λ1R2(S

∗
1)−λ2R1(S

∗
1).

Since R1(S) =R2(S) for all S ⊆N , the last inequality yields (λ1−λ2)R2(S
∗
2)≥ (λ1−λ2)R1(S

∗
1),

but noting that λ1 >λ2, we get R2(S
∗
2)≥R1(S

∗
1). Define K as in Lemma 4.2, in which case we have

S∗1 ∪K ⊇ S∗2 by the first statement in Lemma 4.2. If K = ∅, then S∗1 ⊇ S∗2 , which is the desired

result. To get a contradiction, assume that K 6= ∅. By the definition of K, we have ri1 ≤R1(S
∗
1)

for all i ∈K. In this case, since R2(S
∗
2)≥R1(S

∗
1) and ri1 = ri2 for all i ∈N , we obtain ri2 = ri1 ≤

R1(S
∗
1)≤ R2(S

∗
2) for all i ∈K. Observe that

∑
i∈K ri1 vi/V (K) =

∑
i∈K ri2 vi/V (K) is a weighted

average of the revenues of the products in K. Thus, since ri1 = ri2 ≤R1(S
∗
1)≤R2(S

∗
2) for all i∈K,

we get
∑

i∈K ri1 vi/V (K) =
∑

i∈K ri2 vi/V (K) ≤ R1(S
∗
1) ≤ R2(S

∗
2), which we equivalently write as

0≤R1(S
∗
1)−

∑
i∈K ri1 vi/V (K)≤R2(S

∗
2)−

∑
i∈K ri2 vi/V (K). Lastly, noting that λ1 > λ2, K 6= ∅,

and ri1 = ri2 = ri > 0 for all i∈N , we have λ1

∑
i∈K θi ri1 >λ2

∑
i∈K θi ri2.

In the previous paragraph, we argue that ri2 ≤R2(S
∗
2) for all i ∈K, so the second statement in

Lemma 4.2 holds. Thus, adding the inequality λ1

∑
i∈K θi ri1 >λ2

∑
i∈K θi ri2 and (2), we get

R1(S
∗
1)−

∑
i∈K ri1 vi/V (K)

1 +V (S∗1 ∪K)
>

R2(S
∗
2)−

∑
i∈K ri2 vi/V (K)

1 +V (S∗2)
.

Since 0≤R1(S
∗
1)−

∑
i∈K ri1 vi/V (K)≤R2(S

∗
2)−

∑
i∈K ri2 vi/V (K), the inequality above holds only

if 1 +V (S∗1 ∪K)< 1 +V (S∗2), which contradicts the fact that S∗1 ∪K ⊇ S∗2 .

To show the second part of Theorem 4.1, we define two instances of the Mixture problem with

ri1 = ri and ri2 = ri + δ for all i ∈ N and λ1 = λ = λ2. In this case, it is unfortunately not

straightforward to show that R2(S
∗
2) ≥ R1(S

∗
1), and the proof of the second part becomes more

complicated. We focus on two cases. First, considering the case R2(S
∗
2)− δ≤R1(S

∗
1), we use an

outline very similar to the one in the proof of the first part to show that S∗2 ⊇ S∗1 . Second, considering

the case R2(S
∗
2)− δ >R1(S

∗
1), we show that this case cannot happen, once again, using an outline

very similar to the one in the proof of the first part. The analysis of both of these cases uses

Lemma 4.2. We give the detailed proof of the second part in Appendix C.

In the next section, we focus on the assortment optimization problem when there is a cardinality

constraint that limits the number of offered products.
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5. Assortment Optimization under a Cardinality Constraint

We show that the Mixture problem under a cardinality constraint is NP-hard and give an FPTAS.

Letting C be the limit on the number of offered products, we consider the problem

max
S ⊆N :
|S|=C

{∑
i∈S

ri

(
vi

1 +V (S)
+λθi

)}
. (Cardinality-Mixture)

Note that the constraint above ensures that we offer exactly C products. If we want to offer at

most k products, then we can solve the problem above with C = 1, . . . , k.

To show that the Cardinality-Mixture problem is NP-hard, we use the following feasibility version

of the Cardinality-Mixture problem, which we refer to as the Mixture Feasibility problem.

Mixture Feasibility: Given an instance of the Cardinality-Mixture problem and a threshold K,

is there an assortment S ⊆N with |S|=C that provides an expected revenue of K or more?

We use a reduction from the following Cardinality-Constrained Partition problem, which is

a well-known NP-hard problem (Section A3.2, Garey and Johnson 1979).

Cardinality-Constrained Partition: Given a set of items N = {1, . . . , n} and their weights

{wi : i∈N}, is there a subset S ⊆N with |S|= n/2 such that
∑

i∈S wi =
∑

i6∈S wi?

To our knowledge, no study has built on the partition problem to establish NP-hardness for

assortment optimization under a cardinality constraint, especially considering that we can solve

the unconstrained assortment optimization problem in polynomial time and the problem without

the cardinality constraint is well-behaved to the point that we can use an LP. In that respect,

our NP-hardness result is surprising and unique. Rusmevichientong et al. (2014) use the partition

problem to establish NP-hardness under a mixture of multinomial logit models without constraints.

In the next theorem, we show that the Cardinality-Mixture problem is NP-hard.

Theorem 5.1 (Complexity) The Mixture Feasibility problem is NP-complete.

Proof: Given an instance of the Cardinality-Constrained Partition problem with the set

of items N = {1, . . . , n} and weights {wi : i ∈ N}, we have
∑

i∈S wi =
∑

i 6∈S wi if and only if∑
i∈S wi = 1

2

∑
i∈N wi. Scaling all weights by the same constant does not change the answer to the

Cardinality-Constrained Partition problem, so we scale the weights so that
∑

i∈N wi = 2. From

the instance of the Cardinality-Constrained Partition problem, we define an instance of the

Mixture Feasibility problem as follows. For each i ∈N , the revenue of product i is ri = 1. The

preference weight of product i is vi = wi. Letting Vmax = maxi∈N vi, the purchase probability of
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product i in the independent demand model is θi = Vmax−vi. The relative size of the two customer

segments is λ= 1
4
. We need to offer C = n

2
products. Finally, the threshold is K = 1

4
+ 1

4
C Vmax.

We show that there exists an assortment S ⊆ N with |S| = C that provides an expected

revenue of K or more if and only if there exists a subset of items S ⊆ N with |S| = n/2 such

that
∑

i∈S wi = 1
2

∑
i∈N wi. Noting that ri = 1 for all i ∈ N and λ = 1

4
, the objective function

of the Cardinality-Mixture problem is V (S)

1+V (S)
+ 1

4

∑
i∈S θi. Since we have θi = Vmax − vi and we

need to offer an assortment S ⊆N that satisfies |S|= C, this objective function is equivalent to

V (S)

1+V (S)
+ 1

4

∑
i∈S(Vmax− vi) = V (S)

1+V (S)
+ 1

4
C Vmax− 1

4
V (S).

Thus, noting that K = 1
4

+ 1
4
C Vmax, an assortment S ⊆N with |S| = C provides an expected

revenue of K or more if and only if a subset of items S ⊆N with |S|=C satisfies

V (S)

1 +V (S)
+

1

4
C Vmax−

1

4
V (S)≥ 1

4
+

1

4
C Vmax.

The inequality above holds if and only if V (S)

1+V (S)
≥ 1

4
(1 + V (S)). Arranging the terms, the last

inequality is equivalent to (1−V (S))2 ≤ 0, which holds if and only if V (S) = 1.

By the discussion in the previous two paragraphs, there exists an assortment S ⊆N with |S|=C

that provides an expected revenue of K or more if and only if there exists a subset of items S ⊆N

with |S|=C such that V (S) = 1. Noting that C = n/2, V (S) =
∑

i∈S vi =
∑

i∈S wi and
∑

i∈N wi = 2,

having a subset of items S ⊆N with |S|=C and V (S) = 1 is equivalent to having a subset of items

S ⊆N with |S|= n/2 and
∑

i∈S wi = 1
2

∑
i∈N wi. The last statement is precisely the one that the

Cardinality-Constrained Partition problem focuses on.

Considering the Cardinality-Mixture problem, our main contribution is to show that this problem

is NP-hard, as we do in the theorem above. Once we show that the Cardinality-Mixture problem is

NP-hard, it is natural to consider developing an FPTAS for this problem, and our approach to

developing an FPTAS uses standard arguments that are employed when developing an FPTAS for

the knapsack problem (Desir et al. 2016). In the rest of this section, we outline the three main

steps of our FPTAS and defer the details to Appendix D.

In the first step, we relate the Cardinality-Mixture problem to the knapsack problem. Letting

Vmin = mini∈N vi and Vmax = maxi∈N vi, for fixed t∈ [Vmin, nVmax], we consider the problem

f(t) = max
S⊆N

{∑
i∈S

ri

(
vi

1 + t
+λθi

)
: V (S)≤ t, |S|=C

}
. (3)

The problem above is a cardinality-constrained knapsack problem, where the set of items is N , the

utility of item i is ri (
vi
1+t

+λθi), the space consumption of item i is vi, the capacity of the knapsack
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is t, and the number of items to carry is C. If t < Vmin, then the only potentially feasible solution to

the problem above is S =∅, whereas if t > nVmax, then the first constraint above is redundant, so we

consider the values of t∈ [Vmin, nVmax]. Noting that f(t) is the optimal objective value of problem

(3), let t∗ be an optimal solution to the problem maxt∈[Vmin,nVmax] f(t). We can show that if S∗ is an

optimal solution to problem (3) with t= t∗, then S∗ is an optimal solution to the Cardinality-Mixture

problem. In other words, we can recover an optimal solution to the Cardinality-Mixture problem by

solving problem (3) with t= t∗. However, solving the problem maxt∈[Vmin,nVmax] f(t) to compute t∗

is difficult, since f(·) is itself hard to compute.

In the second step, we build a geometric grid over the interval [Vmin, nVmax]. For a fixed accuracy

parameter ρ> 0, we focus on a set of grid points that are integer powers of 1 + ρ, which are given

by Grid = {(1 + ρ)k : k= b logVmin
log(1+ρ)

c, . . . , d log(nVmax)

log(1+ρ)
e}. Here, b·c and d·e are, respectively, the round

down and up functions. Let t̂ ∈ Grid be such that t∗ ≤ t̂ < (1 + ρ) t∗. We can show that if Ŝ is an

optimal solution to problem (3) with t= t̂, then the expected revenue of the assortment Ŝ deviates

from the optimal expected revenue by at most a factor of 1 + ρ. Thus, there exists t̂ ∈ Grid such

that solving problem (3) with t= t̂ yields a (1+ρ)-approximate solution. However, solving problem

(3) with t= t̂ is difficult, since this problem is itself an NP-hard problem.

In the third step, we use a dynamic program to obtain an approximate solution to problem (3)

with t= t̂. Writing the constraint V (S) =
∑

i∈S vi ≤ t as
∑

i∈S
n
tρ
vi ≤ n

ρ
, we consider an approximate

version of problem (3) by replacing the constraint V (S) ≤ t with
∑

i∈Sd
n
tρ
vie ≤ dnρ e+ n. In the

approximate version of problem (3), the space consumption of each item and the capacity of the

knapsack are integers. Thus, we can solve the approximate version by using a dynamic program. We

can show that if we let t̂ be as in the previous paragraph and S̃ be an optimal solution to the

approximate version of problem (3) with t = t̂, then the expected revenue of the assortment S̃

deviates from the optimal expected revenue by at most a factor of 1 + 5ρ.

In the next theorem, accounting for the number of operations and the errors in the second and

third steps, we give an FPTAS for the Cardinality-Mixture problem.

Theorem 5.2 (FPTAS for Cardinality Constraint) Letting z∗ be the optimal objective value

of the Cardinality-Mixture problem, there exists an algorithm where, for any ε ∈ (0,1), the

algorithm runs in O
(
n3

ε2
log
(
nVmax
Vmin

))
operations and returns an assortment that is feasible to the

Cardinality-Mixture problem with an expected revenue of at least (1− ε)z∗.

The proof of Theorem 5.2 is given in Appendix D.
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6. Network Revenue Management

In the network revenue management setting, we have a set of resources, each with limited

capacity. There is a finite number of time periods in the selling horizon. We choose the assortment

of products to offer at each time period. The customer arriving at a time period chooses among

the products according to a choice model. If the customer purchases a product, then we consume

the capacities of a combination of resources and generate a revenue, both of which depend on the

purchased product. The goal is to find a policy for choosing the assortment of products to offer at

each time period to maximize the total expected revenue over the selling horizon. Gallego et al.

(2004) and Liu and van Ryzin (2008) formulate an LP approximation for the network revenue

management problem. In their LP approximation, we have one decision variable for each assortment

of products that we can offer to the customers, capturing the frequency with which we offer each

assortment. Thus, the number of decision variables increases exponentially with the number of

products, and it may be computationally cumbersome to solve the LP approximation.

In this section, we show that if the customers choose according to a mixture of multinomial

logit and independent demand models, then we can formulate an equivalent LP whose number of

decision variables and constraints increases only quadratically with the number of products. The

optimal objective values of the two formulations are equal, and we can recover an optimal solution

to one formulation by using an optimal solution to the other. To pin down the network revenue

management problem, let T be the number of time periods in the selling horizon. At each time

period, we have one customer arrival. The set of resources is M = {1, . . . ,m}. The capacity of

resource q is cq. The set of products is N = {1, . . . , n}. If we offer the assortment S ⊆N of products,

then a customer purchases product i∈ S with probability vi
1+V (S)

+λθi, in which case we generate

a revenue of ri and consume aqi units of the capacity of resource q. We use the decision variables

w= {w(S) : S ⊆N}, where w(S) is the probability that we offer assortment S at a time period. The

LP approximation for the network revenue management problem is

max
w∈R2n

+

{
T
∑
S⊆N

∑
i∈S

ri

(
vi

1 +V (S)
+λθi

)
w(S) : (Choice-Based LP)

T
∑
S⊆N

∑
i∈S

aqi

(
vi

1 +V (S)
+λθi

)
w(S)≤ cq ∀ q ∈M,

∑
S⊆N

w(S) = 1

}
.

Noting that
∑

i∈S ri(
vi

v0+V (S)
+ λθi) is the expected revenue at a time period at which we offer

assortment S, the objective function above is the total expected revenue over the selling horizon.
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The first constraint ensures that the total expected capacity consumption of a resource does not

exceed its capacity. The second constraint ensures that we offer an assortment at each time period.

To give an equivalent formulation for the Choice-Based LP, using the decision variables

(x0,x,y)∈R×Rn+n
2

+ as in the Assortment LP, we consider the problem

max
(x0,x,y)∈R×Rn+n2

+

{
T
∑
i∈N

ri

(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)
: (Compact LP)

T
∑
i∈N

aqi

(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)
≤ cq ∀ q ∈M,

x0 +
∑
i∈N

vi xi = 1,

xi ≤ x0 ∀ i∈N,

yij ≤ xi ∀ i, j ∈N, yij ≤ xj ∀ i, j ∈N

}
.

The objective function of the Compact LP is the total expected revenue over the selling

horizon. It turns out that we can use the expression (vi + λθi)xi + λθi
∑

j∈N vj yij to capture the

expected number of purchases for product i at a time period. Remarkably, we can capture the

expected number of purchases for the products by associating one decision variable with each

product, as well as with each pair of products, rather than by associating one decision variable

with each assortment of products. The first constraint ensures that the total expected capacity

consumption of a resource does not exceed its capacity. The remaining constraints ensure that the

choices of the customers are governed by our mixture choice model. We have 2n decision variables

and m+1 constraints in the Choice-Based LP, but n2 +n+1 decision variables and 2n2 +n+m+1

constraints in the Compact LP. While solving the Choice-Based LP almost always requires using

column generation, we may directly solve the Compact LP without using column generation.

There are heuristic policies that use an optimal primal or dual solution to the Choice-Based LP

to decide which assortment of products to offer at each time period. In a randomized offer policy,

letting w∗ be an optimal solution to the Choice-Based LP, we offer assortment S with probability

w∗(S), after adjusting the offered assortment to accommodate the availabilities of the resources

(Jasin and Kumar 2012). On the other hand, in a bid-price policy, letting µ∗ = {µ∗q : q ∈M} be

the optimal values of the dual variables associated with the first constraint in the Choice-Based

LP, we use µ∗q to capture the opportunity cost of a unit of resource q. If a customer purchases

product i, then the opportunity cost of the resources used by product i is
∑

q∈M aqi µ
∗
q , so the net

expected revenue from the purchase is ri−
∑

q∈M aqi µ
∗
q . Therefore, the expected net revenue from

offering assortment S is given by
∑

i∈S( vi
1+V (S)

+λθi)(ri−
∑

q∈M aqi µ
∗
q), in which case we offer an
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assortment that maximizes this expected net revenue, once again after adjusting the assortment

to accommodate the availabilities of the resources (Zhang and Adelman 2009). The discussion in

this paragraph indicates that it is important to recover both optimal primal and dual solutions

to the Choice-Based LP by using the Compact LP. In the next theorem, we show that the optimal

objective values of the Choice-Based LP and Compact LP are equal and we can recover an optimal

dual solution to the former by using the latter. In the next section, we focus on recovering an

optimal primal solution to the Choice-Based LP by using the Compact LP. It turns out that relating

the primal solutions of the two formulations will require more work. Lastly, we note that the

choice models that govern the choices of the customers at all time periods in the Choice-Based LP

have the same parameters. If the choices of the customers at different time periods are governed

by choice models with different parameters, then we need to work with the decision variables

{wt(S) : S ⊆N, t= 1, . . . , T}, where wt(S) is the probability that we offer assortment S at time

period t. All of our results continue to hold in this case.

Theorem 6.1 (Equivalence of LP Formulations) The optimal objective values of the

Choice-Based LP and Compact LP are the same. Furthermore, the optimal values of the dual

variables for the first constraint in the Choice-Based LP and Compact LP are the same.

Proof: Note that Compact LP is feasible and bounded, since setting x0 = 1, xi = 0 for all i ∈

N and yij = 0 for all i, j ∈ N yields a feasible solution and all decision variables are bounded.

The last four constraints in the Compact LP are equivalent to the four constraints in the

Assortment LP. For notational brevity, we capture the polytope defined by these constraints as

P = {(x0,x,y)∈R×Rn+n
2

+ : x0 +
∑

i∈N vi xi = 1, xi ≤ x0 ∀ i∈N, yij ≤min{xi, xj} ∀ i, j ∈N}. We

construct the Lagrangian for the Compact LP by associating the dual multipliers µ= {µq : q ∈M}

with the first constraint and relaxing this constraint, so the Lagrangian is

L(x0,x,y;µ) =
∑
i∈N

T ri

(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)

+
∑
q∈M

µq

(
cq −

∑
i∈N

T aqi

(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

))

=
∑
i∈N

T

(
ri−

∑
q∈M

aiq µq

)(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)
+
∑
q∈M

cq µq.

In this case, using D(µ) to denote the dual function for the Compact LP as a function of the dual

multipliers µ, we have D(µ) = max(x0,x,y)∈P L(x0,x,y;µ).

The Compact LP is feasible and bounded, so strong duality holds. Thus, we can obtain the

optimal objective value of the Compact LP by solving the dual problem minµ∈Rm
+
D(µ), and an
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optimal solution to the last problem gives the optimal values of the dual variables for the first

constraint in the Compact LP. We write the dual function as

D(µ) = max
(x0,x,y)∈P

{∑
i∈N

T

(
ri−

∑
q∈M

aiq µq

)(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)}
+
∑
q∈M

µq cq

(a)
= max

S⊆N

{∑
i∈S

T

(
ri−

∑
q∈M

aiq µq

)(
vi

1 +V (S)
+λθi

)}
+
∑
q∈M

µq cq

(b)
= max

w∈R2n
+

{∑
S⊆N

∑
i∈S

T

(
ri−

∑
q∈M

aiq µq

)(
vi

1 +V (S)
+λθi

)
w(s) :

∑
S⊆N

w(s) = 1

}
+
∑
q∈M

µq cq

= max
w∈R2n

+

{∑
S⊆N

∑
i∈S

T ri

(
vi

1 +V (S)
+λθi

)
w(s)

+
∑
q∈M

µq

(
cq −

∑
S⊆N

∑
i∈S

T aqi

(
vi

1 +V (S)
+λθi

)
w(s)

)
:
∑
S⊆N

w(s) = 1

}
.

In the chain of equalities above, (a) uses the fact that the LP on the left side of this equality is

equivalent to the Assortment LP after replacing the revenue of product i with ri−
∑

q∈M aqi µq. Thus,

we can obtain the optimal objective value of this LP by solving the Mixture problem after replacing

the revenue of product i with ri −
∑

q∈M aqi µq. On the other hand, (b) holds, since picking

one assortment that maximizes the expected revenue in the Mixture problem is equivalent to

randomizing over all possible assortments. The optimal objective value of the last LP above gives

the dual function for the Choice-Based LP. Therefore, the Compact LP and Choice-Based LP have

the same dual functions. In this case, if we minimize the dual functions for the two LP formulations

over all µ ∈ Rm+ , then we get the same optimal objective value, so the two LP formulations have

the same optimal objective value. Furthermore, the minimizers of the dual functions for the two

LP formulations must be the same, which implies that the optimal values of the dual variables for

the first constraint in the two LP formulations are the same.

By Theorem 6.1, we can solve the Compact LP to obtain the optimal dual variables of the first

constraint in the Choice-Based LP, in which case we can use these dual variables to implement

the bid-price policy. Considering the LP on the left side of (a) in the proof of the theorem, we

do not a priori know whether product i satisfies ri −
∑

q∈M aqi µq ≥ 0. Therefore, as discussed

immediately after the proof of Theorem 3.2, it is important that the Assortment LP can recover the

optimal objective value of the Mixture problem even when some of the products have nonpositive

revenues. To close this section, we iterate that we can have vi
v0+V (S)

+ λθi > 1, since we normalize

the size of the customer segment with the multinomial logit model to one. To recover the purchase

probability of product i, we need to scale vi
v0+V (S)

+ λθi with β. Thus, the purchase probabilities

in the Choice-Based LP and Compact LP have implicitly been scaled with 1/β, so the resource

capacities in these LP formulations have implicitly been scaled with 1/β as well.
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7. Recovering a Primal Solution

We focus on recovering an optimal primal solution to the Choice-Based LP by using the Compact

LP. Throughout this section, we follow the convention that if the Compact LP has multiple

optimal solutions, then we pick any one that has the largest value for the decision variable x0. It

is simple to implement this convention in practice. In particular, for ε > 0, we can add the

additional term εx0 to the objective function of the Compact LP. If ε is small enough, then the

additional term favors an optimal solution with the largest value of x0. If it is not clear how

small ε should be, then another approach would be to first solve the Compact LP and obtain its

optimal objective value. Letting z∗LP be the optimal objective value of the Compact LP, we can then

solve another LP where we maximize x0 in the objective function, subject to the constraint that

T
∑

i∈N ri ((vi +λθi)xi +λθi
∑

j∈N vj yij)≥ z∗LP, along with all constraints in the Compact LP. In

this case, we get a solution with the largest value for the decision variable x0, providing an objective

value of at least z∗LP, so it must be optimal. In the next lemma, we establish a useful property of

the basic optimal solutions to the Compact LP. The proof is given in Appendix E.

Lemma 7.1 (Extreme Point Optimal Solutions) Let (x∗0,x
∗,y∗) be a basic optimal solution

to the Compact LP. Then, we have y∗ij = min{x∗i , x∗j} for all i, j ∈N .

The proof, which is nontrivial, explicitly uses the fact that we pick a basic optimal solution that

has the largest value for the decision variable x0. We can generate examples to show that we may

not have y∗ij = min{x∗i , x∗j} for other basic optimal solutions. Also, note that the last two constraints

in the Compact LP do not immediately imply that y∗ij = min{x∗i , x∗j}, since the first constraint in

this LP may not allow setting y∗ij = min{x∗i , x∗j} in a feasible solution to the Compact LP. Next, we

focus on the main result of this section and give a remarkably efficient approach for recovering an

optimal primal solution to the Choice-Based LP from an optimal solution to the Compact LP.

Let (x∗0,x
∗,y∗) be a basic optimal solution to the Compact LP. We index the products so that

x∗1 ≥ x∗2 ≥ . . .≥ x∗n. Defining the set Si = {1, . . . , i} with S0 =∅, for each i= 0,1, . . . , n, we set

ŵ(Si) = (x∗i −x∗i+1) (1 +V (Si)), (Recovery)

where we follow the convention that x∗n+1 = 0. Noting that x∗0 ≥ x∗i for all i ∈ N by the third

constraint in the Compact LP, we have ŵ(S0) = x∗0−x∗1 ≥ 0.

We define the solution ŵ to the Choice-Based LP as follows. For all i= 0,1, . . . , n, we set ŵ(Si)

as in the Recovery formula. For S 6∈ {S0, S1, . . . , Sn}, we set ŵ(S) = 0.

In the next theorem, we show that the solution ŵ that we construct by using the Recovery

formula as discussed above is an optimal solution to the Choice-Based LP.
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Theorem 7.2 (Recovering an Optimal Solution) For a basic optimal solution (x∗0,x
∗,y∗) to

the Compact LP, let ŵ= {ŵ(S) : S ⊆N} be constructed as in the Recovery formula with ŵ(S) = 0

for all S 6∈ {S0, S1, . . . , Sn}. Then, ŵ is an optimal solution to the Choice-Based LP.

Proof: For notational brevity, let Λ∗i = T (vi + λθi)x
∗
i + T λθi

∑
j∈N vj y

∗
ij. By Lemma 6.1, the

optimal objective values of the Compact LP and Choice-Based LP are equal. Let z∗LP be their common

optimal objective value. Noting the objective function of the Compact LP, we have z∗LP =
∑

i∈N riΛ
∗
i .

Furthermore, by the first constraint in the Compact LP, we have
∑

i∈N aqiΛ
∗
i ≤ cq. We will show

that
∑

S⊆N ŵ(S) = 1 and
∑

S⊆N 1(i∈ S)
(

vi
1+V (S)

+λθi
)
ŵ(S) = Λ∗i . In this case, we get

∑
S⊆N

∑
i∈S

ri

(
vi

v0 +V (S)
+λθi

)
ŵ(S) =

∑
i∈N

∑
S⊆N

ri 1(i∈ S)

(
vi

v0 +V (S)
+λθi

)
ŵ(S) =

∑
i∈N

riΛ
∗
i = z∗LP.

Thus, the solution ŵ provides an objective value of z∗LP for the Choice-Based LP, which is the

optimal objective value of this LP. Moreover, replacing ri with aqi in the chain of equalities above

and carrying out the same computation, we get
∑

S⊆N
∑

i∈S aqi
(

vi
v0+V (S)

+λθi
)
ŵ(S) =

∑
i∈N aqiΛ

∗
i .

So, since
∑

i∈N aqiΛ
∗
i ≤ cq, ŵ is a feasible solution to the Choice-Based LP. Noting that ŵ provides

an objective value of z∗LP for this LP, ŵ is an optimal solution for the Choice-Based LP, as desired.

First, we show that
∑

S⊆N ŵ(S) = 1. By the definition of Si, we have V (Si)− V (Si−1) = vi for

all i= 1, . . . , n. Thus, using the Recovery formula, we get∑
S⊆N

ŵ(S)
(a)
=

n∑
i=0

ŵ(Si) =
n∑
i=0

(x∗i −x∗i+1) (1 +V (Si)) =
n∑
i=0

x∗i (1 +V (Si))−
n∑
i=0

x∗i+1 (1 +V (Si))

=

(
x∗0 (1 +V (S0)) +

n∑
i=1

x∗i (1 +V (Si))

)
−

(
n∑
i=1

x∗i (1 +V (Si−1)) +x∗n+1 (1 +V (Sn))

)
(b)
= x∗0 +

n∑
i=1

x∗i (V (Si)−V (Si−1)) = x∗0 +
n∑
i=1

vi x
∗
i

(c)
= 1,

where (a) holds since ŵ(S) = 0 for all S 6∈ {S0, S1, . . . , Sn}, (b) holds since x∗n+1 = 0, and (c) holds

since the solution (x∗0,x
∗,y∗) satisfies the second constraint in the Compact LP.

Second, we show that
∑

S⊆N 1(i∈ S)
(

vi
1+V (S)

+λθi
)
ŵ(S) = Λ∗i . Noting the definition of ŵ in the

Recovery formula, for each k= 0,1, . . . , n, we have

ŵ(Sk) = (x∗k−x∗k+1) (1 +V (Sk)) = x∗k−x∗k+1 + (x∗k−x∗k+1)V (Sk)

= x∗k−x∗k+1 +
∑
`∈N

1(`≤ k) (x∗k−x∗k+1)v`,

where the last equality uses the fact that Si = {1, . . . , i} and V (S) =
∑

i∈S vi. By Lemma 7.1, we have

y∗ij = min{x∗i , x∗j} for all i, j ∈N . Thus, since we index the products such that x∗1 ≥ x∗2 ≥ . . .≥ x∗n,
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we have y∗ij = x∗i for i≥ j and y∗ij = x∗j for i < j. In other words, letting a∨ b= max{a, b}, we have

y∗ij = x∗i∨j. Using the last chain of equalities displayed above, for each i∈N , we get∑
k∈N

1(k≥ i) ŵ(Sk) =
∑
k∈N

1(k≥ i) (x∗k−x∗k+1) +
∑
k∈N

∑
`∈N

1(k≥ i)1(`≤ k) (x∗k−x∗k+1)v`

(d)
=
∑
k∈N

1(k≥ i) (x∗k−x∗k+1) +
∑
`∈N

v`
∑
k∈N

1(k≥ i∨ `) (x∗k−x∗k+1)

(e)
= x∗i +

∑
`∈N

v` x
∗
i∨` = x∗i +

∑
`∈N

v` y
∗
i`, (4)

where (d) holds since 1(k≥ i)1(`≤ k) = 1 if and only if 1(k≥ i∨ `) and (e) holds by canceling the

telescoping terms in the first and third sums on the left side of the equality.

By the Recovery formula, we have
∑

k∈N 1(k ≥ i) 1
1+V (Sk)

ŵ(Sk) =
∑

k∈N 1(k ≥ i) (x∗k − x∗k+1) =

x∗i . In this case, noting that i∈ Sk if and only if k≥ i, we obtain∑
S⊆N

1(i∈ S)

(
vi

1 +V (S)
+λθi

)
ŵ(S) =

∑
k∈N

1(i∈ Sk)

(
vi

1 +V (Sk)
+λθi

)
ŵ(Sk)

=
∑
k∈N

1(k≥ i)

(
vi

1 +V (Sk)
+λθi

)
ŵ(Sk)

= vi
∑
k∈N

1(k≥ i) 1

1 +V (Sk)
ŵ(Sk) +λθi

∑
k∈N

1(k≥ i) ŵ(Sk)

(f)
= vi x

∗
i +λθi

(
x∗i +

∑
`∈N

v` y
∗
i`

)
(g)
= Λ∗i ,

where (f) follows from (4) and (g) holds by the definition of Λ∗i . Thus, the two identities that we

claim to hold at the beginning of the proof indeed hold.

By the theorem above, noting the Recovery formula, after we solve the Compact LP, recovering an

optimal solution to the Choice-Based LP requires simply sorting the values of the decision variables

{xi : i ∈N}. Furthermore, the Recovery formula implies that there exists an optimal solution w∗

to the Choice-Based LP such that w∗(S) = 0 for all S 6∈ {S0, S1, . . . , Sn}, so there exists an optimal

solution to the Choice-Based LP that offers at most n+ 1 subsets. In this solution, since the sets

{Si : i = 0,1, . . . , n} satisfy S0 ⊆ S1 ⊆ . . . ⊆ Sn, if w∗(S) > 0 and w∗(Q) > 0, then we have either

S ⊇Q or Q⊇ S. Putting the last two observations together, there exists an optimal solution to the

Choice-Based LP that offers at most n+ 1 assortments and these assortments are related to each

other in the sense that one assortment is included in another one.

8. Computational Results

We provide two sets of computational experiments. In the first set, we test the ability of the

mixture of multinomial logit and independent demand models to capture the choice process of the
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customers. In the second set, we check the computational benefits of using the Compact LP, instead

of solving the Choice-Based LP directly by using column generation.

8.1 Prediction Ability of the Mixture Model

In this section, we test the benefits of using the mixture of multinomial logit and independent

demand models to predict the purchase behavior of the customers.

Experimental Setup:

We generate the past purchase history of customers under the assumption that the choices of

the customers are governed by a complex ground choice model that is very different from the

multinomial logit model. The past purchase history includes the assortment of products offered to

each customer and the product, if any, purchased within the assortment. We split the purchase

history into training and testing data. We fit a mixture of multinomial logit and independent

demand models to the training data and test the performance of the fitted model on the testing

data. As a benchmark, we also fit a pure multinomial logit model to the same training data. In

all of our test problems, we have n = 10 products. In the ground choice model, we have p = 50

customer types. Indexing the customer types by P = {1, . . . , p}, customer type ` is characterized

by a preference list of products σ` = (σ`(1), σ`(2), . . . , σ`(k`)), with σ`(i) ∈N for all i= 1, . . . , k`,

where σ`(i) is the i-th most preferred product by a customer of type ` and k` is the number of

products in the preference list. A customer of type ` arrives into the system with probability β`. An

arriving customer chooses her most preferred available product in her preference list. If no product

in her preference list is available, then the customer leaves without a purchase.

The parameters of the ground choice model are the collection of preference lists {σ` : `∈ P} and

the arrival probabilities {β` : ` ∈ P}. To generate these parameters, we consider the case where

the products have an inherent ordering 1� 2� . . .� n, in which product 1 has the highest quality

and highest price, whereas product n has the lowest quality and lowest price. A customer of a

particular type has a maximum price she can afford and minimum quality she accepts. In this case,

the customer generally chooses the highest-quality product that is available within this range, but

we add some noise to introduce some deviation from the inherent ordering of the products. In

particular, for each customer type `, we randomly choose an interval of products [i`, j`] with i` < j`,

so that a customer of type ` cannot afford products with price higher than that of product i`

and does not accept products with quality lower than that of product j`. Considering the ordered

list (γ`(1), γ`(2), . . . , γ`(k`)) = (i`, i` + 1, . . . , j`) with k` = j` − i` + 1, we make 20 random swaps

to change the position of a product with its successor so that the preference list only roughly

follows the inherent ordering of the products. In this way, we obtain the preference list of products
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(σ`(1), σ`(2), . . . , σ`(k`)) for customers of type `. Following the approach described so far in this

paragraph, we generate the preference lists for p−n= 40 customer types. The preference lists for

the remaining n = 10 customer types is a singleton, each including one of the products, so the

customers of these types are unwilling to substitute between the products. To come up with the

arrival probabilities, sampling ζ` from the uniform distribution over [0,1], for all `= 1, . . . , p− n,

we set β` = (1−Θ) ζ`/
∑p−n

k=1 ζ
k, whereas for all `= p−n+ 1, . . . , p, we set β` = Θ ζ`/

∑p

k=p−n+1 ζ
k,

where Θ∈ (0,1) is a parameter that we vary. In this case, we have
∑p

`=p−n+1 β
` = Θ, so Θ fraction

of the customers are unwilling to substitute between the products.

Once we generate the ground choice model as in the previous paragraph, we generate the

past purchase histories of customers who choose according to the ground choice model. The past

purchase history consists of the pairs {(St, it) : t= 1, . . . , τ}, where τ is the number of customers

in the history, St is the assortment that we offer to customer t, and it is the product that this

customer chooses. If customer t does not purchase anything, then we have it = 0. To generate the

assortment St, we include each product in the assortment St with probability ρ ∈ (0,1), where ρ

is another parameter that we vary. We sample the product it among the products in St and the

no-purchase option according to the ground choice model.

We use maximum likelihood estimation to fit a mixture of multinomial logit and independent

demand models to the past purchase history. To find a local maximum of the likelihood function,

we use gradient search with 10 different initial points and bisection to find the best step size. All

of our computational experiments are carried out in Java 1.7 on MacOS with 16 GB RAM and

2.8 GHz Intel Core i7 CPU. We compared our gradient search code with the fmincon routine in

Matlab, and our gradient search code consistently reached local optima faster without sacrificing

solution quality. Similarly, we use maximum likelihood estimation to fit a pure multinomial logit

model without having an independent demand model in the mixture.

Testing Prediction Performance:

Varying (Θ, ρ) ∈ {0.2,0.3,0.4,0.5} × {0.4,0.5,0.6}, we obtain 12 parameter combinations. For

each parameter combination, we generate the ground choice model as described earlier in this

section. Using the ground choice model, we generate the past purchase history of τ customers. We

vary τ ∈ {1250,2500,5000} to capture three levels of data availability in the training data that

we use to fit the choice models. Following the same approach to generate the training data, we

generate the past purchase history for another 10,000 customers to use as the testing data. For

each combination of (Θ, ρ) and τ , we replicate our results 50 times to get a better understanding of

how much they change from one replication to another. We regenerate the ground choice model in

each of these replications. We compare the two fitted choice models in terms of the out-of-sample
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τ = 1,250 τ = 2,500 τ = 5,000
Param. MIX MNL Perc. MIX MNL MIX MNL Perc. MIX MNL MIX MNL Perc. MIX MNL
(Θ, ρ) Like. Like. Gap Better Better Like. Like. Gap Better Better Like. Like. Gap Better Better

(0.2,0.4) -12,092 -12,195 0.85 46 4 -12,041 -12,167 1.05 50 0 -12,024 -12,158 1.12 50 0
(0.2,0.5) -13,753 -13,832 0.57 47 3 -13,710 -13,807 0.71 50 0 -13,690 -13,796 0.78 50 0
(0.2,0.6) -15,194 -15,250 0.37 45 5 -15,156 -15,224 0.45 49 1 -15,137 -15,214 0.51 50 0
(0.3,0.4) -12,510 -12,596 0.69 48 2 -12,461 -12,570 0.88 50 0 -12,441 -12,561 0.96 50 0
(0.3,0.5) -14,269 -14,345 0.54 49 1 -14,228 -14,321 0.66 50 0 -14,208 -14,310 0.72 50 0
(0.3,0.6) -15,841 -15,904 0.40 46 4 -15,804 -15,880 0.48 50 0 -15,784 -15,870 0.54 50 0
(0.4,0.4) -12,772 -12,867 0.74 49 1 -12,734 -12,847 0.88 50 0 -12,716 -12,838 0.96 50 0
(0.4,0.5) -14,624 -14,705 0.55 48 2 -14,588 -14,686 0.67 49 1 -14,569 -14,677 0.74 50 0
(0.4,0.6) -16,286 -16,358 0.44 48 2 -16,253 -16,341 0.54 50 0 -16,235 -16,332 0.60 50 0
(0.5,0.4) -12,881 -12,966 0.66 50 0 -12,845 -12,946 0.79 50 0 -12,826 -12,938 0.87 50 0
(0.5,0.5) -14,850 -14,932 0.55 50 0 -14,810 -14,912 0.69 50 0 -14,793 -14,903 0.74 50 0
(0.5,0.6) -16,605 -16,689 0.50 50 0 -16,567 -16,669 0.61 50 0 -16,549 -16,659 0.67 50 0
Average 0.57 48 2 0.70 49.83 0.17 0.77 50 0

Table 2 Out-of-sample log-likelihoods of the two fitted choice models.

log-likelihoods and the deviation between the choice probabilities under each fitted choice model

and the exact ground choice model. Throughout this section, we use MIX to refer to the fitted

mixture of multinomial logit and independent demand models, whereas MNL to refer to the fitted

pure multinomial logit model.

In Table 2, we compare MIX and MNL in terms of their out-of-sample log-likelihoods. In each of

the 50 replications, after generating the ground choice model, we sample training data and testing

data using the ground choice model. We fit MIX and MNL to the training data, and we compute

the log-likelihood of the testing data under the fitted choice models. The first column gives the

parameter configuration (Θ, ρ). In the rest of the table, there are three blocks, each with five

columns. The three blocks correspond to the values of τ ∈ {1250,2500,5000}, capturing three levels

of data availability. In each block, the first column gives the average out-of-sample log-likelihood

of MIX, where the average is computed over 50 replications. The second column gives the average

out-of-sample log-likelihood of MNL. The third column gives the average percent gap between

out-of-sample log-likelihoods of MIX and MNL. The fourth column gives the number of replications

out of 50 in which the out-of-sample log-likelihood of MIX is better than that of MNL, whereas

the fifth column gives the number of replications in which the outcome is reversed. Our results

indicate that the out-of-sample log-likelihoods of MIX are noticeably larger than those of MNL.

For the smallest training data availability with τ = 1250, there are a few replications in which the

out-of-sample log-likelihoods of MNL are larger than those of MIX, but for τ = 2500 and τ = 5000,

the out-of-sample log-likelihoods of MIX are quite consistently larger than those of MNL.

Note that MIX has 2n parameters, whereas MNL has n parameters. Thus, MIX provides more

flexibility for capturing the customer choice behavior. With its larger number of parameters,

however, MIX may overfit to the training data, resulting in poor out-of-sample log-likelihoods,

especially when we have too little training data. Thus, it is not guaranteed that the out-of-sample
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τ = 1,250 τ = 2,500 τ = 5,000
Param. MIX MNL Perc. MIX MNL MIX MNL Perc. MIX MNL MIX MNL Perc. MIX MNL
(Θ, ρ) Error Error Gap Better Better Error Error Gap Better Better Error Error Gap Better Better

(0.2,0.4) 0.022 0.027 22.43 47 3 0.019 0.026 32.96 50 0 0.018 0.025 40.09 50 0
(0.2,0.5) 0.019 0.023 17.58 48 2 0.017 0.021 24.59 49 1 0.016 0.021 30.52 50 0
(0.2,0.6) 0.017 0.019 12.16 47 3 0.015 0.018 17.75 48 2 0.014 0.017 22.46 50 0
(0.3,0.4) 0.021 0.026 24.23 47 3 0.018 0.025 38.89 50 0 0.016 0.024 51.10 50 0
(0.3,0.5) 0.018 0.022 21.06 49 1 0.016 0.021 30.00 50 0 0.014 0.020 39.76 50 0
(0.3,0.6) 0.015 0.018 17.72 49 1 0.014 0.017 25.34 50 0 0.012 0.017 33.28 50 0
(0.4,0.4) 0.020 0.025 30.52 50 0 0.016 0.024 47.62 50 0 0.015 0.023 60.69 50 0
(0.4,0.5) 0.017 0.021 23.83 48 2 0.015 0.020 36.53 49 1 0.013 0.019 47.94 50 0
(0.4,0.6) 0.014 0.018 22.38 46 4 0.012 0.017 33.75 50 0 0.011 0.016 42.85 50 0
(0.5,0.4) 0.018 0.024 30.97 50 0 0.015 0.022 50.65 50 0 0.013 0.022 66.34 50 0
(0.5,0.5) 0.016 0.020 26.05 49 1 0.013 0.019 44.87 50 0 0.011 0.018 58.91 50 0
(0.5,0.6) 0.014 0.017 24.79 50 0 0.011 0.016 41.08 50 0 0.010 0.015 54.13 50 0
Average 22.81 48.33 1.67 35.34 49.67 0.33 45.67 50 0

Table 3 Mean absolute errors of the choice probabilities of the two fitted choice models.

log-likelihoods of MIX will be larger than those of MNL. Nevertheless, overfitting does not seem

to be a concern for MIX, and the out-of-sample log-likelihoods of MIX are larger than those

of MNL in an overwhelming majority of our replications. The gap between the out-of-sample

log-likelihoods of MIX and MNL becomes more pronounced as the amount of training data

increases, corresponding to larger values for τ . Shortly, we demonstrate that such improvements in

out-of-sample log-likelihoods translate into significant improvements in expected revenues.

In Table 3, we compare MIX and MNL in terms of how closely they track the choice probabilities

of the ground choice model. The layout of this table is identical to that of Table 2, with three

blocks capturing three levels of data availability. In replication q, let φqi (S) be the choice probability

of product i within assortment S under the fitted MIX. Also, let P q
i (S) be the corresponding

choice probability under the ground choice model. Letting {St : t= 1, . . . ,10000} be the assortments

in the testing data, we compute the mean absolute error of the choice probabilities for MIX as

∆q
MIX = 1

10000

∑10000

t=1
1
|St|

∑
i∈St |φ

q
i (St)−P

q
i (St)|. In each block, considering the 50 replications, the

first column gives the average of {∆q
MIX : q = 1, . . . ,50}. The second column gives the average of

{∆q
MNL : q= 1, . . . ,50}, where ∆q

MNL is the mean absolute error for MNL in replication q, computed

in a fashion similar to ∆q
MIX. The third column gives the percent gap between the first two

columns. The fourth column gives the number of replications in which the mean absolute error of

MIX is smaller than that of MNL, whereas the fifth column gives the number of replications in

which the outcome is reversed. We focus on mean absolute errors rather than mean absolute percent

errors, because if a product has a small purchase probability, then misestimating this purchase

probability even by a small amount may increase the mean absolute percent error substantially,

putting disproportionate weight on estimating small choice probabilities more accurately. Our

results indicate that MIX improves the mean absolute errors in the fitted choice probabilities

significantly, when compared to MNL. The improvements hold for an overwhelming majority of our
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τ = 1,250 τ = 2,500 τ = 5,000
Param. MIX MNL Perc. MIX MNL MIX MNL Perc. MIX MNL MIX MNL Perc. MIX MNL
(Θ, ρ) Rev. Rev. Gap Better Better Rev. Rev. Gap Better Better Rev. Rev. Gap Better Better

(0.2,0.4) 5.79 5.67 2.04 48 2 5.81 5.67 2.48 50 0 5.82 5.67 2.64 50 0
(0.2,0.5) 5.78 5.66 2.19 45 5 5.81 5.66 2.63 50 0 5.82 5.66 2.70 50 0
(0.2,0.6) 5.78 5.66 2.05 46 4 5.81 5.66 2.47 49 1 5.82 5.66 2.67 50 0
(0.3,0.4) 5.60 5.44 2.95 50 0 5.64 5.44 3.54 50 0 5.66 5.44 3.89 50 0
(0.3,0.5) 5.64 5.46 3.17 50 0 5.66 5.46 3.60 50 0 5.67 5.46 3.84 50 0
(0.3,0.6) 5.60 5.43 3.09 47 3 5.63 5.43 3.57 50 0 5.65 5.43 3.90 50 0
(0.4,0.4) 5.51 5.25 4.62 50 0 5.53 5.26 4.98 50 0 5.54 5.26 5.19 50 0
(0.4,0.5) 5.52 5.26 4.63 50 0 5.54 5.26 4.99 50 0 5.55 5.26 5.21 50 0
(0.4,0.6) 5.50 5.25 4.63 50 0 5.53 5.24 5.09 50 0 5.54 5.24 5.29 50 0
(0.5,0.4) 5.41 5.10 5.69 50 0 5.44 5.10 6.20 50 0 5.45 5.10 6.44 50 0
(0.5,0.5) 5.41 5.10 5.75 50 0 5.43 5.10 6.22 50 0 5.45 5.09 6.48 50 0
(0.5,0.6) 5.40 5.08 5.95 50 0 5.43 5.08 6.49 50 0 5.45 5.08 6.85 50 0
Average 3.90 48.83 1.17 4.35 49.92 0.08 4.59 50 0

Table 4 Expected revenues obtained by using the two fitted choice models.

replications. Furthermore, the gaps between the mean absolute errors become more pronounced as

the amount of training data increases.

Testing Revenue Performance:

In Table 4, we compare MIX and MNL in terms of their revenue performance. The layout

of this table is identical to that of Table 2, with three blocks capturing three levels of data

availability. In replication q, let φqi (S) be the choice probability of product i within assortment S

under the fitted MIX. We generate 100 samples of the product revenues, sampling the revenue of

each product from the uniform distribution over [1,10]. In replication q, letting (rqk1 , . . . , r
qk
n ) be

the revenues of the products in the k-th sample, we use Ŝqk to denote the optimal assortment to

offer under the assumption that the customers choose under the fitted MIX. In other words, Ŝqk

is an optimal solution to the problem maxS⊆N
∑

i∈S r
qk
i φqi (S). The customers, however, actually

choose according to the ground choice model. In replication q, letting let P q
i (S) be the choice

probability of product i within assortment S under the ground choice model, we compute the

actual expected revenue from assortment Ŝqk as Rqk
MIX =

∑
i∈Ŝqk r

qk
i P q

i (S). Averaging over all the

100 revenue samples, in replication q, we capture the expected revenue performance of the fitted

MIX by RevqMIX = 1
100

∑100

k=1R
qk
MIX. In each block, considering the 50 replications, the first column

gives the average of {RevqMIX : q = 1, . . . ,50}. The second column gives the average of {RevqMNL :

q = 1, . . . ,50}, where RevqMNL captures the expected revenue performance of the fitted MNL in

replication q, computed in a fashion similar to RevqMIX. The third column gives the percent gap

between the first two columns. The fourth column gives the number of replications in which the

expected revenue performance of MIX is better than that of MNL, whereas the fifth column gives

the number of replications in which the outcome is reversed.

Our results indicate that fitting MIX to the training data can provide assortments with

significantly larger revenues, when compared to fitting MNL to the training data. The improvements
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in the expected revenue provided by MIX are consistent over an overwhelming majority of our

replications and can exceed 6%. As τ gets larger and the amount of training data increases, the

improvements in the expected revenue provided by MIX become more noticeable.

8.2 Computational Benefits of the Compact Formulation

In this section, we check the computational benefits of using the Compact LP in conjunction

with Theorem 7.2 to get an optimal solution to the Choice-Based LP, rather than solving the

Choice-Based LP directly by using column generation.

Experimental Setup:

We generate multiple instances of the network revenue management problem using the following

approach. The set of products is N = {1, . . . , n} with n = 100, and the set of resources is M =

{1, . . . ,m}, where m is a parameter that we vary. In the multinomial logit model, for each product

i, we generate ηi from the uniform distribution over [0,1] and set the preference weight of product

i as vi = ηi

(
1−P0
P0

)
/
∑

j∈N ηj, where P0 is another parameter that we vary. In this case, if we

offer all products, then the customer segment with the multinomial logit model leaves without

a purchase with probability 1
1+

∑
i∈N vi

= 1
1+(1−P0)/P0

= P0. In the independent demand model, we

generate γi from the uniform distribution over [0,1] and set the probability of demand for product

i as θi = γi/
∑

j∈N γj. In this case, the purchase probability of product i within assortment S is

φi(S) = β vi
1+

∑
j∈S vj

+ (1−β)θi, where β is one more parameter that we vary.

We have T = 100 time periods. We sample the revenue ri of each product i from the uniform

distribution over [100,500]. For each product i, we randomly choose a resource qi and set

aqi,i = 1. For the other resources, we set aqi = 1 with probability 1/5 and aqi = 0 with probability 4/5

for all q ∈M \{qi}. Thus, the expected number of resources used by a product is 1 + (m−1)/5. To

come up with the capacities of the resources, noting that φi(S) is the choice probability of product

i within assortment S in the previous paragraph, we let S∗ be an optimal solution to the problem

maxS⊆N
∑

i∈S ri φi(S), which is the assortment that maximizes the expected revenue under infinite

resource capacities. If we offer the assortment S∗ over the entire selling horizon, then the total

expected capacity consumption of resource q is T
∑

i∈S∗ aqi φi(S
∗). We set the capacity of resource

q as cq = κT
∑

i∈S∗ aqi φi(S
∗), where κ is a last parameter that we vary.

Computational Results:

Varying (m,P0, β,κ) ∈ {25,50} × {0.1,0.2} × {0.25,0.75} × {0.6,0.8}, we obtain 16 parameter

combinations. For each parameter combination, we generate a problem instance by using the

approach in the previous two paragraphs. We obtain an optimal solution to the Choice-Based LP
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1% Gp. 1% Gp.
Param. COG CLP Secs. COG 1% Secs.

(m,P0, β, κ) Secs. Secs. Ratio Secs. Ratio
(25,0.1,0.25,0.6) 62.51 4.24 14.74 22.82 5.38
(25,0.1,0.25,0.8) 58.34 5.09 11.46 21.06 4.14
(25,0.1,0.75,0.6) 70.50 4.79 14.72 37.98 7.93
(25,0.1,0.75,0.8) 72.07 7.72 9.34 31.94 4.14
(25,0.2,0.25,0.6) 55.21 4.11 13.43 23.56 5.73
(25,0.2,0.25,0.8) 52.23 5.37 9.73 20.03 3.73
(25,0.2,0.75,0.6) 86.15 5.02 17.16 36.20 7.21
(25,0.2,0.75,0.8) 74.90 9.80 7.64 31.43 3.21

Average 12.28 5.18

1% Gp. 1% Gp.
Param. COG CLP Secs. COG Secs.

(m,P0, β, κ) Secs. Secs. Ratio Secs. Ratio
(50,0.1,0.25,0.6) 101.38 6.02 16.84 29.63 4.92
(50,0.1,0.25,0.8) 93.84 4.11 22.83 27.99 6.81
(50,0.1,0.75,0.6) 128.20 6.95 18.45 46.15 6.64
(50,0.1,0.75,0.8) 143.04 8.78 16.29 55.12 6.28
(50,0.2,0.25,0.6) 139.19 5.15 27.03 29.62 5.75
(50,0.2,0.25,0.8) 149.65 5.12 29.23 46.32 9.05
(50,0.2,0.75,0.6) 145.13 10.32 14.06 55.17 5.35
(50,0.2,0.75,0.8) 122.47 11.07 11.06 38.22 3.45

Average 19.47 6.03

Table 5 Running times for solving the Choice-Based LP through two methods.

for each problem instance by using two methods. First, we solve the Choice-Based LP directly by

using column generation. We refer to this method as COG, which stands for column generation.

Second, we solve the Compact LP and build on Theorem 7.2 to use an optimal solution of this

LP to recover an optimal solution of the Choice-Based LP. We refer to this method as CLP, which

stands for compact LP. We show our results in Table 5. The first column gives the parameter

combination. The second column gives the running time for COG to obtain an optimal solution to

the Choice-Based LP through column generation. The third column gives the running time for CLP

to solve the Compact LP and use an optimal solution to this LP to recover an optimal solution to

the Choice-Based LP. We use Gurobi 9.0 as our LP solver. The fourth column gives the ratio of the

running times in the second and third columns. Column generation may get near-optimal solutions

quickly but may take a while to close the remaining portion of the optimality gap. To check for

this possibility, the fifth column gives the running time for COG to solve the Choice-Based LP with

a 1% optimality gap. The sixth column gives the ratio of the running times in the third and fifth

columns. Our results indicate that CLP can improve the running times for COG by up to a factor

of 29.23. The average improvement in the running times is a factor of 15.88. If we allow COG to

terminate with a 1% optimality gap, but run CLP until it gets to the optimal solution, then CLP

can still improve the running times for COG by up to a factor of 9.05. The improvements in the

running times become more pronounced when m is larger, so that we have problem instances with

a larger number of resources. In our test problems, most of the running time for COG is spent on

solving the Compact LP. It takes less than one-tenths of a second to recover an optimal solution to

the Choice-Based LP by using an optimal solution to the Compact LP through Theorem 7.2.

We also compare the performance of COG and CLP for larger test problems with n = 500

products and m= 100 resources. For such test problems, COG does not reach an optimal solution

within one hour of running time. We give our results in Table 6. The first column shows the

problem parameters. The interpretation of the problem parameters P0, β, and κ is the same as the

one presented earlier in this section. The second column shows the optimality gap for COG after
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COG
Param. % Opt. CLP

(P0, β, κ) Gap. Secs.
(0.1,0.25,0.6) 4.93 676.13
(0.1,0.25,0.8) 5.27 2139.15
(0.1,0.75,0.6) 14.27 909.10
(0.1,0.75,0.8) 9.51 2420.80

Average 8.49 1536.29

COG
Param. % Opt. CLP

(P0, β, κ) Gap. Secs.
(0.2,0.25,0.6) 7.17 408.59
(0.2,0.25,0.8) 4.71 1059.42
(0.2,0.75,0.6) 14.10 950.74
(0.2,0.75,0.8) 8.53 2458.98

Average 8.63 1219.43

Table 6 Optimality gaps and running times for the two methods for solving the Choice-Based LP with n = 500

products and m= 100 resources.

one hour of running time. The third column shows the running time for CLP to get the optimal

solution. Over all the test problems, the average optimality gap of the solutions obtained by COG

after one hour of running time is 8.56%. There are test problems for which COG terminates with

more than a 14% optimality gap. The average running time for CLP to obtain an optimal solution

is about 23 minutes, the longest running time not exceeding 41 minutes.

9. Conclusions

We studied the single-shot unconstrained and cardinality-constrained assortment optimization and

assortment-based network revenue management problems under a mixture of multinomial logit and

independent demand models. Our mixture choice model is a natural way to simultaneously improve

the flexibility of both the multinomial logit and independent demand models to capture the choice

process of the customers, while ensuring that the corresponding assortment optimization problems

remain tractable. There are several avenues for further research. Mixing the multinomial logit

model with the independent demand model resulted in efficiently solvable assortment optimization

problems, but our results closely exploited the structure of the multinomial logit model. One can

mix the independent demand model with other choice models and try to tackle the corresponding

assortment optimization problems. Moreover, we focused on solving assortment optimization

problems, but our computational experiments indicated that our mixture choice model can improve

the modeling flexibility of the pure multinomial logit model in terms of predicting the purchases

of the customers. It would be useful to test the prediction ability of our mixture choice model on

data generated by real-world applications. Lastly, one can work on enriching our mixture choice

model by incorporating an incremental process for viewing the products in batches or by allowing

customers with different consideration sets.
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Appendix A: Comparison with the Markov Chain Choice Model

We give an example to show that our mixture of multinomial logit and independent demand models

is not a special case of the Markov chain choice model. Under the Markov chain choice model,

a customer arriving into the system is interested in purchasing product i with probability γi. If

this product is available for purchase, then the customer purchases it. Otherwise, the customer

transitions from product i to product j with probability ρij and checks whether product j is

available for purchase. With probability 1−
∑

j∈N ρij, the customer transitions to the no-purchase

option, in which case, she leaves without a purchase. In this way, the customer transitions among

the products according to a Markov chain until she visits a product that is available for purchase or

she visits the no-purchase option. The parameters of the Markov chain choice model are {γi : i∈N}

and {ρij : i, j ∈ N}. Given that we offer the assortment S ⊆ N of products, we let Pi(S) be the

expected number of times that a customer visits product i during the course of her choice process.

If i ∈ S, then a customer purchases product i as soon as she visits this product, so for i ∈ S,

Pi(S) is the purchase probability of product i when we offer the assortment S. We can compute

{Pi(S) : i∈N} by solving the system of equations

Pi(S) = γi +
∑
j 6∈S

ρjiPj(S) ∀ i∈N. (5)

We can intuitively justify (5) through a balance argument (Feldman and Topaloglu 2017). On the

left side, Pi(S) is the expected number of times that a customer visits product i during the course

of her choice process. For a customer to visit product i, she may arrive into the system with an

interest to purchase product i, which happens with probability γi. Alternatively, she may visit

some product j 6∈ S and the expected number of visits to this product is Pj(S). In this case, if

she transitions from product j to product i, then the customer ends up visiting product i. The

probability of transitioning from product j to product i is ρji. If
∑

j∈N ρij < 1 for all i ∈N , then

there exists a solution to the system of equations above for any S ⊆N .

We consider an instance of the mixture of multinomial logit and independent demand models

with N = {1,2,3}, (v1, v2, v3) = (1,1,1), (θ1, θ2, θ3) = (0,0,1) and β = 3
4
. Under this choice model,

if we offer the assortment S, then a customer purchases product i ∈ S with probability φi(S) =

β vi
1+V (S)

+ (1−β)θi. Note that we did not normalize the size of the first customer segment to

one. In Table EC.1, we give the choice probabilities {φi(S) : i ∈ S, S ⊆ N} for this instance of

the mixture of multinomial logit and independent demand models. We argue that there exists

no Markov chain choice model such that the choice probabilities under the Markov chain choice

model for all products and for all assortments match those under the mixture of multinomial
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S φ1(S) φ2(S) φ3(S)

∅ 0 0 0
{1} 3/8 0 0
{2} 0 3/8 0
{3} 0 0 5/8

S φ1(S) φ2(S) φ3(S)

{1,2} 1/4 1/4 0
{1,3} 1/4 0 1/2
{2,3} 0 1/4 1/2
{1,2,3} 3/16 3/16 7/16

Table EC.1 Expected revenue provided by all possible assortments.

logit and independent demand models. In other words, there exist no parameters {γi : i ∈N} and

{ρij : i, j ∈N} for the Markov chain choice model such that Pi(S) = φi(S) for all S ⊆N , i ∈N .

To make this argument, by (5), note that Pi({1,2,3}) = γi for all i ∈ N . Thus, to ensure that

Pi({1,2,3}) = φi({1,2,3}) for all i∈N , we must choose {γi : i∈N} so that γ1 = φ1({1,2,3}) = 3
16

,

γ2 = φ2({1,2,3}) = 3
16

and γ3 = φ3({1,2,3}) = 7
16

, fixing the values of the parameters {γi : i∈N}.

Consider an assortment of the form N \ {i}. Product i is the only one not in the assortment

N \{i}, so by (5), we get Pk(N \{i}) = γk+ρik Pi(N \{i}) for all k ∈N . Using the last equality with

k= i, we get (1−ρii) Pi(N \{i}) = γi, so the equality Pk(N \{i}) = γk+ρik Pi(N \{i}) is equivalent

to Pk(N \ {i}) = γk + ρik
γi

1−ρii
, which, in turn, is equivalent to ρik = 1−ρii

γi
(Pk(N \ {i})− γk). Thus,

to ensure that Pk(N \ {i}) = φk(N \ {i}) for all i, k ∈N , we must have

ρik =
1− ρii
γi

(φk(N \ {i})− γk).

Using the values of φk(N \ {i}) for i, k ∈ N in Table EC.1 and the fact that γ1 = 3
16

, γ2 = 3
16

and γ3 = 3
16

, the expression above yields ρ21 = 1
3
(1− ρ22), ρ31 = 1

7
(1− ρ33), ρ23 = 1

3
(1− ρ22) and

ρ32 = 1
7
(1− ρ33). Lastly, consider the assortment {1}. By (5), we have P2({1}) = γ2 + ρ22P2({1}) +

ρ32P3({1}), which is equivalent to (1−ρ22)P2({1}) = γ2 +ρ32P3({1}). Similarly, (1−ρ33)P3({1}) =

γ3 + ρ23P2({1}). Since ρ23 = 1
3
(1− ρ22) and ρ32 = 1

7
(1− ρ33), the last two equalities become

(1− ρ22)P2({1}) = γ2 + 1
7

(1− ρ33)P3({1})

(1− ρ33)P3({1}) = γ3 + 1
3

(1− ρ22)P2({1}).

Since γ2 = 3
16

and γ3 = 7
16

, solving the equalities above, we get (1− ρ22)P2({1}) = 21
80

and

(1− ρ33)P3({1}) = 21
40

. Also, by (5), we have P1({1}) = γ1 + ρ21P2({1}) + ρ31P3({1}). Noting

that γ1 = 3
16

, ρ21 = 1
3
(1 − ρ22) and ρ31 = 1

7
(1 − ρ33), we get P1({1}) = 3

16
+ 1

3
(1 − ρ22)P2({1}) +

1
7
(1− ρ33)P3({1}), but since (1− ρ22)P2({1}) = 21

80
and (1− ρ33)P3({1}) = 21

40
, plugging them in the

last equality, we must have have P1({1}) = 7
20

, which is different from φ1({1}) = 3
8
.

Thus, we cannot choose the parameters of the Markov chain choice model to make sure that

its choice probabilities match those in Table EC.1. The example that we give in this section is

not hard to find. Virtually for all randomly generated instances of our choice model, we cannot

calibrate a Markov chain choice model to match the choice probabilities of our choice model.
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Appendix B: Proof of Lemma 3.1

Let H = {i ∈ N : x̂i = x̂0}, M = {i ∈ N : 0 < x̂i < x̂0} and L = {i ∈ N : x̂i = 0}. To get a

contradiction, assume that M 6= ∅. We construct two distinct feasible solutions (x̃0, x̃, ỹ) and

(x0,x,y) to the Assortment LP such that (x̂0, x̂, ŷ) = 1
2

(x̃0, x̃, ỹ)+ 1
2
(x0,x,y), contradicting the fact

that (x̂0, x̂, ŷ) is a basic feasible solution. For small ε > 0, we define the solution (x̃0, x̃, ỹ) as

x̃0 = x̂0−V (M) ε,

x̃i =


x̂i−V (M) ε if i∈H
x̂i + (1 +V (H)) ε if i∈M
x̂i if i∈L,

ỹij =

{
min{x̃i, x̃j} if ŷij = min{x̂i, x̂j}
ŷij if ŷij <min{x̂i, x̂j}.

We claim that (x̃0, x̃, ỹ) is feasible to the Assortment LP. To see the claim, note that x̃0 +∑
i∈N vi x̃i = x̂0 +

∑
i∈N vi x̂i−V (M) ε−

∑
i∈H vi V (M) ε+

∑
i∈M vi (1 +V (H)) ε= 1, where the last

equality follows by the fact that x̂0 +
∑

i∈N vi x̂i = 1,
∑

i∈H vi = V (H) and
∑

i∈M vi = V (M). Thus,

(x̃0, x̃, ỹ) satisfies the first constraint. Noting that M 6= ∅, we have x̂0 > 0. By the definitions of

x̃i and x̃0, for all i ∈ H, we have x̃i = x̂i − V (M) ε = x̂0 − V (M) ε = x̃0. For all i ∈M , we have

x̂i < x̂0, so for small ε > 0, it follows that x̃i = x̂i + (1 +V (H)) ε < x̂0−V (M) ε= x̃0. Lastly, for all

i ∈ L, noting that x̂i = 0< x̂0, for small ε > 0, we get x̃i = x̂i < x̂0− V (M) ε= x̃0. Thus, (x̃0, x̃, ỹ)

satisfies the second constraint as well. If ŷij = min{x̂i, x̂j}, then ỹij = min{x̃i, x̃j}, so ỹij ≤ x̃i and

ỹij ≤ x̃j. If, on the other hand, ŷij <min{x̂i, x̂j}, then ŷij <min{x̂i, x̂j}− V (M) ε for small ε > 0.

Noting that x̃i ≥ x̂i− V (M) ε for all i ∈N , we get ỹij = ŷij <min{x̂i, x̂j}− V (M) ε≤min{x̃i, x̃j},

so ỹij ≤ x̃i and ỹij ≤ x̃j. Thus, (x̃0, x̃, ỹ) satisfies the third and fourth constraints. Also, we have

(x̃, ỹ)∈Rn+n
2

+ for small ε > 0, establishing the claim. We define the solution (x0,x,y) as

x0 = x̂0 +V (M) ε,

xi =


x̂i +V (M) ε if i∈H
x̂i− (1 +V (H)) ε if i∈M
x̂i if i∈L,

yij =

{
min{xi, xj} if ŷij = min{x̂i, x̂j}
ŷij if ŷij <min{x̂i, x̂j}.

Using the same argument earlier in this paragraph, we can check that (x0,x,y) is feasible to

the Assortment LP. Noting that M 6= ∅, V (M)> 0, so x̃0 6= x0, which implies that (x̃0, x̃, ỹ) and

(x0,x,y) are distinct. By the definitions of (x̃0, x̃) and (x0,x), we have (x̂0, x̂) = 1
2

(x̃0, x̃)+ 1
2

(x0,x),

in which case, it only remains to check that ŷ= 1
2
ỹ+ 1

2
y.

If we have ŷij <min{x̂i, x̂j}, then ỹij = ŷij = yij, so ŷij = 1
2
ỹij + 1

2
yij, as desired. Thus, we assume

that ŷij = min{x̂i, x̂j}. Note that ỹij = min{x̃i, x̃j} in this case. We consider four cases.

Case 1: Assume that (i, j) ∈ H ×H. The definition of H implies that x̂i = x̂j = x̂0, so ŷij =

min{x̂i, x̂j}= x̂0. Furthermore, if (i, j)∈H ×H, then we have x̃i = x̂i−V (M) ε= x̂0−V (M) ε and
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x̃j = x̂j −V (M) ε= x̂0−V (M) ε, so ỹij = min{x̃i, x̃j}= x̂0−V (M) ε. By the symmetric reasoning,

we have yij = x̂0 +V (M) ε as well. In this case, we get ŷij = 1
2
ỹij + 1

2
yij.

Case 2: Assume that (i, j) ∈ (H,M). By the definition of H and M , x̂i = x̂0 > x̂j, so ŷij =

min{x̂i, x̂j}= x̂j. If (i, j)∈ (H,M), then we have x̃i = x̂i−V (M) ε and x̃j = x̂j + (1 +V (H)) ε, but

noting that x̂i > x̂j, we get x̃i > x̃j for small ε > 0, so ỹij = min{x̃i, x̃j}= x̃j = x̂j +(1+V (H)) ε. By

the symmetric reasoning, we have yij = x̂j − (1 +V (H)) ε as well. Thus, ŷij = 1
2
ỹij + 1

2
yij.

Case 3: Assume that (i, j)∈ (M,H) or (i, j)∈ (M,M). In this case, by using the same argument

in Case 2, we can show that ŷij = 1
2
ỹij + 1

2
yij.

Case 4: Assume that i∈L or j ∈L. Let `∈ {i, j} be such that `∈L. The definition of L implies

that x̂` = 0, so ŷij = min{x̂i, x̂j} ≤ x̂` = 0. Furthermore, for ` ∈ L, we have x̃` = x̂` = 0, in which

case, we get ỹij = min{x̃i, x̃j} ≤ x̃` = 0. By the symmetric reasoning, we have yij = 0 as well. In this

case, it follows that ŷij = 0 = 1
2
ỹij + 1

2
yij.

Appendix C: Proof of Theorem 4.1

We start this section with the following lemma that is used in the proof of Lemma 4.2, which, in

turn, becomes useful to give a proof for Theorem 4.1. Recall that R(S) =
∑

i∈S ri vi/(1 +V (S)).

Lemma C.1 (a) Let the assortments S,K ⊆ N be such that K ∩ S = ∅ and ri ≥ R(S) for all

i∈K. Then, we have R(S ∪K)≥R(K).

(b) Let the assortments S,K ⊆N be such that K ⊆ S and ri ≤R(S) for all i∈K. Then, we have

R(S \K)≥R(K).

Proof: For the first part, note that
∑

i∈K vi ri
V (K)

is a weighted average of the revenues of the products

in K. Since ri ≥R(S) for all i∈K, we get
∑

i∈K vi ri
V (K)

≥R(S). By the definition of R(S), we have

R(S ∪K) =
1 +V (S)

1 +V (S ∪K)
R(S) +

V (K)

1 +V (S ∪K)

∑
i∈K vi ri

V (K)
,

which implies that R(S∪K) is a convex combination of R(S) and
∑

i∈K vi ri
V (K)

. Thus, since
∑

i∈K vi ri
V (K)

≥

R(S), it must be the case that R(S ∪K)≥R(S). The proof of the second part is similar.

Proof of Theorem 4.1:

In the remainder of this section, we give a proof for the second part of Theorem 4.1. Let δ > 0

be such that S∗(λ,α) = S∗(λ,0) for all α ∈ [0, δ) and S∗(λ, δ) 6= S∗(λ,0). In other words, as we

progressively increase the revenues of the products by larger amounts, δ is the first increment

when the optimal solution to the Parametric Mixture problem changes. It is enough to show that
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S∗(λ, δ)⊇ S∗(λ,0). Once we show this result, we can set the nominal revenues of the products as

{ri + δ : i∈N} and progressively increase the revenues starting from these nominal values.

Having fixed δ as in the previous paragraph, letting R(S) be as defined at the beginning of this

section, note that there are finitely many values in the set {R(S) + δ V (S)

1+V (S)
: S ⊆N}. Thus, there

exists ε > 0 such that if R(S) + δ V (S)

1+V (S)
6=R(Q) + δ V (Q)

1+V (Q)
for some S,Q⊆N , then we must have∣∣R(S) + δ V (S)

1+V (S)
−R(Q)− δ V (Q)

1+V (Q)

∣∣> ε. So, if R(S) + δ V (S)

1+V (S)
and R(Q) + δ V (Q)

1+V (Q)
are different,

then they must differ by at least ε > 0. For Vmin = mini∈N vi, fix α∈ [0, δ) as

0<

(
1 +λ

1 +V (N)

Vmin

∑
i∈N

θi

)
(δ−α)≤ ε. (6)

Since α < δ, we have S∗(λ,α) = S∗(λ,0). Building on the notation introduced right before

Lemma 4.2, we define two instances of the Mixture problem with ri1 = ri + α and ri2 = ri + δ

for all i ∈ N and λ1 = λ = λ2. Letting R`(S) =
∑

i∈S ri` vi/(1 + V (S)) and recalling that S∗` is

an optimal solution to the problem maxS⊆N
{
R`(S) + λ`

∑
i∈S ri` θi

}
, showing that S∗(λ, δ) ⊇

S∗(λ,0) = S∗(λ,α) is equivalent to showing that S∗2 ⊇ S∗1 .

We consider two cases. The first case will lead to a contradiction, so it cannot happen. In the

second case, we establish the desired result. The first case is the more involved.

Case 1: Assume that R1(S
∗
1)− α < R2(S

∗
2)− δ. Define K as in Lemma 4.2, in which case, we

have S∗1 ∪K ⊇ S∗2 by this lemma. First, we proceed under the assumption that K 6=∅.

By the definition of K, we have ri + α = ri1 ≤ R1(S
∗
1), which we equivalently, write as ri ≤

R1(S
∗
1)− α ≤ R2(S

∗
2)− δ, where the last inequality holds since we have R1(S

∗
1)− α < R2(S

∗
2)− δ

in the case we consider. Therefore, we obtain ri2 = ri + δ ≤R2(S
∗
2) for all i ∈K. In this case, the

second statement in Lemma 4.2 holds. Noting that
∑

i∈K ri1 vi/V (K) =
∑

i∈K(ri + α)vi/V (K) =

α+
∑

i∈N ri vi/V (K), multiplying both sides of (2) with 1 +V (S∗1 ∪K), we get

R1(S
∗
1)−α−

∑
i∈K ri vi

V (K)
≥ 1 +V (S∗1 ∪K)

1 +V (S∗2)

(
R2(S

∗
2)− δ−

∑
i∈K ri vi

V (K)

)
−λ 1 +V (S∗1 ∪K)

V (K)

∑
i∈K

(ri2− ri1)θi

≥ 1 +V (S∗1 ∪K)

1 +V (S∗2)

(
R2(S

∗
2)− δ−

∑
i∈K ri vi

V (K)

)
−λ (δ−α)

1 +V (N)

Vmin

∑
i∈K

θi,

where the last inequality uses the fact that ri2 − ri1 = δ − α ≥ 0, V (N) ≥ V (S∗1 ∪ K) and

Vmin ≤ V (K). By the discussion at the beginning of this paragraph, we have ri + δ ≤ R2(S
∗
2) for

all i ∈ K. Note that
∑

i∈K ri vi/V (K) is a weighted average of the revenues {ri : i ∈ K}. Since

ri ≤ R2(S
∗
2) − δ for all i ∈ K, we obtain

∑
i∈K ri vi/V (K) ≤ R2(S

∗
2) − δ, which is to say that

R2(S
∗
2) − δ −

∑
i∈K ri vi/V (K) ≥ 0. Also, by (6), we have λ 1+V (N)

Vmin
(δ − α)

∑
i∈K θi ≤ ε − (δ − α).
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Lastly, since S∗1 ∪K ⊇ S∗2 , we have 1 + V (S∗1 ∪K)≥ 1 + V (S∗2). In this case, noting the last chain

of inequalities displayed above, using the fact that R2(S
∗
2)− δ−

∑
i∈K ri vi/V (K)≥ 0, we get

R1(S
∗
1)−α−

∑
i∈K ri vi

V (K)
≥R2(S

∗
2)− δ−

∑
i∈K ri vi

V (K)
− ε+ δ−α,

which we equivalently write as R1(S
∗
1) ≥ R2(S

∗
2) − ε. Furthermore, since δ ≥ α, we have ri2 =

ri + δ ≥ ri +α= ri1 for all i ∈N , which implies that R2(S) =
∑

i∈S ri2 vi
V (S)

≥
∑

i∈S ri1 vi
V (S)

=R1(S) for all

S ⊆N . Thus, noting that R1(S
∗
1)≥R2(S

∗
2)− ε, we obtain R2(S

∗
1)≥R1(S

∗
1)≥R2(S

∗
2)− ε. On the

other hand, since R1(S
∗
1)−α<R2(S

∗
2)−δ in the case we consider, we get R2(S

∗
2)>R1(S

∗
1)+δ−α=∑

i∈S∗1
ri1 vi

V (S∗1 )
+ δ−α=

∑
i∈S∗1

(ri2+α−δ)vi
V (S∗1 )

+ δ−α=R2(S
∗
1) + (δ−α)

(
1− V (S∗1 )

V (S∗1 )

)
=R2(S

∗
1). Focusing on

the first and last terms in this chain of inequalities yields R2(S
∗
2)>R2(S

∗
1).

By the discussion at the end of the previous paragraph, we have the two inequalities R2(S
∗
1)≥

R2(S
∗
2)− ε and R2(S

∗
2) > R2(S

∗
1), which imply that |R2(S

∗
2)−R2(S

∗
1)| ≤ ε and R2(S

∗
2) 6= R2(S

∗
1).

Letting R(S) be as defined at the beginning of this section, we have R2(S) =
∑

i∈S(ri+δ)vi
V (S)

=

R(S) + δ V (S)

1+V (S)
. So, the assortments S∗1 , S

∗
2 ⊆N satisfy

∣∣R(S∗2) + δ
V (S∗2 )

1+V (S∗2 )
−R(S∗1)− δ V (S∗1 )

1+V (S∗1 )

∣∣≤ ε,
while R(S∗2)+ δ

V (S∗2 )
1+V (S∗2 )

and R(S∗1)+ δ
V (S∗1 )

1+V (S∗1 )
being distinct from each other, which contradicts the

definition of ε at the beginning of the proof.

Second, we proceed under the assumption that K = ∅. Since S∗1 ∪K ⊇ S∗2 , we obtain S∗1 ⊇ S∗2 .

To rule out the possibility that S∗1 = S∗2 , observe that if S∗1 = S∗2 , then using Ŝ to denote the

common value of S∗1 and S∗2 , we obtain R2(Ŝ)−R1(Ŝ) =
∑

i∈Ŝ(δ−α)vi
1+V (Ŝ)

= (δ−α) V (Ŝ)

1+V (Ŝ)
< δ−α, which

yields R2(S
∗
2)− δ = R2(Ŝ)− δ < R1(Ŝ)− α = R1(S

∗
1)− α, contradicting the fact that we assume

R1(S
∗
1)−α<R2(S

∗
2)−δ in the case we consider. Therefore, S∗2 must be a strict subset of S∗1 , which

implies that
V (S∗1 )

1+V (S∗1 )
>

V (S∗2 )
1+V (S∗2 )

and
∑

i∈S∗1
θi >

∑
i∈S∗2

θi.

Recall that S∗` is an optimal solution to the problem maxS⊆N
{
R`(S) + λ`

∑
i∈N ri` θi

}
. Noting

that ri1−α= ri = ri2− δ, we obtain the chain of inequalities

R1(S
∗
2) + (δ−α)

V (S∗2)

1 +V (S∗2)
+λ

∑
i∈S∗2

ri1 θi +λ (δ−α)
∑
i∈S∗2

θi

= R2(S
∗
2) +λ

∑
i∈S∗2

ri2 θi ≥ R2(S
∗
1) +λ

∑
i∈S∗1

ri2 θi

= R1(S
∗
1) + (δ−α)

V (S∗1)

1 +V (S∗1)
+λ

∑
i∈S∗1

ri1 θi +λ (δ−α)
∑
i∈S∗1

θi,

where the equalities follows by arranging the terms and the inequality follows from the fact that S∗2

is an optimal solution to the problem maxS⊆N
{
R2(S)+λ2

∑
i∈N ri2 θi

}
. Since

V (S∗1 )
1+V (S∗1 )

>
V (S∗2 )

1+V (S∗2 )
and
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i∈S∗1

θi >
∑

i∈S∗2
θi, the last chain of inequalities implies that R1(S

∗
2) + λ

∑
i∈S∗2

ri1 θi >R1(S
∗
1) +

λ
∑

i∈S∗1
ri1 θi, which contradicts the definition of S∗1 .

Case 2: Assume that R2(S
∗
2)− δ ≤R1(S

∗
1)− α. We follow an outline similar to the one in the

proof of the first part of the theorem in the main text to show that S∗2 ⊇ S∗1 .

Observe that the choice of the first and second instances in Lemma 4.2 is arbitrary. Thus, this

lemma holds when we interchange the roles of the first and second instances. Define

K = {i∈N : ri2 ≤R2(S
∗
2), i 6∈ S∗2 , i∈ S∗1},

which is the analogue of assortment K in Lemma 4.2 after interchanging the roles of the first and

second instances. In this case, by this lemma, we have S∗2 ∪K ⊇ S∗1 .

If K = ∅, then we get S∗2 ⊇ S∗1 , which is the desired result. To get a contradiction, assume that

we have K 6=∅. By the definition of K, we have ri2 ≤R2(S
∗
2) for all i∈K. Noting that ri2 = ri+ δ,

we obtain ri ≤ R2(S
∗
2)− δ ≤ R1(S

∗
1)− α for all i ∈K, where the second inequality uses the fact

that R2(S
∗
2)− δ ≤ R1(S

∗
1)− α in the case we consider. Thus, we have ri1 = ri + α ≤ R1(S

∗
1) for

all i∈K. Since ri1 ≤R1(S
∗
1) for all i ∈K, noting that

∑
i∈K ri1vi/V (K) is a weighted average of

the revenues {ri1 : i∈K}, we obtain
∑

i∈K ri1 vi/V (K)≤R1(S
∗
1).

In the previous paragraph, we show that ri1 ≤R1(S
∗
1) for all i ∈K, so (2) in Lemma 4.2 holds

after interchanging the roles of the first and second instances. Thus, by (2), we get

R2(S
∗
2)−

∑
i∈K ri2 vi

V (K)
≥ 1 +V (S∗2 ∪K)

1 +V (S∗1)

(
R1(S

∗
1)−

∑
i∈K ri1 vi

V (K)

)
−λ 1 +V (S∗2 ∪K)

V (K)

∑
i∈K

(ri1− ri2)θi,

which we obtain by multiplying both sides of (2) by 1+V (S∗2 ∪K), arranging the terms and noting

that λ1 = λ= λ2 in our definition of the two instances.

Since δ > α, we have ri2 = ri + δ > ri + α = ri1. Thus, the last term that we subtract on the

right side of the inequality above is negative, which implies that if we drop this term, then the

inequality remains valid. Since S∗2 ∪ K ⊇ S∗1 , we have
1+V (S∗2∪K)

1+V (S∗1 )
≥ 1. In this case, noting that∑

i∈K ri1 vi
V (K)

≤ R1(S
∗
1) by our earlier discussion, if we drop the term

1+V (S∗2∪K)

1+V (S∗1 )
on the right side of

the inequality above, then the inequality remains valid. Thus, dropping the two terms mentioned,

we get R2(S
∗
2)−

∑
i∈K ri2 vi
V (K)

>R1(S
∗
1)−

∑
i∈K ri1 vi
V (K)

by the inequality above.

Note that
∑

i∈K ri1 vi =
∑

i∈K(ri +α)vi =
∑

i∈K ri vi +αV (K). Similarly, we have
∑

i∈K ri2 vi =∑
i∈K ri vi + δ V (K) as well. So, the inequality R2(S

∗
2)−

∑
i∈K ri2 vi
V (K)

>R1(S
∗
1)−

∑
i∈K ri1 vi
V (K)

yields

R2(S
∗
2)−

∑
i∈K ri vi

V (K)
− δ >R1(S

∗
1)−

∑
i∈K ri vi

V (K)
−α,

which is equivalent to R2(S
∗
2)− δ >R1(S

∗
1)−α. Therefore, we get a contradiction to the fact that

we have R2(S
∗
2)− δ≤R1(S

∗
1)−α in the case we consider.
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Appendix D: Proof of Theorem 5.2

To give our FPTAS, for a fixed accuracy parameter ρ > 0, we construct the grid points Grid =

{(1 + ρ)k :k=b logVmin
log(1+ρ)

c, . . . , d log(nVmax)

log(1+ρ)
e}. For each t∈Grid, let νit = d n

tρ
vie. Consider the problem

max
S⊆N

{∑
i∈S

ri

(
vi

1 + t
+λθi

)
:
∑
i∈S

νit ≤
⌈n
ρ

⌉
+n, |S|=C

}
. (7)

Letting S∗ be an optimal solution to the Cardinality-Mixture problem, by the construction of Grid,

there exists t∈Grid such that V (S∗)≤ t≤ (1 + ρ)V (S∗).

In the next lemma, we show that solving problem (7) with some t such that V (S∗) ≤ t ≤
(1 + ρ)V (S∗) yields a (1 + 5ρ)-approximate solution to the Cardinality-Mixture problem.

Lemma D.1 Using S∗ to denote an optimal solution to the Cardinality-Mixture problem with the

optimal objective value z∗, let t̂ be such that V (S∗)≤ t̂≤ (1+ρ)V (S∗). Then, letting Ŝ be an optimal

solution to problem (7) with t= t̂, the expected revenue of the assortment Ŝ is at least 1
(1+ρ) (1+2ρ)

z∗.

Proof: By the definition of νit, we have νit̂ ≤ n
t̂ρ
vi + 1. Also, we have V (S∗) ≤ t̂. In this case, we

get
∑

i∈S∗ νit̂ ≤
∑

i∈S∗(
n
t̂ρ
vi + 1)≤ n

t̂ ρ
V (S∗) + n≤ n

ρ
+ n= dn

ρ
e+ n. Thus, S∗ is a feasible solution

to problem (7) when we solve this problem with t= t̂. On the other hand, we have

V (Ŝ) =
∑
i∈Ŝ

vi ≤
t̂ ρ

n

∑
i∈Ŝ

⌈ n
t̂ ρ
vi

⌉
=
t̂ ρ

n

∑
i∈Ŝ

νit̂
(a)

≤
( t̂ ρ
n

)(⌈n
ρ

⌉
+n
)
≤
( t̂ ρ
n

)(n
ρ

+ 1 +n
)
≤ (1 + 2ρ) t̂,

where (a) holds since Ŝ is an optimal solution to problem (7) when we solve this problem with

t= t̂, so it satisfies the first constraint in this problem.

In this case, if we evaluate the expected revenue provided by the assortment Ŝ and note that

V (Ŝ)≤ (1 + 2ρ) t̂ and (1 + ρ)V (S∗)≥ t̂, we obtain

∑
i∈Ŝ

ri

(
vi

1 +V (Ŝ)
+λθi

)
≥
∑
i∈Ŝ

ri

(
vi

1 + (1 + 2ρ) t̂
+λθi

)
≥ 1

1 + 2ρ

∑
i∈Ŝ

ri

(
vi

1 + t̂
+λθi

)
(b)

≥ 1

1 + 2ρ

∑
i∈S∗

ri

(
vi

1 + t̂
+λθi

)
≥ 1

1 + 2ρ

∑
i∈S∗

ri

(
vi

1 + (1 + ρ)V (S∗)
+λθi

)

≥ 1

(1 + ρ) (1 + 2ρ)

∑
i∈S∗

ri

(
vi

1 +V (S∗)
+λθi

)
=

z∗

(1 + ρ) (1 + 2ρ)
,

where (b) uses the fact that S∗ is a feasible but not necessarily an optimal solution to problem (7)

when we solve this problem with t= t̂.

For ρ≤ 1, we have (1 + ρ) (1 + 2ρ)≤ 1 + 5ρ, showing that the assortment Ŝ in the lemma above

is a (1 + 5ρ)-approximation when ρ ≤ 1. Note that problem (7) is a knapsack problem with a
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cardinality constraint, where the space consumption of each product i is νit, which is an integer.

Thus, for fixed t, we can solve this problem through the dynamic program

Ji(p, q; t) = max

{
ri

(
vi

1 + t
+λθi

)
+Ji+1(p+ νit, q+ 1; t) , Ji+1(p, q; t)

}
,

with the boundary condition that Jn+1(p, q; t) =−∞ if p > dn
ρ
e+n or q 6=C. In the state variable,

the first and second components, respectively, keep track of the total space consumption of the

offered products and the number of offered products. The boundary condition rules out the solutions

where the total capacity consumption of the offered products exceeds the capacity of the knapsack

or the total number of offered products is not equal to C. Thus, if the first component of the state

variable exceeds dn
ρ
e+ n, then we can immediately conclude that the value function at this state

is −∞. In this case, since C ≤ n, number of states in the dynamic program above is O(n
2

ρ
). There

are n decision epochs, so for fixed t, we can solve the dynamic program in O(n
3

ρ
) operations, giving

an optimal solution to problem (7). By the definition of Grid, we have O
(

1
log(1+ρ)

log
(
nVmax
Vmin

))
=

O
(

1
ρ

log
(
nVmax
Vmin

))
grid points. Thus, we can obtain an optimal solution to problem (7) for all

t∈Grid in O
(
n3

ρ2
log
(
nVmax
Vmin

))
operations. Here is the proof of Theorem 5.2.

Proof of Theorem 5.2:

Given ε∈ (0,1), we choose the accuracy parameter as ρ= ε/5. By the discussion in the previous

paragraph, we can obtain an optimal solution to problem (7) for all t∈Grid in O
(
n3

ε2
log
(
nVmax
Vmin

))
operations. Since ρ= ε/5< 1, we have (1 +ρ) (1 + 2ρ)≤ 1 + 5ρ= 1 + ε≤ 1

1−ε , so by Lemma D.1, the

expected revenue from one of these solutions is at least (1− ε)z∗. Thus, if we check the expected

revenue provided by the solution to problem (7) for each t ∈ Grid and pick the best one, then

the best solution provides an expected revenue of at least (1− ε)z∗. The number of operations to

check the expected revenue from each solution is dominated by the number of operations to get

an optimal solution to problem (7) for all t∈Grid. Thus, in O
(
n3

ε2
log
(
nVmax
Vmin

))
operations, we can

obtain a solution to the Cardinality-Mixture problem with expected revenue at least (1− ε)z∗.

Appendix E: Proof of Lemma 7.1

In this section, we give a proof for Lemma 7.1. By the discussion at the beginning of Section 7,

recall that if the Compact LP has multiple optimal solutions, then we choose the one that has the

largest value for the decision variable x0. Furthermore, to obtain a solution that has the largest

value for the decision variable for x0, for ε > 0, we can add the additional term εx0 to the objective

function of the Compact LP. If ε is small enough, then solving the Compact LP with the additional
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term provides an optimal solution to the original version of the Compact LP that has the largest

value for the decision variable x0. Thus, we consider the problem

max
(x0,x,y)∈R×Rn+n2

+

{
T
∑
i∈N

ri

(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)
+ εx0 : (8)

T
∑
i∈N

aqi

(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)
≤ cq ∀ q ∈M,

x0 +
∑
i∈N

vi xi = 1,

xi ≤ x0 ∀ i∈N,

yij ≤ xi ∀ i, j ∈N, yij ≤ xj ∀ i, j ∈N

}
.

If ε is small enough, then a basic optimal solution to the problem above is also a basic optimal

solution to problem the Compact LP. So, it is enough to show that if (x∗0,x
∗,y∗) is a basic optimal

solution to problem (8), then we have y∗ij = min{x∗i , x∗j} for all i, j ∈N . For notational brevity, we

let P = {(x0,x,y) ∈R×Rn+n
2

+ : x0 +
∑

i∈N vi xi = 1, xi ≤ x0 ∀ i ∈N, yij ≤min{xi, xj} ∀ i, j ∈N},

denoting the polytope captured by the last four constraints in the LP above. The proof of Lemma

7.1 uses two lemmas, which closely resemble results already established in the main text.

In the first lemma, we consider a slightly modified version the Assortment LP, where we add the

additional term εx0 to the objective function. In particular, consider the LP

max
(x0,x,y)∈R×Rn+n2

+

{∑
i∈N

ri

(
(vi +λθi)xi +λθi

∑
j∈N

vj yij

)
+ εx0 : (x0,x,y)∈P

}
. (9)

In the next lemma, we relate an optimal solution to the LP above to an optimal solution of a

slightly modified version of the Mixture problem.

Lemma E.1 For a basic optimal solution (x∗0,x
∗,y∗) to problem (9), let S∗ = {i∈N : x∗i > 0}.

Then, S∗ is an optimal solution to the problem

max
S⊆N

{∑
i∈S

ri

(
vi

1 +V (S)
+λθi

)
+

ε

1 +V (S)

}
. (10)

Lemma E.1 is an analogue of Theorem 3.2 and its proof follows the same line of reasoning that

we used in the proof of Theorem 3.2. We skip the proof.

In the second lemma, we relate problem (8) to a slightly modified version of the Choice-Based

LP. We can view this lemma as an analogue of Theorem 6.1.
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Lemma E.2 Consider the Choice-Based LP after adding the additional term
∑

S⊆N
ε

1+V (S)
w(S) to

the objective function, which is given by

max
w∈R2n

+

{
T
∑
S⊆N

∑
i∈S

ri

(
vi

1 +V (S)
+λθi

)
w(S) +

∑
S⊆N

ε

1 +V (S)
w(S) : (11)

T
∑
S⊆N

∑
i∈S

aqi

(
vi

1 +V (S)
+λθi

)
w(S)≤ cq ∀ q ∈M,

∑
S⊆N

w(S) = 1

}
.

Then, the optimal objective values of problems (8) and (11) are the same. Furthermore, the optimal

values of the dual variables for the first constraint in problems (8) and (11) are the same.

The proof of the lemma above uses the same reasoning that we use in the proof of Theorem 6.1

in conjunction with Lemma E.1. We skip the proof.

Next, using the dual variables µ = {µq : q ∈M}, π, α = {αi : i ∈ N}, η = {ηij : i, j ∈ N} and

σ= {σij : i, j ∈N}, the dual of problem (8) is given by

min
(µ, π,α,η,σ)∈
Rm

+ ×R×Rn+2n2

+

{∑
q∈M

cq µq +π : (12)

π=
∑
i∈N

αi + ε,

vi π+αi−
∑
j∈N

ηij −
∑
j∈N

σji ≥ T (vi +λθi)

(
ri−

∑
q∈M

aqi µq

)
∀ i∈N,

ηij +σij ≥ T λθi vj

(
ri−

∑
q∈M

aqi µq

)
∀ i, j ∈N

}
.

In the next lemma, we use complementary slackness to give two useful properties that are satisfied

by an optimal primal-dual solution pair for problem (8).

Lemma E.3 Let (x∗0,x
∗,y∗) and (µ∗, π∗,α∗,η∗,σ∗) be a basic optimal primal-dual solution pair

for problem (8) and S∗ = {i∈N : x∗i > 0}. Then, we have

π∗ =
∑
i∈S∗

α∗i + ε,∑
i∈S∗

∑
j∈N

(η∗ij +σ∗ji) =
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ij).

Proof: To see the first equality, note that x∗0 > 0. Otherwise, we have x∗i = 0 for all i ∈N by the

third constraint in problem (8), in which case, it is impossible to satisfy the second constraint.
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Since x∗0 > 0 and x∗i = 0 for all i 6∈ S∗, using complementary slackness on the third constraint in

problem (8), we have α∗i = 0 for all i 6∈ S∗, in which case, by the first constraint in problem (12), we

get π∗ =
∑

i∈S∗ α
∗
i + ε. To see the second equality, if i ∈ S∗ and j 6∈ S∗, then x∗i > 0 and x∗j = 0, in

which case, by the last two constraints in problem (8), we have y∗ij = 0 and y∗ji = 0. Therefore, we

get y∗ij <x
∗
i and y∗ji <x

∗
i , so using complementary slackness on the last two constraints in problem

(8), we get η∗ij = 0 and σ∗ji = 0. Thus, if i∈ S∗ and j 6∈ S∗, then η∗ij = 0 and σ∗ji = 0. In this case, the

second equality in the lemma follows by noting that

∑
i∈S∗

∑
j∈N

(η∗ij +σ∗ji) =
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ji) +
∑
i∈S∗

∑
j 6∈S∗

(η∗ij +σ∗ji)

=
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ji) =
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ij).

Proof of Lemma 7.1:

Let (x∗0,x
∗,y∗) and (µ∗, π∗,α∗,η∗,σ∗) be a basic optimal primal-dual solution pair for problem

(8). By the discussion right after problem (8), it is enough show that y∗ij = min{x∗i , x∗j} for

all i, j ∈N . Let S∗ = {i ∈ N : x∗i > 0}. Consider i, j ∈ S∗. We have x∗i > 0 and x∗j > 0, so using

complementary slackness on the last two constraints in problem (8), if y∗ij = 0, then η∗ij = 0 and

σ∗ij = 0. On the other hand, if y∗ij > 0, then using complementary slackness on the last constraint

in problem (12), we have η∗ij + σ∗ij = T λθi vj (ri −
∑

q∈M aqi µ
∗
q). Therefore, for all i, j ∈ S∗, we

have η∗ij +σ∗ij ≤ T λθi vj
(
ri−

∑
q∈M aqi µ

∗
q

)+
, where we let (a)+ = max{a,0}.

For all i ∈ S∗, x∗i > 0, so using complementary slackness on the second constraint in problem

(12), this constraint holds as equality for all i∈ S∗. Adding over all i∈ S∗ yields

∑
i∈S∗

vi π
∗+

∑
i∈S∗

α∗i = T
∑
i∈S∗

(vi +λθi)

(
ri−

∑
q∈M

aqi µ
∗
q

)
+
∑
i∈S∗

∑
j∈N

η∗ij +
∑
i∈S∗

∑
j∈N

σ∗ji

(a)
= T

∑
i∈S∗

(vi +λθi)

(
ri−

∑
q∈M

aqi µ
∗
q

)
+
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ij)

(b)

≤ T
∑
i∈S∗

(vi +λθi)

(
ri−

∑
q∈M

aqi µ
∗
q

)
+T

∑
i∈S∗

∑
j∈S∗

λθi vj

(
ri−

∑
q∈M

aqi µ
∗
q

)+

(c)

≤ T
∑
i∈S∗

vi

(
ri−

∑
q∈M

aqi µ
∗
q

)+

+T
∑
i∈S∗

λθi (1 +V (S∗))

(
ri−

∑
q∈M

aqi µ
∗
q

)+

,

where (a) follows from Lemma E.3, (b) holds since η∗ij +σ∗ij ≤ T λθi vj
(
ri−

∑
q∈M aqi µ

∗
q

)+
as in the

previous paragraph and (c) holds by arranging the terms and noting that
∑

j∈S∗ vj = V (S∗).

The expression on the left side of the chain of inequalities above is given by
∑

i∈S∗ vi π +∑
i∈S∗ α

∗
i = V (S∗)π∗ +

∑
i∈S∗ α

∗
i = (1 + V (S∗))π∗ − ε, where the last equality follows from
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Lemma E.3. In this case, replacing the left side of the chain of inequalities above by

(1 +V (S∗))π∗− ε and dividing both sides of the inequality by 1 +V (S∗), we get

π∗− ε

1 +V (S∗)
≤ T

∑
i∈S∗

(
ri−

∑
q∈M

aqi µ
∗
q

)+(
vi

1 +V (S∗)
+λθi

)
. (13)

To show the result by contradiction, assume that there exists i, j ∈N such that y∗ij <min{x∗i , x∗j}.
Since y∗ij ≥ 0, it must be the case that x∗i > 0 and x∗j > 0, so we get i, j ∈ S∗.

Letting i, j ∈ S∗ such that y∗ij <min{x∗i , x∗j}, using complementary slackness on the last two

constraints in problem (8), it follows that η∗ij = 0 and σ∗ij = 0, in which case, by the last constraint in

problem (12), we have 0≥ ri−
∑

q∈M aqi µ
∗
q . Thus, there exists i∈ S∗ such that ri−

∑
q∈M aqi µ

∗
q ≤ 0.

Let N∗ = {i∈ S∗ : ri−
∑

q∈M aqi µ
∗
q ≤ 0}, so N∗ is non-empty.

By Lemma E.2, problems (8) and (11) have the same optimal objective values. Letting z∗LP be

their common optimal objective value, since problem (12) is the dual of (8), we get

z∗LP =
∑
q∈M

cq µ
∗
q +π∗

(c)

≤
∑
q∈M

cq µ
∗
q +T

∑
i∈S∗

(
ri−

∑
q∈M

aqi µ
∗
q

)+(
vi

1 +V (S∗)
+λθi

)
+

ε

1 +V (S∗)

(d)
=

∑
q∈M

cq µ
∗
q +T

∑
i∈S∗\N∗

(
ri−

∑
q∈M

aqi µ
∗
q

)(
vi

1 +V (S∗)
+λθi

)
+

ε

1 +V (S∗)

(e)

<
∑
q∈M

cq µ
∗
q +T

∑
i∈S∗\N∗

(
ri−

∑
q∈M

aqi µ
∗
q

)(
vi

1 +V (S∗ \N∗)
+λθi

)
+

ε

1 +V (S∗ \N∗)

≤
∑
q∈M

cq µ
∗
q + max

S⊆N

{
T
∑
i∈S

(
ri−

∑
q∈M

aqi µ
∗
q

)(
vi

1 +V (S)
+λθi

)
+

ε

1 +V (S)

}
(f)
=

∑
q∈M

cq µ
∗
q + max

w∈R2n
+

{
T
∑
S⊆N

∑
i∈S

(
ri−

∑
q∈M

aqi µ
∗
q

)(
vi

1 +V (S)
+λθi

)
w(s)

+
∑
S⊆N

ε

1 +V (S)
w(s) :

∑
S⊆N

w(S) = 1

}
,

where (c) uses (13), (d) holds since ri−
∑

q∈M aqi µ
∗
q ≤ 0 for all i ∈N∗, (e) holds since N∗ 6= ∅, so

V (S∗ \N∗)<V (S∗) and (f) holds by randomizing instead of picking one assortment.

Consider computing the dual function for problem (11) by associating the dual multipliers

µ∗ = {µ∗q : q ∈M} with the first constraint in this problem. In this case, the value of the dual

function precisely corresponds to the expression on the right side of the chain of inequalities above.

Furthermore, by Lemma E.2, µ∗, which gives the optimal values of the dual variables associated

with the first constraint in problem (8), also gives the optimal values of the dual variables

associated with the first constraint in problem (11). Thus, the expression on the right side of the

chain of inequalities above is the optimal objective value of problem (11), which is also z∗LP. In this

case, noting the strict inequality in (e), we get a contradiction.


