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This paper investigates firms’ optimal operational decisions and after-tax profits with regard to tax deduc-

tion for charitable donations. Motivated by the steady growth in non-cash donations from U.S. companies,

our work is the first to provide theoretical guidance on operational planning under tax deduction for both

pre-committed donations and end-of-season donations. We analyze the impact of tax deduction for a profit-

driven firm under a two-period price-markdown newsvendor model and characterize the firm’s optimal price

and quantity decisions. The firm’s optimal donation behavior is driven by two factors: fixed cost and demand

uncertainty. Specifically, a positive fixed cost can induce pre-committed donation during the regular sell-

ing season, and demand uncertainty can induce end-of-season donation during the clearance period. The

enhanced tax deduction that is designed to encourage charitable donations results in unexpected behavior by

the firm. For example, the firm’s optimal clearance price can increase with the amount of leftover inventory,

and the firm’s optimal after-tax profit can increase as the tax rate increases. While the value of the deduc-

tion is tied to the fair market value (and the price) of the product, surprisingly, the firm may find it more

profitable to charge a lower price, because the lower price may scale up the demand uncertainty and conse-

quently increase the expected tax subsidy under the enhanced tax deduction. Our analysis reveals important

insights about the impact of the tax law on a monopolist’s optimal operational decisions and profit.
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1. Introduction

Charitable giving has bounced back from the last recession, and companies have donated more

products to charities in recent years. Rose (2011) finds that corporate non-cash donations increased

from $6 billion in 2007 to $8 billion to 2010 in a matched set of 110 companies over this time

period. Stroik (2013) estimates that more than 95% of the increase in the total aggregate giving

from 2007 to 2012 came from non-cash giving.

Non-cash charitable donations are encouraged by Congress, especially when the donated products

are used for the care of the ill, needy, or infants. In such cases, instead of claiming tax deductions
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based on the cost of goods sold, the firms can claim the enhanced tax deduction under Section

170(e)(3) of the U.S. Internal Revenue Code (IRC), which allows a deduction equal to the lesser

of twice the cost basis and the average of the product’s cost basis and its fair market value (FMV)

at the time of donation. The intention is to provide financial incentives so that property donation

becomes a preferred alternative to disposing of the inventory as waste, while preventing the sit-

uation where a company would be better off, after tax, by donating the inventory than it would

be by selling the donated property and retaining the proceeds of the sale. Section 170(b)(2) of the

U.S. IRC further limits the aggregate deductions associated with charitable contributions to 10%

of the taxpayer’s aggregate net income for the tax year. For contributions of food inventory, the

Protecting Americans from Tax Hikes (PATH) Act of 2015 increased the charitable contribution

percentage limitation to 15% for tax years beginning after 2015.

Since the enhanced tax deduction became law in 1976, gifts-in-kind intermediaries that match

the donated goods to nonprofits that serve the ill, needy, or infants have enjoyed a robust growth.

In 1977, the National Association for the Exchange of Industrial Resources (NAEIR) was among

the first nonprofit intermediaries founded to help match the donated goods to charities in a manner

that would maximize the new tax incentive under Section 170(e)(3) of the US tax law. Since its

founding, NAIER has collected and redistributed product donations worth billions of dollars to

tens of thousands of qualified nonprofits and public schools nationwide. Founded in 1983, Good360

(formerly Gifts In Kind International) has enjoyed an even more rapid growth and distributed

goods worth three times as much as NAEIR. These matching and logistic services are also offered

by smaller and more specialized intermediaries and some large multi-service nonprofits.

Coinciding with the development of the intermediaries that greatly lowers the transaction costs

of product donation and relieves firms of the responsibility of finding a specific matching recipient

(Ross and McGiverin-Bohan 2012), firms have increased inventory donations to charities over the

years. In 1982, 11% of corporate America’s charitable contributions took the form of non-cash

donations, while in 1986, non-cash gifts were 20% of the total giving (Ross 1987), and in 2012, the

proportion of non-cash donations rose to 69% (Stroik 2013).

Health care, consumer staples, and technology are the leading industries in terms of the percent-

age they give in non-cash contributions (Garton 2010, Perez 2015). Stroik (2013, 2014) estimates

that about 90% of the total donations by pharmaceutical firms is in the form of product giving.

For example, almost 95% of the donation by Merck is product donation (Table 1). Each year,

Merck donates inventory worth about $1.5 billion, while its annual operating income before tax is

about $6 billion. Because Merck discloses neither the method for determining the value of inventory

donation (e.g., whether the donation value is calculated using retailing prices or adjusted for drugs
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Fiscal
Year

Income Before Tax
($ in millions)

Operating Income
($ in millions)

Product Donation
($ in millions)

Product Donation
as % of Total
Donation

Product Donation
as % of Operating

Income

Product Donation
as % of Sales

Revenue

2003 9,052 8,496 789 93.6 9.3 3.5

2004 7,975 6,622 921 94.1 13.9 4.0

2005 7,364 5,537 979 94.2 17.7 4.4

2006 6,221 3,544 768 93.0 21.7 3.4

2007 3,371 6,010 766 92.5 12.7 3.2

2011 7,334 7,670 1,194 94.2 15.6 2.5

2012 8,739 9,213 1,626 95.9 17.6 3.4

2013 5,545 5,956 1,751 94.1 29.4 4.0

2014 17,283 5,670 1,430 92.7 25.2 3.4

2015 5,401 6,928 1,684 92.5 24.3 4.3

Table 1 Contributions summary by Merck & Co., Inc.

Sources from Merck’s Annual Reports and Merck & Co. Corporate Responsibility Report (2008, 2016).

past the expiration date) nor the amount of the enhanced tax deduction claimed in its tax return,

it is not clear whether Merck’s enhanced tax deduction is limited by 10% of its aggregate net

income. The gap in the reported years presented in Table 1 is due to the fact that Merck has only

revealed the worth of its product donation twice during the past 15 years, in its biennial corporate

responsibility report.

Inventory donations may be established through formal donation programs between donors and

recipients. The pharmaceutical industry is well-known for its long-term, structured donation pro-

grams that typically target specific diseases (Tzeneva 2014). The leading company in this regard

is Merck, which provides dozens of drugs free of charge to eligible adults, primarily the uninsured

who could not afford the needed health solutions. For example, Merck pledged to donate three mil-

lion doses of GARDASIL R© for HPV vaccination through its GARDASIL Access Program in 2007

(Merck & Co., Inc., 2008). In 2003, Pfizer committed to donate 135 million doses of its antibiotic

azithromycin, marketed as Zithromax in the U.S., to the global effort to fight trachoma (Brown

2003). These formal donation programs, through which companies often donate their blockbuster

drugs, are important means by which lower income countries access medicines (Davis 2017).

Inventory donations can also be occasional, especially in response to emergency situations. How-

ever, anecdotal evidence shows that, in such cases, matching the donors with the recipients can be

challenging. For example, thousands of size-12 shoes were shipped to China after an earthquake

(Andrews 2012), despite the fact that people in that region rarely need shoes of this size (Ross

and McGiverin-Bohan 2012). It is estimated that 60% of the donated items after a disaster are

not usable (Fessler 2013). Hechmann and Bunde-Birouste (2007) find that “Almost every time an

emergency situation occurs, affected countries experience an influx of medications and equipment

often not relevant for the emergency situation, as well as expired drugs or medications labeled in
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other languages.” They argue that the tax benefit is one of the main reasons for the unsolicited

donations from for-profit firms.

The benefit of the enhanced tax deduction depends on the FMV and the cost basis of the

contribution. Section 20.2031-1(b) of the U.S. IRC defines FMV as the price at which the property

would change hands between a willing buyer and a willing seller, neither being under any compulsion

to buy or to sell and both having reasonable knowledge of relevant facts. The PATH Act of 2015

further clarifies that for food contribution that cannot or will not be sold solely by reason of internal

standards of the company, lack of market, or similar circumstances, the fair market value may

be determined by the sale price in the recent past, if there are no comparable sales at the time

of contribution.

The cost basis of inventory consists of three components: direct material, direct labor, and man-

ufacturing overhead. Direct material and direct labor are the costs that can be traced to individual

units of product, while manufacturing overhead includes cost items like indirect materials, indirect

labor, utility, maintenance and repair, depreciation, insurance, and property taxes. As a result, the

cost basis of inventory includes both the fixed costs and the variable costs involved in the produc-

tion or procurement of the product. The fixed cost component can play a major role in determining

the cost basis, especially for firms with high operating leverage (e.g., software and pharmaceutical

companies), whose variable costs are insignificant compared to their fixed costs.

In this paper, we investigate firms’ optimal operational decisions and profits under the enhanced

tax deduction. Building on Cachon and Kök (2007)’s two-period price-markdown newsvendor

model, in which a firm first sets the regular price in the regular period and then sets the clearance

price in the clearance period based on the realized demand, we allow the firm to donate and claim

the enhanced tax deduction in either period. Specifically, the donation in the regular period, or the

so-called “pre-committed donation,” captures the inventory donation established through formal

donation programs when the firm commits a pre-specified donation quantity before the realization

of the demand. The donation in the clearance period, or the so-called “end-of-season donation,”

captures the occasional donation behavior when the firm chooses donation as a preferred alter-

native to salvaging after the demand realization. We analyze both the pre-committed donation

and the end-of-season donation under the integrated operational and tax planning. Our analysis

reveals the following important insights about the impact of the tax law on a monopolist’s optimal

operational decisions and profit.

First, the enhanced tax deduction induces unexpected behavior relating to a firm’s optimal

operational decisions and profit. For example, the firm’s optimal clearance price can increase in
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the amount of leftover inventory (Section 4.3) and the firm’s optimal after-tax profit can be an

increasing function of the tax rate (Section 4.2).

Second, we identify the two driving forces for the two different types of donation behavior under

the enhanced tax deduction: fixed cost and demand uncertainty. Specifically, it is profitable for the

firm to pre-commit charitable donation during the regular season only if there is a positive fixed

cost associated with production, and it is profitable to donate during the clearance period only if

the demand is uncertain.

Third, we characterize when the enhanced tax deduction induces a higher or a lower optimal reg-

ular price and optimal production quantity under various settings. While the value of the deduction

is tied to the FMV (and the price) of the product, surprisingly, the firm may find it more profitable

to charge a lower price, when the lower price scales up the demand uncertainty and increases the

expected tax subsidy under the enhanced tax deduction.

Last, our numerical analysis shows that integrated operational and tax planning can yield signifi-

cant benefits to a firm when compared to the profits generated without the enhanced tax deduction.

We also observe that the after-tax profit is a supermodular function of the fixed cost and the

demand uncertainty with the enhanced tax deduction (i.e., the combined effect of the two driving

factors on profit is greater than the sum of the individual effects of the two factors).

In summary, our analysis reveals the importance of integrated operational and tax planning and

the surprising implications of the enhanced tax deduction law, which was originally intended to

promote charitable donations. We hope that our work will encourage further analysis of this issue

within the operations management community.

In the next section, we review the literature. Section 3 proposes the two-period price-markdown

newsvendor model with donation. Section 4 characterizes the structure of the optimal solution

under the enhanced tax deduction, and investigates how the tax law and the tax rate may impact

the firm’s optimal price, production quantity, and profit. Section 5 numerically illustrates the

importance of integrated operational and tax planning, and examines the impact of the fixed cost

and the demand uncertainty. We conclude and comment on future research directions in Section 6.

2. Literature Review

Our work is related to three streams of the literature: tax management in accounting, tax-efficient

supply chain, and the price-setting newsvendor model. Ross and McGiverin-Bohan (2012) are

among the first in accounting to provide a systematic evaluation of the benefit of product donation

over salvaging. Nevertheless, their study focuses on how to dispose of products when a firm has
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excess inventory. Arya and Mittendorf (2015) consider a deterministic environment under which

the enhanced tax deduction alone does not introduce price or quantity distortion for a profit-driven

firm. However, when firms also have societal objectives, they show that the tax law can induce a

higher price. In general, the tax management literature does not provide guidance on operational

planning under the enhanced tax deduction.

Our work can also be considered as part of the literature on tax-efficient supply chain man-

agement, which has a growing body of publications; see Webber (2011) for an overview. Cohen

and Mallik (1997) note the potential benefits of incorporating tax considerations into supply chain

decisions. However, much of the work on this topic has focused on multinational enterprises and

the issue of transfer pricing; see, for example, Huh and Park (2013), Shunko and Gavirneni (2007),

Shunko et al. (2014), Xiao et al. (2015). The issue of charitable donation is largely ignored in

the literature.

The model used in our paper is related to the price-setting newsvendor model, where a firm

decides the price and production quantity simultaneously to maximize the expected profit; see

Porteus (1990) for an excellent review on the classical newsvendor problems and Chan et al. (2004)

for a comprehensive review on joint pricing and inventory decisions in newsvendor models. Our

paper is particularly related to Cachon and Kök (2007), who consider a two-period setting where

the market clearance price depends on the match between supply and demand. Similarly, in our

setting, the FMV is tied to the actual transaction price of the product at the time of the donation.

Our paper differs from the existing newsvendor literature in the following dimensions. First,

in the literature, the overage cost is typically independent of the price. However, in our model,

the effective overage cost decreases with the price and the tax rate. The price-and-tax-dependent

overage cost complicates the analysis significantly and leads to different pricing and production

strategies. Moreover, in contrast with the extant literature, we want to understand the implication

of the enhanced tax deduction for a profit-driven firm. As a result, we analyze the trajectories of

the optimal profit, the optimal price, and the optimal production quantity decision as a function

of the tax rate, and we obtain managerial insights from the structural properties of the optimal

solutions under the tax law.

3. Model Setup

In this section, we introduce a two-period price-markdown newsvendor model with donation and

analyze the structure of the firm’s optimal strategy under the enhanced tax deduction. We present

the model and the formulation of the firm’s integrated operational and tax planning in Sections 3.1

and 3.2, respectively.
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3.1. Model

We consider a risk-neutral firm that sells a product over a two-period selling season. The production

lead time is long, and the firm needs to commit to the production quantity q and stock up the

inventory prior to the selling season (i.e., during period 0). The selling season is composed of

periods 1 and 2. Period 1 is the regular period, and period 2 is the clearance period. The firm sets

price pt for period t, and the resulting random demand in period t is Dt(pt, ξ) (t = 1,2), where

the bounded random variable ξ ∈ [ξ, ξ] captures the underlying demand state. Let F (·) and f(·)

be the cumulative and density functions of the random variable ξ, respectively. Both D1(p, ξ) and

D2(p, ξ) are weakly increasing in ξ, and the firm learns ξ at the end of period 1. Dt(p, ξ) is non-

negative, differentiable, and decreasing in p when Dt(p, ξ)> 0, and the inverse demand function is

d 7→ pt(d, ξ) and is well defined for d in the appropriate domain. We assume that, for all t and ξ,

the revenue function d 7→ d · pt(d, ξ) is strictly concave in d in the domain. When demand exceeds

available inventory, excess demand is lost. The firm adopts a markdown strategy, that is, the price

in period 2 is bounded above by the price in period 1 (i.e., p2 ≤ p1), and the price in period 1 is

bounded above by the maximum willingness-to-pay of the customers (i.e., p1 ≤ p̄1 ≡ p1(d, ξ)|d↓0).

We focus on the case that p̄1 > vc (when p̄1 ≤ vc, producing zero unit is optimal for the firm). The

leftover inventory at the end of period 2 has zero value. This set-up is essentially the same as the

model used in Cachon and Kök (2007).

Not only does the firm need to make pricing and inventory decisions, as in Cachon and Kök

(2007), the firm also needs to decide how to donate inventory over time. The sequence of events is

as follows:

• In period 0 (before the selling season begins), the firm determines the production quantity q.

• At the beginning of period 1 (the regular period), the firms sets price p1 and sets aside quantity

r1 to be donated during period 1. The sales amount s1, where s1 ≤ q − r1, and the demand

state ξ are realized at the end of period 1.

• At the beginning of period 2 (the clearance period), the firm decides price p2. The sales amount

s2 is then realized, where s2 ≤ q − r1 − s1. The firm then donates quantity r2 at the end of

period 2, where r2 ≤ q − r1 − s1 − s2. The leftover inventory at the end of period 2 has zero

value and is salvaged.

To build up the inventory before the season starts, the firm incurs a non-negative fixed cost Fc

and a non-negative per-unit variable cost vc. With total production quantity q, the average unit cost

of inventory is c(q)≡ vc + Fc
q

. Although the unit cost of inventory depends on the total production

quality in period 0, for ease of exposition, we will suppress the dependence on q and just write c to
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denote the unit cost. Under the current tax law, the allowable per-unit deduction amount depends

on the cost and the FMV of the product. The definition of FMV ties it to the actual transaction

price of the product at the time of the donation. The firm makes two donation decisions: the pre-

committed donation r1 at the beginning of period 1 and the end-of-season donation r2 at the end

of period 2. We thus have the following FMV assignment.

Assumption 3.1 (FMV Modeling Assumption). The FMV of the pre-committed donation

r1 in period 1 is the regular price p1, while the FMV of the end-of-season donation r2 is the clearance

price p2, which is less than or equal to p1.

Under the current tax law, the per-unit deduction amount allowed is the cost basis c plus one-half

of the appreciation FMV − c, capped at twice the cost basis, when the FMV exceeds the cost (i.e.,

min{2c, FMV+c
2
}= min{2c, c+ FMV−c

2
}). To better understand the impact of the tax law, we adopt

a general formula for the deduction amount. That is, for each unit of inventory donated, the firm

may reduce the taxable income by min{c+ ac, c+ b(FMV − c)}= c+ min{ac, b(FMV − c)}. We

focus on the case that a, b ∈ [0, 1−τ
τ

), where τ is the marginal federal tax rate. Notice that, under

the current tax law, a= 1, b= 1
2
, and τ < 40%, so that a, b∈ [0, 1−τ

τ
).

3.2. The Firm’s Integrated Operational and Tax Planning Problem

The firm produces q units of inventory at cost c and gradually sells and donates its inventory with

price updates over the two periods. When the firm donates rt units and sells st units at price

pt in period t (t = 1,2), the resulting revenue is ptst, the cost of goods sold is cst, the cost of

inventory donated is crt, and the enhanced cost deduction amount is (c+ h(pt))rt, where h(p) =

min{ac, b(p− c)}. The leftover inventory amount is (q− r1 − s1 − r2 − s2) at the end of period 2,

which contributes zero to the revenue and c(q− r1− s1− r2− s2) to the cost. The firm’s aggregate

revenue is p1s1 + p2s2, and the aggregate cost deduction amount is h(p1)r1 + h(p2)r2 + cq. The

resulting tax is τ(p1s1 + p2s2−h(p1)r1−h(p2)r2− cq) at tax rate τ , and the after-tax profit of the

firm is (1− τ)(p1s1 + p2s2) + τ(h(p1)r1 +h(p2)r2)− (1− τ)cq.

The firm’s problem can be set up as a dynamic programming problem. Treating the initial

inventory production cost as sunk, let U2 (x|p1, ξ) denote the maximum expected after-tax profit for

period 2 given the regular period price p1, demand parameter ξ, and x units of inventory available

at the beginning of period 2. Also, let U1 (x) denote the maximum expected after-tax profit for

periods 1 and 2, given x units of inventory available at the beginning of period 1. We have the

following dynamic programming equations:

U2 (x|p1, ξ) = max
0≤ p2 ≤ p1
0≤ r2 ≤ x

s2 ≤min{D2(p2, ξ), x− r2}

{(1− τ)p2s2 + τh(p2)r2},
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Figure 1 Schematic representation of the two-period model with donation occurring prior to sales realization.The

black dots represent the sequence of events.

U1 (x) = max
0≤ p1 ≤ p̄1
0≤ r1 ≤ x

s1 ≤min{D1(p1, ξ), x− r1}

{(1− τ)p1Eξ[s1] + τh(p1)r1 + Eξ[U2(x− s1− r1|p1, ξ)]}.

For both equations, the first constraint states that the price is positive and that the clearance price

is bounded by the regular price and the regular price is bounded by the maximum willingness-to-

pay; the second constraint indicates that the donation quantity rt is constrained by x, the available

inventory at the beginning of the period t; the last constraint shows that the sales quantity st is

limited by both the demand Dt(pt, ξ) and the available inventory x− rt for t= 1,2, because the

donation quantity is deducted from the inventory before the sales realization in the regular period

and the demand uncertainty is resolved in the clearance period. The firm’s optimal production

quantity decision at the beginning of the selling season in period 0, is obtained by maximizing the

after-tax profit, corresponding to the following optimization problem:

U ≡max
q

U1(q)− (1− τ)[vcq+Fc] .

The firm’s optimal policy consists of the optimal production quantity q∗ in period 0, the optimal

price p∗1 and donation amount r∗1 in the regular period (period 1), and for every realization ξ

of the demand state, the optimal price p∗2(ξ) and donation amount r∗2(ξ) in the clearance period

(period 2). Let U∗ denote the corresponding total optimal profit. If multiple solutions generate the

same optimal profit, we assume that the firm picks a solution with the least amount of donation

according to a lexicographic order; that is, the firm first picks the solution with the least expected
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donations in period 2, then the least expected donations in period 1. If we still have a tie, we assume

that the firm picks the solution with the highest production quantity. Without loss of generality,

we assume that p∗1 > c. Also, s∗1 and s∗2(ξ) denote the optimal sales in period 1 and in period 2,

respectively. Let I∗ = q∗− r∗1 − s∗1 denote the remaining inventory level at the end of period 1.

As shown in the numerical experiments in Section 5, the optimal policy can be computed numer-

ically by solving the dynamic program for the value functions U1(·) and U2(·) for each value of

q. Notice that the choice of q affects the average unit cost, which in turns affects the enhanced

deduction amount h(·). Then, we can conduct a one-dimensional search for the optimal production

quantity q∗. However, the main goal of our manuscript is to establish structural properties of the

optimal policy and derive managerial insights about the drivers of donation behavior.

4. Optimal Policy Structure and Implications

In this section, we evaluate the optimal policy of the firm, and investigate how the enhanced tax

deduction and the tax rate τ impact the firm’s optimal profit and optimal decisions. In Section

4.1, we establish the general properties of the profit function. Section 4.2 illustrates the impact of

the enhanced tax deduction through an example. We then investigate the structure of the optimal

policy and the impact of the two driving factors on the firm’s optimal price and production quantity

in Sections 4.3 and 4.4. The proofs of the theoretical results are deferred to the Appendix and the

Online Appendix.

4.1. General Properties of the Profit Function

We investigate how the enhanced tax deduction and the tax rate impact the firm’s optimal regular

price and production quantity. Recall that (q∗, p∗1, r
∗
1 , p
∗
2(ξ), r∗2(ξ)) is the firm’s optimal decision with

the enhanced tax deduction. We write the optimal profit U∗ as U∗(τ) to highlight the dependency

on the tax rate. The next theorem states that the optimal after-tax profit is in fact convex in τ .

Theorem 4.1 (Convexity). U∗(τ) is a convex function of τ .

As the tax rate increases, the firm needs to pay a higher tax for the given profit and can also

better take advantage of the enhanced tax deduction. It turns out that the firm may be better

off with a higher tax rate, because a higher tax rate can create a greater tax subsidy under the

enhanced deduction. To study the government tax subsidy due to enhanced deduction, let us define

EATD(τ) ≡ Eξ[h(p∗1)r∗1 + h(p∗2(ξ))r∗2(ξ)] to be the expected additional tax deduction amount (in

dollars) when the firm donates excess inventory, under the optimal production quantity, prices,

and donation amounts. For notational convenience, we will suppress the dependence on prices,

donations, and production quantity, and focus primarily on how EATD(τ) changes with τ .
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Theorem 4.2 (Monotonicity of Tax Deduction Amount). At optimal, the expected

additional tax deduction amount EATD(τ) is a weakly increasing function of τ .

Theorem 4.2 shows that the firm can claim a higher amount of deduction and utilize the tax law

to a greater extent when the tax rate is higher. Given that the after-tax government subsidy due

to the enhanced tax deduction is τEATD(τ), this result helps explain the convexity of the firm’s

after-tax profit. The next theorem explains that if the tax rate is sufficiently high, the firm can

adopt a profitable strategy of producing for donation and the resulting profit is only confined by

the aggregate charitable contribution deduction limit.

Theorem 4.3 (Tax Rate Threshold). When τ > 1
1+a

, U∗(τ)≥
(
τ − 1

1+a

)
M if M/(1 +a)>

Fc and p̄1 ≥ a+b
b
vc

M
M−(1+a)Fc

, where M is the maximum deduction amount under the tax law based

on the aggregate income and deduction of the firm’s other offerings.

For any taxable year, a firm can deduct up to 10% of its aggregate net income and carry over

the remaining amount. Theorem 4.3 shows that when τ is larger than 1
1+a

, producing solely for

the donation purpose can be a profitable strategy for the firm when the fixed cost is relatively

small compared to the potential deduction limit (Fc <M/(1 +a)) and the firm can establish FMV

at a+b
b
vc

M
M−(1+a)Fc

. The donation becomes profit-enhancing because it reduces the tax liability of

the firm’s other offerings. In this case, the benefit of donation is only limited by the aggregate

deduction amount. Notice that Theorem 4.3 only establishes a lower bound on the firm’s optimal

profit, and the firm’s optimal strategy may be different from producing solely for the donation

purpose, especially when the maximum deduction amount M is small. In the ensuing analysis, we

ignore the deduction limit, because here we focus on a single product while a firm can have many

products and services. For a single product, the deduction can exceed 10% of its income, and, in

fact, it would be beneficial for some products to exceed the limit to take advantage of the income

brought in by other offerings.

The analysis in Theorem 4.3 provides us with a natural upper bound 1
1+a

for the tax rate, which

is 50% under the current law with a= 1.

4.2. A Two-Period Example with Random Demand

In this section, we illustrate how tax rate τ impacts the firm’s optimal profit and decisions through

a multiplicative random demand example.

Example 1 (Random Demand). D1(p, ξ) =D2(p, ξ) = ξD(p), where D(p) =WTP−p, WTP=

10, and ξ follows a log-normal distribution lnN (µ,σ2), with µ=−0.5 and σ= 1 (so that E[ξ] = 1).

Fc = 20 and vc = 1, while a= 1 and b= 1
2

according to the current law.
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When the tax rate is zero, salvaging and donating each provides the same profit to the firm.

The enhanced tax deduction does not provide the firm an incentive for inventory donation, and

the firm’s optimal solution would be the optimal solution when the enhanced tax deduction is

prohibited by the tie-breaking rule. We use superscript 0 to denote the firm’s decision when the

tax rate is zero, or, equivalently, when the enhanced tax deduction is prohibited. So, let q0 and

p0
1 denote the production quantity and the regular price, respectively, and let p0

2(ξ) denote the

clearance price given the observed demand state ξ. Also, let U 0(τ) denote the firm’s profit under

q0, p0
1, p

0
2(ξ), when evaluated under the tax rate τ . Our goal is to compare (q0, p0

1, p
0
2(ξ)) and U 0(τ)

with the optimal decisions (q∗, p∗1, p
∗
2(ξ)) and U∗(τ) under different tax rates.

Figure 2 shows how the optimal operational decisions and the after-tax profit vary as a function of

tax rate τ . The top graph shows the optimal price p∗1 in period 1, the after-tax optimal profit U∗(τ),

and the tax subsidy τEATD(τ) due to the enhanced deduction. The bottom graph illustrates the

optimal production quantity q∗ and expected donation Eξ[r∗2(ξ)] in the clearance period. Column

1 in Table 2 lists the tax rate τ ∈ {0,0.15,0.35,0.50}. Columns 2 to 4 present the optimal price,

production quantity, and after-tax profit with the enhanced tax deduction, respectively. Columns

5 to 7 report the optimal price, production quantity, and after-tax profit without the enhanced tax

deduction, respectively. We note that p0 and q0 are always the same regardless of the tax rate, so

we only list them once in Columns 5 and 6. Columns 8 and 9 show the absolute improvement and

the percentage improvement in profit due to the enhanced tax deduction, respectively.

τ p∗1 q∗ U∗ p01 q0 U0 U∗−U0 U∗−U0

U0

0% 6.67 12.10 4.24

6.67 12.10

4.24 0 0
15% 6.54 16.15 5.51 3.61 1.91 52.9%
35% 6.34 22.57 10.21 2.76 7.45 270.0%
50% 5.50 ∞ 20.25 2.12 18.13 854.3%

Table 2 Expected after-tax profit and optimal decisions at different tax rates for the example in Section 4.2.

Several phenomena deserve our attention. First, note that the after-tax profit with the enhanced

tax deduction is a convex function of the tax rate, as specified by Theorem 4.1. Surprisingly, the

after-tax profit is also an increasing function of the tax rate, as illustrated in Figure 2. With a

higher tax rate, the firm loses on the profit earned through sales, but gains on the tax subsidy.

The tax subsidy is rather valuable, especially under higher tax rates when the firm gets a higher

subsidy for each unit donated, and donates more. Table 2 reports that the tax law may have a

profound impact on the firm’s optimal after-tax profit.

Second, the firm’s optimal production quantity increases with respect to the tax rate, while the

firm’s optimal regular price decreases with respect to the tax rate, which means that the enhanced
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Plot of the optimal regular
price p∗1 in period 1 (dot-
ted black), the optimal after-
tax profit U∗(τ) (solid red)
and the expected tax subsidy
τEATD(τ) (dashed blue) for
different tax rates.

Plot of the optimal production
quantity q∗ (solid red) and
the expected optimal donation
quantity Eξ[r∗2(ξ)] in the clear-
ance period (dashed blue) for
different tax rates. At τ = 0,
there is no donation.

Figure 2 Plots of the optimal decisions, after-tax profit and benefit for Example 1.

tax deduction can result in a higher production quantity and a lower regular price despite the fact

that a lower regular price implies a lower FMV and potentially a lower deduction. This motivates

us to study the impact of the enhanced tax deduction on the firm’s optimal price and quantity

decisions in later sections.

Finally, the optimal solution here does not engage in pre-committed donation. That is, in this

example, r∗1 = 0. At the same time, Eξ[r
∗
2(ξ)]> 0 for all τ > 0 due to the demand uncertainty. As

a result, we separate two driving factors — fixed cost and demand uncertainty — in the next two

sections and study their impacts on the optimal policy structure.

4.3. Positive Fixed Cost with Deterministic Demand

In this section, we consider the case that ξ = ξ = ξ is a constant and demand is deterministic.

First we study how the firm’s optimal strategy varies with the fixed cost in Section 4.3.1. Next
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we illustrate the profitability of the pre-committed donation in the regular period in Section 4.3.2.

Finally, we analyze the impact of the enhanced tax deduction on the firm’s operational decisions

in Section 4.3.3.

4.3.1. Optimal Donation Under Deterministic Demand

Recall that I = q− r1− s1 is the remaining inventory level at the end of period 1, and the addition

of an asterisk sign represents that the variable is at its optimal level. Theorem 4.4 shows that the

optimal solution structure under deterministic demand depends on the value of the fixed cost Fc.

Theorem 4.4 (Optimal Solution Structure under Deterministic Demand). When

ξ = ξ = ξ, r∗2 = 0, s∗1 = D1(p∗1, ξ), and s∗2 = I∗. Moreover, there exists 0 ≤ F̂ ≤ ∞ such that the

firm’s optimal strategy has following form:

(I) When 0≤ Fc ≤ F̂ , the firm does not donate and perfectly plans the demand; that is, r∗1 = r∗2 = 0

and q∗ = s∗1 + s∗2. Furthermore, ∂(s1p1(s1,ξ))

∂s1
|s1=s∗1

= vc and ∂(s2p2(s2,ξ))

∂s2
|s2=s∗2

= vc if markdown

constraint p1 ≥ p2 is not binding; otherwise p∗2 = p∗1.

(II) When Fc > F̂ , the firm engages in pre-committed donation; that is, r∗1 > 0 and q∗ = r∗1 + s∗1 + s∗2.

Moreover, q∗ = Fc/(c
∗− vc), h(p∗1) = ac∗ (i.e., p∗1 ≥ a+b

b
c∗), and τ

1−τ ac
∗ > vc⇔ Fc

Fc+vcq∗
> 1−τ−τa

1−τ .

(i) If p∗1 >
a+b
b
c∗, q∗ =

√
τaFc(s∗1+s∗2)

(1−τ−τa)vc
> (a+b)Fc

bp∗1−(a+b)vc
. Furthermore, ∂(s1p1(s1,ξ))

∂s1
|s1=s∗1

= τ
1−τ ac and

∂(s2p2(s2,ξ))

∂s2
|s2=s∗2

= τ
1−τ ac if markdown constraint p1 ≥ p2 is not binding; otherwise p∗2 = p∗1;

(ii) Otherwise, p∗1 = a+b
b
c∗, q∗ = (a+b)Fc

bp∗1−(a+b)vc
≥
√

τaFc(s∗1+s∗2)

(1−τ−τa)vc
. Furthermore, ∂(s2p2(s2,ξ))

∂s2
|s2=s∗2

=

τ
1−τ ac if markdown constraint p1 ≥ p2 is not binding; otherwise p∗2 = p∗1.

Furthermore, F̂ =∞ if p̄1 ≤ (1−τ)(a+b)

τab
vc and F̂ <∞ if p̄1 >

(1−τ)(a+b)

τab
vc.

Theorem 4.4 shows that the pre-committed donation in the regular period can be profitable for

the firm when the fixed cost Fc is large. The larger the fixed cost, the larger the difference between

the unit cost and the marginal cost, and, consequently, the higher the benefit for donation under

the enhanced tax deduction. Furthermore, the pre-committed donation is profitable only if the

ratio Fc
Fc+vcq∗

exceeds 1−τ−τa
1−τ . The term Fc

Fc+vcq∗
= c∗−vc

c∗ measures the company’s fixed cost as a

percentage of its total cost and relates to the concept of operating leverage. This threshold holds

for both the deterministic demand case and the stochastic demand case.
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Under general demand functions, it is challenging to write down the closed-form solution even

for the deterministic demand case because first, the underlying optimization problem is not convex

(e.g., when the markdown constraint p1 ≥ p2 is binding, multiple solutions may maximize the firm’s

profit); and second, the optimal solution is not continuous with respect to Fc (e.g., at Fc = F̂ ).

To better understand the optimal solution structure, we consider a special case under which

D1(p, ξ) =D2(p, ξ) =WTP−p. The following theorem characterizes different regimes of the optimal

decision.

Theorem 4.5 (Optimal Solution Structure under Deterministic Linear Demand).

When D1(p, ξ) = D2(p, ξ) = WTP − p, there exists 0 ≤ F̂ ≤ F̆ ≤ F̄ such that the firm’s optimal

strategy has following form:

(I) When 0≤ Fc ≤ F̂ , p∗1 = p∗2 = WTP+vc
2

, s∗1 = s∗2 = WTP−vc
2

, r∗1 = r∗2 = 0 and q∗ = s∗1 + s∗2.

(II) When F̂ < Fc ≤ F̆ , p∗1 = p∗2 =
WTP+ τ

1−τ ac
∗

2
, s∗1 = s∗2 =

WTP− τ
1−τ ac

∗

2
, q∗ = Fc

c∗−vc , r∗1 = q∗− s∗1− s∗2, and

r∗2 = 0, where c∗ is the unique solution to τa
(
WTP− τ

1−τ ac
)

(c− vc)2−Fc(1− τ − τa)vc = 0 on(
vc,max

{
vc,

WTP
2(a+b)
b − τa

1−τ

}]
.

(III) When F̆ < Fc ≤ F̄ , p∗1 = a+b
b
c∗, p∗2 =

WTP+ τ
1−τ ac

∗

2
, s∗1 = WTP− a+b

b
c∗, s∗2 =

WTP− τ
1−τ ac

∗

2
, q∗ = Fc

c∗−vc ,

r∗1 = q∗−s∗1−s∗2, and r∗2 = 0, where c∗ is the unique solution to 1
2
τa
(
WTP− τ

1−τ ac
)

(c−vc)2−(1−

τ)a+b
b
− τa)

(
WTP− 2(a+b)

b
c
)

(c− vc)2−Fc(1− τ − τa)vc = 0 on

(
max

{
vc,

WTP
2(a+b)
b − τa

1−τ

}
, bWTP
a+b

]
.

(IV) When Fc > F̄ , p∗1 = a+b
b
c∗, p∗2 =

WTP+ τ
1−τ ac

∗

2
, s∗1 = 0, s∗2 =

WTP− τ
1−τ ac

∗

2
, q∗ = Fc

c∗−vc , r∗1 = q∗−s∗1−s∗2,

and r∗2 = 0, where c∗ = bWTP
a+b

.

Furthermore, F̂ =∞ if and only if τ ≤ (a+b)vc
(a+b)vc+abWTP

and when Fc > F̂ , p∗1, p∗2, and c∗ are continuous

(weakly) increasing functions of Fc.

Theorem 4.5 offers detailed structural results under the deterministic linear demand setting.

When the fixed cost is small, the firm does not engage in pre-committed donation. When the fixed

cost is large, producing for donation becomes profitable. In this case, both the optimal unit cost

and the price increase with the fixed cost. When the fixed cost is moderately high, it is optimal to

have the same prices in the regular period and in the clearance period given that both periods face

the same deterministic demand pattern. When the fixed cost is sufficiently high, it is optimal to

have different prices in the two periods to better take advantage of the pre-committed donation.

We illustrate the pre-committed donation behavior using the ensuing example.
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4.3.2. An Illustrative Example

Example 2 (Deterministic Demand). D1(p, ξ) = D2(p, ξ) = WTP − p, where WTP = 10.

Fc = 20, vc = 1, and τ = 35%, while a= 1 and b= 0.5 according to the current law.

Without the enhanced tax deduction, the optimal production quantity and regular price are

(q0, p0
1) = (9.00,5.50), and the firm’s after-tax profit is 13.33. With the enhanced tax deduction,

the optimal production quantity and regular price are (q∗, p∗1) = (18.86,6.18), p∗2 = 5.55, and the

firm’s after-tax profit is 13.77. Moreover, the optimal donation quantities are r∗1 = 10.60 and r∗2 = 0,

i.e., the firm pre-commits all donations in the regular period.

Figure 3 Ratio between fixed cost and total cost versus tax rate for all realizations of the fixed cost. The regions

(I)-(IV) correspond to the four forms of the firm’s optimal strategies in Theorem 4.5, respectively.

Figure 3 illustrates that as the tax rates and the fixed cost change, how the optimal ratio between

the fixed cost and the total cost varies with the tax rate under the linear deterministic demand

setting outlined in Example 2. The black long dashed line represents the critical ratio 1−τ−τa
1−τ , above

which pre-committed donation may be profitable.

When the tax rate is small (specifically when τ ≤ 0.23 by Theorem 4.4), F̂ =∞. Thus, the no

donation strategy (i.e., strategy (I)) is optimal and the optimal ratio varies from 0 to 1 as Fc

varies from 0 to infinity. When the tax rate is large, F̂ is finite and approaches 0 as the tax rate

approaches 50%. Therefore, as the tax rate increases, the region of no donation shrinks. When

Fc ≤ F̂ , the optimal ratio is increasing in Fc for the given tax rate. When Fc increases beyond

F̂ , the optimal strategy switches to one of the pre-committed donation strategies (i.e., strategies



Chu, Li, and Rusmevichientong: Optimal Pricing and Inventory Planning with Charitable Donations
17

(II), (III), or (IV)), the optimal production quantity jumps upwards and the optimal ratio jumps

downwards. When Fc > F̂ , the optimal ratio is increasing in Fc for a given tax rate, resulting in the

overlapping areas in Figure 3. When Fc > F̄ , the optimal ratio takes on a single value independent

of the tax rate, which results in a single line for region (IV).

For the most common tax rate of 35%, the critical ratio (on the long dashed line) is 0.46, which

provides a lower bound for the optimal ratio at which pre-committed donation is profitable. When

τ = 0.35, F̂ = F̆ = 9.2, and the optimal strategy switches from (I) to (III) at Fc = F̂ . The actual

gap between the dotted and dashed lines is small, as the ratios between the fixed cost and the total

cost are 0.505 and 0.457 for these two lines at τ = 0.35. When Fc = 20, as in Example 2, strategy

(III) is optimal. The ratio between the fixed and the total costs is 0.515, and is marked by the

black cross in region (III) in Figure 3.

The software and pharmaceutical industries are notable with low variable costs and high oper-

ating leverages. Theorems 4.4 and 4.5 imply that it might be in the best interest of these firms to

offer structured donation programs and produce additional inventory for the purpose of donation.

This prediction is consistent with the anecdotal evidence and examples to this effect cited in the

introduction section.

4.3.3. Impact of the Enhanced Tax Deduction on Optimal Solution

When ξ = ξ = ξ, the analysis of Theorems 4.4 and 4.5 shows that the firm’s optimal decision can

be rewritten as:

max
p1,p2,r1≥0

(1− τ)[p1D1(p1, ξ) + p2D2(p2, ξ)− (Fc + vc(r1 +D1(p1, ξ) +D2(p2, ξ))] + τh(p1)r1,

s.t. p2 ≤ p1 ≤ p̄1 .

When the markdown constraint is not binding, either the formulation becomes two separable

one-period problems — if donation is not part of the optimal strategy — or the two periods are

linked via the enhanced tax deduction benefit h(p1). Primarily, the firm needs to consider the

margin-volume tradeoff in deciding the optimal prices. The potential complication that we have

seen in Sections 4.3.1 and 4.3.2 is that the optimal solution is not continuous with respect to the

parameters.

Despite the discontinuity, we investigate the impact of the enhanced tax deduction on the optimal

regular price. In Example 2, the enhanced tax deduction induces both a higher optimal price and

a positive pre-committed donation. This provides a sharp contrast to Example 1 in Section 4.2,



Chu, Li, and Rusmevichientong: Optimal Pricing and Inventory Planning with Charitable Donations
18

in which the enhanced tax deduction induces a lower optimal price and the optimal solution does

not engage in pre-committed donation. The key difference between Examples 1 and 2 is demand

uncertainty. Formally, we show that the enhanced tax deduction (weakly) increases the optimal

regular price when the firm does not face demand uncertainty.

Theorem 4.6 (Price Increase with Deterministic Demand). When demand is deter-

ministic, the optimal regular price under the enhanced tax deduction is at least as large as the

optimal price without the enhanced tax deduction; that is, if ξ = ξ = ξ, then p∗1 ≥ p0
1.

Given the potential pre-committed donation behavior, it is natural to conjecture that the

enhanced tax deduction induces a (weakly) higher production quantity. Under the linear determin-

istic demand setting in Example 2, we indeed observe that the enhanced tax deduction (weakly)

drives up the optimal production quantity for all the tax rates and all the realizations of the fixed

cost. Specifically, at Fc = F̂ , optimal production quantity jumps under pre-committed donation

strategies compared to the optimal no donation strategy.

Nevertheless, due to the margin-volume tradeoff, the increased optimal price under the enhanced

tax deduction (Theorem 4.6) implies a reduced optimal sales quantity. As a result, one can construct

examples such that the enhanced tax deduction results in a reduced optimal production quantity

when demand is deterministic (e.g., by tweaking the special case (p − vc)D(p, ξ) = C for some

constant C > 0, the optimal production quantity without the enhanced tax deduction can be

arbitrarily large).

4.4. Zero Fixed Cost with Uncertain Demand

In this section, we consider the case that Fc = 0 and demand is uncertain. We first study how the

firm’s optimal strategy varies with the underlying demand state in Section 4.4.1. Then we illustrate

the pricing and donation behavior in the clearance period in Section 4.4.2. Finally, we analyze the

impact of the enhanced tax deduction on the firm’s operational decisions in Section 4.4.3.

4.4.1. Optimal Donation Under Zero Fixed Cost

We first show that the firm has no financial incentive to engage in pre-committed donation in the

regular period.

Theorem 4.7 (No Pre-committed Donation). When Fc = 0, r∗1 = 0.

Now, to analyze the solution strategy in the clearance period, we solve the proposed dynamic

program for U2(·). Recall that I = q− r1− s1 is the remaining inventory level at the end of period
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1, and the addition of an asterisk sign represents that the variable is at its optimal level. We first

analyze the optimal price, sales, and donations p∗2, s∗2, and r∗2, respectively, in the clearance period.

Theorem 4.8 (Optimal Policy in the Clearance Period). Given the optimal first

period decisions (q∗, p∗1, r
∗
1), we have the following properties when ∂2p2(s,ξ)

∂s∂ξ
≥ 0:

(I) The optimal remaining inventory I∗ at the end of period 1 is a weakly decreasing function of ξ;

(II) Suppose that for all ξ, p2(s, ξ) is concave in s or h(p2(s, ξ)) = ac for all s in the domain. Then,

the net profit in the clearance period (1− τ)sp2(s, ξ) + τh(p2(s, ξ))(I∗− s) is concave in s. More-

over, there exist ξ̂, ξ̆ such that ξ ≤ ξ̂ ≤ ξ̆ ≤ ξ, and we can partition the demand state into three

consecutive intervals: high (ξ̆, ξ], medium [ξ̂, ξ̆], and low [ξ, ξ̂). Depending on the realized state of

the demand at the end of period 1, the optimal decisions in the clearance period (period 2) are

as follows:

(i) In the high demand state, the firm does not donate but clears all remaining inventory, and

the clearance price is equal to the regular selling price; that is, if ξ̆ < ξ ≤ ξ, then r∗2 = 0,

s∗2 = I∗, and p∗2 = p∗1 < p2(I∗, ξ);

(ii) In the medium demand state, the firm does not donate and still clears all remaining

inventory, but at a lower price than the regular price; that is, if ξ̂ ≤ ξ ≤ ξ̆, then r∗2 = 0,

s∗2 = I∗, and p∗2 = p2(I∗, ξ)≤ p∗1 with p∗2 (weakly) increasing in ξ;

(iii) In the low demand state, either the firm does not donate and sets the clearance price below

unit cost or the firm donates and sets the clearance price above the unit cost; that is, if

ξ ≤ ξ < ξ̂, then either r∗2 = 0, s∗2 = arg maxs(sp2(s, ξ))< I∗, and p∗2 = p2(s∗2, ξ)≤ c, or r∗2 > 0,

s∗2 = max{D2(p∗1, ξ),arg maxs((1− τ)sp2(s, ξ) + τh(p2(s, ξ))(I∗− s)}, and p∗2 = p2(s∗2, ξ)> c.

Theorem 4.8 and the upcoming Theorem 4.9 also apply to the case that Fc ≥ 0. The technical

condition that p2(s, ξ) is concave in s or h(p2(s, ξ)) = ac for all s in the domain ensures that

the clearance period profit function is still concave in s2 when the enhanced deduction benefit is

included. Under the linear demand setting studied in Sections 4.3.1 and 4.3.2, p2(s, ξ) is, of course,

concave in s. The condition h(p2(s, ξ)) = ac is equivalent to p2(s, ξ) ≥ (1 + a
b
)c = 3c, under the

current law with a= 1 and b= 1
2
. This condition is generally met for high-profit-margin products

such as brand-name drugs and medicines.

Theorem 4.8 offers some insights on the trajectory of the optimal policy in the clearance period

as the demand state varies. Note that the firm’s available inventory I at the beginning of period

2 is decreasing in ξ, because the stronger the demand, the less the remaining inventory. Without

the enhanced tax deduction, the firm should clear the inventory if the remaining inventory is low.
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In this case, the firm’s optimal second period price would be increasing in ξ, which is equivalent to

decreasing in I. That is, the higher the remaining inventory, the lower the price. If the remaining

inventory is high, the firm would set the optimal price to maximize the revenue and salvage the

leftovers without the enhanced tax deduction.

The firm’s solution is much more complicated when it is possible to take the enhanced tax

deduction. Theorem 4.8 reveals that, while the second period problem can be solved efficiently due

to the concavity structure, the firm may switch back and forth between salvaging and donating

the excess inventory, as ξ varies if the remaining inventory is high. As a result, the optimal second

period decisions may not be monotonous or even continuous.

Note that the condition ∂2p2(s,ξ)

∂s∂ξ
≥ 0 is implied by either D2(p, ξ) =D(p) (because when D2(p, ξ)

is independent of ξ, ∂2p2(s,ξ)

∂s∂ξ
= 0) or D2(p, ξ) = ξD(p) (because when p2(s, ξ) = p(s/ξ), ∂2p2(s,ξ)

∂s∂ξ
=

∂(p′(s/ξ)/ξ)
∂ξ

=− (s/ξ)p′′(s/ξ)+p′(s/ξ)
ξ2

, which is non-negative by the concavity of d2p2(d2, ξ)).

Let p(d) be the inverse function of D(p). With a stronger condition, we can subdivide the “low

demand” interval [ξ, ξ̂) from Theorem 4.8 into two sub-intervals and provide explicit characteriza-

tion of the optimal decision in each of these intervals.

Theorem 4.9 (Refinement of the Optimal Policy under Multiplicative Demand).

Given the optimal first period decisions (q∗, p∗1, r
∗
1), when either D2(p, ξ) =D(p) or D2(p, ξ) = ξD(p),

all the results from Theorem 4.8 (I) and (II) parts (i) and (ii) continue to hold. In addition, there

exist ξ̌ such that ξ ≤ ξ̌ ≤ ξ̂, and the low demand interval [ξ, ξ̂) can be further subdivided into two

intervals: moderately low [ξ̌, ξ̂) and very low [ξ, ξ̌), with the following properties:

• In the moderately low demand state, the firm does not donate and sets the clearance price

below the unit cost; that is, if ξ̌ ≤ ξ < ξ̂, then r∗2 = 0, s∗2 = ξD(p̂) < I∗, and p∗2 = p̂ ≡

arg maxp(pD(p))≤ c.

• In the very low demand state, the firm donates, and the clearance price is above the unit

cost; that is, if ξ ≤ ξ < ξ̌, then r∗2 > 0, s∗2 = max{D2(p∗1, ξ),arg maxs((1 − τ)sp2(s, ξ) +

τh(p2(s, ξ))(I∗ − s)}, and p∗2 = p2(s∗2, ξ) > c with p∗2 and r∗2 (weakly) decreasing in ξ and s∗2

(weakly) increasing in ξ.

With the assumption of multiplicative demand, the result of Theorem 4.9 provides a full picture of

the optimal policy in the clearance period. As demand state ξ decreases from ξ to ξ (and remaining

inventory I increases), the firm first chooses to clear the inventory (for high and medium demand

states), next the firm may salvage the excess inventory (for moderately low demand), and then

the firm may donate the excess inventory (for very low demand states). As the available inventory
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increases, the price p2 is first decreasing when the firm clears the inventory, then it may remain

constant at p̂ when salvaging the excess inventory, and jump when the firm switches from salvaging

to donating. Furthermore, as available inventory continues to increase, the optimal second period

price and donation quantity are weakly increasing in the available inventory I.

4.4.2. An Illustrative Example

Example 3 (Clearance Period Price). D1(p, ξ) =D2(p, ξ) = ξD(p), where D(p) = WTP−

p, WTP = 1.9, and ξ follows a log-normal distribution lnN (µ,σ2), with µ = −0.5 and σ = 1 (so

that E[ξ] = 1). Fc = 0, vc = 1, and τ = 35%, while a= 1 and b= 1
2

according to the current law.

Figure 4

Plot of the optimal

clearance period price

p∗2 versus I∗, the opti-

mal remaining inven-

tory at the end of

period 1.

Figure 4 provides an illustration of how the optimal period 2 price p∗2 varies with I∗, the optimal

remaining inventory at the end of period 1. Under our setting, p∗1 = 1.67 and q∗ = 0.35. Notice

that there is a jump in the firm’s optimal clearance period price p∗2 . That is, as I∗ increases, p∗2

first weakly decreases (when the firm clears the inventory), then stays constant below the unit cost

(when the firm salvages the inventory) and finally jumps above the unit cost and increases to the

optimal regular period price p∗1 (when the firm donates the inventory). That is, the firm may adopt

a price maintenance strategy to establish a higher FMV for donation when it has excess inventory.

Notice that while pre-committed donation is part of the optimal strategy in Example 1 when

demand is deterministic, the optimal solution here does not engage in pre-committed donation;

that is, r∗1 = 0.
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Notice that the marginal contribution of additional inventory in the second period, U2(x|p1,ξ)
∂x

,

equals to τh(p2) when the firm opts to donate the excess inventory. With a lot of inventory available

at the end of period 1, the firm chooses a higher price p2 so as to better take advantage of the

enhanced tax deduction. Theorem 4.9 implies that when the available inventory in the second

period is high, the marginal contribution of additional inventory is an increasing function of the

available inventory; therefore, U2(x|p1, ξ) is not a concave function of x in general, which provides

a stark contrast to Cachon and Kök (2007).

4.4.3. Impact of the Enhanced Tax Deduction on Optimal Solution

When the fixed cost is zero, r1 = 0 at optimal by Theorem 4.7. Theroems 4.8 and 4.9 imply that

with some regularity condition, the firm’s after-tax profit can be represented by a function of (q, p1):

Π(q, p1) =−(1− τ)(Fc + vcq) + (1− τ)p1

∫ ξ

ξ

min{D1(p1, ξ), q}dF (ξ)

+ (1− τ)

∫ ξ

ξ̆

p1(q−D1(p1, ξ))dF (ξ) + (1− τ)

∫ ξ̆

ξ̂

p2(q−D1(p1, ξ), ξ)(q−D1(p1, ξ))dF (ξ)

+ (1− τ)

∫ ξ̂

ξ̌

max
p

(pD2(p, ξ))dF (ξ) +

∫ ξ̌

ξ

max
p

((1− τ)pD2(p, ξ) + τh(p)(q−D1(p1, ξ)−D2(p, ξ))dF (ξ) .

The first term comes from the firm’s production cost. The next term represents the after-tax

sales revenue in the first period. The last four terms correspond to the potential scenarios in the

second period described by Theorems 4.8 and 4.9.

We can glimpse the complexity of the problem by examining the first-order condition. Taking

advantage of the envelope theorem, the first order derivative of the first two terms in Π(q, p1) with

respect to p1 would result in the standard margin-volume tradeoff in the first period, as discussed

in Section 4.3.3. The first order derivative of the next term in Π(q, p1) captures the profit impact

when p2 is capped at p1. The change of the regular price may further impact the leftover inventory

quantity and the values of ξ̌, ξ̂, and ξ̆. Similarly, a small change in q at the optimal solution would

introduce the standard newsvendor tradeoff in the first period and change the inventory availability

in the second period. Under the interplay of these effects, Theorems 4.4-4.5 and Theorems 4.8-4.9

illustrate that the profit maximization formulation is no longer concave and the optimal strategy

is no longer continuous. Therefore, it is extremely challenging if not impossible to pinpoint the

impact of the tax law on the firm’s optimal regular price and production quantity.

Despite the challenges, we show that the enhanced tax deduction (weakly) increases either the

optimal regular price or the optimal production quantity when the fixed cost is zero. We first prove

a lemma.
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Lemma 1. U2(x|p1, ξ)−U2(x|p1, ξ, r2 = 0) is (weakly) increasing in both p1 and x for all ξ.

Lemma 1 says that the benefit of the enhanced deduction in the clearance period is increasing

in both the regular price and the on-hand inventory level for all realizations of the demand state.

By decomposing the firm’s profit into the profit without the enhanced tax deduction and the gain

from the enhanced tax deduction, the next theorem shows that the enhanced tax deduction will

not reduce the optimal price and the quantity simultaneously.

Theorem 4.10 (Price or Quantity Increase Under Zero Fixed Cost). When there is

no fixed cost, then either the regular price or the production quantity increases with the enhanced

tax deduction; that is, if Fc = 0, then either p∗1 ≥ p0
1 or q∗ ≥ q0.

To our surprise, our extensive numerical studies show that, typically, the enhanced tax deduction

drives up the optimal production quantity but drives down the optimal regular price, especially

when the regular price is high; that is, b(p∗1 − c)> ac, and the deduction benefit is capped at ac.

This phenomenon is further reported in Section 5.

The enhanced tax deduction can induce a lower optimal price because a lower price can increase

demand uncertainty and scale up the expected donation quantity and the tax subsidy (e.g., under

a multiplicative demand model). A more rigid analysis is available from the authors upon request.

5. Numerical Analysis

In this section, we evaluate the implication of the tax law on the firm’s operational planning.

Specifically, we explore how the two driving forces — fixed cost and demand uncertainty — impact

the firm’s optimal regular price and production quantity and the resulting profit.

We employ the same multiplicative demand structures as in Section 4.2. Specifically, vc is

assumed to be 1 without loss of generality. The demand follows a multiplicative model, under

which D1(p, ξ) = D2(p, ξ) = ξ(WTP− p), WTP = 10, and ξ is a log-normal random variable with

parameter (µ,σ) such that µ=−σ2/2 and E[ξ] = 1. Under the current tax law, a= 1 and b= 0.5.

We focus on the most common federal corporate tax rate τ = 35%.

We investigate the firm’s operational decisions and profit with and without the enhanced tax

deduction under σ2 ∈ {0,0.25,0.50,1.00} and Fc ∈ {0,10,20}. In each problem instance, we compare

the optimal solution and after-tax profit with the enhanced tax deduction to the optimal solution

and after-tax profit without the enhanced tax deduction. We report the results in Table 3.

In Table 3, Columns 1 and 2 specify the test parameters σ2 and Fc, respectively. Columns 3 to 5

summarize the firm’s statistics with the enhanced tax deduction. Specifically, Column 3 reports the
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σ2 Fc p∗1 q∗ U∗ p01 q0 U0 U∗ −U0 U∗−U0

U0

0
0 5.50 9.00 26.33 26.33 0 0

10 5.50 9.00 19.83 5.50 9.00 19.83 0 0
20 5.96 20.27 13.60 13.33 0.28 2.08%

0.25
0 6.00 14.22 23.26 21.68 1.58 7.28%

10 5.95 15.90 18.33 6.24 11.27 15.18 3.15 20.77%
20 5.95 20.36 13.35 8.70 4.67 53.80%

0.50
0 6.14 16.33 21.51 19.30 2.21 11.46%
10 6.12 18.05 16.92 6.42 11.92 12.80 4.12 32.18%

20 6.04 21.11 12.38 6.30 6.08 96.54%

1.00
0 6.36 18.62 18.66 15.76 2.90 18.38%

10 6.35 20.27 14.39 6.67 12.10 9.26 5.14 55.47%
20 6.34 22.57 10.21 2.76 7.45 270.02%

Table 3 Comparison of the optimal regular price, production quantity, and after-tax profit

optimal regular price p∗1, Column 4 reports the production quantity q∗, and Column 5 shows the

optimal after-tax profit under the enhanced tax deduction. Similarly, Columns 6 to 8 summarize

the firm’s statistics without the enhanced tax deduction. We report the absolute improvement and

the percentage improvement in profit in Columns 9 and 10, respectively.

First, we observe that the enhanced tax deduction has no impact on the firm’s operational

decisions if and only if the demand is deterministic (i.e., σ2 = 0) and the fixed cost is low, which

is consistent with Theorem 4.4. When the enhanced tax deduction impacts the firm’s operational

decisions, the magnitude of change in the production quantity seems to be much larger than

the magnitude of change in the regular price. The enhanced tax deduction increases the optimal

production quantity. When the demand is deterministic, the enhanced tax deduction also increases

the optimal regular price (Theorem 4.6); when the demand is uncertain, the enhanced tax turns

out to reduce the optimal regular price under our test instances. As discussed in Section 4.4.3, a

lower price can increase demand uncertainty and scale up the tax subsidy.

Second, a higher fixed cost Fc hurts the firm’s profit with or without the enhanced tax deduction.

Without the enhanced tax deduction, the firm’s operational decisions are independent of Fc. When

the firm optimally engages in donation with the enhanced tax deduction, we observe that the

optimal production quantity is increasing in Fc, because a higher Fc increases the inventory cost c

and the value of donation so that the firm faces a smaller overage cost and prefers to have more

safety stock. We also observe that the optimal regular price is decreasing in Fc at a very slow rate,

because the increased value of donation implies that the firm may prefer a slightly higher demand

uncertainty to better take advantage of the tax subsidy.

Third, a higher demand variability σ2 hurts the firm’s profit with or without the enhanced tax

deduction. We observe that both the optimal production quantity and the optimal regular price

are increasing in σ2. The optimal production quantity is increasing because a higher uncertainty
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translates into a higher safety level in our instances (the service rates are all greater than 50%).

The optimal regular price is increasing because the firm prefers to increase the price to reduce

demand uncertainty when the underlying demand state becomes more uncertain.

Last, while the after-tax profit is a modular function of the fixed cost and the demand uncertainty

without the enhanced tax deduction, the after-tax profit appears to be a supermodular function of

the fixed cost and the demand uncertainty with the enhanced tax deduction. That is, the combined

effect of the two driving factors on profit is greater than the sum of the individual effects of the

two factors. This statement is true both under the absolute performance improvement and under

the percentage performance improvement.

6. Conclusion and Future Directions

Each year, companies donate goods worth billions of dollars. In this paper, we analyze the impact

of the enhanced tax deduction on a firm’s profit and operational decisions under a two-period

price-markdown newsvendor model. We study the two driving forces — fixed cost and demand

uncertainty — that induce the firm to donate inventories in a profitable way. Specifically, a positive

fixed cost can induce pre-committed donation during the regular selling season, and the demand

uncertainty can induce donation during the clearance period. These insights offer a potential

explanation as to why health care, consumer staples, and technology are the leading industries in

non-cash donation. While the value of deduction is tied to the FMV (and the price) of the product,

surprisingly, the firm may find it more profitable to charge a lower regular price, because the lower

price may scale up the demand uncertainty and the expected tax subsidy under the enhanced tax

deduction.

Broadly speaking, we believe there is a significant opportunity to apply analytical models to

understand the impact of tax laws, especially on product line design, supply chain, and revenue

management. We hope that this paper will encourage more research at the interface of accounting

and operations management.
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U(((pt), q, (rt)|ξ), τ) be the after-tax profit under policy ((pt), q, (rt)|ξ) and tax rate τ . For a

given policy, U(((pt), q, (rt)|ξ), τ) is linear and convex with respect to τ . Therefore, U∗(τ) =

max((pt),q,(rt)|ξ)∈AU(((pt), q, (rt)|ξ), τ) is also a convex function of τ . �
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Proof of Theorem 4.4 The optimal decisions can be written as (q∗1 , p
∗
1, r
∗
1, p
∗
2, r
∗
2 |Fc). Suppose

r∗2 > 0. By donating r∗2 in period 1 rather than period 2 and keeping other decisions unchanged (that

is, making decisions (q∗1 , p
∗
1, r
∗
1 + r∗2, p

∗
2,0)), the after-tax profit is weakly improved. This contradicts

the optimality of (q∗, p∗1, r
∗
1 , p
∗
2, r
∗
2 |Fc) by the tie-breaking rule. Thus, r∗2 = 0. The firm clears its

inventory in period 2; that is, s∗2 = I∗.

Now we show that p∗1 = p1(s∗1, ξ)⇔ s∗1 =D1(p∗1, ξ). If p∗1 = p̄1, s∗1 ∈ [0,D1(p∗1, ξ)] implies that s∗1 =

0 = D1(p∗1, ξ). If p∗1 < p̄1 and s∗1 <D1(p∗1, ξ), then the firm can improve its profit by raising p∗1 to

min{p̄1, p1(s∗1, ξ)} and keeping all other variables the same. Thus, p∗1 = p1(s∗1, ξ)⇔ s∗1 =D1(p∗1, ξ).

Therefore, the firm’s optimal decision can be rewritten as:

max
q,p1,r1

(1− τ)[p1D1(p1, ξ) + p2(q− r1−D1(p1, ξ), ξ)(q− r1−D1(p1, ξ))− (Fc + vcq)] + τh(p1)r1,

s.t. p2(q− r1−D1(p1, ξ), ξ)≤ p1 ≤ p̄1 .

By Theorem 4.7, r∗1 = 0 when Fc = 0.

Define F̂ = infFc≥0{Fc|r∗1 > 0}. We first show that when Fc > F̂ , r∗1 > 0 by contradiction.

Suppose that there exists F ′′c > F̂ such that the optimal decision under F ′′c is (q′′1 , p
′′
1 , r
′′
1 , p
′′
2 , r
′′
2 )

with r′′1 = 0. Recall that (q0, p0
1, r

0
1, p

0
2, r

0
2) is the firm’s optimal decision without the enhanced tax

deduction. Therefore, when Fc = 0 or Fc = F ′′c , the firm adopts the same optimal operational

decisions and U∗|Fc=F ′′c −U
∗|Fc=0 =−(1− τ)F ′′c .

By the definition of F̂ , there exists F ′c < F ′′c such that the optimal decision under F ′c is

(q′1, p
′
1, r
′
1, p
′
2, r
′
2) with r′1 > 0. U∗|Fc=F ′c − U∗|Fc=0 > −(1 − τ)F ′c due to the tie-breaking rule.

Furthermore, U∗|Fc=F ′′c − U
∗|Fc=F ′c > −(1 − τ)(F ′′c − F ′c) because the firm under F ′′c can adopt

(q′1, p
′
1, r
′
1, p
′
2, r
′
2) as its decision and weakly increase its deduction. Therefore, U∗|Fc=F ′′c −U

∗|Fc=0 >

−(1− τ)F ′′c and we reach a contradiction.

Therefore, when Fc < F̂ , r∗1 = 0; when Fc > F̂ , r∗1 > 0. When Fc = F̂ , r∗1 = 0 due to the continuity

of the profit function with respect to Fc and the tie-breaking rule.

When Fc ≤ F̂ and r∗1 = 0, q∗ = s∗1 + s∗2 follows from r∗2 = 0. The firm’s after-tax profit can be

written as

max
s1,s2,p2

(1− τ)[s1p1(s1, ξ) + s2p2− (Fc + vc(s1 + s2))],

s.t. p2 ≤ p1(s1, ξ)≤ p̄1, p2 ≤ p2(s2, ξ) .

When the markdown constraint is not binding, p2 = p2(s2, ξ) and we can convert the formulation

into a convex optimization with a single constraint p1 ≤ p̄1. Ignoring the constraint, the first-order

conditions reveal that ∂(s1p1(s1,ξ))

∂s1
|s1=s∗1

= ∂(s2p2(s2,ξ))

∂s2
|s2=s∗2

= vc. Notice that as vc < p̄1, the constraint

p1 ≤ p̄1 is satisfied. The concavity of sipi(si, ξ) (i = 1,2) also implies that when the markdown

constraint is binding, p∗1 = p∗2. This proves (I).
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When Fc > F̂ and r∗1 > 0, q∗ = r∗1 + s∗1 + s∗2 follows from r∗2 = 0 and q∗ = Fc/(c
∗− v) follows from

the definition of c. Given (p∗1, s
∗
1, p
∗
2, s
∗
2), the optimal production quantity (≥ s∗1 + s∗2) maximizes

− (1− τ)vcq+ τh(p∗1)(q− s∗1− s∗2). (1)

Recall that h(p1) = min{ac, b(p1 − c)}. Notice that b(p1 − c) = b
(
p1− vc− Fc

q

)
is increasing in

q and ac= a
(
vc + Fc

q

)
is decreasing in q. Thus, we have b(p1 − c)≤ ac if q ∈

(
0, (a+b)Fc

bp1−(a+b)vc

]
and

b(p1− c)>ac if q > (a+b)Fc
bp1−(a+b)vc

when bp1 > (a+ b)vc. Otherwise, b(p1− c)≤ ac for all q > 0.

When h(p∗1) = b(p∗1− c), objective function (1) becomes

− (1− τ)vcq+ τb(p∗1q− vcq−Fc)− τb
(
p∗1− vc−

Fc
q

)
(s∗1 + s∗2), (2)

which is convex in q. When h(p∗1) = ac∗, objective function (1) becomes

− (1− τ)vcq+ τa(vcq+Fc)− τa
(
vc +

Fc
q

)
(s∗1 + s∗2), (3)

which is concave in q.

Therefore, if p∗1 ≤ a+b
b
vc, objective function (1) takes the form (2) for q(≥ s∗1 +s∗2). We show that,

in this case, q∗ = s∗1 + s∗2 and F̂ =∞. Due to the convexity, it suffices to compare the values at

q = s∗1 + s∗2 and q ↑ ∞. Notice that as −(1− τ)vc + τb(p∗1 − vc) ≤ −(1− τ)vc + τavc < 0 because

a < 1−τ
τ

, the objective value approaches negative infinity as q ↑ ∞. Therefore, q∗ = s∗1 + s∗2 and

r∗1 = 0, and we reach a contradiction.

Now consider p∗1 >
a+b
b
vc. The objective function is convex in q when q is small and concave in

q when q is large. Thus, q∗ equals to either
√

τaFc(s∗1+s∗2)

(1−τ−τa)vc
, the maximizer for (3), or (a+b)Fc

bp∗1−(a+b)vc
, the

threshold at which the objective function switches from convex to concave if the maximizer is less

than the threshold. As a result, q∗ = max{
√

τaFc(s∗1+s∗2)

(1−τ−τa)vc
, (a+b)Fc
bp∗1−(a+b)vc

} and h(p∗1) = ac∗ ≤ b(p∗1 − c∗),

which holds if and only if p∗1 ≥ a+b
b
c∗. Furthermore, it must be the case that τh(p∗1)> (1− τ)vc⇔

τ
1−τ ac

∗ > vc; otherwise, the firm would prefer to maintain the same prices and reduce the production

quantity to reduce the donation quantity r∗1 to 0. Note that τ
1−τ ac

∗ > vc⇔ Fc
Fc+vcq∗

= c∗−vc
c∗ > 1−τ−τa

1−τ .

Because q∗ = Fc
c∗−vc , q∗ = (a+b)Fc

bp∗1−(a+b)vc
if and only if p∗1 = a+b

b
c∗. When p∗1 >

a+b
b
c∗, q∗ =√

τaFc(s∗1+s∗2)

(1−τ−τa)vc
> (a+b)Fc

bp∗1−(a+b)vc
. The firm’s after-tax profit given q∗ can be written as

max
s1,s2,p2

(1− τ)[s1p1(s1, ξ) + s2p2− (Fc + vcq)] + τac∗(q∗− s1− s2),

s.t. p2 ≤ p1(s1, ξ)≤ p̄1, p2 ≤ p2(s2, ξ) .

When the markdown constraint is not binding, p2 = p2(s2, ξ) and we can convert the formulation

into a convex optimization with a single constraint p1 ≤ p̄1. Ignoring the constraint, the first-

order conditions reveal that ∂(s1p1(s1,ξ))

∂s1
|s1=s∗1

= ∂(s2p2(s2,ξ))

∂s2
|s2=s∗2

= τ
1−τ ac

∗. Therefore, the constraint

p1 ≤ p̄1 would be binding if and only if τ
1−τ ac

∗ > p̄1, under which case p∗1 = p̄1. Nevertheless,

τ
1−τ ac

∗ < c∗ ≤ a+b
b
c∗ < p∗1 ≤ p̄1. Thus, the constraint p1 ≤ p̄1 is always satisfied at the solution
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∂(s1p1(s1,ξ))

∂s1
|s1=s∗1

= ∂(s2p2(s2,ξ))

∂s2
|s2=s∗2

= τ
1−τ ac

∗ when p∗1 >
a+b
b
c∗. The concavity of sipi(si, ξ) (i= 1,2)

also implies that when the markdown constraint is binding, p∗1 = p∗2. This proves (II)(i).

When p∗1 = a+b
b
c∗ ≤ p̄1, the firm’s after-tax profit given q∗ can be written as

max
s1,s2,p2

(1− τ)[s1p1(s1, ξ) + s2p2− (Fc + vcq)] + τac∗(q∗− s1− s2),

s.t. p1(s1, ξ) =
a+ b

b
c∗, p2 ≤ p1(s1, ξ), p2 ≤ p2(s2, ξ) .

When the markdown constraint is not binding, p2 = p2(s2, ξ) and we can convert the formulation

into an unconstrained convex optimization. The first-order conditions reveal that ∂(s2p2(s2,ξ))

∂s2
|s2=s∗2

=

τ
1−τ ac

∗. The concavity of s2p2(s2, ξ) also implies that when the markdown constraint is binding,

p∗1 = p∗2. This proves (II)(ii).

Consider the case p̄1 >
(1−τ)(a+b)

τab
vc. Notice that both s∗1 and s∗2 are bounded (∂(s1p1(s1,ξ))

∂s1
|s1=s∗1

≥ vc
and ∂(s2p2(s2,ξ))

∂s2
|s2=s∗2

≥ vc). When Fc is large, consider the strategy under which p1 = p̄1 and q =

Fc
b
a+bp1−vc

. As Fc ↑ ∞, objective function (3) becomes
τa b

a+bp1−(1−τ)vc
b
a+bp1−vc

Fc − τa b
a+b

p1(s∗1 + s∗2), which

approaches positive infinity. This implies that when Fc is large, the pre-committed donation is part

of the optimal strategy. That is, F̂ <∞ when p̄1 >
(1−τ)a+b

τab
vc.

Now consider the case p̄1 ≤ (1−τ)(a+b)

τab
vc. If F̂ <∞, when Fc > F̂ , it must be the case that p∗1 >

a+b
b
vc and q∗ = max{

√
τaFc(s∗1+s∗2)

(1−τ−τa)vc
, (a+b)Fc
bp∗1−(a+b)vc

}. Notice that both s∗1 + s∗2 and bp∗1− (a+ b)vc ≤ bp̄1−

(a+ b)vc are bounded from above; therefore, when Fc is sufficiently large, it must be the case that

q∗ = (a+b)Fc
bp∗1−(a+b)vc

. As Fc ↑ ∞, objective function (3) becomes
τa b

a+bp
∗
1−(1−τ)vc

b
a+bp

∗
1−vc

Fc − τa b
a+b

p∗1(s∗1 + s∗2),

while objective function (1) becomes −(1− τ)vc(s
∗
1 + s∗2) at q = s∗1 + s∗2. Notice that the difference

is
(
τa b

a+b
p∗1− (1− τ)vc

)(
Fc

b
a+bp

∗
1−vc
− (s∗1 + s∗2)

)
, which is non-positive when Fc is sufficiently large

due to p∗1 ≤ p̄1 ≤ (1−τ)(a+b)

τab
vc. Therefore, we reach a contradiction and F̂ =∞. �

Proof of Theorem 4.7 Suppose r∗1 > 0 when Fc = 0. We show that (q∗ − r∗1, p∗1,0) is also an

optimal solution for period 1. Note that if Fc = 0, then we have h(p1) = min{ac, b(p1 − vc)} and

c= vc. Therefore,

Π(q∗− r∗1 , p∗1,0)−Π(q∗, p∗1, r
∗
1) = (1− τ)vcr

∗
1 − τ min{avc, b(p∗1− vc)}r∗1 ≥ ((1− τ)− τa)vcr

∗
1 ≥ 0,

where the last inequality follows from a≤ 1−τ
τ

. Thus, (q∗− r∗1, p∗1,0) is optimal. By the tie-breaking

rule, we reach a contradiction. Therefore, r∗1 = 0 if Fc = 0. �

Proof of Theorem 4.8: Recall that I∗ = q∗ − r∗1 − s∗1 = max{0, q∗ − r∗1 − D1(p∗1, ξ)}. Because

D1(p∗1, ξ) is (weakly) increasing in ξ, I∗ is (weakly) decreasing in ξ.

Notice that D2(p∗1, ξ) is increasing in ξ and D2(p∗1, ξ)> I
∗⇔ p∗1 < p2(I∗, ξ). If {ξ|D2(p∗1, ξ)> I

∗}=

∅, set ξ̆ = ξ. Otherwise, set ξ̆ = inf{ξ|D2(p∗1, ξ) > I∗}. When ξ̆ < ξ ≤ ξ, it is optimal to sell the

remaining inventory I∗ at price p∗1 due to p2 ≤ p∗1, which is greater than c (otherwise, the firm would

not make a positive profit). That is, r∗2 = 0, r∗2 = 0, s∗2 = I∗, and p∗2 = p∗1 < p2(I∗, ξ). Furthermore,
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because p2(I∗, ξ) is decreasing in I∗ and (weakly) increasing in ξ, and I∗ is (weakly) decreasing in

ξ, p2(I∗, ξ) is (weakly) increasing in ξ. This proves (i) in (II).

Now we consider the case that ξ ≤ ξ̆, under which p2(I∗, ξ)≤ p∗1.

To establish the threshold ξ̂, we consider two demand states ξ′ < ξ′′. Let the optimal price,

donation quantity, and sales in the second period be (p′2, r
′
2, s
′
2) and (p′′2 , r

′′
2 , s
′′
2) for these two states,

respectively. Let the available inventory at the beginning of the second period be I ′ and I ′′ for

these two states, respectively.

We first show that if r′2 = 0 and s′2 = I ′, salvaging excess inventory (i.e., r′′2 = 0 and s′′2 < I ′′) is

suboptimal at ξ′′. If salvaging excess inventory is optimal, then it must be the case that p2 ≤ c < p∗1.

The optimal solution under both ξ′ and ξ′′ can thus be characterized by the following formulation:

s2 = arg max
s≤I∗

sp2(s, ξ).

Consider the relaxed formulation

s2 = arg max
s

sp2(s, ξ).

The objective function is concave with respect to s. Let ṡ′2 (ṡ′′2) denote the unique optimal solution

for ξ′ (ξ′′). We show that ṡ′2 ≤ ṡ′′2 .

Notice that ∂2(sp2(s,ξ))

∂s∂ξ
= ∂p2(s,ξ)

∂ξ
+ s∂

2p2(s,ξ)

∂s∂ξ
> 0 because ∂p2(s,ξ)

∂ξ
≥ 0 and s∂

2p2(s,ξ)

∂s∂ξ
> 0.

The optimality of ṡ′2 implies that for any ṡ < ṡ′2, ṡp2(ṡ, ξ′)< ṡ′2p2(ṡ′2, ξ
′). Therefore, ṡ′2p2(ṡ′2, ξ

′′)−

ṡp2(ṡ, ξ′′) = ṡ′2p2(ṡ′2, ξ
′)− ṡp2(ṡ, ξ′) +

∫ ξ′′
ξ′

∫ ṡ′2
ṡ

∂2(sp2(s,ξ))

∂s∂ξ
dsdξ > 0. Thus, ṡ′′2 ≥ ṡ′2.

Because sp2(s, ξ) is a concave function and s′′2 < I
′′ is the optimal solution to the original problem,

it must be the case that ṡ′′2 = s′′2 . Therefore, ṡ′2 ≤ ṡ′′2 = s′′2 < I ′′ ≤ I ′ for ξ′ < ξ′′ so that the relaxed

constraint is satisfied and ṡ′2(< I ′) is the unique optimal solution for ξ in the original formulation.

Thus, we reach a contradiction. Therefore, if r′2 = 0 and s′2 = I ′, salvaging excess inventory (i.e.,

r′′2 = 0 and s′′2 < I
′′) is suboptimal at ξ′′.

We now show that if r′2 = 0 and s′2 = I ′, donating excess inventory (i.e., r′′2 = I ′′ − s′′2 , s′′2 < I ′′,

and p∗2 = p2(s′′2 , ξ
′′)≤ p∗1) is suboptimal at ξ′′. If donating excess inventory is optimal, the following

formulation provides the optimal solution under both ξ′ and ξ′′:

s2 = arg max
s:s≤I∗,p2(s,ξ)≤p∗1

(1− τ)sp2(s, ξ) + τh(p2(s, ξ))(I∗− s).

Now we consider the relaxed formulation

s2 = arg max
s

(1− τ)sp2(s, ξ) + τh(p2(s, ξ))(I∗− s).

Recall that we assume either p2(s, ξ) is concave in s or h(p2(s, ξ)) = ac. Therefore, the objective

function (1−τ)sp2(s, ξ)+τh(p2(s, ξ))(I∗−s) is concave in s. Let s̈′2 (s̈′′2) denote the unique optimal

solution for ξ′ (ξ′′). We show that s̈′2 ≤ s̈′′2 .
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We have shown that ∂2p2(s,ξ)

∂s∂ξ
> 0 implies that ∂2(sp2(s,ξ))

∂s∂ξ
> 0. Recall that I∗ is (weakly) decreasing

in ξ and p2(s, ξ) is decreasing in s, so we have ∂2(((1−τ)sp2(s,ξ)+τac(I∗−s))
∂s∂ξ

= (1− τ)∂
2(sp2(s,ξ))

∂s∂ξ
> 0 and

∂2((1−τ−τb)sp2(s,ξ)+τbp2(s,ξ)I∗−τbc(I∗−s))
∂s∂ξ

= (1− τ − τb)∂
2(sp2(s,ξ))

∂s∂ξ
+ τbI∗ ∂

2p2(s,ξ)

∂s∂ξ
+ τbdI

∗

dξ

∂p2(s,ξ)

∂s
> 0.

Using the same argument for ṡ′′2 ≥ ṡ′2, the optimal s̈′′2 ≥ s̈′2. Because the objective function is

concave with respect to s. The optimal solutions to

s2 = arg max
s:p2(s,ξ)≤p∗1

(1− τ)sp2(s, ξ) + τh(p2(s, ξ))(I∗− s)

are max{ṡ′2, d2(p∗1, ξ
′)} and max{ṡ′′2 , d2(p∗1, ξ

′′)} for ξ′ and ξ′′, respectively.

Because the objective is concave and s′′2 < I ′′ is the optimal solution to the original problem,

it must be the case that max{ṡ′′2 , d2(p∗1, ξ
′′)} = s′′2 . Because d2(p∗1, ξ) is weakly increasing in ξ,

max{ṡ′2, d2(p∗1, ξ
′)} ≤max{ṡ′′2 , d2(p∗1, ξ

′′)}= s′′2 < I ′′ ≤ I ′ for ξ′ < ξ′′ so that the relaxed constraint is

satisfied and max{ṡ′2, d2(p∗1, ξ
′)}(< I ′) is the unique optimal solution for ξ in the original formula-

tion. Thus, we reach a contradiction. Therefore, if r′2 = 0 and s′2 = I ′, donating excess inventory

(i.e., r′′2 = I ′′− s′′2 , s′′2 < I
′′, and p∗2 = p2(s′′2 , ξ

′′)≤ p∗1) is suboptimal at ξ′′.

Therefore, if r′2 = 0 and s′2 = I ′ under ξ′, r′′2 = 0 and s′′2 = I ′′ for all ξ′′ ∈ (ξ′, ξ̆]. Furthermore, the

above analysis shows that within each of the three options, the firm’s problem is concave and has

a unique solution. Thus, the firm’s optimal decision is continuous under each option. Given the

tie-breaking rule, the firm’s optimal decision is piecewise continuous with respect to ξ.

Now we show that at ξ = ξ̆, r∗2 = 0 and s∗2 = I∗. Suppose that ξ̆ < ξ. By the definition of ξ̆ and

continuity, r∗2 = 0, s∗2 = I∗, and p∗2 = p2(I∗, ξ) = p∗1 is optimal. Suppose that ξ̆ = ξ, if s∗2 < I∗ at

ξ = ξ̆, s∗2 < I
∗ for all ξ ∈ [ξ, ξ]. Let ∆ = inf{I∗− s∗2|ξ ∈ [ξ, ξ}. We have ∆> 0 because I∗− s∗2 > 0 and

I∗ − s∗2 is piecewise continuous with respect to ξ on the compact set. By increasing r∗1 by ∆ and

reducing either the donation quantity or the salvaging quantity by ∆, we (weakly) increase the

firm’s profit because the first period price is (weakly) higher than the second period price. Based

on the tie-breaking, we reach a contradiction. Therefore, at ξ = ξ̆, r∗2 = 0 and s∗2 = I∗. This proves

(ii).

Define ξ̂ = inf{ξ|s∗2 = I∗}. By continuity, at ξ = ξ̂, r∗2 = 0 and s∗2 = I∗.

When ξ < ξ̂, s∗2 < I
∗ and the firm either salvages or donates the excess inventory. When salvaging

is optimal, it must be the case that p∗2 ≤ c; when donating is optimal, it must be the case that p∗2 > c.

We have shown that when treating the problem as optimizing over the sales quantity, the problem

is concave under either salvaging or donation. This implies that when treating the problem as

optimization over the price, the problem is unimodal under either salvaging or donation. Therefore,

p∗2 = arg maxp(pD2(p, ξ)) under salvaging and p∗2 = min{p∗1,arg maxp((1− τ)pD2(p, ξ) + τh(p)(I∗−

D2(p, ξ)))} under donation. This proves (iii) and (iv). �
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Online Appendix

The online appendix contains proofs of the theorems in the paper.

Proofs for the Remaining Theoretical Results in Section 4

Proof of Theorem 4.2: Consider τ1 < τ2. For i= 1,2, let ((pit), q
i, (rit)|ξ) be the firm’s optimal price and

quantity decisions at tax rate τi, and let ((sit)|ξ) be the resulting sales quantity. Given the optimality of these

decisions,

Eξ [(1− τ1)(p11s
1
1 + p12s

1
2) + τ1(h(p11)r11 +h(p12)r12)− (1− τ1)cq1 | ξ]

≥ Eξ [(1− τ1)(p21s
2
1 + p22s

2
2) + τ1(h(p21)r21 +h(p22)r22)− (1− τ1)cq2 | ξ]

Eξ [(1− τ2)(p21s
2
1 + p22s

2
2) + τ2(h(p21)r21 +h(p22)r22)− (1− τ1)cq2 | ξ]

≥ Eξ [(1− τ2)(p11s
1
1 + p12s

1
2) + τ2(h(p11)r11 +h(p12)r12)− (1− τ1)cq1 | ξ]

Summing up (1− τ2) times the first inequality and (1− τ1) times the second inequality, we have

(τ1− τ1τ2)EATD(τ1) + (τ2− τ1τ2)EATD(τ2)≥ (τ2− τ1τ2)EATD(τ1) + (τ1− τ1τ2)EATD(τ2) ,

which implies that EATD(τ1)≤ EATD(τ2). �

Proof of Theorem 4.3: We consider a specific strategy under which the firm procures q = M/(1+a)−Fc
vc

units of the product and donates all of them in the regular period with sufficiently high regular price (i.e.,

p1 ≥ a+b
b
c= (a+b)M

(1+a)bq
).

Under this strategy, the firm incurs a cost of Fc + vcq =M/(1 + a) and claims an enhanced deduction of

(c+h(p1))q= (c+min{ac, b(p1−c)})q= (1+a)cq=M . Therefore, the after-tax profit U∗(τ)≥ τM−M/(1+

a) =
(
τ − 1

1+a

)
M . �

Proof of Theorem 4.5: siD2(si, ξ) = si(WTP− si), and ∂(siD2(si,ξ))

∂si
= WTP− 2si for i= 1,2. When Fc ≤

F̂c, Theorem 4.4(I) shows that ∂siD2(si,ξ)

∂si
|si=s∗i = vc for i= 1,2. Therefore, p∗1 = p∗2 = WTP+vc

2
, s∗1 = s∗2 = WTP−vc

2
,

r∗1 = r∗2 = 0, q∗ = s∗1 + s∗2, and the firm’s optimal after-tax profit U∗ is (1− τ)
(

(WTP−vc)2

2
−Fc

)
.

By definition, p̄1 =WTP. When WTP< a+b
b
vc, F̂ = F̆ = F̄ =∞ by Theorem 4.4. Now we focus on the case

WTP≥ a+b
b
vc and derive the optimal solution when Fc > F̂ . First, we relax the markdown constraint. It is

readily to verify that all the solutions identified satisfy the markdown constraint and this relaxation can be

applied without loss of generality.

We derive the optimal solution for a given q (i.e., equivalent to a given c). By Theorem 4.4, when Fc > F̂ ,

p∗1 ≥ a+b
b
c∗ and h(p∗1) = ac∗, and the firm’s problem can be rewritten as the following convex optimization:

max
s1,s2

(1− τ)

(
s1(WTP− s1) + s2(WTP− s2)− cFc

c− vc

)
+ τac

(
Fc

c− vc
− s1− s2

)
,

s.t.
a+ b

b
c≤ p1(s1, ξ)≤ p̄1 .

Notice that a+b
b
≥ 1> τ

1−τ a, thus 2(a+b)

b
− τ

1−τ a>
a+b
b

. Denote c̆≡max

{
vc,

WTP
2(a+b)
b
− τa

1−τ

}
. We consider the

potential c value when it belongs to (vc, c̆],
(
c̆, bWTP

a+b

)
, or equals to bWTP

a+b
.

When c ∈ (vc, c̆], the solution to the relaxed problem is s1 = s2 =
WTP− τ

1−τ ac

2
, and p1 = p2 =

WTP+ τ
1−τ ac

2
≥

a+b
b
c. Therefore, both a+b

b
c ≤ p1(s1, ξ) ≤ p̄1 and the markdown constraint p1 ≥ p2 are satisfied. The firm’s

after-tax profit is (1− τ)
(WTP− τ

1−τ ac)
2

2
− (1− τ − τa)Fc

c
c−vc

.
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When c ∈
(
c̆, bWTP

a+b

]
, the solution to the relaxed problem violates the constraint a+b

b
c ≤ p1(s1, ξ). There-

fore, at optimal, p1 = a+b
b
c, s1 = WTP − a+b

b
c, p2 =

WTP+ τ
1−τ ac

2
, and s2 =

WTP− τ
1−τ ac

2
. It is easy to verify

that both p1(s1, ξ) ≤ p̄1 and the markdown constraint p1 ≥ p2 are satisfied. The firm’s after-tax profit is(
(1− τ)a+b

b
− τa

)
c
(
WTP− a+b

b
c
)

+ (1− τ)
(WTP− τ

1−τ ac)
2

4
− (1− τ − τa)Fc

c
c−vc

.

Therefore, to find the optimal solution for a given Fc, we can search for the optimal c. When Fc > F̂ ,

Theorem 4.4 shows that r∗1 > 0. As a result, when the optimal c∈
(
vc,

bWTP
a+b

)
, we can find the optimal solution

using the first-order condition over the profit function.

When c ∈ (vc, c̆], −τa
(
WTP− τ

1−τ ac
)

+ (1−τ−τa)Fcvc
(c−vc)2

= 0 by the first-order condition (that is, Fc =

τa(WTP− τ
1−τ ac)(c−vc)

2

(1−τ−τa)vc
). Denote F1(x)≡ τa(WTP− τ

1−τ ax)(x−vc)
2

(1−τ−τa)vc
. Now we show that F1(x) is a monotone increas-

ing function on (vc, c̆]. Therefore, when Fc ∈ (0, F1(c̆)], there is a unique solution c∗ to Fc = F1(c) on (vc, c̆].

When c > vc, the derivative F ′1(c) has the same sign as 2
(
WTP− τ

1−τ ac
)
− τ

1−τ a(c− vc). The term would

be non-negative if and only if c≤ 2WTP
3 τ

1−τ a
+ 1

3
vc. It suffices to show that WTP

2(a+b)
b
− τa

1−τ
≤ 2WTP

3 τ
1−τ a

< 2WTP
3 τ

1−τ a
+ 1

3
vc.

Notice that 2WTP
3 τ

1−τ a
≥ WTP

2(a+b)
b
− τa

1−τ
⇔ 4(a+b)

b
− 2τa

1−τ ≥
3τa
1−τ ⇐ 4 + 4 τ

1−τ a≥ 5 τ
1−τ a, which is true.

It is easy to verify that the solution c∗ to Fc = F1(c) on (vc, c̆] is a maximizer for the original profit

maximization problem by the second-order condition. Furthermore, when c ∈ (c̆,∞) solves Fc = F1(c) for

Fc ≤ (c̆), c is a minimizer.

When c ∈
(
c̆, bWTP

a+b

)
,
(
(1− τ)a+b

b
− τa

)(
WTP− 2(a+b)

b
c
)
− 1

2
τa
(
WTP− τ

1−τ ac
)

+ (1−τ−τa)Fcvc
(c−vc)2

= 0 by

the first-order condition (that is, Fc =
( 1

2
τa(WTP− τ

1−τ ac)−((1−τ) a+bb −τa)(WTP− 2(a+b)
b

c))(c−vc)2

(1−τ−τa)vc
). Denote F2(x)≡

( 1
2
τa(WTP− τ

1−τ ax)−((1−τ) a+bb −τa)(WTP− 2(a+b)
b

x))(x−vc)2

(1−τ−τa)vc
. It is easy to verify that F1(c̆) = F2(c̆). Now we show

that F2(x) is a monotone increasing function on (c̆,∞). Therefore, when Fc ∈
(
F2(c̆), F2

(
bWTP
a+b

))
, there is a

unique solution c∗ to Fc = F2(c) on
(
c̆, bWTP

a+b

)
.

When c > c̆≥ vc, the derivative F ′2(c) has the same sign as
(
− 1

2
τa τa

1−τ +
(
(1− τ)a+b

b
− τa

)
2(a+b)

b

)
(c−vc)+(

τa
(
WTP− τ

1−τ ac
)
− 2
(
(1− τ)a+b

b
− τa

)(
WTP− 2(a+b)

b
c
))

=
(
− 1

2
τa τa

1−τ +
(
(1− τ)a+b

b
− τa

)
2(a+b)

b

)
(3c−

vc)−
(
2(1− τ)a+b

b
− 3τa

)
WTP.

The term would be non-negative if and only if c ≥ (2(1−τ) a+bb −3τa)WTP

3(− 1
2
τa τ

1−τ a+((1−τ) a+bb −τa)
2(a+b)
b )

+ 1
3
vc. Notice that

c̆ ≥ 2
3

WTP
2(a+b)
b
− τa

1−τ
+ 1

3
vc and 2

3
WTP

2(a+b)
b
− τa

1−τ
+ 1

3
vc ≥

(2(1−τ) a+bb −3τa)WTP

3(− 1
2
τa τ

1−τ a+((1−τ) a+bb −τa)
2(a+b)
b )

+ 1
3
vc ⇔ 2

2(a+b)
b
− τa

1−τ
≥

(2(1−τ) a+bb −3τa)
(− 1

2
τa τ

1−τ a+((1−τ) a+bb −τa)
2(a+b)
b )

⇔ −τa τ
1−τ a +

(
(1− τ)a+b

b
− τa

)
4(a+b)

b
≥ (1 − τ)a+b

b

4(a+b)

b
− τa 8(a+b)

b
+

3τa τ
1−τ a⇔

a+b
b
≥ τ

1−τ a, which is true. It is easy to verify that the solution c∗ to Fc = F2(c) on
(
c̆, bWTP

a+b

)
is

a maximizer for the original profit maximization problem by the second-order condition.

The analysis of the first-order conditions further reveals that when Fc > F̂ , if Fc ∈ (0, F1(c̆)], it would be

suboptimal to choose c > c̆; if Fc ∈
(
F1(c̆), F2

(
bWTP
a+b

))
, it would be suboptimal to choose either c= bWTP

a+b
or

c∈ (vc, c̆); and if Fc ≥ F2

(
bWTP
a+b

)
, it would be suboptimal to choose c∈

(
vc,max

{
vc,

bWTP
a+b

})
. Therefore, when

Fc > F̂ , if Fc ∈ (0, F1(c̆)], c∗ ∈ (vc, c̆], p
∗
1 = p∗2 =

WTP+ τ
1−τ ac

∗

2
, s∗1 = s∗2 =

WTP− τ
1−τ ac

∗

2
, q∗ = Fc

c−vc
, r∗1 = q∗−s∗1−s∗2,

and r∗2 = 0, where c∗ is the unique solution to τa
(
WTP− τ

1−τ ac
)

(c− vc)2−Fc(1− τ − τa)vc = 0 on (vc, c̆]; if

Fc ∈
(
F1(c̆), F2

(
bWTP
a+b

))
, c∗ ∈

(
c̆, bWTP

a+b

)
, p∗1 = a+b

b
c∗, p∗2 =

WTP+ τ
1−τ ac

∗

2
, s∗1 = WTP− a+b

b
c∗, s∗2 =

WTP− τ
1−τ ac

∗

2
,

q∗ = Fc
c∗−vc

, r∗1 = q∗−s∗1−s∗2, and r∗2 = 0, where c∗ is the unique solution to 1
2
τa
(
WTP− τ

1−τ ac
)

(c−vc)2−(1−
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τ)a+b
b
− τa)

(
WTP− 2(a+b)

b
c
)

(c− vc)2−Fc(1− τ − τa)vc = 0 on
(
c̆, bWTP

a+b

)
; and if Fc ≥ F2( bWTP

a+b
), c∗ = bWTP

a+b
,

p∗1 = a+b
b
c∗, p∗2 =

WTP+ τ
1−τ ac

∗

2
, s∗1 = 0, s∗2 =

WTP− τ
1−τ ac

∗

2
, q∗ = Fc

c∗−vc
, r∗1 = q∗− s∗1− s∗2, and r∗2 = 0.

Furthermore, the claim that F̂ =∞ if and only if τ ≤ (a+b)vc
(a+b)vc+abWTP

directly follows Theorem 4.4 and that

p̄1 =WTP under the linear demand case. The monotone property analyzed above implies that when Fc > F̂ ,

c∗ is a continuous (weakly) increasing function of Fc. Given that p∗1 and p∗2 are continuous (weakly) increasing

functions of c∗, when Fc > F̂ , p∗1 and p∗2 are also continuous (weakly) increasing functions of Fc. �

Proof of Theorem 4.6: When ξ = ξ = ξ, s∗1 = D1(p∗1, ξ), r
∗
2 = 0, s∗2 = q − r∗1 − s∗1, and p∗2 = p2(s∗2, ξ) by

Theorem 4.4; similarly, s01 =D1(p01, ξ), s
0
2 = q− s01, and p02 = p2(s02, ξ). Therefore,

(q0, p01) = arg max
q≥D1(p1,ξ)

p1≥p2(q−D1(p1,ξ),ξ)

p1D1(p1, ξ) + p2(q−D1(p1, ξ), ξ)(q−D1(p1, ξ))− (Fc + vcq).

(q∗, p∗1, r
∗
1) = arg max

q≥D1(p1,ξ)+r1
p1≥p2(q−r1−D1(p1,ξ),ξ)

r1≥0

p1D1(p1, ξ) + p2(q− r1−D1(p1, ξ), ξ)(q− r1−D1(p1, ξ))− (Fc + vcq) +
τ

1− τ
h(p1)r1.

We will prove by contradiction. Suppose that p∗1 < p
0
1. Let

(q#, p#1 ) = arg max
q≥D1(p1,ξ)

p1=p
∗
1≥p2(q−D1(p1,ξ),ξ)

p1D1(p1, ξ) + p2(q−D1(p1, ξ), ξ)(q−D1(p1, ξ))− (Fc + vcq).

That is, (q#, p#1 ) maximizes the profit without the enhanced tax deduction when the first period price

p#1 is fixed at p∗1. Let p#2 = p2(q# −D1(p#1 , ξ), ξ) and U# and (s#1 , s
#
2 ) be the associated profit and sales

quantities, respectively. Because the profit maximization problem without the enhanced tax deduction is

concave and has a unique solution, U0 >U#, p#2 ≤ p
#
1 = p∗1 < p

0
1, and s01 =D1(p01, ξ)<D1(p∗1, ξ) = s∗1 = s#1 .

We consider the two possibilities:

p#2 < p
#
1 : In this case, by Theorem 4.4, s02 = s#2 = arg max

s

(sp2(s, ξ)−vcs) as the constraints are not binding;

thus, p#2 = p02. Because U0 >U#, p01s
0
1− vcs01 > p

#
1 s

#
1 − vcs

#
1 = p∗1s

∗
1− vcs∗1.

Now we show that (q∗, p01, p
∗
2) is feasible and provides a profit higher than U∗ with the enhanced tax

deduction. (q∗, p01, p
∗
2) is feasible because p01 > p∗1 ≥ p∗2. Under (q∗, p01, p

∗
2), the donation quantity in the first

period is q∗− s01− s∗2 = r∗1 + s∗1− s01 > r∗1. Furthermore, p∗1 < p
0
1, implies that h(p01)r∗1 ≥ h(p∗1)r∗1 and Theorem

4.4 shows that τ
1−τ h(p01)≥ τ

1−τ h(p∗1)> vc. Together with p01s
0
1−vcs01 > p∗1s∗1−vcs∗1, the profit under (q∗, p01, p

∗
2)

is greater than U∗. Thus, we reach a contradiction.

p#2 = p#1 : In this case, by Theorem 4.4, s#2 = D2(p#1 , ξ) = arg max
s≥D2(p

#
1 ,ξ)

(sp2(s, ξ)− vcs) as the constraints is

binding. Recall that (sp2(s, ξ)− vcs) is concave and p∗1 = p#1 . Because D2(p#1 , ξ) =D2(p∗1, ξ) and τ
1−τ h(p∗1)>

vc by Theorem 4.4, s∗2 = arg max
s≥D2(p∗1 ,ξ)

(
sp2(s, ξ)− τ

1− τ
h(p∗1)s

)
= s#2 as the constraint must also be binding.

Furthermore, p01 > p∗1 = p#1 ⇔D2(p#1 , ξ)>D2(p01, ξ), s
0
2 = arg max

s≥D2(p01,ξ)

(sp2(s, ξ)− vcs)≤ s#2 = s∗2 and p∗2 = p#2 ≥

p02. Because U0 >U#, p01s
0
1 + p02s

0
2− vc(s01 + s02)> p#1 s

#
1 + p#2 s

#
2 − vc(s

#
1 + s#2 ) = p∗1s

∗
1 + p∗2s

∗
2− vc(s∗1 + s∗2).

Now we show that (q∗, p01, p
0
2) is feasible and provides a profit higher than U∗ with the enhanced tax

deduction. (q∗, p01, p
0
2) is feasible because p01 > p

0
2. Under (q∗, p01, p

0
2), the donation quantity in the first period

is q∗− s01− s02 = r∗1 + s∗1 + s∗2− (s01 + s02)> r∗1. The profit under (q∗, p01, p
0
2) is higher than U∗ because p01s

0
1 +

p02s
0
2−vc(s01 +s02)> p∗1s

∗
1 +p∗2s

∗
2−vc(s∗1 +s∗2), h(p01)r∗1 ≥ h(p∗1)r∗1 due to p∗1 < p

0
1, and τ

1−τ h(p01)≥ τ
1−τ h(p∗1)> vc

by Theorem 4.4. Thus, we reach a contradiction. �
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Proof of Theorem 4.9: Statements I) and II) parts (i) and (ii) directly follow from Theorem 4.8.

When it is optimal for the firm to choose salvaging, the optimal sales quantity s2 = arg maxsp2(s, ξ),

which is a concave function and has a unique solution. When either D2(p, ξ) = D(p) or D2(p, ξ) = ξD(p),

the optimal price corresponds to p̂, the unique price that maximizes pD(p). p̂≤ c follows from Theorem 4.8.

This proves the first part of the theorem.

To prove the last part, we consider two demand states ξ′ < ξ′′. Let the optimal price, donation quantity,

and sales in the second period be (p′2, r
′
2, s
′
2) and (p′′2 , r

′′
2 , s
′′
2) for these two states, respectively. Let the available

inventory at beginning of second period be I ′ and I ′′ for these two states, respectively.

Suppose that ξ′ < ξ′′ and r′′2 > 0, we show that r′2 > 0 as well. Because r′′2 > 0, donating is preferred over

salvage at ξ′′. WhenD2(p, ξ) = ξD(p), this implies (1−τ)ξ′′p′′2D(p′′2)+τh(p′′2)(I ′′−ξ′′D(p′′2))> (1−τ)ξ′′p̂D(p̂).

At ξ′, the profit of donating excess inventory at price p′′2 is (1 − τ)ξ′p′′2D(p′′2) + τh(p′′2)(I ′ − ξ′D(p′′2)) ≥
ξ′

ξ′′
((1− τ)ξ′′p′′2D(p′′2) + τh(p′′2)(I ′′ − ξ′′D(p′′2))) > (1− τ)ξ′p̂D(p̂), which is the profit under salvaging at ξ′.

The first inequality holds because I ′ ≥ I ′′ and ξ′ < ξ′′. Therefore, if donating is optimal at ξ′′, donating is

optimal at ξ′ < ξ′′ when D2(p, ξ) = ξD(p). When D2(p, ξ) = D(p), the same conclusion can be established

using a similar argument.

Because the firm’s profit is continuous under either donating or salvaging and the tie-breaking favors

salvaging, there exists ξ̌ such that when ξ ≤ ξ < ξ̌, the firm chooses donation. That is, r∗2 > 0, s∗2 =

max{D2(p∗1, ξ),arg maxs((1− τ)sp2(s, ξ) + τh(p2(s, ξ))(I∗− s)}, and p∗2 = p2(s∗2, ξ)> c by Theorem 4.8.

Now we show that p∗2 and r∗2 are decreasing in ξ when ξ ≤ ξ < ξ̌. We will prove by contradiction. Suppose

that the optimal solutions p′2 < p′′2 under ξ′ < ξ′′. Because of the continuity of the profit function and the

uniqueness of the optimal solution under donating, p2 can be viewed as a continuous function of ξ. Because

I ′′−D2(p′′2 , ξ)> 0, without loss of generality, we can assume that I ′′−D2(p′2, ξ)> 0. Also, I ′−D2(p′′2 , ξ)> 0

follows from I ′ > I ′′. Furthermore, when D2(p, ξ) = ξD(p), the optimality of p′2 and p′′2 implies that

(1− τ)ξ′′p′′2D(p′′2) + τh(p′′2)(I ′′− ξ′′D(p′′2))> (1− τ)ξ′′p′2D(p′2) + τh(p′2)(I ′′− ξ′′D(p′2)) (EC.1)

and
(1− τ)ξ′p′2D(p′2) + τh(p′2)(I ′− ξ′D(p′2))> (1− τ)ξ′p′′2D(p′′2) + τh(p′′2)(I ′− ξ′D(p′′2)). (EC.2)

Note that p′2 < p
′′
2 implies that h(p′2)≤ h(p′′2). Therefore,

(1− τ)(p′2D(p′2)− p′′2D(p′′2))> τI′

ξ′
(h(p′′2)−h(p′2)) + τ(h(p′2)D(p′2)−h(p′′2)D(p′′2))

≥ τI′′

ξ′′
(h(p′′2)−h(p′2)) + τ(h(p′2)D(p′2)−h(p′′2)D(p′′2))> (1− τ)(p′2D(p′2)− p′′2D(p′′2)),

where the first inequality follows from (EC.2), the second inequality follows from I ′ > I ′′ and ξ′ < ξ′′, and

the last inequality follows from (EC.1). Thus we reach a contradiction. When D2(p, ξ) =D(p), we can reach

a contradiction by a similar argument.

Therefore, when ξ ≤ ξ < ξ̌, p∗2 is (weakly) decreasing in ξ; s∗2 = D(p∗2, ξ) is (weakly) increasing in ξ; and

r∗2 = I∗− s∗2 is (weakly) decreasing in ξ. �

Proof of Lemma 1: We first show that when p′1 < p′′1 , U2(x|p′1, ξ) − U2(x|p′1, ξ, r2 = 0) ≤ U2(x|p′′1 , ξ) −

U2(x|p′′1 , ξ, r2 = 0). Suppose that the second period price p′2 is part of the optimal solution to U2(x|p′1, ξ, r2 =

0). We consider two possibilities:
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p′2 = p′1: In this case, all x units of inventory are sold at p′2 = p′1 under the optimal solution to U2(x|p′1, ξ, r2 =

0). Therefore, U2(x|p1, ξ) = p1x= U2(x|p′1, ξ, r2 = 0), and U2(x|p′1, ξ)−U2(x|p′1, ξ, r2 = 0) = 0≤ U2(x|p′′1 , ξ)−

U2(x|p′′1 , ξ, r2 = 0).

p′2 < p
′
1: In this case, the constraint p′2 < p

′
1 is not binding, because U2(x|p′1, ξ, r2 = 0) can be formulated as a

convex optimization problem of the sales quantity. When p′2 < p
′
1 < p

′′
1 , the optimal solution to U2(x|p′1, ξ, r2 =

0) is the optimal solution to U2(x|p′′1 , ξ, r2 = 0). Therefore, U2(x|p′1, ξ)− U2(x|p′1, ξ, r2 = 0) ≤ U2(x|p′′1 , ξ)−

U2(x|p′′1 , ξ, r2 = 0) because U2(x|p′1, ξ)≤U2(x|p′′1 , ξ) when p′1 < p
′′
1 .

Now we show that when x′ < x′′, U2(x′|p1, ξ) − U2(x′|p1, ξ, r2 = 0) ≤ U2(x′′|p1, ξ) − U2(x′′|p1, ξ, r2 = 0).

Suppose that the second period donation r′2 is part of the optimal solution to U2(x′|p1, ξ). We consider two

possibilities:

r′2 = 0: In this case, U2(x′|p1, ξ)−U2(x′|p1, ξ, r2 = 0) = 0≤U2(x′′|p1, ξ)−U2(x′′|p1, ξ, r2 = 0).

r′2 > 0: In this case, it suffices to show that τh(p′2)≥U ′2(x′|p1, ξ, r2 = 0) because U2(x′′|p1, ξ)−U2(x′|p1, ξ)≥

h(p′2)(x′′−x′) and U2(x′′|p1, ξ, r2 = 0)−U2(x′|p1, ξ, r2 = 0)≤U ′2(x′|p1, ξ, r2 = 0)(x′′−x′) due to the concavity

of U2(x|p1, ξ, r2 = 0).

Notice that τh(p′2)r′2 > U2(x′|p1, ξ, r2 = 0)− U2(x′ − r′2|p1, ξ, r2 = 0) = U ′(x′′′|p1, ξ, r2 = 0)r′2, where x′′′ ∈

(x′− r′2, x′). Therefore, τh(p′2)>U ′(x′′′|p1, ξ, r2 = 0)>U ′(x′|p1, ξ, r2 = 0) by the concavity of U2(x|p1, ξ, r2 =

0). �

Proof of Theorem 4.10: Notice that r1 = 0 at optimal due to Fc = 0 by Theorem 4.7. We prove the result

by contradiction. Suppose that p∗1 < p
0
1 and q∗ < q0, we show that by procuring q0 and setting the first period

price as p01, the firm achieves a profit higher than U∗ with the enhanced tax deduction.

U∗ = U1(q∗)− (1− τ)vcq
∗ = (1− τ)(−vcq∗+ p∗1Eξ[min{D1(p∗1, ξ), q

∗}]) +Eξ[U2((q∗−D1(p∗1, ξ))
+|p∗1, ξ)]

= (1− τ)(−vcq∗+ p∗1Eξ[min{D1(p∗1, ξ), q
∗}]) +Eξ[U2((q∗−D1(p∗1, ξ))

+|p∗1, ξ, r2 = 0)]

+ Eξ[U2((q∗−D1(p∗1, ξ))
+|p∗1, ξ)−U2((q∗−D1(p∗1, ξ))

+|p∗1, ξ, r2 = 0)]

< (1− τ)(−vcq0 + p∗1Eξ[min{D1(p01, ξ), q
0}]) +Eξ[U2((q0−D1(p01, ξ))

+|p01, ξ, r2 = 0)]

+ Eξ[U2((q0−D1(p∗1, ξ))
+|p01, ξ)−U2((q0−D1(p01, ξ))

+|p01, ξ, r2 = 0)]

= (1− τ)(−vcq0 + p01Eξ[min{D1(p01, ξ), q
0}]) +Eξ[U2((q0−D1(p01, ξ))

+|p01, ξ)]

≤ U1(q0)− (1− τ)vcq
0

The first inequality is due to the optimality of (q0, p01), Lemma 1, and (q0−D1(p01, ξ))
+ ≥ (q∗−D1(p∗1, ξ))

+

when p∗1 < p01 and q∗ < q0. The second inequality is due to the definition of U1. Therefore, we reach a

contradiction and we conclude the proof. �
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