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The selection of products and prices offered by a firm significantly impacts its profits. Existing approaches

do not provide flexible models that capture the joint effect of assortment and price. We propose a nonpara-

metric framework in which each customer is represented by a particular price threshold and a particular

preference list over the alternatives. The customers follow a two-stage choice process; they consider the set

of products with prices less than the threshold and choose the most preferred product from the set con-

sidered. We develop a tractable nonparametric expectation-maximization (EM) algorithm to fit the model

to the aggregate transaction data and design an efficient algorithm to determine the profit-maximizing

combination of offer set and price. We also identify classes of pricing structures of increasing complexity,

which determine the computational complexity of the estimation and decision problems. Our pricing struc-

tures are naturally expressed as business constraints, allowing a manager to trade off pricing flexibility with

computational burden.
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1. Introduction

What products to carry and what prices to charge are important decisions faced by a firm. These

decisions influence the purchase behavior of customers, and, therefore, the firm’s revenues and

gross profits. To effectively optimize its offerings, a firm must understand how its product and price

offerings jointly impact consumer demand. The existing literature in the areas of marketing and

operations proposes the following general procedure: (i) model the impact of assortment and price

on consumer demand, (ii) fit the model to data on product availability and sales transactions, and

(iii) optimize the assortment or price or the joint assortment and price offering using the demand

predictions from the fitted model. The biggest challenge in executing the above procedure is to

design a model that faithfully captures the underlying choice patterns and allows for tractable

algorithms to fit and optimize.

Most existing proposals are based on parametric choice models, which specify particular func-

tional forms relating product attributes (such as price) to utility values and choice probabilities.

1
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Parametric models are parsimonious and therefore computationally tractable. However, the choice

structures must be pre-specified, increasing the risk of model misspecification and leading to inac-

curacies in decision making. The alternative is to adopt a nonparametric approach, which removes

the need for explicit specification of choice structures and instead ‘learns’ the appropriate structure

from data1. However, the lack of parsimonious structures makes model estimation, and particularly

optimization, computationally difficult. Existing work (e.g., Farias and Jagabathula [15], Haensel

and Koole [18], and van Ryzin and Vulcano [38]) proposes computationally efficient techniques to

estimate model parameters when data consist of only assortment changes and not price changes.

The literature is, however, silent on capturing the joint assortment and price changes and solving

the joint assortment and price decision problem using nonparametric approaches.

The key contribution of this paper is a nonparametric approach for joint assortment and price

optimization. Despite its flexibility, our model allows for both tractable estimation and optimiza-

tion. Our framework allows managers to make a continuous trade-off between decision complexity

and computational burden. We follow the general model, fit, and optimize procedure described

above. We focus on a canonical retailer selling a universe of n products from a specific category

or sub-category. There are frequent changes in prices and more frequent changes in the offer sets,

either due to stock-outs or deliberate screening, which is common in the online environment. Prod-

uct features, other than prices, remain fixed. The retailer has collected historical data in the form

of sales transactions, product availabilities, and offered prices. The retailer must utilize available

data to determine the assortment and price combination that maximizes the expected revenue. The

above setting is broad and includes the classical revenue management setting for airlines, hotels,

and cruises, in which the available bookings and prices change frequently.

Overview of our approach. Model. We extend the prevailing nonparametric rank-based choice

model to capture the impact of price changes on demand. In a rank-based choice model, customers

make choices from an offer set according to a preference list so that if the most preferred option

is unavailable, they go down the list to pick an available option, as long as it is preferred over

the no-purchase option. We extend the rank-based model by supposing that customers follow a

two-stage procedure. In the first stage, the customer forms a consideration set by selecting the

subset of products whose prices are less than or equal to a price threshold. In the second stage, she

chooses the most preferred product from the chosen consideration set. Existing literature allows

the customer to form a consideration set by applying broader threshold-based screening rules

1 Indeed, as businesses increasingly move online, such data-driven approaches are essential for businesses to take
advantage of the dynamic environments, complex demand patterns, and associated wealth of data offered by online
environments.
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comprising of attributes other than price, but we focus on the price-based threshold because in

our setting only prices change. Of course, neither the ranked list nor the price threshold of the

individual customer is observed, so we describe them using probability mass functions (PMFs): the

population is described by (a) the threshold PMF that describes a distribution over all possible price

thresholds, and (b) the preference PMF that describes a distribution over all possible ranked lists.

Because customer preferences are influenced by product prices, the preference PMF will be a

function of price. But allowing the preference PMF to depend arbitrarily on price results in an

intractable model that cannot extrapolate demand to new prices. To address this, we suppose

that the domain of price vectors partitions into a “small” number K of partitions such that the

preference PMF λk is the same for all the price vectors in partition k. In effect, this assumption

supposes that price thresholds capture the immediate effects of price changes, while the ranked lists

capture the residual effects. The assumption is also supported by empirical evidence from Gilbride

and Allenby [17]. It results in tractable estimation because only a finite number of threshold and

preference PMFs need to be estimated from data.

Fit. We train the model parameters on historical data that consist of sales transactions, product

availabilities, and offered prices. The estimation consists of two steps: (a) clustering the price vectors

to result in a partitioning of the price domain and (b) running the expectation-maximization (EM)

algorithm to estimate the threshold and preference PMFs for each partition separately. We use a

general-purpose clustering algorithm to partition the training price vectors into K parts. We tune

K using cross-validation. Given the partitioning, we fit a model to each partition by maximizing the

log-likelihood function. Because the log-likelihood function is in general hard to maximize, we adopt

the EM algorithm. The EM algorithm treats the price thresholds of individual observations as the

latent variables and iteratively alternates between inferring the latent variables (from observed data

and previous PMFs) and generating new PMF estimates from the inferred latent variables. The

sequence of estimates produced can be shown to converge to a stationary point of the log-likelihood

function. The key challenge in running the EM algorithm is carrying out the resulting M-step,

which involves solving a convex program with n! (n factorial) number of variables. Practically, we

carry out the M-step by reducing it to a rank-aggregation problem and using existing heuristics (see

Ali and Meliǎ [3]) to obtain solutions with good empirical performance. Theoretically, we propose

a dynamic programming (DP) formulation to show that the solution can be obtained efficiently

(in polynomial time) if we restrict the feasible prices to a structured class.

Optimize. Finally, we optimize the estimated model to determine the revenue-maximizing com-

bination of assortment and prices. The decision problem is NP-hard in the strong sense (Rus-

mevichientong et al. [30] and Aggarwal et al. [1]). We address this challenge by proposing an
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approximation algorithm with a provable performance guarantee based on a DP formulation. Under

appropriate technical conditions, we show that the DP admits a polynomial-time approximation

scheme (PTAS). For any pre-specified ε > 0, the PTAS can determine a price vector whose revenue

is within 1− ε of the optimal revenue, using computing time that is polynomial in the number of

products, for a fixed ε.

We analyze our method both theoretically and empirically. Theoretically, we identify pricing

structures that lend tractability to both the estimation and the optimization problems. We call

these the d-sorted pricing structures, the simplest of which (d= 0) results in product prices that

respect a pre-specified reference ordering2. These structures have received little attention in the

literature. They allow us to isolate the source of complexity in solving the estimation and opti-

mization problems. Further, they are not esoteric mathematical structures but naturally map to

a firm’s business constraints. Empirically, we test our methods both on real-world and synthetic

sales transactions data. The tests with the real-world transactions from the IRI Academic Dataset

demonstrate the predictive accuracy of our methods: an average of 26% improvement over the

benchmark latent-class multinomial logit (LC-MNL) model on a ‘chi-square’ metric, which mea-

sures the relative error in predicting market shares. The tests with the synthetic data demonstrate

the decision accuracy: an average of 11% higher revenue extracted against the LC-MNL benchmark.

1.1. Literature review

We position our work as part of the new stream of literature on choice modeling techniques

designed specifically for applications in operations; see, for example, Farias and Jagabathula [15],

Blanchet et al. [8], van Ryzin and Vulcano [38], and Alptekinoglu and Semple [4]. This body of

work is characterized by its emphasis on the prediction accuracy rather than on the explanatory

power of the models, because accurate decision making requires accurate predictions rather than

accurately modeling the underlying choice process. Indeed, the objectives of producing accurate

predictions and accurate modeling of underlying choice process are not equivalent (see Ebbes et

al. [14]). Furthermore, our work may be viewed as a step toward extending the framework of dis-

crete models of choice in operations to account for behavioral heuristics, such as simple screening

rules (see Ben-Akiva et al. [7]). Our work has connections to the literature on choice modeling in

both operations and marketing. Because our model is designed for operational decision making,

we focus predominantly on the work in operations, with a brief discussion on connections with

marketing at the end.

2 Such sorted pricing structures are generally reasonable when products are vertically differentiated by brand, size,
quality, etc.
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In operations, rank-based choice models have been used to model demand in the context of air-

line revenue management and retail operations. Traditional approaches had assumed independent

demands for each product. However, if products are close substitutes and their availability changes

over time, the demand for each product becomes a function of the entire offer set. As a result, inter-

est has shifted over the last two decades from independent demand models to choice-based demand

models. In airline revenue management, the work by Belobaba and Hopperstad [5], Ratliff et al.

[29], and Vulcano et al. [39] has demonstrated improvements in revenues from the incorporation of

choice models. Retail applications of rank-based choice models have been pioneered by Mahajan

and van Ryzin [26], who considered a single-period stochastic inventory model in which customers

substitute products within the assortment as inventory is depleted. The above approaches mostly

focus on assortment effects on demand.

On the other hand, the research that accounts for price effects on demand has mostly focused on

optimization for a given parametric choice model. Hanson and Martin [19] showed that the profit

function under the logit choice model is not jointly concave in the price vector. However, there

is a one-to-one correspondence between the prices and the market shares, and it has been shown

that the profit function is concave in market shares by Song and Xue [33] and Dong et al. [13]

for the multinomial logit (MNL) model and by Li and Huh [25] for the nested logit (NL) model.

Li and Huh [25] assumed that the price sensitivity parameters are the same across all products

within the same nest. More recently, Gallego and Wang [16] relaxed this assumption and obtained

a characterization of the optimal prices.

The above body of work either ignores price effects, focusing only on assortment effects, or

adopts parametric models of price. Our work differs from the above literature in considering a

nonparametric approach to model the joint effect of assortment and price. Further, most of the

existing work focuses on optimization issues, with less emphasis on estimation. Our work addresses

both estimation (from readily available transaction data) and optimization, resulting in an end-to-

end solution.

Nonparametric approaches to choice modeling have been gaining traction within operations due

to the increased availability of data. The prevailing nonparametric model describes customer pur-

chase behavior using a general PMF on ranked lists of all the alternatives, including the no-purchase

option. In the context of this general model, Farias and Jagabathula [15] proposed tractable pro-

cedures to predict expected revenues as a function of offer sets using historical sales transaction

data. In van Ryzin and Vulcano [38], the authors proposed a “market discovery” algorithm, which

constructs a preference PMF from sales data by iteratively finding ranked lists that increase the

data log-likelihood value. Jagabathula [24] considers the problem of finding the revenue-maximizing
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offer set under a general rank-based choice model. They propose a general local search algorithm

and show that the algorithm converges to the optimal solution in several important special cases.

Finally, Honhon et al. [22] proposed efficient algorithms for assortment optimization for interesting

structures of the general rank-based model. The above nonparametric approaches focus only on

assortment effects of demand and do not model price effects. We extend the nonparametric rank-

based demand model to also capture price effects and then solve the joint assortment and price

optimization problem.

In marketing, our model has material connections to the literature on consideration sets. The

idea that consumers use a two-stage decision process in which they first evaluate products to form

a smaller relevant or consideration set and then make the purchase decision from this considera-

tion set has been studied and empirically established in extensive work; see, for example, Hauser

and Wernerfelt [21], Belonax and Mittelstaedt [6], Parkinson and Reilly [28], Alba and Chat-

topadhyay [2], Howard and Sheth [23], and Urban [36]. In particular, there are strong modeling

connections in our work to Gilbride and Allenby [17], who demonstrated that a two-stage model in

which customers pick a consideration set and then choose from the consideration set according to

a discrete choice model has better in-sample and out-sample fit to conjoint study data on cameras,

when compared to a discrete choice model alone.

2. Problem Formulation

In this section, we provide a precise description of our model and the problem formulation. We

model the aggregate demand that a firm receives in response to the assortments and prices it offers.

We consider a universe of n products, denoted by the set N = {a1, a2, . . . , an}, and suppose that

the assortment is drawn from the product universe. Let a0 denote the no-purchase or the outside

option. Customers arrive sequentially to the firm and decide to either purchase one of the offered

products or leave without making a purchase, in which case we say that the customer chooses the

no-purchase option a0. We allow for stockouts and price changes so that the offer set and prices

seen by different customers may be different.

We suppose that customers use a two-stage model for making their purchase decision. In the first

stage, a customer forms a consideration set of products by selecting the subset of offered products

whose prices are less than or equal to a price threshold b. In the second stage, the customer chooses

from the consideration set the most preferred product according to a preference list of the products.

This model accounts for the phenomenon that customers use decision heuristics to simplify com-

plicated decision tasks. Much of the existing work in marketing has provided empirical evidence

for such a two-stage model; see, for example, Gilbride and Allenby [17] and the references therein.
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Several screening rules have been studied in the existing literature. Commonly used screening rules

are threshold based, resulting in the inclusion of products whose attribute values pass pre-specified

thresholds. Because the only attribute that changes in our setting is price, we focus on the price-

based screening rule. Without loss of generality, we suppose that the latent thresholds b belong to

a finite set B.

The population-level model is described by probability mass functions (PMFs) over price thresh-

olds and preferences. Suppose products are offered at a price vector p = (pa : a ∈ N ), with pa

denoting the price of product a and pa0
= 0. Then, the population is described by a threshold PMF

g : B→ [0,1] and a preference PMF λp : Sn+1→ [0,1], where Sn+1 denotes the collection of all pref-

erence lists of the n+1 products N ∪{a0}. Each preference list σ= (σ0, σ1, . . . , σn)∈Sn+1 specifies

a rank ordering of the products, where σi is the product ranked at position i. For any product a, let

σ−1(a) denote its preference rank. We suppose that lower ranked products are preferred to higher

ranked products. When offered a subset S ⊆N of products, the customer samples a threshold b∈B

according to the threshold PMF g and a preference list σ according to the preference PMF λp and

chooses to purchase the most preferred product from the set of products whose prices are less than

or equal to b; that is, the customer’s selection is given by arg mina {σ−1(a) : a∈ S ∪{a0} , pa ≤ b}.

Then, the choice probability θa(S,p) of choosing product a∈ S ∪{a0} from the offer set S at price

vector p is

θa(S,p) =
∑
b∈B

gbPλp(a | {q ∈ S ∪{a0} : pq ≤ b}),

where gb denotes the probability of sampling threshold b under threshold PMF g, and Pλp(a|C)

denotes the probability that a preference list sampled according to λp results in the purchase of a

from subset C:

Pλp(a |C) =
∑
σ

λp(σ) 1l[σ, a,C], where 1l[σ, a,C] = 1l{σ−1(a) < σ−1(q) ∀ q∈C∪{a0}, q 6=a},

with 1l{A} denoting the indicator variable that takes the value 1 whenever the event A is true

and 0 otherwise. Note that 1l[σ, a,C] is 1 if and only if product a has the smallest rank among all

products in C ∪{a0}.

The above two-stage model is very general and requires further definitions to be estimable

from data. In particular, allowing the mapping p 7→ λp to be arbitrary results in a model that

is not tractable and cannot extrapolate demand to new prices. To impose additional structure,

we note that the model has two levers to capture the dependence of choice on prices: (a) the

threshold b, which restricts the inclusion of a product in the consideration set, and (b) the preference

PMF λp, which captures any residual impact that price has on choice behavior. We suppose that
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this residual impact changes slowly with price. More precisely, we assume that the domain of

the price vectors Rn+ is partitioned into K different regions, with Rn+ = P1 ∪· P2 ∪· · · · ∪· PK and

Pk ∩ Pk′ = ∅ for k 6= k′. Each partition Pk is characterized by a preference PMF λk such that

θa(S,p) =
∑

b∈B gbPλk(a| {q ∈ S ∪{a0} : pq ≤ b}) for all p ∈ Pk. In other words, two price vectors

that are “close enough” are assumed to result in the same preference PMF, suggesting that residual

price impacts are slow to change with price. The complexity of the model increases linearly with

the number of partitions K. As the amount of data increases, the number of partitions K may be

increased, enriching the complexity of our model. Thus, the above partitioning eliminates the need

for parametric assumptions on how λp varies with p, resulting in a nonparametric dependence of

λp on p.

There is also empirical evidence to suggest that K is small. Specifically, our model of latent

consideration sets is closely related to the work of Gilbride and Allenby [17], who considered a two-

stage model of latent consideration sets and a multinomial probit model for preference lists. They fit

this model to data collected from a conjoint study on customer preferences for a new camera format.

They showed that the two-stage model has better in-sample and out-sample fit when compared to

a discrete choice model alone. They also found strong evidence for the threshold-based screening

rule. They [17, p. 11] stated that “Our results indicate that once the choice set3 is formed, the price

and body style do not play a role in the final decision.” Based on this evidence, it is reasonable

to assume that consideration set formation captures the primary effect of prices on choice. Any

residual impact of price on choice is small, so that allowing the preference PMF to change slowly

with prices should still result in good quality approximations while keeping the number of partitions

K relatively small. Our numerical study provides empirical evidence supporting the quality of our

approximations.

2.1. Discussion of model assumptions

Relation to existing approaches in operations. Our two-stage model class extends the rank-based

choice model proposed in Farias and Jagabathula [15]. The rank-based choice model in uses only

rank-orderings of products as model primitives. It is very general, subsumes the random utility

maximization (RUM) class of models, and removes the need for potentially unrealistic, structural

assumptions about how utilities are generated. However, despite its flexibility in capturing a wide-

range of choice behaviors, it cannot predict choices when prices or other product features vary.

Such predictions require explicit modeling of how the rank orderings vary in response to variation

in product prices. Utility-based models – such as the popular MNL, NL, and latent-class MNL

3 The authors use “choice set” for “consideration set.”
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(LC-MNL) models – capture the dependence of choices on prices by modeling product utilities as

functions of product prices. Such an approach results in models that are either parsimonious and

tractable (such as the MNL and NL models) or flexible (such as the LC-MNL model) but not both.

Our approach is to retain flexibility by operating in the space of rank orderings of products and

to introduce structure via the layer of consideration sets. This approach allows us to retain the

appealing properties of rank-based choice models as well as leverage existing methods to estimate

such models.

Relation to the literature on consideration sets. The idea that consumers use a two-stage decision

process in which they first evaluate products to form a smaller consideration set and then make

the purchase decision from this consideration set has been studied and empirically verified through

extensive work in marketing (see the references cited at the end of Section 1.1). Our price-based

screening rule belongs to the class of conjunctive decision rules, which have been studied and

empirically established in the marketing literature (see Hauser and Dzyabura [20]). A conjunctive

rule specifies that a customer considers a product only if the attribute values of all the attributes are

above (or below) certain acceptable thresholds (and thus conjunctive). The latent price threshold

in our model corresponds to the acceptable level for price. As we only allow product prices to vary

(with all the other attributes remaining fixed), products that may not be acceptable due to other

attributes can equivalently be assumed to be less preferred than the no-purchase option. Therefore,

our screening rule captures general conjunctive screening rules.

Operational tractability. Finally, our modelling assumptions are motivated by the desire to strike

a balance between the flexibility of the models and their tractability. However, it is not imme-

diately clear if the high dimensional distribution λ over preference lists (whose dimension scales

with n! ∼ (n/e)n where n is the number of products) lends itself to tractable estimation and

optimization. Surprisingly, we identify a structure in the data that allows us to obtain a contin-

uous trade-off between the “complexity” of the data and the tractability of the estimation and

optimization problems. To the best of our knowledge, our work is the first to provide theoretical

guarantees for rank-based choice models that operate directly in the space of distributions over

preference lists.

2.2. Data model

We assume data that are available to us in the form of a sequence of choices made by the customers

in response to particular offer sets and prices. Formally, we assume that we are given choices

of T customers in the form of tuples Data = {(c1, S1,p1), (c2, S2,p2), . . . , (cT , ST ,pT )}, where ct ∈

St ∪ {a0} is the product chosen by customer t when offered products in subset St at prices pt =
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(pat : a∈N ). We assume that pat = +∞ for any a /∈ St. As the price vectors also contain information

about the products that are not offered (because we set their prices to infinity), we sometimes

simply write Data = {(c1,p1), (c2,p2), . . . , (cT ,pT )} for brevity of notation.

The type of data that we assume is typically readily available in practice either in the form of

purchase transactions or aggregated market shares. Because we are assuming that each transaction

corresponds to a different customer, aggregated market share data can be readily transformed into

the form above by creating a dummy customer for each product purchase (where the number of

product purchases is determined by multiplying the market share by the market size). In the data

specification above, we assume that we also observe the selection of the no-purchase option or,

equivalently, the size of the market. This is a standard assumption, and one can adopt any of the

several demand untruncation methods proposed in the literature (see Haensel and Koole [18] and

the references therein) to deal with the data censoring issue. We discuss one such adaptation in

Appendix F.

2.3. Overview of research questions

The biggest challenge with our modeling framework is its computational tractability. To address

this challenge, we ask the following two questions: 1) How can we tractably fit the model to

transaction data and then determine the optimal joint assortment and pricing decision? 2) How

does the computational complexity depend on the complexity of the pricing structure? Answering

the first question makes our modeling framework operational by providing algorithms to estimate

parameters and then determine the optimal decision. Answering the second question allows a

manager to make a continuous trade-off between the computational burden and the flexibility

afforded by complex pricing structures.

We answer the above questions in three steps; we (a) develop a general purpose estimation

methodology to fit our model to historical transactions, (b) identify tractable pricing structures

and relate the complexity of the pricing structure to the computational burden of estimation,

and (c) extend the tractability of the identified pricing structures to joint assortment and price

optimization.

Estimation methodology: We use the method of maximum likelihood estimation (MLE) to esti-

mate our model parameters. Our model is described by a partition of the domain of the price

vectors and the parameters λk and gk for each partition. Joint estimation of the partitions and

model parameters is challenging. In fact, even when the partitions are given, estimating model

parameters is an NP-complete problem (cf. Proposition 4.1). As a result, we focus the estimation

section on estimating model parameters when partitioning is given. We discuss techniques to embed
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our estimation methodology into a partitioning scheme in the numerical experiments in Section 6.

With a given partitioning, model parameters can be estimated separately for each partition. We

focus on an arbitrary partition and drop the partition subscripts from λ and g to simplify notation.

Assuming that each data point is generated from an independent draw from the model, the log

likelihood of the data is given by

L
(
g,λ

∣∣ Data
)

=
T∑
t=1

log

(∑
b∈B

gbPλ(ct| {a∈ St ∪{a0} : pa ≤ b})

)
.

We select as estimates, the parameters ĝ and λ̂ that maximize the log-likelihood function:

ĝ, λ̂∈ arg max
g,λ

L
(
g,λ

∣∣ Data
)

= arg max
g,λ

T∑
t=1

log

(∑
b∈B

gbPλ(ct| {a∈ St{a0} : pa ≤ b})

)
. (1)

We face several challenges in solving the MLE optimization problem in (1). We discuss these issues

in detail in Section 3.

Tractable pricing structures. The computational complexity of our estimation procedure is dom-

inated by the complexity of solving a high-dimensional linear program (LP) with O(n!) variables.

We show that the LP reduces to the rank aggregation problem of determining a ranking σ that

minimizes a linear cost function, which is NP-complete (cf. Proposition 4.1). However, what is

not clear is what the source of complexity is. Intuitively, we expect the complexity of estimation

to depend on the complexity of the data. But how does one characterize the complexity of the

data? We answer this question by identifying classes Pd of pricing structures, termed the d-sorted

pricing structures, where d is an integer taking values between 0 and n. These pricing structures

are nested: P0 ⊂P1 ⊂P2 ⊂ · · · ⊂Pn−1 ⊂Pn = Rn+, so that d captures the complexity of the

pricing structure. Assuming that all the training prices belong to Pd, we show that the complexity

of solving the LP is polynomial in n for a fixed d. We discuss the details in Section 4.

Operational tractability: After estimating the parameters of the model, we consider the canonical

operational problem of determining the combination of offer set and price vector that maximizes

the expected revenue, corresponding to the following optimization problem:

max
S⊆N , p∈Rn+

R(S,p) = max
S⊆N , p∈Rn+

∑
a∈S

paθa(S,p). (2)

The decision problem in (2) is computationally challenging to solve because it not only requires

searching over all possible subsets, but the revenue function is also globally non-concave in prices

even for a fixed subset S. The above problem, in general, is NP-hard. Surprisingly, we show that

if we restrict the prices to the d-sorted family Pd for a fixed d, then there exists a polynomial-

time approximation scheme for finding the optimal solution. We discuss the details of the decision

problem in Section 5.
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3. Estimation Methodology

As mentioned, we estimate the model parameters by solving the MLE problem in (1). This problem

is in general non-concave and involves a factorial number of variables, making it computation-

ally challenging to solve to optimality. As a result, we settle for finding a local maximum or a

stationary point.

To find a stationary point, we use the EM meta-heuristic of Dempster et al. [11]. The EM

heuristic is commonly used to simplify the maximization of log-likelihood functions when some of

the variables are latent, but the log-likelihood function becomes globally concave when the latent

variables are observed. In our setting, the price thresholds are latent, but the log-likelihood function

becomes globally concave when the price thresholds are observed; see Lemma 3.1 below, proved in

Appendix A.1.

Lemma 3.1. Let C =
{

(a,A) : a= ct and A= Sbt for some b∈B and 1≤ t≤ T
}

. The complete

data log-likelihood function is concave and separable in the parameters g and λ, and is given by

LC =
∑
b∈B

mb log gb +
∑

(a,A)∈C

γa,A logPλ(a|A) , (3)

where mb denotes the number of customers in the data with threshold b and γa,A denotes the number

of customers t with the choice and consideration set pair (a,A).

However, because the price thresholds, and hence (mb : b∈B) and (γa,A : (a,A)∈ C), are not

observed, the complete data log-likelihood function in (3) cannot be directly optimized. The EM

method deals with this issue as follows. It starts with arbitrary initial estimates of the model

parameters ĝ and λ̂ and computes the conditional expected values E[LC |ĝ, λ̂] (the E-step). It then

maximizes the resulting conditional likelihood function to generate new estimates of the model

parameters (the M-step). The two steps are carried out iteratively with the model parameter

estimates generated in each step used as inputs for the next step. The iterations are carried out

until convergence. Lemma 3.2 shows that the E-step can be performed efficiently.

Lemma 3.2 (Conditional expectation for the E-step). Given model parameter estimates ĝ

and λ̂, the conditional expectation of the complete data log-likelihood function is

E[L|ĝ, λ̂] =
∑
b∈B

m̂b log gb +
∑

(a,A)∈C

γ̂a,A logPλ(a|A), (4)

where m̂b is the expected number of customers with latent threshold b and γ̂a,A is the expected

number of customers with the choice and consideration set pair (a,A), given by

m̂b =
T∑
t=1

ht(b) and γ̂a,A =
T∑
t=1

∑
b∈B

ht(b)1l{a=ct,A=Sbt} , (5)
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where ht(b) is the probability that customer t has latent threshold b conditioned on her observation

(ct, St,pt) and is given by ht(b) = ĝbPλ̂(ct|Sbt )/
∑

b′∈B ĝb′Pλ̂(ct|Sb
′
t ).

Based on the result in Lemma 3.2, the EM procedure may be summarized as follows.

Overview of the EM procedure

Step 0. [Initialization] Set ĝ and λ̂ to arbitrary feasible initial values.

Step 1. [E-step] Compute the following estimates using (5):

m̂b = expected # of customers with latent threshold b for b∈B, and

γ̂a,A = expected # of customers with choice, a consideration set tuple (a,A) for (a,A)∈ C.

Step 2. [M-step] Generate new estimates g∗ and λ∗ as follow:

g∗ = arg max
g≥0:

∑
b∈B gb=1

∑
b∈B

m̂b log gb =

(
m̂b∑
q∈B m̂q

: b∈B

)

λ∗ = arg max

 ∑
(a,A)∈C

γ̂a,A logPλ(a|A) :
∑

σ∈Sn+1

λ(σ) = 1, λ(σ)≥ 0 ∀σ

 .

Step 3. [Check stopping condition] If the stopping condition is not met, then ĝ← g∗ and λ̂← λ∗

and go to Step 1. Otherwise, terminate with the output g∗ and λ∗.

Several stopping conditions are appropriate; we discuss the issue in Section 3.3.

The E-step in the above algorithm can be carried out efficiently because it only relies on O(nT )

choice probabilities, Pλ̂(a|A) for all (a,A)∈ C, as opposed to the entire (n+1)! dimensional distribu-

tion λ̂ : Sn+1→ [0,1]. However, carrying out the M-step requires solving the following optimization

problem:

max

 ∑
(a,A)∈C

γ̂a,A logPλ(a|A) :
∑

σ∈Sn+1

λ(σ) = 1, λ(σ)≥ 0 ∀σ

 . (M-step)

This problem presents two key challenges: (a) multiplicity of optimal solutions and (b) factorial

number of variables. We discuss how we address each of these challenges next.

3.1. Multiplicity of optimal solutions: Reparametrization of the M-step

The optimization problem M-step has multiple optimal solutions because the available data are

not sufficient to allow for point identification of the model parameters. This multiplicity is a result

of the flexibility we have afforded our model and stems from the fundamental non-identifiability of

distributions over rankings from choice data. To see this, let λ∗ be an optimal solution and consider
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choice probabilities y∗a,A
def
= Pλ∗(a|A). Sher et al. [32] show that for n≥ 4, there are multiple PMFs

over preference lists that are consistent with any given collection of choice probabilities. A rough

proof follows from the observation that while the choice probabilities impose O(2n) degrees of

freedom, the underlying distribution over preference lists has O(n!) =O(2n logn) degrees of freedom.

We overcome the multiplicity issue through a reparametrization of the M-step that provides a

compact description of the set of optimal solutions. Because we only need the inputs ĝ and the

choice probabilities Pλ̂(a|A) for all (a,A) ∈ C to carry out each EM iteration, we consider the

following reformulation:

max

 ∑
(a,A)∈C

γ̂a,A log ya,A : ya,A = Pλ(a|A) ∀ (a,A)∈ C,
∑

σ∈Sn+1

λ(σ) = 1, λ(σ)≥ 0 ∀σ

 . (6)

The optimal solution y∗ encapsulates all the optimal solutions λ∗ to the M-step,{
λ : y∗a,A = Pλ(a|A) ∀ (a,A)∈ C

}
, and hence is sufficient to carry out the E-step in the next itera-

tion. Depending on the subsequent prediction or decision problem, a specific distribution λ can be

chosen from the identified set.

3.2. Factorial number of variables: Obtaining an improving solution for M-step

With the reformulation above, the M-step optimization problem can be written more succinctly as

max
y∈QC

f(y)
def
=

∑
(a,A)∈C

γ̂a,A log ya,A, (7)

where the polytope QC is defined as

QC
def
=

y ∈ [0,1]|C| : ya,A = Pλ(a|A) ∀ (a,A)∈ C,
∑

σ∈Sn+1

λ(σ) = 1, λ(σ)≥ 0 ∀σ

 . (8)

The presence of a factorial number of variables makes it computationally challenging to solve (7),

despite it being a concave maximization problem. We overcome this issue by accomplishing the

simpler task of obtaining an improving solution y∗, whose objective value is greater than or equal

to the objective value at the existing estimate ŷ. This relaxed variant of the EM algorithm, which

relies only on finding an improving solution to the M-step, is called the generalized EM algorithm

and can be shown to converge to a stationary point of the log-likelihood function.

To find an improving solution, we find a surrogate function that is easier to optimize. Because

linear functions are generally tractable, we use a local linear approximation of the objective func-

tion in (7) as the surrogate. In order to simplify notation, let f(y) denote the objective function∑
(a,A)∈C γ̂a,A log ya,A of the optimization problem in (7). Then, we can establish the following result:
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Proposition 3.1 (Certificate of optimality for the M-step). Let ŷ ∈QC be given, and let

x∗ denote an optimal solution to the linear program

max
x∈QC

∑
(a,A)∈C

ca,Axa,A , ( M-step LP)

where ca,A = γ̂a,A/ŷa,A for all (a,A) ∈ C. If
∑

(a,A)∈C ca,Ax
∗
a,A ≤ T , then ŷ is the optimal solution

to (7). On the other hand, if
∑

(a,A)∈C ca,Ax
∗
a,A > T , then there exists an α ∈ (0,1) such that for

y = αŷ + (1− α)x∗, we have f(y) > f(ŷ). Such an improving solution y may be found using a

one-dimensional line search

max
α∈[0,1]

f(αŷ+ (1−α)x∗),

which can be done efficiently because the function α 7→ f(αŷ + (1− α)x∗) is strictly concave on

[0,1].

Proposition 3.1 provides a certificate of optimality for the optimization problem in (7). The cer-

tificate requires solving the M-step LP. If the optimal value of the LP is less than or equal to the

total number of customers T , then ŷ is the optimal solution to (7), and therefore we cannot find

a solution that increases the objective value of (7) beyond that at ŷ. On the other hand, if the

optimal objective value turns out to be strictly bigger than T , then there always exists a solution

y that strictly increases the objective value f(·) beyond the current solution ŷ. Such an improving

solution may be found using a one-dimensional line search maxα∈[0,1] f(αŷ+ (1−α)x∗), which can

be done efficiently because α 7→ f(αŷ + (1− α)x∗) is strictly concave on [0,1]; see, for example,

Boyd and Vandenberghe [9]. We note that although the M-step LP in Proposition 3.1 involves n!

variables {λ(σ) :σ ∈Sn+1}, the feasible polytope QC has many interesting properties that can be

exploited for efficient computation. We defer these issues to Section 4.

3.3. Putting everything together

We have the following convergence result for the above EM algorithm:

Theorem 3.1 (Convergence of parameter estimates). For all k,

L
(
g(k),y(k)

)
<L

(
g(k+1),y(k+1)

)
,

and thus, the sequence of the log-likelihoods associated with the parameter estimates generated by

the EM algorithm converges to a value corresponding to a stationary point of the log-likelihood

function.

The proof is standard and follows from standard EM machinery (Dempster et al. [11]), so we omit

the details. Appendix A.4 presents a formal description of the EM algorithm. We make a few

remarks about the implementation:
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• Stopping criteria. We terminate the algorithm when the increase in the log-likelihood value is

within a pre-specified tolerance parameter.

• Initialization. The initialization can be arbitrary as long as the resulting choice probabilities

ya,A are strictly positive for all (a,A)∈ C. We describe a greedy initialization algorithm in the

appendix (cf. Algorithm 1 in Appendix D) that initializes λ(0) to have a support of size n+ 1

and strictly positive choice probabilities for all (a,A)∈ C.

• Uniqueness of the solution to (6). The optimization problem in (6) has a unique solution if

γ̂a,A > 0 for all (a,A) ∈ C because log(·) is strictly concave. It can be seen from Lemma 3.2

that γ̂a,A > 0 for all (a,A)∈ C if ĝb > 0 for all b∈B. We assume that the EM method is started

with an initial estimate g that has a positive probability mass over all the thresholds in B.

This ensures that ĝb > 0 for all b∈B in all the iterations, so that γ̂a,A > 0 for all (a,A)∈ C.

• Extension to data with unobserved choice of the no-purchase option: The EM algorithm in this

section assumes that we observe the choice of the no-purchase option in the dataset. However,

in many settings, the sales transaction data do not record the choice of the no-purchase option.

We extend our proposed EM method to handle the missing observations of the choice of the

no-purchase option by using the approach of Vulcano and van Ryzin [37]. The details of the

extension are given in Appendix F.

Additional implementation details are discussed in Section 6 on numerical studies.

4. An Efficient Solution of the M-step LP and d-sorted Pricing Structures

In this section, we focus on efficiently solving the M-step LP in Proposition 3.1. For that, we

identify classes of pricing structures of increasing complexity and relate the complexity of the

pricing structure to the computational complexity of solving the M-step LP

max
x∈QC

∑
(a,A)∈C

ca,Axa,A ,

where the polytope QC is given in (8). The optimal solution of the above LP will occur at an

extreme point. Because QC, by definition, is the convex hull of the (n+ 1)! points eσ ∈ {0,1}|C|

defined as eσ,a,A = 1l[σ, a,A], every extreme point must be equal to eσ for some σ ∈Sn+1. As a

result, solving the M-step LP is equivalent to solving the following optimization problem:

max
σ∈Sn+1

∑
(a,A)∈C

ca,A1l[σ, a,A]. (9)

The optimization problem above has the following intuitive interpretation: for each choice and

consideration set pair (a,A), the weight ca,A quantifies the importance of that pair. Our goal is to

find the ranking that is “most consistent” with the pairs (a,A) according to weights ca,A.
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The optimization problem in (9) is similar to the linear program obtained in recent work by

van Ryzin and Vulcano [38] when fitting distributions over rankings using the maximum likelihood

method. It is also similar to the problems that have appeared in the existing machine learning

literature (see Ali and Meliǎ [3] and Meliǎ et al. [27]) in the context of rank aggregation, where the

goal is to find the ranking that is most consistent with a given set of rankings, under appropriate

definitions of consistency. Particularly, as shown in Proposition 4.1, a special case of (9) is the

popular Kemeny optimization problem, in which the objective is to find a single ranking that

minimizes the average distance from a given collection of total orderings/rankings over n items.

Proposition 4.1 (Hardness of solving the M-step LP). The M-step LP is equivalent to

max
σ∈Sn+1

∑
(a,A)∈C

ca,A1l[σ, a,A], and it is NP-complete. Kemeny optimization, however, is NP-hard [3],

which implies that (9) is also NP-hard.

Proposition 4.1 is proved in Appendix B. While Kemeny optimization has been well studied in the

literature, the M-step LP itself has received little attention. To the best of our knowledge, there

has been no study of the source of complexity in solving the M-step LP. Our goal is to understand

the source of complexity and understand whether there are special and practically relevant cases

that can be solved efficiently. We discuss this next.

4.1. The d-sorted pricing structure

To characterize the complexity of solving the M-step LP, we introduce the class of d-sorted pricing

structures. To formally define these pricing structures, consider a specific ordering τ = (τ1, . . . , τn)

of the products {a1, a2, . . . , an}, and for all i, let τ−1(ai)∈ {1,2, . . . , n} denote the rank of product ai

under τ . Define the collection of price vectors Pd as follows:

Pd =
{
p∈Rn+ :

∣∣π−1p (ai)− τ−1(ai)
∣∣≤ d ∀ i such that pi 6= +∞

}
, (10)

where d is an integer such that 0 ≤ d ≤ n and πp represent the price ordering of the products

according to price vector p so that pπp(1) ≤ pπp(2) ≤ · · · ≤ pπp(n) with π−1p (ai) denoting the rank of

product indexed i and πp(i) denoting the product that is ranked at rank i under p. Also, recall

that we assume pi =∞ if product i is not offered. By definition,

P0 ⊂P1 ⊂P2 ⊂ · · · ⊂Pn−1 ⊂Pn =Rn+ .

When d= 0, P0 is the set of price vectors that have exactly the same ordering; that is,

P0 =
{
p∈Rn+ : pτ1 ≤ pτ2 ≤ · · · ≤ pτn

}
.
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This type of constraint (d= 0) on the price vectors is quite popular and has been been shown to

result in tractable estimation and optimization problems (cf. Rusmevichientong [30] and Aggarwal

et al. [1]). For d≥ 1, the set Pd can be thought of as a generalization of a strict sorting constraint

with the price ranks of the products allowed to deviate from their corresponding reference ranks by

no more than d. When d= n, it is clear that Pd admits all possible price vectors so that Pn =Rn+.

Thus, Pd defines collections of price vectors of increasing complexity.

In practice, d-sorted pricing structures with small values of d arise when the firm selects a base

price ordering τ and offers prices that are generally consistent with the base ordering but are

allowed to deviate by an amount d. Such sorted price structures are generally reasonable when the

products are vertically differentiated by brand, price, quality, etc. They also arise from a firm’s

business constraints, such as premium brands always being priced above non-premium ones. To

our knowledge, these pricing structures have received little attention in the literature. But, as we

show below, the class of price vectors Pd possesses structure that we can exploit to solve both

the estimation and optimization problem efficiently with the computational complexity that is

polynomial in n for a fixed d but exponential in d. When d is small, our algorithms are guaranteed to

be efficient. For the real-world dataset used in our numerical experiments in Section 6, we observed

that the product prices in the transaction data possess the d-sorted pricing structure with values

of d around 3 or 4, depending on the product category.

To state our result for estimation, suppose that all the offered price vectors belong to Pd for a

particular reference ordering τ . Define the collection of tuples

Cd = {(a,A) : a∈A,A= {a′ : pa′ ≤ b} for some b∈B,p∈Pd} , (11)

comprising of all possible choice and consideration set combinations when the offered price vectors

belong to Pd. It follows from the definition of Pd that C0 ⊆ C1 ⊆ · · · ⊆ Cn and Cn is the set of all

possible subsets of the n products. With this definition, we can establish that the rank aggregation

problem (9), and consequently the M-step LP, can be solved efficiently in n for a fixed d. Specifically,

we have the following result:

Proposition 4.2 (Efficient solution of the M-step LP through DP). Consider the follow-

ing rank aggregation problem:

max
σ∈Sn+1

∑
(a,A)∈C

ca,A1l[σ, a,A] .

If C ⊆ Cd, then the problem can be solved via a DP in O(n34d |C|) operations.

Note that, by definition, |C|=O(nT ), and thus, for small d, the M-step LP can be solved efficiently.

The detailed proof of Proposition 4.2 is given in Appendix B.2. We provide a brief proof sketch

here for the special case where d= 0. The same argument can be extended for general d.
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Proof sketch of Proposition 4.2 for d= 0: Without loss of generality, assume that τ is the identity

ordering, so P0 = {p : p1 ≤ · · · ≤ pn}. With the constraint that all the training price vectors are in

P0, it can be seen that C = {(i,{a0, . . . , aj}) : 0≤ i≤ j ≤ n}. To simplify notation, let cij denote

cai,A for A= {a0, . . . , aj}. Also, for any ranking σ, let σij denote the indicator variable taking the

value of 1 if and only if σ−1(ai) < σ−1(ak) for all 0 ≤ k ≤ j, k 6= i. Finally, let c00 = 0. With this

notation, (9) becomes

max
σ∈Sn+1

n∑
j=0

j∑
i=0

cijσij.

We now propose a DP to recursively construct the optimal preference list. For any ranking σ =

(σ0, σ1, . . . , σn), let σr denote the product ranked at position r. The objective in the above opti-

mization problem can be shown to be
∑n

r=0

∑n

j=σr
cijσσrj. Now, because σr is at position r, σσrj is

1 if and only if none of the products ranked below r are part of the set {a0, . . . , aj}. We thus have

n∑
j=0

j∑
i=0

cijσij =
n∑
r=0

min{σ0,σ1,...,σr−1}−1∑
j=σr

cσrj.

The above expression of the objective function suggests a DP in which we construct the optimal

ranking sequentially from the least preferred product to the most preferred product. In order

to facilitate the formulation of the DP, we represent each ranking σ as the collection of tuples

(σ0, ξ0), (σ1, ξ1), . . . , (σn, ξn), where, as before, σr denotes the product ranked at position r by σ

and ξr = min{σ0, σ1, . . . , σr−1} for any r ≥ 1. For completeness, we set ξ0 = n+ 1. With the above

representation of σ, the objective function can be written as
∑n

r=0

∑ξr−1
j=σr

cσrj.

It is clear from the above expression that the choice of σr is only influenced by ξr, which is

determined by the products ranked at the previous r − 1 positions and will influence the choice

of products to be ranked at positions beyond r only through ξr+1. As a result, we define a DP

value function at stage r with the state variable ξr. Specifically, we define for any 0< r ≤ n and

0≤ ξ ≤ n− r+ 1 the value functions

Vr(ξ) =

maxσr

[∑ξ−1
j=σr

cσrj +Vr+1(min{σr, ξ})
]

if ξ < n− r+ 1,

max0≤σr≤ξ−1

[∑ξ−1
j=σr

cσrj +Vr+1(σr)
]

if ξ = n− r+ 1

with the boundary condition Vn+1(ξ) = 0 for all 1 ≤ ξ ≤ n and V0(n + 1) =

max0≤σ0≤n

[∑n

j=σ0
cσ0j +V1(σ0)

]
. Note that we need to compute a total of O(n) value functions,

each of dimension O(n). Computing each value function requires us to search over O(n) func-

tions to find the maximum value, and computing each of those values requires O(n) computations.

Therefore, the running time of the above DP is O(n4). It can be shown (cf. Proposition 4.2) that

solving the DP results in a feasible solution. The above argument can be extended to the case when

all the price vectors belong to the set Pd. Details are provided in Appendix B.2.
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5. Operational Tractability: Joint Assortment and Price Optimization

We now focus on making the decision: determining the offer-set and price combination to maximize

revenues (that is, solving maxS⊆N ,p∈Rn+ R(S,p)). Using the convention that the prices of products

not offered are set to +∞ or simply a value larger than maxb∈B b, we drop the dependence on S

and re-write the optimization problem as maxp∈Rn+ R(p). Recall from Section 2 that the domain

Rn+ is partitioned into K disjoint regions, with Rn+ =P1∪P2∪ · · · ∪PK and Pk ∩Pk′ =∅ if k 6= k′.

Therefore, the optimization problem is equivalent to maxk=1,...,K maxp∈Pk R(p).

The decision problem is NP-complete in the strong sense even for the simplest case in which

B = {1,2} and K = 1 (Rusmevichientong et al. [30]). Therefore, we constrain the prices to be

d-ordered, so the optimization problem that we wish to solve is

max
k=1,...,K

max
p∈Pk∩Pd

R(p) .

For a fixed d, we will show that the optimization problem admits a PTAS4. We first describe the

PTAS for the single region case (K = 1) to facilitate exposition and highlight the key algorithmic

techniques. We then extend the PTAS to the general (K > 1) case.

5.1. PTAS for a single region (K = 1)

We assume that d is fixed and the domain is not partitioned. So, our objective is to solve the

following problem:

Z∗ = max
p∈Pd

R(p) ,

where Pd denotes the set of d-sorted prices in Rn+. The objective can be simplified as follows:

R(p)
def
=

n∑
i=1

piθi(p) =
n∑
i=1

pi
∑
b∈B

gbPλ (i | {a : pa ≤ b})

=
n∑
i=1

pi
∑
b∈B

gb
∑

σ∈Sn+1

λ(σ)1l [σ, i,{a : pa ≤ b}] =
∑

(b,σ)∈B×Sn+1

w(b,σ)
n∑
i=1

pi1l [σ, i,{a : pa ≤ b}] ,

where w(b,σ)
def
= gb · λ(σ). We can interpret each pair (b,σ) as a customer type, which comprises

w(b,σ) proportion of the population and has price threshold b and preference ordering σ. The

term
∑n

i=1 pi1l [σ, i,{a : pa ≤ b}] is the revenue from customer type (b,σ) under price vector p;

note that {a : pa ≤ b} always includes the no-purchase option a0 because pa0
= 0≤ b for all b≥ 0.

Throughout this section, we assume without loss of generality that R(p) can be computed in O(1)

operations for every price vector p ∈ Rn+. Because B is finite, we assume, by scaling if necessary,

4 The strong NP-completeness result eliminates the possibility of a fully polynomial-time approximation scheme
(FPTAS) for general d. Thus, PTAS is the best that we can hope for.
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that maxb∈B b < 1, so the price thresholds are strictly less than one. As a result of this scaling,

setting the product price to 1 is equivalent to removing it from the offer set. The main result of

this section is stated in the following theorem:

Theorem 5.1 (PTAS). For any ε ∈ (0,1), there exists an algorithm Aε that generates a price

vector pε ∈Pd such that

R(pε)≥ (1− ε)Z∗ ,

and the running time of algorithm Aε is O
(
n3× 42d× k(ε)×n4(d+1)k(ε)× log 1

bmin

)
, where

bmin = min
b∈B

b and k(ε) =

[
4

ε
+

4

ε
ln

1

ε

]1 + 1

ln 1
ε
.

We note that Aggarwal et al. [1] developed a PTAS for the special case of d= 0, but their devel-

opment does not extend to general d. Therefore, our development below involves new solution

techniques. We provide a sketch of the proof of Theorem 5.1 and defer the details to Appendix C.

The proof proceeds in three steps:

1. Discretize the price domain. We restrict attention to the discrete grid of prices Domα
def
=

{αs : s∈Z+}= {1, α,α2, . . .}, where Z+ is the set of non-negative integers and α ∈ (0,1). We

show that restriction to Domα results in an α-approximate solution i.e, maxp∈Pd,α
R(p)≥ αZ∗,

where Pd,α
def
= {p∈Pd : pi ∈Domα ∀ i}. See Lemma C.1 in Appendix C.

2. Relax the revenue function. The revenue functionR(p) is not directly amenable to optimization

because the decision of a customer to purchase product i depends on the prices of all the

other products. In order to limit this dependence, we relax the revenue function to allow a

customer to purchase multiple products in each purchase instance. Specifically, given integer

parameter k, define Rα,k(p)
def
=
∑

(b,σ)w(b,σ)
∑n

i=1 1l
[
σ, i,

{
` : p` ≤ b and p` ≤ pi/αk

}]
, so that

a customer previously purchasing product i may now also purchase lower-priced products

that are at least k price levels apart. In other words, the purchased subset {j1, j2, . . .} are

such that pj` ≤ pi · α(`−1)(k+1) for any ` ≥ 1. With this relaxation, it is easy to see that a

customer generating revenue of pi previously now generates at least pi and no more than

pi · (1 +αk+1 +α2(k+1) + · · · ) = pi/(1−αk+1). It thus follows that R(p)≤Rα,k(p)≤R(p)/(1−

αk+1); see Lemma C.2 in Appendix C. Combining this with the approximation from the above

step, we can show that if p̂ is the optimal solution to maxp∈Pd,α
Rα,k(p), then Z∗ ≥R(p̂)≥

α(1−αk+1)Z∗. See Proposition C.1 in Appendix C.

3. Optimize the relaxed revenue function. The above discretization of prices and relaxation of the

revenue function limits the dependence of the decision to purchase product i to only products

whose prices are no more than k levels larger than pi. We exploit this fact to formulate the
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optimization of the relaxed revenue function as a dynamic program. We elaborate this step

further below.

The key step in the proof is to show that the relaxed revenue function can be optimized efficiently

over Pd,α. Specifically, we can establish the following result:

Proposition 5.1 (DP for the relaxed problem). The problem maxp∈Pd,α
Rα,k(p) can be

solved via a DP with a running time of O
(
n3× 42d×n4(k+1)(d+1)× log 1/bmin

log 1/α

)
.

The details of the proof of Proposition 5.1 are deferred to the appendix; we provide an overview

here. First, because it is never optimal to price a product below the minimum possible price thresh-

old, we restrict product prices to {1, α, . . . ,αH}; here, αH is the largest price that is less than or

equal to the smallest price threshold, i.e., αH = max{αs : αs ≤ bmin} and bmin = minb∈B b. It follows

from the definition that H =O
(

log(1/bmin)

log(1/α)

)
. Given this, we represent each price vector p using the

equivalent subset representation: (AH ,AH−1, . . . ,A1,A0), where As
def
= {i : pi = αs} consists of prod-

ucts priced at αs. The optimization problem now reduces to determining the optimal partitioning

of the n products into subsets (AH ,AH−1, . . . ,A1,A0). To simplify notation, we let A[`1:`2] denote

the tuple (A`1 ,A`1−1, . . . ,A`2) for any `1 ≥ `2.

We determine the optimal partitioning in a sequential fashion as follows: for each 0 ≤ s ≤H,

we fix the sets A[H:s−k+1] and consider the sub-problem of determining the maximum revenue

J∗s (A[H:s−k+1]) – under the relaxed revenue function – that can be obtained from only the products

with prices in A[s:0]. Because every product is priced at least αH , we can show that the optimal

prices can be obtained by solving the optimization problem at s=H: maxA[H:H−k+1]
J∗H(A[H:H−k+1]).

Therefore, it is sufficient to show that we can determine J∗s (A[H:s−k+1]), for all possible s and

A[H:s−k+1], and optimize over A[H:H−k+1] efficiently.

We determine J∗s (·) by formulating it as the DP:

J∗s (A[H:s−k+1]) = max
As−k∈D

(
αsGs(A[H:s−k]) +J∗s−1(A[H:s−k])

)
, (12)

where Gs(·) is the number of customers who purchase products in As, and D appropriately restricts

As−k so that A[H:0] is d-sorted.

To understand the recursion, let Ws(A[H:0]) denote the revenue under the relaxed rev-

enue function from the products in A[s:0]. Then, we have, by definition, J∗s (A[H:s−k+1])
def
=

maxA[s−k:0]∈D′(A[H:s−k+1])
Ws(A[H:0]), where D′

(
A[H:s−k+1]

)
denotes the domain of A[s−k:0] given

A[H:s−k+1] such that A[H:0] is d-sorted. Now, the revenue Ws(·) can be decomposed into the revenue

from the purchase of products in As and the revenue from products in A[s−1:0], i.e., we can write
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Ws(A[H:0]) = αsGs(A[H:0]) +Ws−1(A[H:0]), where Gs(A[H:0]) is the number of customers who pur-

chase products in As. Under the relaxed revenue function, the customers who purchase products in

Ai have a consideration set that is a subset of the A[H:i−k], products with prices less than or equal

to k levels above the price of i. Therefore, Gs(·) will only depend on A[H:s−k]. It now follows that

Ws(A[H:0]) = αsGs(A[H:s−k]) +Ws−1(A[H:0]) ,

which implies that

max
A[s−k:0]∈D′(A[H:s−k+1])

Ws(A[H:0]) = max
A[s−k:0]∈D′(A[H:s−k+1])

{
αsGs(A[H:s−k]) +Ws−1(A[H:0])

}
= max

As−k∈D

{
αsGs(A[H:s−k]) + max

A[s−k−1:0]∈D(A[H:s−k])
Ws−1(A[H:0])

}
,

where the last equality follows from decomposing the maximization over A[s−k:0] into our maximiza-

tion over As−k and inner maximization over A[s−k−1:0] with the domains constrained appropriately.

The DP recursion (12) now follows from the definition of J∗s .

We then show that the DP can be solved efficiently by first arguing that the effective state

space of each value function J∗s (·) is small (see Lemma C.5 in Appendix C), consisting of

O
(
n3× 42d×n4k(d+1)

)
distinct values. We then exploit the d-sorted price structure to show that

the number of distinct subsets As is at most O(n4(d+1)). It then follows from the DP recursion

that given J∗s−1(·), the value function J∗s (·) can be computed in O
(
n3× 42d×n4k(d+1)×n4(d+1)

)
=

O
(
n3× 42d×n4(k+1)(d+1)

)
, where the last term arises because the computation for each state

requires maximization over n4(d+1) sets. Finally, because finding the optimal solution requires

computing H value functions, the total complexity scales as O(n3 × 42d × n4(k+1)(d+1) × H) =

O
(
n3× 42d×n4(k+1)(d+1)× log(1/bmin)

log(1/α)

)
. We argue that this term dominates the maximization over

A[H:H−k+1], establishing the result.

Using the above result and choosing appropriate values for α and k, such that α(1−αk+1)≥ 1−ε,

establishes the result of Theorem 5.1.

5.2. Extension to multiple regions

We now extend the PTAS for K = 1 to the general case with K > 1 partitions. For the general case,

we solve K sub-problems: maxp∈Pk∩Pd
R(p) for each 1 ≤ k ≤K. Letting p∗k denote the solution

for the kth sub-problem, we obtain the global optimum p∗ as arg maxk=1,...,K R(p∗k). We solve each

sub-problem approximately using the ideas described for the K = 1 case. It is then clear that

arg maxk=1,...,K R(p̂k) provides the desired approximation to p∗. Therefore, we focus this section

on solving a sub-problem.
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The complexity of solving maxp∈Pk∩Pd
R(p) depends on the shape of Pk. Arbitrary shapes

can make the problem intractable. To avoid this, we focus on regions described by box con-

straints: Pk = {p : ai ≤ pi ≤ ui ∀ i}. We first discretize the price and maximize over the “rounded”

domain Pkα ∩Pd,α, where Pd,α is as defined above and Pkα = {p : pi ∈Domα, α
Li ≤ pi ≤ αUi ∀ i},

with αLi = min{αs : ai ≤ αs} and αUi = max{αs : αs ≤ ui}. As shown in Appendix G, by consider-

ing the relaxed revenue function and adapting the DP technique from Proposition 5.1 in Section

5.1, we can obtain a PTAS for the optimization problem maxp∈Pkα∩Pd
R(p). Then, under some

technical conditions, we can show that the solution of the problem maxp∈Pkα∩Pd
R(p) provides a

good approximation to the original problem maxp∈Pk∩Pd
R(p). The details are beyond the scope

of this research and we do not pursue them here.

6. Numerical Study

We carried out two numerical studies to test our methods. The first study tests the predictive

accuracy of our model on real-world sales transaction data from the IRI Academic Dataset (see

Bronnenberg et. al. [10]). The second study tests the decision accuracy of our model on synthetic

transaction data. The first test accomplishes two objectives: (a) it demonstrates the application of

our methods in a real-world setting, and (b) it pits our method in a horse-race against the popular

benchmark, the LC-MNL model. We find that our method obtains an average of 26% improvement

over the benchmark on a ‘chi-square’ metric, which measures the relative error in predicting market

shares. The second test demonstrates that our method can increase revenues by 11% compared

to the LC-MNL benchmark by improving the joint assortment and pricing decision. We used

synthetic data because we needed the ground-truth model to compare the “true” performance of

the decisions. Next, we describe the details of the studies.

6.1. Predictive accuracy: Case study with the IRI Academic Dataset

The IRI Academic Dataset is a publicly available dataset containing real-world purchase transac-

tions of consumer packaged goods (CPG) for chains of grocery and drug stores. The data consist

of weekly sales transactions aggregated over all the customers. We focused on the transactions of

three categories for the first two weeks in the year 2011: laundry, yogurt, and coffee. Each trans-

action contains the following information: the week and store of purchase, the universal product

code (UPC) of the purchased product, quantity purchased, price paid, and an indicator of whether

the product was on price or display promotion. The dataset for the first two weeks contained a

total of approximately 220K, 544K, and 374K transactions from 1272 stores for laundry, yogurt,

and coffee, respectively.
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We processed the raw transactions to obtain products, prices, and offer sets, as described next.

First, we dealt with data sparsity by aggregating the purchased items by vendors to obtain products.

Each purchased item is identified in the dataset by its collapsed UPC, which is a 13-digit-long code

with digits 4 to 8 (5 digits) denoting the vendor. There are a totals of 75, 90, and 290 vendors in

the first two weeks of purchases for the yogurt, laundry, and coffee categories respectively. Because

no-purchase sales are not observed, we made the assumption that the entire market is reasonably

captured by all the stores and the vendors in the dataset. Further, the focus is on the revenues

from the top 9 vendors, so the remaining vendors comprise the “rest of the market.” Therefore, we

treated the top 9 vendors as “products” and aggregated the remaining vendors into the “outside

good” or the no-purchase option.

Then, we determined the context of offer set and prices for each purchase instance. Each combi-

nation of store and week results in an offer-set and price-vector combination. We inferred the offer

set to be the union of all the products purchased during the particular week, at the particular store.

We set the purchase price of a product equal to the weighted average of the prices of the different

UPCs that comprise the product, where the weight of each price was equal to the corresponding

observed sales at the particular store and week combination.

Our pre-processing resulted in a total of 2470 offer-set and price-vector combinations for each of

the yogurt, laundry, and coffee categories.

6.1.1. Models fit. We compared the predictive accuracy of our model against the popular

LC-MNL benchmark on the above dataset. We briefly describe how each of the models were fitted

to the provided training data.

Benchmark LC-MNL model. The L-class LC-MNL model assumes that customers belong to

one of L classes, for some non-negative integer L, and customers in class ` make choices according

to a single-class MNL model with intercept vector µ` and price coefficient β`. A customer has

a probability of α` of belonging to class `, where α` ≥ 0 for all ` and
∑L

`=1α` = 1. With these

assumptions, the probability that a customer in class ` purchases product c from offer-set and

price combination (S,p) is equal to exp(µ`c−β`pc)/
(

1 +
∑

j∈S exp(µ`j −β`pj)
)

. We estimated the

model parameters by solving the following maximum-likelihood problem:

max
µ,β,α

T∑
t=1

log

(
L∑
`=1

α`
exp(µ`ct −β`pt,ct)

1 +
∑

j∈St exp(µ`j −β`ptj)

)
.

The above optimization problem is, in general, hard to solve (see Train [34]). We used the EM algo-

rithm described in Train [35] to find a stationary point. We picked the LC-MNL as our benchmark
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because it can approximate any random utility choice model arbitrarily closely as the number of

latent classes L increases [34].

Our nonparametric Joint Assortment and Price (JAP) model. We fitted our model using

the EM algorithm described in Section 3.3. We discuss the implementation details of two core

steps: (a) partitioning the training price vectors into K segments and (b) solving the M-step LP.

We clustered the training price vectors into K segments using the popular k-means algorithm

and trained our nonparametric model separately for each segment. We set K = 10 using cross-

validation. We observed that the predictive performance of the model was robust to the choice of K,

as long as it was within a reasonable range. As mentioned above, we fitted a model to each cluster

separately. For prediction, we mapped each test price vector to its closest cluster (as measured by

the distance to the cluster centroid) and used the model trained on the corresponding cluster.

We solved the M-step LP by implementing a popular local search (LS) heuristic, instead of

the DP discussed in Section 4, in order to emphasize the ease of practical implementation of our

method. Our implementation demonstrates that even approximation implementations of the M-

step LP yield accurate predictions. The LS heuristic starts with a random permutation and moves

to the neighbor that results in the maximum improvement in the objective function. The moves are

repeated until either a local optimum is reached, i.e., none of the moves result in an improvement

in the objective function, or we hit a pre-specified limit on the number of moves. We used a limit of

10 moves in our experiments. Several natural definitions for the neighborhood of the permutations

are possible. We define the neighborhood of a permutation as the collection of rankings that are

obtained by swapping the positions of two products in the permutation at a time; the neighborhood

therefore consists of O(n2) rankings. The LS heuristic with this definition of neighborhood has been

shown to find good approximations to the optimal solution (see Ali and Meliǎ [3] and Schalekamp

and van Zuylen [31]) for the problem of Kemeny optimization, which is a special case of M-step

LP (as shown in Appendix B). The LS heuristic also has other desirable properties such as using

fixed amount memory and ease of coding. The precise implementation details of the LS heuristic

are present in Appendix D.

6.1.2. Experiments and results. We carried out a 2-fold cross-validation in which we ran-

domly partitioned the offer-set and price combinations into two parts of roughly equal sizes, trained

the models on one part and tested them on the other part, and repeated the process with the train

and test sets interchanged. For each model, we measured the predictive accuracies in terms of two
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% Improvements Avg Across

over LC-MNL Laundry Yogurt Coffee 3 Product

Under Each Metric Categories

MAPE 23.6% 12.2% 14.2% 16.67%

X2PE 37.2% 21.1% 21.9% 26.73%

Table 1 Improvements in the predictive accuracy of our nonparametric JAP model against the LC-MNL

benchmark. All the numbers are statistically significant at 5%.

popular metrics, mean absolute percentage error (MAPE) and chi-square prediction error (X2PE),

defined as follows: for each model∈ {LC-MCL,JAP}, we compute

MAPEmodel =
1∑

(S,p)∈T |S|
∑

(S,p)∈T

∑
a∈S

∣∣∣θ̂model
a (S,p)− θactual

a (S,p)
∣∣∣

θactual
a (S,p)

,

where θ̂model
a (S,p) is the predicted probability, under the fitted model, that a will be purchased when

offered as part of the offer set S at price vector p, while θ̂actual
a (S,p) is the empirical probability

computed from the observations in the test set. In the above expression, T denotes the collection

of offer-set and price combinations in the test set.

Similarly, for each model∈ {LC-MCL,JAP}, we compute

X2PEmodel =
1∑

(S,p)∈T |S|
∑

(S,p)∈T

∑
a∈S

(n̂model
a (S,p)−nactual

a (S,p))
2

0.5 +nactual
a (S,p)

,

where n̂model
a (S,p) is the predicted number of purchases, under the fitted model, of product a when

offered as part of the offer set S at price vector p, and nactual
a (S,p) is the actual number of observed

purchases in the test set. We computed the predicted number of purchases by multiplying the

predicted choice probability θ̂model
a (S,p) with the number of customers who were offered S,p in the

test set. The X2PE metric is similar to the popular chi-square measure of goodness-of-fit of the form

(O−E)2/E, where O refers to the observed value and E refers to the expected or predicted value.

Table 1 reports, for each product category, the percentage improvements in the MAPE and X2PE

metrics under our nonparametric JAP model relative to the LC-MNL model, defined as

MAPELC-MNL−MAPEJAP

MAPELC-MNL
and

X2PELC-MNL−X2PEJAP

X2PELC-MNL
.

Higher numbers are better. It is evident from the results that our method significantly outperforms

the benchmark method across both metrics. In particular, we notice an average of 16% improvement

under MAPE and 26% improvement for X2PE metrics.
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6.2. Decision accuracy: Simulation study

We now describe the results from our simulation study, which compares the expected revenues

obtained from the assortment and price decisions under our method and the benchmark LC-MNL

model. The results demonstrate that on difficult ground-truth model instances, our model on

average extracts 11.5% more revenues from the market than the benchmark method. The broad

experimental setup is as follows:

1. Pick an instance of the LC-MNL model class as the ground-truth model.

2. Use the ground-truth model to generate transaction data for a collection of assortment and

price combinations. The generated data are representative of data collected in practice.

3. Fit the simulated transaction data to our model and a benchmark LC-MNL (true) model.

4. Optimize both the fitted models to determine the joint assortment and price decisions.

5. Compare the ground-truth revenues from the two decisions to determine the average increase

in revenues.

The above experimental procedure pits the decisions from our method to the decisions from the

true model. We expect the true model to perform better if sufficient data are available. However, in

practice, customers exhibit diverse and complex choice behaviors, and available data are limited.

For such cases, it is no longer clear if fitting the true model will in fact yield the best perfor-

mance. Our results demonstrate that for complex ground-truth models, our model provides better

approximations than fitting the true model when available data are limited.

Ground-truth models generated. We randomly generated instances of the ground-truth

model from the L-class LC-MNL model class. The number of products was n= 9 (excluding the

no-purchase option). We considered L= 5,10,15,20 latent classes. Product prices were chosen from

the 21 levels in the set P = {0.5,0.525,0.55, . . . ,0.975,1}, starting from 0.5 in increments of 0.025

up to 1. For each value of L, we randomly sampled 50 instances as follows:

1. The price of each product was sampled uniformly at random from the discrete set P.

2. The mixing weight of each class was sampled uniformly at random from the interval [0,1] and

then normalized so that the mixing weights sum to 1.

3. For each 1≤ `≤ L, the consideration set C`, consisting of up to five products, was sampled

uniformly at random.

4. An extra class with the consideration set {1,2, . . . , n} \ ∪Kk=1Ck, consisting of products not

covered by any of the other consideration sets, if any, was added.

5. The following was done for each class:
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(a) for each of the products in the consideration set corresponding to the class, an intercept

term α was sampled uniformly at random from the interval [−4,1], a price coefficient β

was sampled uniformly at random from the interval [−3,−2], and the parameter v was

set to exp(α+βp), where p was the price of the product; and

(b) the parameter v of the remaining product was set to zero.

These models are computationally hard to estimate and optimize (see Désir and Goyal [12]).

Synthetic transaction data generated. From each instance of the ground-truth model

described above, we generated synthetic transaction data as follows: we generated 30 price vectors

by sampling the price of each product independently and uniformly at random from the discrete set

P. For each price vector, we generated 1000 offer sets by sampling subsets of sizes between two and

eight uniformly at random. For each of the resulting 30,000 offer-set and price combinations, we

randomly sampled a product choice according to the ground-truth model instance. The resulting

data are of the form (c1,p1, S1), (c2,p2, S2), . . . , (cT ,pT , ST ), where T = 30,000. The above sampling

mechanism mimics realistic settings in which prices change at a slower rate, but offer sets change

at a faster rate because of stockouts, deliberate scarcity, or web page limitations.

Experiments conducted. For each ground-truth model instance, we fitted our nonparametric

JAP and the benchmark LC-MNL models to the synthetic transaction data. We solved the following

MLE problem to fit the benchmark LC-MNL model with k classes:

max
µ,β,α

T∑
t=1

log

(
L∑
`=1

α`
exp(µ`,ct −β`,ctpt,ct)

1 +
∑

j∈St exp(µj −β`,jptj)

)
.

The above optimization problem is, in general, hard to solve (see Train [34]). We used the EM

algorithm described in Train [35] to find a stationary point. We tuned the number of classes through

cross-validation. To fit our model, we used the algorithm described in Section 3.3 and estimated

parameters g and λ with a single partition.

For each of the fitted models, we computed estimates of the optimal joint assortment and price

decision. We estimated the optimal decisions under the benchmark LC-MNL model and the non-

parametric methods by solving the MILPs LC-MNL Joint Opt and Nonparametric Joint

Opt, respectively. The MILPs are described in Appendix E. We solved the MILPs with a time limit

of 40s using Gurobi Optimizer version 6.0.2 on a computer with a 3.5GHz Intel Core i5 processor,

16GB of RAM, and the Mac OSX Yosemite operating system. The MILPs may not be solved to

optimality within the provided time limit, in which case we used the best solution obtained by

Gurobi as the estimate of the optimal decision.
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# latent classes (L) 5 10 15 20

% improvement 11.23% 12.31% 11.86% 10.53%

Table 2 Improvements in the revenue under the decision computed from our nonparametric JAP model

against the LC-MNL benchmark. All numbers are statistically significant at 5%.

Results and discussion. For each number of latent classes L∈ {5,10,15,20}, we generated 50

ground-truth model instances. For each ground-truth model instance q= 1,2, . . . ,50, we computed

the optimal assortment and price decisions
(
S

(q)
JAP,p

(q)
JAP

)
and

(
S

(q)
LC-MNL,p

(q)
LC-MNL

)
respectively under

the JAP and LC-MNL models fitted to the transaction data generated from the qth ground-truth

model instance. We then evaluated the percentage increase in the (true) revenue extracted from

using our JAP model vs. the benchmark LC-MNL model:

Diff(q) =
R(q),true

(
S

(q)
JAP,p

(q)
JAP

)
− R(q),true

(
S

(q)
LC-MNL,p

(q)
LC-MNL

)
R(q),true

(
S

(q)
LC-MNL,p

(q)
LC-MNL

)
where R(q),true(·, ·) denotes the true revenue function associated with the qth instance.

Table 2 reports, for each number of latent classes L, the average percentage increase in the

revenues extracted from the decision under our model relative to the decision under the fitted

LC-MNL model; that is, 1
50

∑50

q=1 Diff(q). The results illustrate that, on average, our method can

extract 11.5% more revenues from the market than the benchmark method.

Note that our experiments pit our model against the true model. We attribute the poor per-

formance of the benchmark to the presence of different consideration sets for different customer

segments. The training data are not sufficient for the estimation procedure to drive the parameter

v to zero for products not in the consideration set. Our model, on the other hand, is designed to

be flexible to capture complex choice patterns.

7. Conclusions

Motivated by the inflexibility of existing models to capture the joint effect of assortments and prices,

we proposed a tractable, nonparametric joint assortment and price choice model. Our approach

is data driven, makes few structural assumptions, and is designed to improve the accuracy of

revenue predictions. Surprisingly, the model also allows for tractable estimation and tractable

optimization. The key technical contribution of our work is the identification of classes of pricing

structures of increasing complexity. We then related the complexity of the pricing structure with

the computational burden of carrying out estimation and optimization. Our characterization allows
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us to establish theoretical guarantees for our estimation algorithm and design a PTAS for the joint

assortment and price optimization problem.

Our work opens the door for many exciting future research directions. The core of our model

is based on a two-stage choice process, one in which a customer first forms a consideration set of

relevant products and then chooses from the consideration set. Existing work in marketing provides

empirical support for such a two-stage process in which customers adopt screening heuristics to

form consideration sets. Our work has shown the potential gains in predictive accuracy that can

be obtained from the two-stage choice models. Exploring the additional flexibility afforded by

consideration sets to obtain tractable, nonparametric models is an exciting future direction.

Another key aspect of our work is our ability to provide guarantees for solving the M-step LP.

As discussed in Section 4, the M-step LP generalizes the popular Kemeny optimization problem.

While it has been shown that the Kemeny optimization problem is NP-hard, very little work has

been done on understanding the source of complexity to find tractable sub-problems. The d-sorted

price characterization we obtain is one of the few general structures that has allowed for isolation

of the source of complexity to arrive at algorithms with provable guarantees. Further exploration of

the d-sorted price structures can allow us to obtain principled heuristics that have so far remained

unexplored for the very important Kemeny optimization problem. Finally, it is surprising that

the d-sorted pricing structures also allow us to design a PTAS for the joint assortment and price

optimization problem. Taking the key intuitions behind the PTAS to design scalable optimization

algorithms for practical-sized problems can have a huge practical impact.
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Appendix A: Proofs for Section 3

A.1. Proof of Lemma 3.1

Letting Bt denote the latent threshold observed for customer t, the complete data log-likelihood function is

given by

LC
def
=
∑
t

log
(
gBtPλ

(
ct|SBtt

))
=
∑
t

log gBt +
∑
t

logPλ(ct|SBtt ) ,

where for any b ∈ B, Sbt = {a∈ St ∪{a0} : pta ≤ b}. We simplify the above expression by re-arranging and

collecting terms as follows. We can simplify the first sum by collecting the terms corresponding to the same

threshold level b together. Letting mb denote the number of customers in the data with threshold b, we can

write
∑

t
log gBt =

∑
b∈Bmb log gb. Similarly, we simplify the second sum by collection terms corresponding

to the same choice and consideration set pair (a,A) with a= ct and A= SBtt together. For that, we define

the collection of all possible tuples (ct, S
Bt
t ):

C def
=
{

(a,A) : a= ct and A= Sbt for some b∈B and 1≤ t≤ T
}
.

Further, let γa,A denote the number of customers t with the choice and consideration set pair (a,A). With

this, it follows that
∑

t logPλ(ct|SBtt ) =
∑

(a,A)∈C γa,A logPλ(a|A). Putting everything together, we get

LC =
∑
b∈B

mb log gb +
∑

(a,A)∈C

γa,A logPλ(a|A),

which is the desired result.

A.2. Proof of Lemma 3.2

We first compute the probability ht(b) that customer t has latent threshold b conditioned on the observation

ot = (ct, St,pt) and model parameters ĝ and λ̂. If Bt denotes the latent threshold of customer t, then we can

write

ht(b)
def
= E[1l{Bt=b}|ot, ĝ, λ̂] = Prĝ,λ̂ (Bt = b|ot) =

Prĝ,λ̂(ot|Bt = b) Prĝ,λ̂(Bt = b)∑
b′∈BPrĝ,λ̂(ot|Bt = b′) Prĝ,λ̂(Bt = b′)

=
Pλ̂(ct|Sbt )ĝb∑

b′∈B Pλ̂(ct|Sb′t )ĝb′
.

Furthermore, we have that the expected number of customers with latent threshold b is given by mb =∑
t
1l{Bt=b} and the expected number of customers with choice, consideration-set tuple (a,A) is given by

γa,A =
∑

t

∑
b∈B 1l{Bt=b}1l{ct=a,Sbt=A}. With this we can write

m̂b =E[mb|ĝ, λ̂] =

T∑
t=1

E[1l{Bt=b}|ĝ, λ̂] =

T∑
t=1

ht(b)
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and

γ̂a,A =E[γa,A|ĝ, λ̂] =

T∑
t=1

∑
b∈B

E[1l{Bt=b}|ĝ, λ̂]1l{ct=a,Sbt=A} =

T∑
t=1

∑
b∈B

ht(b)1l{ct=a,Sbt=A}

Since the complete log-likelihood function is given by LC =
∑

b∈Bmb log gb+
∑

(a,A)∈C γa,APλ(a|A), the result

of the lemma follows from the above expressions for E[mb|ĝ, λ̂] and E[γa,A|ĝ, λ̂].

A.3. Proof of Proposition 3.1

In order to prove the result of the proposition, we need the following lemma.

Lemma A.1. Suppose we are given ŷ ∈QC such that ŷ> 0. Then, for any y= αŷ+(1−α)x with 0<α≤ 1

and x∈QC, we must have

f(y)≤ f(ŷ) + (1−α)

−T +
∑

(a,A)∈C

ca,Axa,A

 .
where ca,A

def
= γ̂a,A/ŷa,A. Further, if y, ŷ≥ η > 0, then we must have

f(y)≥ f(ŷ) + (1−α)

−T +
∑

(a,A)∈C

ca,Axa,A

− 2((1−α)/η)2T 2

where y= αŷ+ (1−α)x.

Proof. We first establish the upper bound. For that, we use the subgradient inequality for log(·). Specif-

ically, since log(·) is a strictly concave function, we have the subgradient inequality at z0 ∈R+

log z ≤ (log z0− 1) + z/z0

for any z ∈R+ with equality occurring if and only if z = z0. We assume that ŷa,A > 0 for all (a,A)∈ C. Thus,

we can apply the above inequality with z0 = ŷa,A to obtain

log ya,A ≤ (log ŷa,A− 1) + ya,A/ŷa,A for any (a,A)∈ C.

Since γ̂a,A > 0 for all (a,A)∈ C, we can now write∑
(a,A)∈C

γ̂a,A log ya,A ≤
∑

(a,A)∈C

γ̂a,A log ŷa,A−
∑

(a,A)∈C

γ̂a,A +
∑

(a,A)∈C

γ̂a,A
ŷa,A

ya,A,

where we require that ya,A > 0 for all (a,A) ∈A. Since γ̂a,A is the expected number of customers with con-

sideration set A purchasing product a, we must have that
∑

(a,A)∈C γ̂a,A = T , the total number of customers.

Now let y = αŷ + (1− α)x for some x ∈ QC and α ∈ (0,1]. Since ŷ > 0, x ≥ 0, and α > 0, it follows that

y > 0. Hence, we can use the above upper bound inequality with y = αŷ+ (1−α)x and letting ca,A denote

γ̂a,A/ŷa,A to get∑
(a,A)∈C

γ̂a,A log ya,A ≤
∑

(a,A)∈C

γ̂a,A log ŷa,A−T +
∑

(a,A)∈C

ca,A(αŷa,A + (1−α)xa,A)

=
∑

(a,A)∈C

γ̂a,A log ŷa,A−T +α
∑

(a,A)∈C

γ̂a,A + (1−α)
∑

(a,A)∈C

ca,Axa,A

=
∑

(a,A)∈C

γ̂a,A log ŷa,A + (1−α)

−T +
∑

(a,A)∈C

ca,Axa,A

 ,
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where the first equality follows from ca,Aŷa,A = γ̂a,A and the second equality follows from
∑

(a,A)∈C γ̂a,A = T .

The upper bound result now follows noting the definition of f(·) that f(y) =
∑

(a,A)∈C γ̂a,A log ya,A.

We now prove the lower bound result. In order to obtain the lower bound, we consider the second-order

Taylor expansion around z = z0 > 0 for log(·) to write

log z = log z0 +
z− z0

z0

− (z− z0)2

ζ2

for some ζ between z0 and z. We focus on the domain bounded away from zero. Specifically, let η > 0 be the

lower bound on z, z0, so that have −1/ζ2 ≥−1/η2 for any ζ between z and z0. We must then have

log z ≥ log z0− 1 + z/z0−
(z− z0)2

η2
.

Now consider y ≥ η. Further, let x ∈QC and α ∈ [0,1] be such that y = αŷ + (1− α)x; such x and α can

always be found since QC is convex. Since ŷ≥ η, applying the above inequality at z = ya,A and z0 = ŷa,A for

some (a,A)∈ C, we get

log ya,A ≥ log ŷa,A + (1−α)

[
−1 +

xa,A
ŷa,A

]
− ((1−α)/η)2(ŷa,A−xa,A)2.

Summing the above inequality over (a,A)∈ C and using arguments similar to above, we get

∑
(a,A)∈C

γ̂a,A log ya,A ≥
∑

(a,A)∈C

γ̂a,A log ŷa,A + (1−α)

−T +
∑

(a,A)∈C

ca,Axa,A

− ((1−α)/η)2
∑

(a,A)∈C

(ŷa,A−xa,A)2

Now note that

∑
(a,A)∈C

(ŷa,A−xa,A)2 ≤
∑

(a,A)∈C

(ŷ2
a,A +x2

a,A)≤

 ∑
(a,A)∈C

ŷa,A

2

+

 ∑
(a,A)∈C

xa,A

2

= 2T 2,

where the first and second inequalities follow from the fact that ŷa,A, xa,A ≥ 0 for all (a,A) ∈ C and the last

equality follows from the fact that
∑

(a,A)∈C ŷa,A = T and
∑

(a,A)∈C xa,A = T , the total number of customers,

because ŷ,x∈Q. We can now write

∑
(a,A)∈C

γ̂a,A log ya,A ≥
∑

(a,A)∈C

γ̂a,A log ŷa,A + (1−α)

−T +
∑

(a,A)∈C

ca,Axa,A

− 2((1−α)/η)2T 2.

This establishes the result of the lemma.

We now use the result of the lemma to establish the result of the proposition. For that first, suppose

v∗ ≤ 0, where v∗
def
= −T + maxx∈QC

∑
(a,A)∈C ca,Axa,A. Since any y ∈QC can be written as y= αŷ+ (1−α)x,

for some x∈QC, α∈ [0,1], it follows from the upper bound in Lemma A.1 that

f(y)≤ f(ŷ) + (1−α)

−T +
∑

(a,A)∈C

ca,Axa,A

≤ f(ŷ) + (1−α)v∗ ≤ f(ŷ).

Thus, ŷ is an optimal solution to maxy∈QC f(y) and we cannot finding an improving solution.

Now suppose v∗ > 0 and x∗ ∈QC is such that v∗ =−T +
∑

(a,A)∈C ca,Ax
∗
a,A. We argue that there exists an

α∈ (0,1] such that f(y)> f(ŷ) for y= αŷ+ (1−α)x∗.
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To see this, we focus on α ∈ (η/ŷmin,1], where ŷmin = min(a,A)∈C ŷa,A and η < ŷmin. Then, it follows that

y≥ αŷ≥ αŷmin ≥ η. Thus, we can invoke the lower bound result from Lemma A.1 to write

f(y)≥ f(ŷ) + (1−α)

−T +
∑

(a,A)∈C

ca,Axa,A

− 2((1−α)/η)2T 2 = f(ŷ) + (1−α)

[
v∗− 2T 2 1−α

η2

]
.

Now, in order to show that y strictly improve on ŷ, it is sufficient exhibit an α ∈ (η/ŷmin,1) such that

v∗ > 2T 2(1−α)/η2. Equivalently, we must choose α> 1−0.5(v∗η2/T 2). Combining this constraint on α with

α∈ (η/ŷmin,1], we must have

max

{
η

ŷmin

,1− v∗η2

2T 2

}
<α< 1.

It follows from the above inequalities that if η < ŷmin, then the solution space defined by the above set of

inequalities is non-empty. It thus follows that whenever v∗ > 0, there exists an α∈ (0,1) that strictly improves

the solution over ŷ.

An improving α can be found by solving the following one-dimensional search problem

arg max
0≤α≤1

f(αŷ+ (1−α)x∗) = arg max
0≤α≤1

∑
(a,A)∈C

ca,A log
(
α
(
ŷa,A−x∗a,A

)
+x∗a,A

)
.

Due to the global concavity of log(·) and the fact that a linear combination with non-negative cofficients

of a collection of concave functions is concave, it follows that the above optimization problem is concave

maximization over a single variable. Hence, it can be carried out efficiently. The result of the proposition

now follows.

A.4. EM algorithm for model parameter estimation

Input Data = {(c1,p1), (c2,p2, . . . , (cT ,pT ))}; number of products n, finite threshold space B.

Initialization: Construct the collection of tuples C = {(a,A) : a∈A,A= {j : ptj ≤ b} for some b∈B}. Determine

initial estimates y(0) such that y(0) ∈QC and ya,A > 0 for all (a,A)∈ C. Also, let
(
g

(0)
b : b∈B

)
denote an initial PMF

over the thresholds such that g
(0)
b > 0 for all b.

EM iterations: For k= 1,2, . . . do

E-step: Compute
(
h

(k)
t (b) : b∈B, t= 1, . . . , T

)
and

(
γ

(k)
a,A : (a,A)∈ C

)
, where

h
(k)
t (b) =

yct,Sbt
g

(k)
b∑

q∈B yct,Sqt g
(k)
q

and γ
(k)
a,A =

T∑
t=1

∑
b∈B

h
(k)
t (b)1l{ct=a,A=Sbt} ,

where Sbt = {a : pta ≤ b} for all t and b.

M-step: Compute
(
g

(k+1)
b : b∈B

)
and

(
y

(k+1)
a,A : (a,A)∈ C

)
, where

g
(k+1)
b =

1

T

T∑
t=1

ht(b)

x(k+1) = arg max
x∈Q

∑
(a,A)∈Q

(
γ̂a,A/y

(k)
a,A

)
xa,A

y(k+1) = (1− ε∗)y(k) + ε∗x(k+1), where ε∗ = arg max
0≤ε≤1

∑
(a,A)∈C

γ̂a,A log
(

(1− ε)y(k) + εx(k+1)
)
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Until: Stopping criteria are met.

Output. Sequence of estimates 〈g(k),y(k) : k= 0,1,2, . . . 〉

Appendix B: Proofs for Section 4

B.1. Proof of Proposition 4.1

We show that the following optimization problem is NP-hard to solve:

arg max
σ

∑
(a,A)∈C

ca,A1l[σ, a,A].

For that, we obtain a reduction from the Kemeny optimization problem – a known NP-hard problem for

n≥ 4; see Ali and Meliǎ [1].

The Kemeny optimization problem is a classical rank aggregation problem. The setup is as follows. We

are given a collection of total orderings/rankings over n items, and our goal is find a single ranking that

minimizes the average ‘distance’ from all the given rankings. This problem arises in the borader context of

‘rank aggregation’, in which the goal is to find the most consistent ranking, given a multitude of preferences.

The distance measure between rankings that is used in the context of Kemeny optimization is the so-called

Kendall-tau distance that specifies that the distance between two rankings σ and π is equal to the number of

pairs a 6= a′ for which the relative prference under σ and π are different. More formally, we define the distance

d(σ,π) =
∑
a6=a′

1l[(σ−1(a)−σ−1(a′))(π−1(a)−π−1(a′))< 0].

With this defition of the distance, now suppose we are given a collection of K rankings π1,π2, . . . ,πK . The

Kemeny optimization problem then is to find the best ranking σ∗ defined as

σ∗ = arg max
σ

K∑
k=1

d(σ,πk).

To see how the Kemeny optimization problem reduces to our optimization problem of interest, define the

collection of tuples C = {(a,{a,a′}) : a 6= a′, a, a′ ∈N}. We can then write

K∑
k=1

d(σ,π) =

K∑
k=1

∑
a6=a′

1l[(σ−1(a)−σ−1(a′))(π−1
k (a)−π−1

k (a′))< 0]

=
∑
a6=a′

K∑
k=1

1l[(σ−1(a)−σ−1(a′))(π−1
k (a)−π−1

k (a′))< 0]

=
∑
a6=a′

K∑
k=1

(
1l[σ, a,{a,a′}]1l[π−1

k (a′)<π−1
k (a)] + 1l[σ, a′,{a,a′}]1l[π−1

k (a)<π−1
k (a′)]

)
=

∑
(a,{a,a′})∈C

1l[σ, a,{a,a′}]

[
K∑
k=1

1l[π−1
k (a′)<π−1

k (a)]

]
=

∑
(a,A)∈C

ca,A1l[σ, a,A],
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where we define ca,A to be
∑K

k=1 1l[π−1
k (a′)< π−1

k (a)], the number of ranked lists πk that prefer a′ to a in

subset A= {a,a′}. Thus, if we can solve our optimization problem efficiently, then we should be able to solve

the Kemeny optimization problem efficiently, contradicting the fact that the Kemeny optimization problem

is NP-hard.

This establishes the result of the Proposition.

B.2. Proof of Proposition 4.2

Our goal is to solve the following optimization problem

arg max
σ

∑
(a,A)∈C

ca,A1l[σ,a,A] (EC.1)

where C ⊆ Cd for any given integer 0≤ d≤ nwith the collection Cd is defined as

Cd = {(a,A) : a∈A,A= {a′ : pa′ ≤ b} for some b∈B and p∈Pd} .

We solve the above optimization problem by formulating it as a Dynamic Program (DP) in which we

construct the optimal preference list σ∗ sequentially in the order of their preference, starting from the most

preferred product. For that, let σr denote the product ranked at position r according to preference list σ.

The objective function in (EC.1) at σ can be written as∑
(a,A)∈C

ca,A1l[σ,a,A] =

n∑
r=0

∑
(σr,A)∈Cd

cσr,A1l[σ, σr,A] =

n∑
r=0

∑
(σr,A)∈C : A∩{σ0,σ1,...,σr−1}=∅

cσr,A1l[σ, σr,A],

where the first equality follows from a straightforward rearrangement of the terms and the second equality

follows from the fact that 1l[σ, σr,A] = 0 for any subset A that contains any of the products in the set

{σ0, σ1, . . . , σr−1} that are preferred to σr. The above reformulation suggests the following DP formulation:

Vr(σ̄r) = max
σr /∈σ̄r

 ∑
(σr,A)∈C : A∩σ̄r=∅

cσr,A +Vr+1(σ̄r+1)

 ,

with the boundary condition Vn+1(·)≡ 0 and σ̄0 = ∅ for all σ and σ̄r
def
= (σ0, σ1, . . . , σr−1) is the tuple consisting

of the products ranked at the first r− 1 positions. It can be seen that the optimal value to (EC.1) is given

by V0(σ̄0) in the above DP. The optimal solution may be constructed through backward induction.

The dominating components in the computational complexity of the above DP are the cardinality of the

state space and the number of choice,consideration set tuples. First note that for each value of σ̄r, computing

the value of Vr(σ̄r) requires us to search over all σr /∈ σ̄r, assuming we are provided a look-up table for

Vr+1 (σ̄r+1) for each possible value of σ̄r+1; thus, this step has a worst-case computational complexity of

O(n). Furthermore, summing over all (σr,A) requires O(|C|) computations. Thus, for each value of σ̄r, the

overall computational complexity is bounded above by O(n |C|).

Next we determine the number of distinct values for which we need to compute Vr(·). We show that when

the choice, consideration-set combinations are restricted to belong to Cd, we don’t have to compute Vr(·)



ec8 e-companion to Jagabathula and Rusmevichientong: Nonparametric Joint Assortment and Price Model

for all possible values of σ̄r. The reason is that there exists a sufficient statistic τ(σ̄r) such that Vr(σ̄r) is

completely determined by the sufficient statistic τ(σ̄r). An implication is that Vr(σ̄r) = Vr(σ̄
′
r) whenever

τ(σ̄r) = τ(σ̄′r) even though σ̄r 6= σ̄′r. Therefore, we only need to compute Vr(·) for distinct values of τ(σ̄r). If

τ(σ̄r) can take at most Xr values, it immediately follows that the computational complexity of computing

Vr(σ̄r) for all possible values of σ̄r (assuming we have been provided a lookup table for Vr+1(σ̄r+1) for all

possible values of σ̄r+1) is bounded above by O(n |C|Xr).

Supposing that we can find a sufficient statistic τ(σ̄r), we solve the DP we follows:

1. Initialization. As a boundary condition, set Vn+1(·)≡ 0.

2. For r= n, . . . ,1 do the following:

(a) For every feasible value of t(σ̄r), solve the dynamic programming recursion to compute Vr(σ̄r) =

Vr(τ(σ̄r)) by replacing σ̄r with τ(σ̄r) in (EC.1). Such replacement is legal because of our definition

that τ(σ̄r) is a sufficient statistic.

3. Given V1(τ(σ̄1)) for all possible values of τ(σ̄1), now solve

V0 = max
σ0∈N∪{0}

 ∑
(σ0,A)∈C

cσ0,A + V1 (τ(σ̄1))


Store the optimal solution as σ∗0 and set σ̄∗1 = (σ∗0).

4. Run backward induction to determine the optimal solution: for r= 1,2, . . . , n do the following:

(a) σ∗r = arg maxσr∈Dr Vr(τ(σ̄∗r )), where Dr is the domain of σr. If there are multiple optima, pick one

solution arbitrarily.

5. The optimal preference list σ∗ is given by (σ∗0, σ
∗
1, . . . , σ

∗
n).

Note that the above algorithm has two loops that run n + 1 times and for each r, the computational

complexity is bounded above by O(n |C|Xr). Therefore, absorbing constant terms into the big-Oh notation,

the complexity of the above procedure scales as O (n |C|
∑n

r=0Xr). We now show that the term
∑n

r=0Xr

scales polynomially in n when the choice, consideration-set combinations belong to C ⊂ Cd, for a fixed d. We

show this by first exhibiting a sufficient statistic τ(σ̄r) and then showing that it is polynomially large.

We claim that τ(σ̄r) defined below is a sufficient statistic:

τ(σ̄r) = {σ0, σ1, . . . , σr−1}∩ {σ∗, σ∗+ 1, . . . , σ∗+ 2d} ,

where we define σ∗
def
= min{σ0, σ1, . . . , σr−1}. In order to prove that τ(σ̄r) is indeed a sufficient statistic, it is

sufficient to establish the following three properties:

1. One-Period Reward Sufficiency: The collection of sets {(σr,A)∈ Cd : A∩{σ0, σ1, . . . , σr−1}=∅} can be

determined from τ(σ̄r).

2. State Space Sufficiency: τ(σ̄r+1) can be determined from σr and τ(σ̄r).

3. Action-Set Sufficiency: The domain of σr i.e., {0}∪ (N \ σ̄r) can be determined from τ(σ̄r).



e-companion to Jagabathula and Rusmevichientong: Nonparametric Joint Assortment and Price Model ec9

The conditions above ensure that we can choose the optimal action in each stage by keeping track of only

the sufficient statistic.

We first show that we can construct the collection {(σr,A)∈ Cd : A∩{σ0, σ1, . . . , σr−1}=∅} using only

τ(σ̄r). For this, fix a σr and consider a subset A such that (σr,A) ∈ Cd. Then, it follows from the definition

of Cd that A= {a : pa ≤ b} for some b ∈ B and p ∈Pd. If π denotes the price ordering corresponding to p

so that pπ−1(0) ≤ pπ−1(1) ≤ · · ·pπ−1(n) with ties broken arbitrarily, then A= {π−1(0), π−1(1), . . . , π−1(i)} for

some integer i. Further, since b is finite, pa <∞ for all a∈ Si. We now have the following claim.

Claim: {π−1(0), π−1(1), . . . , π−1(i)}∩{σ0, σ1, . . . , σr−1}=∅ if and only if {π−1(0), π−1(1), . . . , π−1(i)} ⊆
{0,1,2, . . . , σ∗+ 2d} \ τ(σ̄r), where recall that we are given an indexing of the products so that |π(j)− j| ≤ d
for any product j such that pj 6=∞.

Proof of Claim: For simplicity of notation, let Si denote the set {π−1(0), π−1(1), . . . , π−1(i)}. We prove

the claim in two steps: (i) Si ∩ {σ0, σ1, . . . , σr−1} = ∅ =⇒ Si ⊆ {0,1, . . . , σ∗+ 2d} \ τ(σ̄r) and (ii) Si ⊆
{0,1, . . . , σ∗+ 2d} \ τ(σ̄r) =⇒ Si ∩{σ0, σ1, . . . , σr−1}=∅.

Step (i): Si ∩ {σ0, σ1, . . . , σr−1} = ∅ =⇒ Si ⊆ {0,1, . . . , σ∗+ 2d} \ τ(σ̄r). We prove the contrapositive of

this result. Suppose Si * {0,1,2, . . . , σ∗+ 2d} \ τ(σ̄r). Then, for some j < i, we have that π−1(j) ∈ τ(σ̄r) ∪
{` : ` > σ∗+ 2d}. If π−1(j) ∈ τ(σ̄r), then we must have that π−1(j) ∈ {σ0, σ1, . . . , σr−1} because τ(σ̄r) ⊆
{σ0, σ1, . . . , σr−1}. It thus follows that Si ∩{σ0, σ1, . . . , σr−1} 6=∅, proving the result. Now suppose π−1(j)>

σ∗ + 2d. Since pπ−1(j) <∞ and p ∈Pd, it follows that |π(π−1(j))−π−1(j)| ≤ d, which implies that j >

−d+π−1(j). This combined with the fact that π−1(j)>σ∗+2d implies that j > σ∗+d> π(σ∗), where the last

inequality follows because |π(σ∗)−σ∗| ≤ d. It thus follows that the price rank of σ∗ is smaller than j, which

in turn implies that σ∗ ∈ Si because Si contains the products with price ranks from 0 to i > j. Further, it

follows by our definition that σ∗ = min{σ0, σ1, . . . , σr−1} ∈ {σ0, σ1, . . . , σr−1}. Hence, Si∩{σ0, σ1, . . . , σr−1} ⊃
{σ∗} 6=∅. This finishes the proof of the first step.

Step (ii): Si ⊆ {0,1, . . . , σ∗+ 2d} \ τ(σ̄r) =⇒ Si ∩ {σ0, σ1, . . . , σr−1} = ∅. It is sufficient to show that for

`= 0,1, . . . , r− 1, either σ` ∈ τ(σ̄r) or σ` > σ∗ + 2d. It follows from the definition of τ(σ̄r) that σ` ∈ τ(σ̄r) if

and only if σ` ∈ {σ∗, . . . , σ∗+ 2d}. So, suppose σ` /∈ {σ∗, . . . , σ∗+ 2d}. Now since σ∗
def
= min{σ0, . . . , σr−1}, we

have that σ` ≥ σ∗. Hence, σ` /∈ {σ∗, . . . , σ∗+ 2d} must imply that σ` >σ∗+ 2d, completing the proof.

The result of the claim now follows.

It is now clear from the above claim that we can construct the collection of tuples

{(σr,A)∈ Cd : A∩{σ0, σ1, . . . , σr−1}=∅} can be constructued by including the tuples (σr,A)∈ Cd for which

A⊂ {0,1, . . . , σ∗+ 2d}\τ(σ̄r) where σ∗ = min τ(σ̄r). This finishes the proof of One-Period Reward Sufficiency

property of the sufficient statistic.

We now prove State Space Sufficiency property i.e., τ(σ̄r+1) can be determined from σr and τ(σ̄r). There

are two cases to consider: (1) σr >σ∗ and (2) σr <σ∗ where σ∗ = min{σ0, . . . , σr−1}. In the case σr >σ∗, we

have that σ∗ remains the minimum even after adding σr i.e., we have that σ∗ = min{σ0, σ1, . . . , σr−1, σr}. It

now immediately follows that

τ(σ̄r+1) = {σ0, σ1, . . . , σr−1, σr}∩ {σ∗, σ∗+ 1, . . . , σ∗+ 2d}
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= ({σr}∪ ({σ0, σ1, . . . , σr−1})∩{σ∗, σ∗+ 1, . . . , σ∗+ 2d})

= ({σr}∩ {σ∗, σ∗+ 1, . . . , σ∗+ 2d})∪ τ(σr).

Now suppose σr <σ∗. This implies that σr = min{σ0, σ1, . . . , σr−1, σr}. Thus, we can write

τ(σ̄r+1) = {σ1, . . . , σr−1, σr}∩ {σr, σr + 1, . . . , σr + 2d}

= {σr}∪ ({σ1, . . . , σr−1}∩ {σr + 1, . . . , σr + 2d})

= {σr}∪ ({σ1, . . . , σr−1}∩ {σ∗, . . . , σr + 2d})

= {σr}∪ (τ(σ̄r) \ {σr + 2d+ 1, . . . , σ∗+ 2d}) ,

where the third equality follows from the fact that σ` /∈ {σr + 1, . . . , σ∗− 1} for all 1 ≤ ` ≤ r − 1 because

σ∗ = min{σ0, σ1, . . . , σr−1}. It thus follows that τ(σ̄r+1) is completely determined by σr and τ(σ̄i−1). This

establishes State Space Sufficiency.

We now focus on Action-Set Sufficiency. For that, we consider two cases: (i) max τ(σ̄r)< n− r+ |τ(σ̄r)|
and (ii) max τ(σ̄r) = n− r+ |τ(σ̄r)|. We claim that in case (i), σr can take any value in {0}∪ (N \ τ(σ̄r)) and

in case (ii), σr can take any value in {0,1, . . . ,max τ(σ̄r)} \ τ(σ̄r).

To see the above, first consider case (i), so that max τ(σ̄r)<n−r+ |τ(σ̄r)|. Since τ(σ̄r)⊆ {σ0, σ1, . . . , σr−1}
and σr must not take any values in {σ0, σ1, . . . , σr−1}, it is clear that σr /∈ τ(σ̄r). Now consider any element

x ∈ (N \ τ(σ̄r)) ∪ {0}. If x < max τ(σ̄r), it is clear that x /∈ {σ0, σ1, . . . , σr−1} because any σ` ≤ max τ(σ̄r)

must belong to the set τ(σ̄r). Now suppose x>max τ(σ̄r). If max τ(σ̄r) = σr−1, then it immediately follows

that x /∈ {σ0, σ1, . . . , σr−1}.

So, we suppose that max τ(σ̄r) = σ∗ + 2d. Now consider any σr > σ∗ + 2d. We claim that the objective

value of the optimization problem in the DP recursion is given by∑
(σr,A)∈Cd : A∩σ̄r=∅

cσr,A +Vr+1(τ(σ̄r+1)) = Vr+1(τ(σ̄r)). (EC.2)

To see this, first note that it follows from the arguments in the proof of State Space Sufficiency that

τ(σ̄r+1) = τ(σ̄r). Therefore, we have Vr+1(τ(σ̄r+1)) = Vr+1(τ(σ̄r)). Now consider a choice, consideration-set

tuple (σr,A)∈ Cd. Since σr ∈A and σr >σ∗+ 2d, it must be that A* {0,1, . . . , σ∗+ 2d}\ τ(σ̄r). Therefore, it

follows from the claim in the proof of One-Period Reward Sufficiency that A∩{σ0, σ1, . . . , σr−1} 6=∅. Thus,

the set {(σr,A)∈ Cd : A∩ σ̄r = ∅} is an empty set. This establishes the equality (EC.2).

It now follows from (EC.2) that the objective value is the same for all σr >σ∗+ 2d. Hence, if the optimal

solution in the DP recursion is such that Vr(τ(σ̄r)) = Vr+1(τ(σ̄r)), then it follows that any σr > σ∗ + 2d

is an optimal solution. Since there are multiple optimal solution, we can pick one solution arbitrarily. We

argue that we can always pick a solution σr such that σr /∈ {σ0, σ1, . . . , σr−1}. To see this, consider the set

{σ∗+ 2d+ 1, . . . , n}. This set contains n−σ∗−2d elements. Of this number, r−|τ(σ̄r)| elements must belong

to the set {σ0, σ1, . . . , σr−1}. Hence, we can always find a σr > σ∗ + 2d such that σr /∈ {σ0, σ1, . . . , σr−1} if

and only if n−σ∗− 2d > r− |τ(σ̄r)|, or equivalently, σ∗+ 2d < n− r+ |τ(σ̄r)|. This condition is indeed true

because of our assumption that max τ(σ̄r) = σ∗+ 2d. This establishes case (i).
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Now conider case (ii), so that max τ(σ̄r) = n − r + |τ(σ̄r)|. In this case, we claim that σr

can take values in {0,1, . . . ,max τ(σ̄r)} \ τ(σ̄r). First note that it follows from our definitions that

({0,1, . . . ,max τ(σ̄r)} \ τ(σ̄r))∩ {σ0, σ1, . . . , σr−1}= ∅. Hence, σr ∈ {0,1, . . . ,max τ(σ̄r)} \ τ(σ̄r) ensures that

σr /∈ {σ0, σ1, . . . , σr−1}. Further, we claim that {max τ(σ̄r), . . . , n} ⊆ {σ0, . . . , σr−1}. If this claim is true, then

it is clear that σr cannot be outside the set {0,1, . . . ,max τ(σ̄r)}, establishing this case. To see why the claim

is true, note that the cardinality of the set {max τ(σ̄r), . . . , n} is n−max τ(σ̄r)+1, which is equal to r−|τ(σ̄r)|
because maxτ(σ̄r) = n− r + |τ(σ̄r)|. Now consider the set {σ0, σ1, . . . , σr−1} \ τ(σ̄r), which has cardinality

r− |τ(σ̄r)|. Thus, both the sets {σ0, σ1, . . . , σr−1} \ τ(σ̄r) and τ(σ̄r)⊆ {max τ(σ̄r), . . . , n} have the same car-

dinality. In addition, it follows from our definitions that {σ0, σ1, . . . , σr−1} \ τ(σ̄r)⊆ {max τ(σ̄r), . . . , n}. As a

result, we can conclude that {max τ(σ̄r), . . . , n}= {σ0, σ1, . . . , σr−1} \ τ(σ̄r).

We have thus established the Action-Set Sufficiency property.

We are now left with determining the number of distinct values that τ(σ̄r) can take. Since τ(σ̄r) ⊆
{σ∗, . . . , σ∗+ 2d}, it can take at most 22d+1 distinct values for a given σ∗. Further σ∗ can take at most n

values. Together, we can conclude that τ(σ̄r) can take at most n22d+1 distinct values. Following our notation

above, we have shown that Xr ≤ n22d+1 for any r. We must thus have that
∑n

r=0Xr =O(n24d). So, the total

complexity is O(x |C|
∑n

r=0Xr) =O (n3 |C|4d).

The result of the proposition now follows.

Appendix C: Proofs for Section 5

In this section, we will prove the PTAS for the joint assortment and price optimization problem given in

Theorem 5.1. We first show that restricting the prices to a discrete domain Domα results in a minor loss

in performance (see Lemma C.1). Then, we show that the solution to the relaxed revenue function Rα,k(·)
gives the desired performance guarantee for the original optimization problem (see Lemma C.2). Then, in

Section C.1, we show that optimizing the relaxed revenue function can be done using dynamic programming,

and establish the running time of the DP, proving Proposition 5.1. Then, in Section C.2, we combine all

of the results together and prove Theorem 5.1. Throughout this section, we assume that the products are

indexed by 1, . . . , n, and the reference rank of product i is i; that is τ is the identity ordering. Also, recall

that we assume that maxb∈B b < 1, and thus, pricing a product at 1 effectively removes it from the offer set.

Therefore, the d-sorted family of prices is given by

Pd =

{
p∈ [0,1]n : max

i :pi<1

∣∣π−1
p (i)− i

∣∣≤ d}
where πp represents the price ordering under p, with pπp(1) ≤ pπp(2) ≤ · · · ≤ pπp(n), and for any i, πp(i)

denotes the product at rank i under p. Note that π−1
p (i) denote the price rank of product i.

The following lemma shows that by restricting our search to a discrete set Pd,α, the maximum revenue

decreases by at most a factor of α.

Lemma C.1 (Rounding). For any α∈ (0,1) and p∈Pd, there exists p̂∈Pd,α such that R(p̂) ≥ αR(p).

Consequently, max
p∈Pd,α

R(p)≥ αZ∗.
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Proof: For all i, let p̂i = max{x∈Domα : x≤ pi}. It suffices to show that for any (b,σ),
n∑
i=1

p̂i1l [σ, i,{` : p̂` ≤ b}] ≥ α

n∑
i=1

pi1l [σ, i,{` : p` ≤ b}]

because summing over all (b,σ) implies that that R(p̂) ≥ αR(p). Let X = {` : p` ≤ b} and X̂ = {` : p̂` ≤ b}.
Since p̂i ≤ pi for all i, we have that X ⊆ X̂. Let c = arg min`∈X σ

−1(`) denote the choice under p, and let

s= arg min`∈X̂ σ
−1(`) denote the choice under p̂. If c= s, then the above inequality is equivalent to p̂c ≥ αpc,

which is true by our construction. So, consider the case where s 6= c. Since X ⊆ X̂, it must be the case that

s∈ X̂ \X, the choice s must have the property that ps > b≥ p̂s; otherwise, s would have be chosen under p.

Moreover, by definition of c, b≥ pc. Thus, p̂s ≥ αps >αb≥ αpc, which is the desired result.

The next proposition relates the solution of the relaxed revenue function to the solution of the original

revenue function.

Proposition C.1 (Approximation Guarantee). For any α∈ (0,1) and k ∈Z++, if pα,k is an optimal

solution to the optimization problem associated with the relaxed revenue function maxp∈Pd,α
Rα,k(p), then

Z∗ ≥R(pα,k)≥ α(1−αk+1)Z∗ .

In order to prove Proposition C.1, we need the next lemma, which shows that Rα,k is close to R.

Lemma C.2 (Relaxed Revenue Function). For all α∈ (0,1), k ∈Z++, and p∈Pd,α,(
1−αk+1

)
Rα,k(p)≤R(p)≤Rα,k(p) .

Proof: Note that R(p)≤Rα,k(p) by our construction. To prove the remaining inequality, it suffices to show

the result for a single customer type. For any (b,σ), we will show that
n∑
i=1

pi1l
[
σ, i,

{
` : p` ≤ b and p` ≤

pi
αk

}]
≤ 1

1−αk+1

n∑
i=1

pi1l [σ, i,{` : p` ≤ b}]

Let c= arg min{σ−1(`) : p` ≤ b} denote the choice of the customer under the original revenue function.

Claim: For any i such that pi ≥ pc, 1l
[
σ, i,

{
` : p` ≤ b and p` ≤ pi

αk

}]
= 0

If c = 0, then the claim is trivially true. So, suppose that c 6= 0. For any i such that pi ≥ pc, note that

pc < pi/α
k. So, c ∈

{
` : p` ≤ b and p` ≤ pi

αk

}
and c is the most preferred product within the set {` : p` ≤ b}.

Therefore, product i will never be chosen.
n∑
i=1

pi1l
[
σ, i,

{
` : p` ≤ b and p` ≤

pi
αk

}]
=

∑
i:pi≤pc

pi1l
[
σ, i,

{
` : p` ≤ b and p` <

pi
αk

}]
≤ pc + pcα

k+1 + pcα
2(k+1) + pcα

3(k+1) + · · ·= pc
1−αk+1

,

where the last inequality follows from the fact that the the next most expensive product that can be purchased

under the relaxed revenue function is the one with price pcα
k+1, and the one after that has a price at most

pcα
2(k+1), etc. This is the desired result.

Proof of Proposition C.1: Then, it follows from Lemma C.2 and the above bound that

R(pα,k) ≥ (1−αk+1) Rα,k(pα,k) = (1−αk+1) max
p∈Pd,α

Rα,k(p)

≥ (1−αk+1) max
p∈Pd,α

R(p)≥ α(1−αk+1) max
p∈Pd

R(p) = α(1−αk+1)Z∗
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C.1. Proof of Proposition 5.1

In this section, we show how to optimize max
p∈Pd,α

Rα,k(p) efficiently using dynamic programming formulation.

Note that we are restricting our attention to the discrete domain Pd,α. Let αH denote the largest price

that is less than or equal to the smallest budget; that is, αH = max{αs : αs ≤ minb∈B b}, or equivalently,

H = min{s : αs ≤minb∈B b}. Note that, by our construction, it is never optimal to consider prices less than

αH . Thus,

max
p∈Pd,α

Rα,k(p) = max
p∈Pd,α:pi≥αH ∀i

Rα,k(p)

The proof of Proposition 5.1 makes use of a series of lemmas. As the first step, we will consider an alternative

representation of prices.

An Equivalent Representation of Prices: Since we are working with discrete prices of the form αs

with 0≤ s≤H, each price vector p can be represented as a vector (AH ,AH−1, . . . ,A1,A0), where for all s,

As = {i : pi = αs} is the set of products whose prices are equal to αs. Throughout this section, we will use this

representation of prices. Note that it is possible that As =∅ for some s. Also, since the maximum budget is

less than one, A0 = {i : pi = α0 = 1} effectively correspond to the set of products that we will not offer.

An Equivalent Optimization Problem: We will now rephrase the optimization problem associated

with Rα,k as follows: For any (AH ,AH−1, . . . ,A1,A0) and 0≤ s≤H, let Wα,k
s (AH ,AH−1, . . . ,A1,A0) denote

the total revenue under the relaxed revenue function that is collected from the products in As ∪ As−1 ∪

· · ·A1 ∪A0; that is,

Wα,k
s (AH ,AH−1, . . . ,A1,A0)

def
=
∑
(b,σ)

w(b,σ)

s∑
`=1

α`
∑
i∈A`

1l
[
σ, i,

{
q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪A1 ∪A0 : pq ≤ b and pq ≤

pi
αk

}]
=
∑
(b,σ)

w(b,σ)

s∑
`=1

α`
∑
i∈A`

1l [σ, i,{q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪A`−k : pq ≤ b}]

Note that since b < 1 for all b∈B, products in A0 are never selected. For s= 1, . . . ,H, let

Y ∗s
def
= max

(AH ,AH−1,...,A1,A0)∈Pd,α

Wα,k
s (AH ,AH−1, . . . ,A1,A0)

We note that the objective Wα,k
s is slightly different from Rα,k because we only compute revenue from

products whose prices are αs or higher; that is, αs, αs−1, . . . , α. The following lemma shows that Y ∗H is our

desired target.

Lemma C.3 (Equivalent Optimization). Y ∗H = max
p∈Pd,α

Rα,k(p).

Proof: Since it is never optimal to price below αH , we have that

max
p∈Pd,α

Rα,k(p) = max
p∈Pd,α:pi≥αH ∀i

Rα,k(p) = max
(AH ,AH−1,...,A1,A0)∈Pd,α

Wα,k
H (AH ,AH−1, . . . ,A1,A0) = Y ∗H ,

which is the desired result.
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Based on Lemma C.3, we will develop dynamic programming methods for computing Y ∗0 , Y
∗
1 , . . . , Y

∗
H .

Define the following the value functions. For s= 0,1, . . . ,H, let

J∗s (AH ,AH−1, . . . ,As,As−1, . . . ,As−k+2,As−k+1)

def
= max

(As−k,...,A0)

{
Wα,k
s (AH ,AH−1, . . . ,As, . . . ,As−k+2,As−k+1,As−k, . . . ,A0)

∣∣ (AH ,AH−1, . . . ,As−k+1,As−k, . . . ,A0)∈Pd,α

}
Note that

max
(AH ,...,As−k+2,As−k+1)

J∗s (AH ,AH−1, . . . ,As−k+2,As−k+1) = max
(AH ,AH−1,...,A1,A0)∈Pd,α

Wα,k
s (AH ,AH−1, . . . ,A1,A0) = Y ∗s

The following lemma provides a dynamic programming recursion for computing the value function.

Lemma C.4 (Dynamic Programming Equation). For any s,

J∗s (AH ,AH−1, . . . ,As,As−1, . . . ,As−k+2,As−k+1)

= max
As−k∈Ds(AH ,AH−1,...,As−k+2,As−k+1)

{
αsGs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k)

+J∗s−1(AH ,AH−1, . . . ,As,As−1,As−2, . . . ,As−k+1,As−k)

}
,

where

Gs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k) =
∑
(b,σ)

w(b,σ)
∑
i∈As

1l [σ, i,{q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪As−k : pq ≤ b}] ,

and the set Ds(AH ,AH−1, . . . ,As−k+2,As−k+1) denotes the collection of subset of products that can be priced

at αs−k and still satisfy the d-sorted constraint; that is,

Ds(AH ,AH−1, . . . ,As−k+2,As−k+1)

def
=

{
X ⊆

(
∪s−k+1
`=H A`

)c
: max
`∈X

∣∣π−1(`)− `
∣∣≤ d}

=

{
X : X = {i1, . . . , iq} ⊆

(
∪s−k+1
`=H A`

)c
for some i1 < i2 < · · ·< iq, and max

u=1,...,q

∣∣∣∣∣
(
s−k+1∑
`=H

|A`|+u

)
− iu

∣∣∣∣∣≤ d
}
,

where the last equality follows from the fact that the rank of the first product in As−k is equal to

1 +
∑s−k+1

`=H |A`|.

Proof: By definition,

Wα,k
s (AH ,AH−1, . . . ,A1,A0)−Wα,k

s−1(AH ,AH−1, . . . ,A1,A0)

= αs
∑
(b,σ)

w(b,σ)
∑
i∈As

1l [σ, i,{q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪As−k : pq ≤ b}] = αsGs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k)

Therefore, it follows from the definition of J∗s that

J∗s (AH ,AH−1, . . . ,As,As−1, . . . ,As−k+2,As−k+1)

= max
(As−k,...,A0)

{
αsGs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k) +Wα,k

s−1 (AH ,AH−1, . . . ,A1,A0)
∣∣

(AH ,AH−1, . . . ,As−k+2,As−k+1,As−k, . . . ,A0)∈Pd,α

}
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=max
As−k

{
αsGs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k) + max

(As−k−1,...,A0)
Wα,k
s−1 (AH ,AH−1, . . . ,As−k+1,As−k,As−k−1 . . . ,A1,A0)

∣∣
(AH ,AH−1, . . . ,As−k+1,As−k,As−k−1, . . . ,A0)∈Pd,α

}
= max
As−k∈Ds(AH ,AH−1,...,As−k+2,As−k+1)

{
αsGs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k) +J∗s−1 (AH ,AH−1, . . . ,As−k+1,As−k)

}
,

which is the desired result.

Sufficient Statistics for the DP in Lemma C.4: We will now show that the DP equation in Lemma

C.4 has a tractable sufficient statistics. To facilitate our notation, for any H ≥ j ≥ i ≥ 0, let A[j,i] =

(Aj ,Aj−1, . . . ,Ai). As a convention, if H ≥ s≥ 0> i, then A[s,i] =A[s,0], and the index for union and sum-

mation will start at H and decrease toward zero. The DP equation can be written as

J∗s (A[H:s−k+1]) = max
As−k∈Ds(A[H:s−k+1])

{
αsGs(A[H:s−k]) +J∗s−1(A[H:s−k])

}
, (EC.3)

For any A[H:s−k+1], let

τ(A[H:s−k+1]) =

(
s−k+1∑
`=H

|A`| , L,

(
s−k+1⋃
·

`=H

A`

)c
∩{L− 2d,L− 2d+ 1, . . . ,L}, A[s:s−k+1] ,

s⋃
·

`=H

A`

)
,

where L= max{` : `∈
⋃
· s−k+1
`=H A`}. We have the following lemma.

Lemma C.5. τ(A[H:s−k+1]) as defined above are sufficient statistics for the DP equation (EC.3).

Proof: In order to prove that τ(A[H:s−k+1]) is indeed a sufficient statistic, it is sufficient to establish the

following three properties:

1. One-Period Reward Sufficiency: The function Gs(A[H:s−k]) can be determined from τ(A[H:s−k+1]).

2. Action-Set Sufficiency: The domain Ds
(
A[H:s−k+1]

)
can be determined from τ(A[H:s−k+1]).

3. State Space Sufficiency: τ(A[H:s−k]) can be determined from As−k and τ(A[H:s−k+1]).

The conditions above ensure that we can choose the optimal action in each stage by keeping track of only

the sufficient statistic.

One-Period Reward Sufficiency: Note that

Gs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k) =
∑
(b,σ)

w(b,σ)
∑
i∈As

1l [σ, i,{q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪As−k : pq ≤ b}] ,

We will show that for each customer type (b,σ) and for each i∈As, we can determine the value of

1l [σ, i,{q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪As−k : pq ≤ b}]

using the sufficient statistics. Note that

1l [σ, i,{q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪As−k : pq ≤ b}] = 1

⇔ αs ≤ b and σ−1(i) < min

{
σ−1(q) : q ∈

s⋃
·

`=H

A`, q 6= i

}
and σ−1(i) < min

` : s−1≤`≤s−k, α`≤b
min

{
σ−1(q) : q ∈A`

}
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Note that we keep track of
⋃
· s
`=H A` and As−1, . . . ,As−k as part of our sufficient statistics. Thus, this estab-

lishes the one-period reward sufficiency.

Action Set Sufficiency: The domain Ds(A[H:s−k+1]) is defined as:

Ds(A[H:s−k+1])

=

{
X ⊆

(
∪s−k+1
`=H A`

)c
: max
`∈X

∣∣π−1(`)− `
∣∣≤ d}

=

{
X : X = {i1, . . . , iq} ⊆

(
∪s−k+1
`=H A`

)c
for some i1 < i2 < · · ·< iq, max

u=1,...,q

∣∣∣∣∣
(
s−k+1∑
`=H

|A`|+u

)
− iu

∣∣∣∣∣≤ d
}

where the last equality follows from the fact that the rank of the first product in As−k is equal to

1 +
∑s−k+1

`=H |A`|. Note that we keep track of
∑s−k+1

`=H |A`| as part of our sufficient statistics.

As a first step, we claim that

Ds(A[H:s−k+1]) =

{
X ⊆

(
∪s−k+1
`=H A`

)c ∩{q : q≥L− 2d} : max
`∈X

∣∣π−1(`)− `
∣∣≤ d}

To see this, note that the right-hand-side (RHS) is clearly a subset of Ds(A[H:s−k+1]). So, to establish the

claim, it suffices to show that any product i such that i < L−2d cannot be a part of any set in Ds(A[H:s−k+1]).

To see this, let V =
∑s−k+1

`=H |A`|. Recall that L= max{` : `∈
⋃
· s−k+1
`=H A`}. By the d-sorted definition, it must

be the case that the rank of L is least L−d. Thus, we have that L−d≤ V . Therefore, i < L−2d≤L−d≤ V ,

which implies that

V − i≥L− d− i > L− d− (L− 2d) = d ,

which implies that i can never be an element of any set in Ds(A[H:s−k+1]), which establishes the claim.

To complete the proof of the action set sufficiency, note that by definition, ∪s−k+1
`=H A` ⊆ {1, . . . ,L}, which

implies that
(
∪s−k+1
`=H A`

)c ⊇ {L+ 1,L+ 2, . . . , n}. Therefore,(
∪s−k+1
`=H A`

)c ∩{q : q≥L− 2d} =
(
∪s−k+1
`=H A`

)c ∩ ({L− 2d, . . . ,L}∪· {L+ 1, . . . , n})

=
[(
∪s−k+1
`=H A`

)c ∩{L− 2d, . . . ,L}
]
∪·
[(
∪s−k+1
`=H A`

)c ∩{L+ 1, . . . , n}
]

=
[(
∪s−k+1
`=H A`

)c ∩{L− 2d, . . . ,L}
]
∪· {L+ 1, . . . , n}

Since
(
∪s−k+1
`=H A`

)c∩{L−2d, . . . ,L} and L are part of our sufficient statistics, the above result show that we

can construct the action set Ds(A[H:s−k+1]) from the sufficient statistics, which is the desired result.

State Space Sufficiency: Note that

τ(A[H:s−k]) =

(
s−k∑
`=H

|A`| , L̂,

(
s−k⋃
·

`=H

A`

)c
∩{L̂− 2d, . . . , L̂}, (As−1, . . . ,As−k+1,As−k) ,

s−1⋃
·

`=H

A`

)

where L̂ = max{` : ` ∈
⋃
· s−k
`=H A`}. Note that

∑s−k
`=H |A`| =

∑s−k−1
`=H |A`|+ |As−k| and L̂ = max{L,max{` : ` ∈

As−k}}, both of which can be computed from the sufficient statistics τ(A[H:s−k+1]) and the action As−k. Also,

note that (As−1, . . . ,As−k+1,As−k) can be computed from As−k and the sufficient statistics τ(A[H:s−k+1]).

Similarly, note that
⋃
· s−1
`=H A` =

⋃
· s
`=H A` ∪· As−1, which can be computed from As−1 and the sufficient

statistics τ(A[H:s−k+1]).
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Thus, it remains to show that (
s−k⋃
·

`=H

A`

)c
∩{L̂− 2d, . . . , L̂}

can also be computed from the sufficient statistics τ(A[H:s−k+1]) and the action As−k. Since L̂ =

max{L,max{` : `∈As−k}}, there are two cases to consider: L̂=L or L̂ > L. If L̂=L, then(
s−k⋃
·

`=H

A`

)c
∩{L̂− 2d, . . . , L̂} =

(
s−k−1⋃
·

`=H

A`

)c
∩Acs−k ∩{L− 2d, . . . ,L}

=

[(
s−k−1⋃
·

`=H

A`

)c
∩{L− 2d, . . . ,L}

]
∩Acs−k

which, of course, can be computed from τ(A[H:s−k+1]) and As−k.

On the other hand, if L̂ > L, then(
s−k⋃
·

`=H

A`

)c
∩{L̂− 2d, . . . , L̂}=

(
s−k−1⋃
·

`=H

A`

)c
∩{L̂− 2d, . . . , L̂}∩Acs−k

Since Acs−k is known (because As−k is the given action), it suffices to show that
(⋃
· s−k−1
`=H A`

)c
∩{L̂−2d, . . . , L̂}

can be computed from the sufficient statistics τ(A[H:s−k+1]) and As−k. Note that(
s−k−1⋃
·

`=H

A`

)c
∩{L̂− 2d, . . . , L̂}

=

(
s−k−1⋃
·

`=H

A`

)c
∩
[(
{L− 2d, . . . ,L} \ {L− 2d, . . . , L̂− 2d− 1}

)
∪· {L+ 1, . . . , L̂}

]
=

[(
s−k−1⋃
·

`=H

A`

)c
∩
(
{L− 2d, . . . ,L} \ {L− 2d, . . . , L̂− 2d− 1}

)]
∪·

[(
s−k−1⋃
·

`=H

A`

)c
∩{L+ 1, . . . , L̂}

]

=

[(
s−k−1⋃
·

`=H

A`

)c
∩{L− 2d, . . . ,L}∩ {L− 2d, . . . , L̂− 2d− 1}c

]
∪· {L+ 1, . . . , L̂} ,

where the last equality follows from the fact that X \ Y =X ∩ Y c and the fact that ∪s−k+1
`=H A` ⊆ {1, . . . ,L},

which implies that
(
∪s−k+1
`=H A`

)c ⊇ {L+ 1,L+ 2, . . . , n}. Note that
(⋃
· s−k−1
`=H A`

)c
∩{L− 2d, . . . ,L} is part of

the sufficient statistics, and L̂ can be computed form the sufficient statistics and As−k. So,
(⋃
· s−k−1
`=H A`

)c
∩

{L̂− 2d, . . . , L̂} can be computed from τ(A[H:s−k+1]) and As−k, which gives the desired result.

It follows from the above discussion that the sufficient statistics for the dynamic programming in Lemma

C.4 is given by

τ(A[H:s−k+1]) =

(
s−k+1∑
`=H

|A`| , L,

(
s−k+1⋃
·

`=H

A`

)c
∩{L− 2d,L− 2d+ 1, . . . ,L}, A[s:s−k+1]

)
.

Note that the first two arguments are numbers in {1, . . . , n}; the third argument is a subset of {L−2d, . . . ,L}.

The last argument is a k-dimensional vector (As, . . . ,As−k+1). The following lemma bounds the state space

by showing that each As can be represented as a union of at most 2d+ 1 disjoint intervals. To facilitate our

exposition, let [i, j) = {i, i+ 1, . . . , j− 1}. If j ≤ i, then [i, j) = ∅.
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Lemma C.6 (Bound on the State Space). For any (AH ,AH−1, . . . ,A1,A0) ∈ Pd,α and for any

0 ≤ s ≤ `, As can be written as a union of at most 2d+ 1 non-contiguous non-empty intervals; that is, for

all s,

As =∪qsh=1[xs,h, ys,h) .

where qs ≤ 2d+ 1, and

xs,1 < ys,1 <xs,2 < ys,2 < · · ·<xs,qs < ys,qs .

Consequently, the number of distinct As is at most
∑2d+1

h=0

(
n

2h

)
=O

(
n4(d+1)

)
.

Proof: There are two cases to consider: s≥ 1 and s= 0. Let us first consider the case where s≥ 1. It is clear

that As can always written as a union of non-continguous non-empty intervals. It thus suffices to show that

there can be at most 2d+ 1 such intervals. We will prove this by contradiction. Suppose, on the contrary,

that As is equal to the union of 2d+ 2 non-contiguous and nonempty intervals; that is,

As =∪2d+1
h=1 [xh, yh) ,

where x1 < y1 <x2 < y2 <x3 < y3 < · · ·<x2d+1 < y2d+1 <x2d+2 < y2d+2 . Note that for all `≥ 2,

π−1(x`) =π−1(x`−1) + (y`−1−x`−1) ,

and thus, π−1(x`) =π−1(x1) +
∑`−1

h=1(yh−xh). Then,

x2d+2−π−1(x2d+2) = x2d+1−
2d+1∑
i=1

(yi−xi)−π−1(x1)

= x1 +

2d+1∑
i=1

(xi+1−xi)−
2d−1∑
i=1

(yi−xi)−π−1(x1)

= x1 +

2d+1∑
i=1

(xi+1− yi)−π−1(x1)

≥ x1 + 2d+ 1−π−1(x1)≥ 2d+ 1− d= d+ 1 ,

where the last inequality follows from the definition of d-sorted constraint, which implies that −d ≤ x1 −

π−1(x1) ≤ d. However, this contradicts our assumption that (A0, . . . ,A`) satisfies the d-sorted constraint!

Therefore, As can be written as a union of at most 2d+ 1 non-contiguous non-empty intervals. To bound

the number of distinct As, consider the union of h disjoint non-contiguous non-empty intervals. Each such

union is represented by

x1 < y1 <x2 < y2 < · · ·<xh < yh ,

and this is equivalent of choosing 2h distinct numbers from {1,2, . . . , n}. There are
(
n

2h

)
such subsets. So, the

total number of distinct As is
∑2d+1

h=0

(
n

2h

)
=O(n4(d+1)).

The above argument makes use of the fact that for any product i ∈ As, |i−π−1(i)| ≤ d by the d-sorted

constraint. However, this argument does not apply when we consider A0 because the definition of the d-

sorted only enforce the ranking constraint on products that are offered to the customers. So, the case of s= 0
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requires a separate argument. We claim A0 can be written as a union of at most d+ 1 non-contiguous non-

empty intervals. To see this, suppose on the contrary, that A0 is equal to the union of d+ 2 non-contiguous

and nonempty intervals; that is,

A0 =∪d+2
h=1[xh, yh) ,

where x1 < y1 < x2 < y2 < · · ·< xd+1 < yd+1 < xd+2 < yd+2 . Let Ā0 = {1, . . . , n} \A0, and let h denote the

product in Ā0 with the largest index; that is, h= max{i : i∈ Ā0}. Note that, by our construction, yd+1 ≤ h.

We claim that h≥
∣∣Ā0

∣∣+d+1. To see this, let S = {x1, x2, . . . , xd, xd+1} ⊆A0. Note that S and Ā0 are dis-

joint. Since h is the product in Ā0 with the largest index, we have that h≥ yd+1 >max{x1, x2, . . . , xd, xd+1}.

This implies that S ∪· Ā0 ⊆ {1,2, . . . , h}. Therefore, h ≥
∣∣S ∪· Ā0

∣∣ =
∣∣Ā0

∣∣ + d + 1, which establishes the

desired claim.

Since all products in Ā0 has a price rank that is smaller than the products in A0, it follows that π−1(h)≤∣∣Ā0

∣∣. Moreover, h must satisfies the d-sorted price constraint, so

d≥ h−π−1(h)≥ h−
∣∣Ā0

∣∣≥ (∣∣Ā0

∣∣+ d+ 1
)
−
∣∣Ā0

∣∣= d+ 1 ,

but this is a contradiction! Therefore, it must be the case that A0 can be written as a union of at most d+ 1

non-continguous non-empty intervals.

Lemma C.7 (Bound on the number of possible consideration sets). When product prices are

restrticted to be in Pd,α, the total number of possible consideration sets is bounded above as follows:∣∣∣∣∣
{

s⋃
·

`=H

A` : 1≤ s≤H, (AH ,AH−1, . . . ,A1,A0)∈Pd,α

}∣∣∣∣∣≤
(

2d

d

)
n≤ 4dn

Proof: Note that for any price vector p, there are at most n possible consideration sets, given by{
{πp(1), πp(2), . . . , πp(s)} : pπp(s) < 1,1≤ s≤ n

}
, where recall that πp(s) is the product with price rank s

such that pπp(1) ≤ pπp(2) ≤ · · · ≤ pπp(n). Because Pd,α ⊆Pd, the number of possible consideration sets when

prices are retricted to belong to Pd,α is bounded above by |Cd|, defined by

Cd =
{
{πp(1), πp(2), . . . , πp(s)} : pπp(s) < 1, 1≤ s≤ n, p∈Pd,

}
,

the collection of all possible consideration sets when prices are restricted to belong to Pd. For that, we upper

bound the number of consideration sets of size s for some 1≤ s≤ n.

For an arbitrary price ordering πp for p ∈Pd, there is at most one consideration set of size s, namely

{πp(1), πp(2), . . . , πp(s)}, provided pπp(s) < 1. Because p is d-sorted, it follows by definition that
∣∣π−1
p (i)− i

∣∣≤
d for 1≤ i, where recall that π−1

p (i) is the price rank of product i. Therefore, all the products 1≤ i≤ s−d must

have price ranks π−1
p (i)≤ i+ d≤ s, which implies that {1,2, . . . , s− d} ⊆ {πp(1), πp(2), . . . , πp(s)}, the set of

all products with price ranks less than or equal to s. In a similar fashion, i− d≤ π−1
p (i)≤ i+ d implies that

πp(r)−d≤ r≤ πp(r)+d, which in turn implies that r−d≤ πp(r)≤ r+d for any price rank 1≤ r≤ n. It now

follows that πp(r)≤ r+d≤ s+d for any 1≤ r≤ s and therefore, {πp(1), πp(2), . . . , πp(s)} ⊆ {1,2, . . . , s+ d}.

We have thus shown that

{1,2, . . . , s− d} ⊆ {πp(1), πp(2), . . . , πp(s)} ⊆ {1,2, . . . , s+ d} ,
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where we let {πp(1), πp(2), . . . , πp(s− d)}=∅ for s≤ d.

It now follows that every set {πp(1), πp(2), . . . , πp(s)} is obtained by taking the disjoint union of

{1,2, . . . , s− d} with an arbitrary subset of size d from {s− d+ 1, . . . , s+ d}. Because the cardinality of

{s− d+ 1, . . . , s+ d} is 2d, it follows that the number of such sets is bounded above by
(

2d
d

)
.

We have thus obtained an upper bound of
(

2d
d

)
for the number of possible consideration sets of size s for

each 1≤ s≤ n. Therefore, the total number of possible consideration sets |Cd| is bounded above by n
(

2d
d

)
,

which is the desired result.

Proof of Proposition 5.1

Proof: It follows from Lemma C.4 that we have the following dynamic programming equation:

J∗s (A[H:s−k+1]) = max
As−k∈Ds(A[H:s−k+1])

{
αsGs(A[H:s−k]) +J∗s−1(A[H:s−k])

}
.

We have also shown that

τ(A[H:s−k+1]) =

(
s−k+1∑
`=H

|A`| , L,

(
s−k+1⋃
·

`=H

A`

)c
∩{L− 2d,L− 2d+ 1, . . . ,L}, A[s:s−k+1] ,

s⋃
·

`=H

A`

)
.

is a sufficient statistics for the above DP. This gives us the following method for computing the value functions.

1. Initialization. As a boundary condition, set J∗0 (·)≡ 0.

2. For s= 1, . . . ,H do the following:

(a) For every feasible value of τ(A[H:s−k+1]), solve the dynamic programming recursion to compute

J∗s (A[H:s−k+1]) = J∗s (τ(A[H:s−k+1])) by replacing A[H:s−k+1] with τ(A[H:s−k+1]) in (EC.3). Such

replacement is legal because of our definition that τ(A[H:s−k+1]) is a sufficient statistic.

3. Note that for s = H, τ(A[H:s−k+1]) is simply A[H:H−k+1]. So, given J∗H(·) for all possible values of

(A[H:H−k+1]), compute

max
AH ,...,AH−k+1

J∗H(AH ,AH−1, . . . ,AH−k+1) = Y ∗H = max
p∈Pd,α

Rα,k(p) ,

where the last equality follows from Lemma C.3. Store the optimal solution as A∗H ,A
∗
H−1, . . . ,A

∗
H−k+1.

4. Run backward induction to determine the optimal solution: for s=H,H − 1, . . . , k, let

A∗s−k = arg max
As−k∈D

(
A∗

[H:s−k+1]

){αsGs(A
∗
[H:s−k+1],As−k) +J∗s−1(A∗[H:s−k+1],As−k)

}
,

where D
(
A∗[H:s−k+1]

)
is the domain associated with A∗[H:s−k+1]. If there are multiple optima, pick one

solution arbitrarily.

5. The optimal price associated with Y ∗H = maxp∈Pd,α
Rα,k(p) is given by A∗H ,A

∗
H−1, . . . ,A

∗
0.

Given J∗s−1(·), computing J∗s (·) requires us to search over all As−k. By Lemma C.6, there are at most

O(n4(d+1)) possible such sets. For each set, we need to compute Gs(A[H:s−k]), which takes O(1) by our
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assumption. So, computing each J∗s (·) requires O(n4(d+1)) operations. The number of possible states of J∗s

is equal to the number of different values of sufficient statistics

τ(A[H:s−k+1]) =

(
s−k+1∑
`=H

|A`| , L,

(
s−k+1⋃
·

`=H

A`

)c
∩{L− 2d,L− 2d+ 1, . . . ,L}, A[s:s−k+1] ,

s⋃
·

`=H

A`

)
.

It follows from Lemma C.6 that the number of different values of sufficient statistics is

O
(
n222d+1n4k(d+1)4dn

)
= O

(
n342dn4k(d+1)

)
, where the last term follows from the fact that A[s:s−k+1] is a

k-dimensional vector and each coordinate has at most O(n4(d+1)) values, and by Lemma C.7, the number of

distinct
⋃
· s
`=H A` is at most 4dn. So, the total operations for computing J∗s (·) is O

(
n342dn4(k+1)(d+1)

)
. We

only need to compute up to J∗H , where H =O
(

log 1/bmin

log 1/α

)
. This gives the desired result.

C.2. Proof of Theorem 5.1

Proof: For any k ∈Z++, let

αk =
1

(2 + k)
1

1+k

Consider the relaxed revenue function Rαk,k(·). By Proposition C.1, by optimizing this relaxed revenue

function, we have a performance guarantee of

αk
(
1− (αk)

k+1
)

=
1 + k

(2 + k)1+ 1
1+k

.

Moreover, note that k 7→ 1+k

(2+k)
1+ 1

1+k
is increasing in k because

ln

(
1 + k

(2 + k)1+ 1
1+k

)
= ln

(
1 + k

2 + k

)
− ln(2 + k)

1 + k

is increasing in k. In addition,

lim
k→∞

1 + k

(2 + k)1+ 1
1+k

= 1

because

lim
k→∞

ln

(
1 + k

(2 + k)1+ 1
1+k

)
= lim
k→∞

ln

(
1 + k

2 + k

)
− ln(2 + k)

1 + k
= 0 .

Moreover, the running time for solving the dynamic program is

O

(
n3× 42d×n4(k+1)(d+1)× log 1/bmin

log 1/αk

)
=O

(
n3× 42d× (k+ 1)×n4(k+1)(d+1)× log

1

bmin

)
Let ε∈ (0,1) be given, and let

k(ε)
def
=

[
4

ε
+

4

ε
ln

1

ε

]1 + 1

ln 1
ε
.

We will show that for any k≥ k(ε)− 1, we have

1 + k

(2 + k)1+ 1
1+k

≥ 1− ε

Once we establish the above claim, we simply solve the optimization problem max
p∈Pαk,d

Rαk,k(p) using dynamic

program. The resulting price vector will have the desired performance guarantee.
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Let u= 1 + k. Then,

1 + k

(2 + k)1+ 1
1+k

=
u

1 +u
× 1

(1 +u)
1
u

=

(
1− 1

1 +u

)
× e−

ln(1+u)
u

≥
(

1− ε

2

)
× e−

ln(1+u)
u ,

where the last inequality follows from the fact that if 1 + k≥ k(ε), then u≥ 4
ε
, and thus,

1− 1

1 +u
≥ 1− 1

4/ε
= 1− ε

4
≥ 1− ε

2

It remains to show that e−
ln(1+u)

u ≥ 1− ε
2
. Note that for all x> 1 and all δ > 0,

ln(1 +x)

x
≤ (1 +x)δ − 1

xδ
≤ (1 +x)δ

xδ
≤ 2

δ(1 +x)1−δ

Thus, since u= 1 + k≥ 1, for all δ > 0,

e−
ln(1+u)

u ≥ 1− ln(1 +u)

u
≥ 1− 2

δ(1 +u)1−δ

Note that

2

δ(1 +u)1−δ ≤
ε

2
⇔ 4

εδ
≤ (1 +u)1−δ ⇔ 1

1− δ

[
ln

4

ε
+ ln

1

δ

]
≤ ln(1 +u)

Pick δ > 0 so that 1
δ

= 1 + ln 1
ε
. Then,

1

1− δ

[
ln

4

ε
+ ln

1

δ

]
=

(
1 +

1

ln 1
ε

)[
ln

4

ε
+ ln

(
1 + ln

1

ε

)]
=

(
1 +

1

ln 1
ε

)
ln

[
4

ε
+

4

ε
ln

1

ε

]
≤ ln(1 +u) ,

where the last inequality follow from the definition of u.

Putting everything together, we have that

1 + k

(2 + k)1+ 1
1+k

≥
(

1− ε

2

)
× e−

ln(1+u)
u ≥

(
1− ε

2

)(
1− ε

2

)
≥ 1− ε ,

which is the desired result.

Appendix D: Implementation details for estimating model parameters

We used the algorithm described in Algorithm 1 to initialize the support of the λ(0). The objective of the

initialization is to find a distribution λ(0) that assigns a non-zero probablity to every observation so that the

log-likelihood is finite. For that, we start with the ‘sales ranking’ in which each product is ranked according to

its aggregate sales (number of observations in which the product was purchased), with higher sales products

having higher ranks. We then obtained n + 1 rankings for the support by modifying the sales ranking:

ranking i is obtained by moving product i to the top-rank while the remaining products are shifted down in

the ranking. Because each product is top-ranked in at least one ranking, every observation has a non-zero

probability.

We used the following local search (LS) heuristic in Algorithm 2 to solve the M-step LP. As

discussed in Section 4, the M-step LP is equivalent to the following rank aggregation problem:

arg maxσ∈Sn+1

∑
(a,A)∈C ca,A1l[σ, a,A], with the costs ca,A given. We adopted the following hueristic:
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Input Data = {(c1, S1,p1), (c2, S2,p2), . . . , (cT , ST ,pT ))}; number of products n.

Initialization: Set ni←
∑T
t=1 1l[ct = i], i.e., the number of times product i was purchased, for each product i.

Set σ0 be th ranking according to the product sales so that nσi >nσj if and only if i < j; Support←{σ0}.

For r= 2,3, . . . , n+ 1:

Define ranking π such that π1 = σr, πj = σj−1 for j = 2, . . . , r, and πj = σj for any j > r.

Support← Support∪{π}

EndFor

Output. Support

Algorithm 1: Initialization algorithm

Input ca,A for all (a,A)∈ C; maximum number of iterations I.

Initialization: Set σ∗ equal to a permutation sampled uniformly at random from Sn+1;

C(σ∗)←
∑

(a,A)∈C ca,A1l[σ∗, a,A]

For i= 1,2, . . . , I:

Neighbors = {π ∈Sn+1 : πi = σj , πj = σi for some i 6= j} i.e., each neighbor is obtained by interchanging

the products ranked at positions i and j for some i 6= j.

C(π)←
∑

(a,A)∈C ca,A1l[π, a,A] for each π ∈Neighbors

π∗ = arg maxπ∈NeighborsC(π)

If C(π∗)>C(σ∗), Then

σ∗←π∗; C(σ∗)←C(π∗)

Else

Break from the For loop because local optimum is reached.

EndIf

EndFor

Output. σ∗

Algorithm 2: Local search for solving M-step LP

Finally, once the M-step LP was solved, we used the update algorithm in Algorithm 3 to update the

distribution λ(t) to obtain λ(t+1). Given the optimal ranking from the LS heuristic, the algorithm solves

a constrained convex program to determine the weights of the rankings in the support that maximize the

data log-likelihood. It imposes the constraint that the weights must sum to 1, but does not impose any non-

negativity constraints. If the resulting weights are all non-negative, then the algorithm terminates. Otherwise,

the ranking with the minimum weight is dropped from the support and the above procedure is repeated.

Dropping the rankings allows us to maintain a sparse distribution over rankings.

Appendix E: Implementation details for the optimization simulations

E.1. MILP for joint assortment and price optimization under the nonparametric model

We now describe the mixed integer linear progam (MILP) formulation we used to determine the optimal

assortment and price combination under our model. We suppose that the price of each product belongs to
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Input: Support(t), the support of λ(t); σ∗ obtained from the LS heuristic; γ̂a,A for all (a,A)∈ C

Initialization: Set Support(t+ 1)← Support(t)∪{σ∗} and λ(t+1)(σ)← λ(t)(σ) for all σ ∈ Support(t) and

λ(t+1)(σ∗)← 0

While True:

w∗ = arg maxw
∑

(a,A)∈C γ̂a,A log
(∑

σ∈Support(t)wσ1l[σ, a,A]
)

subject to
∑
σ∈Support(t+1)wσ = 1,

which is a constrained convex program that can be solved efficiently

If w∗σ < 0 for some σ ∈ Support(t+ 1), Then

π← arg minσ∈Support(t+1)w
∗
σ

Support(t+ 1)← Support(t+ 1) \ {π}

Else

Break from the While loop because optimal solution is found.

EndIf

EndWhile

Output. Support(t+ 1); λ(t+1)(σ)←w∗σ for all σ ∈ Support(t+ 1).

Algorithm 3: Update of distribution λ(t)

one of the L levels {b1, b2, . . . , bL}. Without loss of generality, we suppose that b` ∈ (0,1) for `= 1,2, . . . ,L.

We let b0 = 0 and bL+1 = 1. We set the price of a product that is not offered at bL+1. The customers draw

their price thresholds from the interval [0, bL]. We let g` denote the probability that the price threshold

belongs to the interval [b`, b`+1) for `= 1,2, . . . ,L. For notational convenience, we set gL+1 = 0. We suppose

that there are K rankings in the support of λ. Let σ1,σ2, . . . ,σK denote the rankings in the support. We

say a customer is of type (`, k) if she has a price threshold in the interval [b`, b`+1) and preference list σk.

With the above notation, our objective is to find the assortment and price combination that maximizes

the expected revenue under our model. For that we introduce the following variables. Let xa` denote the

indicator that product a is priced at level ` for a ∈ N and 1 ≤ ` ≤ L. If xa` = 0 for all 1 ≤ ` ≤ L, then we

suppose that product a is not offered. Let ya`k denote the indicator of whether product a is purchased by

the customer of type (`, k) for a ∈ N , 1 ≤ ` ≤ L, and 1 ≤ k ≤K. Finally, let za`k denote the revenue from

product a from the customer of type (`, k) for a∈N , 1≤ `≤L, and 1≤ k≤K.

With these variables, the expected revenue is equal to
∑

a∈N

∑L

`=1

∑K

k=1 g`λ(σk)za`k. We now discuss the

constraints. First, the decision variables xa` must satisfy the following constraints:

L∑
`=1

xa` ≤ 1 ∀ a∈N ; and xa` ∈ {0,1} for a∈N ,1≤ `≤L,

where the first set of constraints requires that each product is either not offered i.e., xa` = 0 for all 1≤ `≤L,

or is offered at only one price level; and second set of constraints require xa` to be binary variables.

We now focus on the constraints for the variables ya`k:

ya`k ≤
∑
`′≤`

xa`′ for a∈N ,1≤ `≤L,1≤ k≤K



e-companion to Jagabathula and Rusmevichientong: Nonparametric Joint Assortment and Price Model ec25∑
a∈N

ya`k ≤ 1 for 1≤ `≤L,1≤ k≤K∑
a′ : σk(a′)>σk(a)

ya′`k ≤ 1−
∑
`′≤`

xa`′ for a∈N ,1≤ `≤L,1≤ k≤K

ya`k = 0 for all a∈ {a′ ∈N : σk(a
′)>σk(0)} ,1≤ `≤L,1≤ k≤K

ya`k ∈ {0,1} for a∈N ,1≤ `≤L,1≤ k≤K.

The first set of constraints impose the requirement that a product must be considered for it to be purchased;

specifically, product a will not be purchased by customer of type (`, k) if it is priced at a level strictly above

`. The second set of constriaints require the customer of each type to choose at most one product from the

set N , which does not include the no-purchase option. The third set of constraints imposes the requirement

that each customer chooses the most preferred option from the considered options; in particular, if product

a is considered, i.e., priced at a level less than or equal to `, by the customer of type (`, k), then none of the

products preferred less than a according to σk will be purchased. The fourth set of constraints require that

a product that is less preferred than the no-purchase option should not be purchased. Finally, the last set of

constraints impose the requirement that ya`k are binary.

We now consider the set of constraints for za`k. It follows from our definitions of variables xa` and ya`k

that the expected revenue from product a from each customer of type (k, `) is equal to 0 if a is not purchased

and b`′ if the a is purchased when priced at level `′. This can be expressed as za`k = ya`k

(∑
`′≤` b`′x`

)
,

where the first term captures whether the purchase has happened and the second term captures the expected

revenue upon purchase. Because the variable za`k involves product of a binary variable, ya`k, and a continuous

variable,
∑

`′≤` b`′xa`′ , we can replace the product terms with the following set of linear constraints:

za`k ≤ ya`k for a∈N ,1≤ `≤L,1≤ k≤K

za`k ≤
∑
`′≤`

b`′xa`′ for a∈N ∪{0} ,1≤ `≤L,1≤ k≤K

za`k ≥
∑
`′≤`

b`′xa`′ − (1− ya`k) for a∈N ∪{0} ,1≤ `≤L,1≤ k≤K

za`k ≥ 0 for a∈N ∪{0} ,1≤ `≤L,1≤ k≤K.

When ya`k = 1, the second and third constraints require za`k =
∑

`′≤` b`′xa`′ , as desired, and the first con-

straint, za`k ≤ 1, is loose (because b`′ ∈ [0,1] for all `′). Similarly, when ya`k = 0, the first and last constraints

require za`k = 0, whereas the second and third constraints are loose, again because
∑

`′≤` b`′xa`′ ≤ 1. Putting

everthing together, we obtain the following mixed integer linear program (MILP):

max
x,y,z

∑
a∈N

L∑
`=1

K∑
k=1

g`λ(σk)za`k

subject to

L∑
`=1

xa` ≤ 1 for a∈N ,1≤ `≤L

ya`k ≤
∑
`′≤`

xa`′ for a∈N ,1≤ `≤L,1≤ k≤K∑
a∈N

ya`k ≤ 1 for 1≤ `≤L,1≤ k≤K
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a′ : σk(a′)>σk(a)

ya′`k ≤ 1−
∑
`′≤`

xa`′ for a∈N ,1≤ `≤L,1≤ k≤K

ya`k = 0 for all a∈ {a′ ∈N : σk(a
′)>σk(0)} ,1≤ `≤L,1≤ k≤K

za`k ≤ ya`k for a∈N ,1≤ `≤L,1≤ k≤K

za`k ≤
∑
`′≤`

b`′xa`′ for a∈N ,1≤ `≤L,1≤ k≤K

za`k ≥
∑
`′≤`

b`′xa`′ − (1− ya`k) for a∈N ,1≤ `≤L,1≤ k≤K

ya`k, za`k ≥ 0 for a∈N ,1≤ `≤L,1≤ k≤K

xa`, ya`k ∈ {0,1} for a∈N ,1≤ `≤L,1≤ k≤K.

The above MILP may be simplified by dropping a few constraints. First, we argue that the constraints

ya`k ∈ {0,1} and
∑

a∈N ya`k ≤ 1 may be replaced by 0≤ ya`k ≤ 1 for all a, k, `. To see this, consider a feasible

price assignment x and type (`, k). If product a is not considered or offered, then the second constraint,

combined with the non-negativity constraint, forces ya`k to be zero. If, on the other hand, product a is

considered, then the fourth and fifth constraints force ya`k to be zero unless it is the top-ranked product

among the considered products according to σk. It now follows that yak` = 0 for all a 6= a∗k`, where a∗`k is the

most preferred product among the considered products by type (`, k) for price assignment x. Now because the

objective is to maximize the expected revenues, at optimality, we must have ya∗k`k` large enough such that

za∗
k`
`k =

∑
`′≤` b`′xa∗k``′ . Therefore, replacing the constraints ya`k ∈ {0,1} and

∑
a∈N ya`k ≤ 1 by 0≤ ya`k ≤ 1

will not affect the optimal solution. Second, the constraint
∑L

`=1 xa` ≤ 1 is subsumed by the fourth set of

constraints with `=L,
∑L

`′=1 xa`′ ≤ 1−
∑

a′ : σk(a′)>σk(a) ya′`k ≤ 1, and hence may be dropped.

With the above simplification, we have the following MILP:

max
x,y,z

∑
a∈N

L∑
`=1

K∑
k=1

g`λ(σk)za`k (Nonparametric Joint Opt)

subject to ya`k ≤
∑
`′≤`

xa`′ for a∈N ,1≤ `≤L,1≤ k≤K∑
a′ : σk(a′)>σk(a)

ya′`k ≤ 1−
∑
`′≤`

xa`′ for a∈N ,1≤ `≤L,1≤ k≤K

ya`k = 0 for all a∈ {a′ ∈N : σk(a
′)>σk(0)} ,1≤ `≤L,1≤ k≤K

za`k ≤ ya`k for a∈N ,1≤ `≤L,1≤ k≤K

za`k ≤
∑
`′≤`

b`′xa`′ for a∈N ,1≤ `≤L,1≤ k≤K

za`k ≥
∑
`′≤`

b`′xa`′ − (1− ya`k) for a∈N ,1≤ `≤L,1≤ k≤K

za`k ≥ 0,0≤ ya`k ≤ 1 for a∈N ,1≤ `≤L,1≤ k≤K

xa` ∈ {0,1} for a∈N ,1≤ `≤L,1≤ k≤K.

E.2. MILP for joint assortment and price optimization under the LC-MNL model

We formulated the joint assortment and price optimization problem under the LC-MNL model with K classes

as an MILP by modifying the MILP proposed in [5, p. 251, equation (7)] for determining the assortment
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of products that maximize the revenue. To obtain the formulation, consider an LC-MNL model with K

classes and suppose that the price of each product is one of the L levels {b1, b2, . . . , bL}. Let vka` denote

the preference weight for class k, product a, and price level `. The decision variables then are xa` ∈ {0,1},
indicating whether product a is offered at price level `, and our objective is to set the decision variables such

that the expected revenue is maximized. This problem is equivalent to choosing the revenue maximizing

assortment of products from nL products, obtained by creating L copies of each product, one for each price

level, with the added constraint that at most one copy of each product is chosen. Therefore, the MILP for

joint assortment and price optimization can be obtained by adding that at most one copy of each product is

chosen to the MILP for choosing the optimal assortment. More precisely, we obtain the following MILP:

max
x,y,z

∑
a∈N

L∑
`=1

K∑
k=1

αkb`vka`zka` (LC-MNL Joint Opt)

subject to yk +
∑

(a,`)∈NL

vka`zka` = 1 for all 1≤ k≤K

yk− zka` ≤ 1−xa,` for all 1≤ k≤K, (a, `)∈NL

zka` ≤ yk for all 1≤ k≤K, (a, `)∈NL

(1 + vka`)zka` ≤ yk for all 1≤ k≤K, (a, `)∈NL
L∑
`=1

xa` ≤ 1 for all a∈N

xa` ∈ {0,1} , yk, zka` ≥ 0 for all 1≤ k≤K, (a, `)∈NL,

where NL
def
= {(a, `) : a∈N ,1≤ `≤L} denotes the universe of nL products, obtained by creating L copies

of each product, one for each price level; the penultimate constraint imposes the requirement that only one

copy of each product is offered; and the remaining constraints are as described in [5].

Appendix F: EM algorithm for censored demand data with unobserved
no-purchase

We now discuss a simple extension of our estimation procedure to account for missing observations when

customers leave without purchasing. In many applications, such observations are not recorded as part of

sales transactions. Several techniques have been proposed in the literature (see Farias and Jagabathula [2]

and Vulcano and van Ryzin [4]) to deal with such missing observations. Existing techniques run the gamut

from heuristic extrapolations to fill in the missing entries (Haensel and Koole [3]) to systematic EM-based

inference techniques (Vulcano and van Ryzin [4]).

To deal with missing observations in the context of our model, we adopt the approach of Vulcano and van

Ryzin [4] and extend their EM-based algorithm to our setting. The setup is as follows. Sales occur over T

discrete time periods. In each time period, there is at most one customer arrival. Arrivals occur according

to a Bernoulli process with arrival rate γ < 1. The firm records customer purchases but does not record the

periods in which a customer arrives but does not purchase. Therefore, in a period without a purchase, either

a customer arrived but decided not to purchase or there was no customer arrival. Let O⊆ {1,2, . . . , T} denote

the time periods with purchases. For any t ∈ O, let (ct, St,pt) denote the tuple of observations: purchased
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product ct when offered the assortment and price combination St,pt. To simplify notation, let θt denote the

choice probability θct(St,pt) under our model. The incomplete data log-likelihood can now be written as

LI =
∑
t∈O

log(γθt) +
∑
t/∈O

log (γθ0t + 1− γ) ,

where we let θ0t denote the probability of choosing the no purchase alternative under our model from the

offer set and price combination St,pt, for any t /∈O. The first term in the above expression captures the data

log-likelihood in the time periods with purchases and the second term the data log-likelihood in the periods

without purchases. The sum γθ0t+ (1−γ) captures the fact that a period without a purchase will happen in

one of the two ways: arrival but no purchase with probabilty γθ0t or no arrival with probability 1− γ. The

above log-likelihood function is in general hard to maximize. Therefore, we adopt the EM heuristic.

We introduce latent variables qt ∈ {0,1} indicating whether there was a customer arrival or not in period

t. If the latent variables qt are observed, we obtain the complete data log-likelihood function

LC =
∑
t∈O

log(γθt) +
∑
t/∈O

(1l[qt = 1] logγθ0t + 1l[qt = 0] log(1− γ))

With qt observed, it is clear that the complete data log-likelihood is separable in γ and the parameters

defining our model θt. Therefore, estimating the paramters requires us to solve the following optimization

problems:

max
0≤γ≤1

(∑
t

1l[qt = 1]

)
logγ+ (1l[qt = 0]) log(1− γ) and max

g,λ

∑
t∈O

log θt +
∑

t/∈O : qt=1

log θ0t. (EC.4)

Optimizing the first problem results in the optimal solution γ̂ = (1/T )
∑

t
1l[qt = 1], the fraction of time

periods in which arrivals occured. The second optimization problem is the same as the MLE problem in (1).

Therefore, we can solve this problem using the EM algorithm proposed in Section 3.

Of course, the latent variables qt for t /∈O are not known. Therefore, we compute the conditional expected

values: for all t /∈O,

q̂t =E [qt|t /∈O, γ,θ] = Pr(qt = 1|t /∈O, γ,θ) =
Pr(t /∈O|qt = 1, γ,θ) Pr(qt = 1|γ,θ)

Pr(t /∈O|γ,θ)

=
θ0tγ

γθ0t + 1− γ
, (EC.5)

where θ denotes the vector of choice probabilities ((θt)t∈O, (θ0t)t/∈O). It follows by definition that q̂t = 1 for

all t∈O.

The above two steps are performed iteratively until convergence. Specifically, we start with initial estimates

of θ and γ. Given the initial estimates, we infer the values q̂t using (EC.5) (the E-step). We then use the

estimates q̂t to solve the optimization problems in (EC.4) (the M-step). The first problem in (EC.4) can be

solved in closed form but the second problem requires running the EM algorithm in Section 3. It follows

from standard EM machinery that carrying out the above procedure is always guaranteed to converge to a

stationary point (see Vulcano and van Ryzin [4]).
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Appendix G: PTAS for Constrained Joint Assortment and Price Optimization

The goal of this section is to develop a PTAS for the constrained joint assortment and price optimization

problem. As in the unconstrained case, throughout this section, we assume that the products are indexed by

1, . . . , n, and the reference rank of product i is i; that is τ is the identity ordering. Also, recall that we assume

that maxb∈B b < 1, and thus, pricing a product at 1 effectively removes it from the offer set. Therefore, the

d-sorted family of prices is given by

Pd =

{
p∈ [0,1]n : max

i :pi<1

∣∣π−1
p (i)− i

∣∣≤ d}
where πp represents the price ordering under p, with pπp(1) ≤ pπp(2) ≤ · · · ≤ pπp(n), and for any i, πp(i)

denotes the product at rank i under p. Note that π−1
p (i) denote the price rank of product i.

We will focus on the following constrained optimization problem:

Z∗α = max
p∈Pd∩Boxα

R(p)

where Boxα = {p∈ [0,1]n : αLi ≤ pi ≤ αUi ∀ i} , and α∈ (0,1) and Ui,Li ∈Z+.

Recall that Pd,α
def
= {p∈Pd : pi ∈Domα ∀ i}. The following lemma shows that by restricting our search

to a discrete set Pd,α, the maximum revenue decreases by at most a factor of α.

Lemma G.1 (Rounding). For any α ∈ (0,1) and p ∈Pd ∩ Boxα, there exists p̂ ∈Pd,α ∩ Boxα such that

R(p̂) ≥ αR(p). Consequently, max
p∈Pd,α∩Boxα

R(p)≥ αZ∗α.

Proof: For all i, set p̂i = max{x∈Domα : x≤ pi}. Since p∈Pd∩Boxα, it follows that p̂∈Pd,α∩Boxα. The

rest of the proof is exact the same as the one for Lemma C.1 in Appendix C, and we omit the details.

As in the unconstrained case, we define the relaxed revenue function

Rα,k(p)
def
=
∑
(b,σ)

w(b,σ)

n∑
i=1

1l
[
σ, i,

{
` : p` ≤ b and p` ≤ pi/αk

}]
.

The next proposition relates the solution of the relaxed revenue function to the solution of the original

revenue function. The proof of this result is exactly the same as the proof for the unconstrained case, and

we omit the details.

Proposition G.1 (Approximation Guarantee). For any α ∈ (0,1) and k ∈ Z++, let pα,k be

an optimal solution to the optimization problem associated with the relaxed revenue function

maxp∈Pd,α∩Boxα R
α,k(p). Then,

Z∗α ≥R(pα,k)≥ α(1−αk+1)Z∗α .

The main result of this section is to show that the constrained optimization problem associated with the

relaxed revenue function can be solved efficiently in polynomial time.

Proposition G.2 (DP for the Relaxed Problem). The problem maxp∈Pd,α∩Boxα R
α,k(p) can be

solved via dynamic programming with a running time of O
(
n3× 42d×n4(k+1)(d+1)× log 1/bmin

log 1/α

)
.
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G.1. Proof of Proposition G.2

It turns out that the solution to the optimization maxp∈Pd,α∩Boxα R
α,k(p) can be obtained using dynamic

programming method that is very similar to the unconstrained case. We only need to modify the DP equation

slightly. So, we will give a brief overview of the changes.

An Equivalent Representation of Prices: As before, let αH denote the largest price that is less than

or equal to the smallest budget; that is, αH = max{αs : αs ≤minb∈B b}, or equivalently, H = min{s : αs ≤

minb∈B b}. By our construction, it is never optimal to consider prices less than αH . Also, let

Valids =
{
i∈ {1,2, . . . , n} : αLi ≤ αs ≤ αUi

}
,

denote the set of all products that can be priced at αs. Then, we can represent each price vector

p ∈ Pd,α ∩ Boxα can be represented as a vector (AH ,AH−1, . . . ,A1,A0), where for all s,

As = {i∈Valids : pi = αs}

is the set of products whose prices are equal to αs. Throughout this section, we will use this representation

of prices. Note that it is possible that As =∅ for some s. Also, since the maximum budget is less than one,

A0 = {i : pi = α0 = 1} effectively correspond to the set of products that we will not offer. Note that this is

virtually the same as in the unconstrained case, and the only difference is in the introduction of the set

Valids, which will ensure that the price vector satisfies the box constraints.

An Equivalent Optimization Problem: As before, we can rephrase the optimization problem associated

with Rα,k as follows. For any (AH ,AH−1, . . . ,A1,A0) and 0≤ s≤H, let Wα,k
s (AH ,AH−1, . . . ,A1,A0) denote

the total revenue under the relaxed revenue function that is collected from the products in As ∪ As−1 ∪

· · ·A1 ∪A0; that is,

Wα,k
s (AH ,AH−1, . . . ,A1,A0)

def
=
∑
(b,σ)

w(b,σ)

s∑
`=1

α`
∑
i∈A`

1l
[
σ, i,

{
q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪A1 ∪A0 : pq ≤ b and pq ≤

pi
αk

}]
=
∑
(b,σ)

w(b,σ)

s∑
`=1

α`
∑
i∈A`

1l [σ, i,{q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪A`−k : pq ≤ b}]

Note that since b < 1 for all b∈B, products in A0 are never selected. For s= 1, . . . ,H, let

Y ∗s,α
def
= max

(AH ,AH−1,...,A1,A0)∈Pd,α ∩ Boxα

Wα,k
s (AH ,AH−1, . . . ,A1,A0)

As before, the following lemma shows that Y ∗H,α is our desired target.

Lemma G.2 (Equivalent Optimization). Y ∗H,α = max
p∈Pd,α ∩ Boxα

Rα,k(p).
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Based on Lemma C.3, we will develop dynamic programming methods for computing Y ∗0 , Y
∗
1 , . . . , Y

∗
H . Define

the following the value functions. For s= 0,1, . . . ,H, let

J∗s (AH ,AH−1, . . . ,As,As−1, . . . ,As−k+2,As−k+1)

def
= max(As−k,...,A0)

{
Wα,k
s (AH ,AH−1, . . . ,As, . . . ,As−k+2,As−k+1,As−k, . . . ,A0)

∣∣
(AH ,AH−1, . . . ,As−k+1,As−k, . . . ,A0)∈Pd,α ∩ Boxα

}
Note that

max
(AH ,...,As−k+2,As−k+1)

J∗s (AH ,AH−1, . . . ,As−k+2,As−k+1) = max
(AH ,AH−1,...,A1,A0)∈Pd,α ∩ Boxα

Wα,k
s (AH ,AH−1, . . . ,A1,A0) = Y ∗s,α

The following lemma provides a dynamic programming recursion for computing the value function.

Lemma G.3 (Dynamic Programming Equation). For any s,

J∗s (AH ,AH−1, . . . ,As,As−1, . . . ,As−k+2,As−k+1)

= max
As−k∈Ds(AH ,AH−1,...,As−k+2,As−k+1)

{
αsGs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k)

+J∗s−1(AH ,AH−1, . . . ,As,As−1,As−2, . . . ,As−k+1,As−k)

}
,

where

Gs(AH , . . . ,As−1,As, . . . ,As−k+1,As−k) =
∑
(b,σ)

w(b,σ)
∑
i∈As

1l [σ, i,{q ∈ {0}∪AH ∪AH−1 ∪ · · · ∪As−k : pq ≤ b}] ,

and the set Ds(AH ,AH−1, . . . ,As−k+2,As−k+1) denotes the collection of subset of products that can be priced

at αs−k and still satisfy the d-sorted constraint; that is,

Ds(AH ,AH−1, . . . ,As−k+2,As−k+1)

def
=

{
X ⊆

(
∪s−k+1
`=H A`

)c ∩ Valids−k : max
`∈X

∣∣π−1(`)− `
∣∣≤ d}

=

{
X : X = {i1, . . . , iq} ⊆

(
∪s−k+1
`=H A`

)c ∩ Valids−k for some i1 < i2 < · · ·< iq, and max
u=1,...,q

∣∣∣∣∣
(
s−k+1∑
`=H

|A`|+u

)
− iu

∣∣∣∣∣≤ d
}
,

where the last equality follows from the fact that the rank of the first product in As−k is equal to

1 +
∑s−k+1

`=H |A`|.

We note that the the above dynamic programming equation is exactly the same as in the unconstrained

case. The only difference here is that the requiring that the products that will be priced at αs−k must be

valid products; that is, they must satisfy the box constraints, or equivalently, the products must be from the

set Valids−k.

Given that we essentially the same DP formulation as in the unconstrained, using exactly the same

argument, we can show that

τ(A[H:s−k+1]) =

(
s−k+1∑
`=H

|A`| , L,

(
s−k+1⋃
·

`=H

A`

)c
∩{L− 2d,L− 2d+ 1, . . . ,L}, A[s:s−k+1] ,

s⋃
·

`=H

A`

)
,

is a sufficient statistics for the dynamic program. Then, we get the desired result.
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