

The Evolving Object of Software Development

By

Paul S. Adler

Downloaded from http://www-bcf.usc.edu/~padler/

The Evolving Object of Software
Development

Paul S. Adler
University of Southern California, USA

Abstract. This paper contributes to an ongoing debate on the effects of
bureaucratic rationalization on relatively non-routine, knowledge-work
activities. It focuses on the Software Engineering Institute’s Capability
Maturity Model (CMM®) for software development. In particular, it
explores how the CMM affects the object of software developers’ work
and thereby affects organization structure. Empirical evidence is drawn
from interviews in four units of a large software consulting firm. First,
using contingency theory, I address the technical dimensions of the
development object. Here CMM implementation reduced task uncertainty
and helped master task complexity and interdependence. Second, using
institutional theory, I broaden the focus to include the symbolic dimen-
sions of the object. Adherence to the CMM involved the sampled organi-
zations in efforts to ensure certification, and these symbolic conformance
tasks interacted in both disruptive and productive ways with technical
improvement tasks. Finally, using cultural-historical activity theory, I
deepen the focus to include the social-structural dimensions of the object.
Through these lenses, the software development task appears as basically
contradictory, aiming simultaneously at use value, in the form of great
code, and at exchange value, in the form of high fees and profits: the
CMM deepened rather than resolved this contradiction. The form of
organization associated with these mutations of the object of work is a
form of bureaucracy that is simultaneously mock, coercive, and ena-
bling. Key words. bureaucracy; cultural-historical activity theory; inter-
dependence; Marxism; object; software development

Volume 12(3): 401–435
ISSN 1350–5084

Copyright © 2005 SAGE
(London, Thousand Oaks, CA

and New Delhi)

DOI: 10.1177/1350508405051277 http://org.sagepub.com

articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Schumpeter (1942/1976) famously argued that large firms would learn to
routinize innovation. A small stream of organizational research has
explored how firms have successfully introduced discipline into the
unruly process of innovation (e.g. Griffin and Hauser, 1992; Craig, 1995;
Adler, 1999; Wheelwright and Clark, 1992; Jelinek and Schoonhoven,
1993; Bart, 1999; Barley and Orr, 1997; Cardinal, 2001; Organ and Green,
1981; Podsakoff et al., 1986; Alvesson and Kärreman, 2004; Clark and
Fujimoto, 1991; Nixon, 1998; Davila, 2000). The larger body of organiza-
tion theory, however, has been deeply skeptical of Schumpeter’s predic-
tion, arguing that rationalization is incompatible with the creativity
required for innovation (Burns and Stalker, 1961; Mintzberg, 1979; Hall,
2001; Merchant, 1998; Ouchi, 1979; Raelin, 1985). To this contingency-
theoretic skepticism, recent work in institutional theory adds that firms
adopting formalized, standardized approaches to innovation tasks are
often merely seeking symbolic legitimacy and seek to preserve their
innovative capability by buffering their technical core from such stifling
bureaucracy (Scott, 1995, 2003; Meyer and Rowan, 1977; Meyer et al.,
1983; Westphal et al., 1997).

The software arena provides a rich context for exploring this debate. As
software systems have grown larger and more complex, so too has the
proportion of projects that fail to meet their goals or fail entirely (Gibbs,
1994). The Standish Group’s characterization of the ‘chaos’ in software
bears repeating, notwithstanding the methodology weaknesses (Standish
Group, 1994). Data were collected on 8330 industry software projects in
365 firms in banking, manufacturing, retail, wholesale, health care,
insurance, and government. The projects were relatively large: the aver-
age project cost ranged from US$0.4 million in small companies
(US$100–200 million revenue) to US$2.3 million in larger companies
(over US$500 million in revenue). Overall:

● only 16 percent of projects were on time and within budget and met
originally specified requirements—only 9 percent in large companies;

● 31 percent of projects were ‘impaired’ and eventually canceled;
● the remaining 53 percent of projects were ‘challenged,’ and the average

challenged project met only 61 percent of its requirements;
● combining the impaired and challenged categories, the average such

project was 189 percent over budget and 222 percent over schedule.

Today we face what many observers describe as a veritable crisis in
software development (Lieberman and Fry, 2001; Jones, 2002). One
popular approach to taming this chaos is a focus on ‘process,’ understood
as the bureaucratic standardization, formalization, and management con-
trol of work processes (other approaches will be discussed below). And
one increasingly popular vehicle for attaining greater process discipline
is the Capability Maturity Model (CMM®) developed by the Software
Engineering Institute (also described in more detail below). At high levels
of ‘maturity,’ software development should, its proponents argue,

402

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

resemble a factory process in the discipline of its operations and the
predictability of its results.

This bureaucratic rationalization, however, encounters considerable
skepticism. Skepticism has focused on two main issues, echoing the
concerns of the large body of organization theory referred to above. First,
there is skepticism about the CMM’s motivational effects. In the current
state of technology, the software process cannot be entirely automated. As
a result, software developers’ commitment and creativity are still needed
in order to master the non-routine aspects of the process. Second, there is
skepticism about CMM’s conformance effects. Some observers argue that,
when organizations focus on conformance to externally defined process
standards such as the CMM, they lose focus on real improvements to
their processes and products. Typical of the opposition to standardized
and formalized methodologies is this assessment by two well-respected
software management experts:

Of course, if your people aren’t smart enough to think their way through
their work, the work will fail. No Methodology will help. Worse still,
Methodologies can do grievous damage to efforts in which people are fully
competent. They do this by trying to force the work into a fixed mold that
guarantees a morass of paperwork, a paucity of methods, an absence of
responsibility, and a general loss of motivation. (DeMarco and Lister, 1987:
116)

We currently lack empirical research on the effects of such rationaliza-
tion on developers’ work activity or on the corresponding changes in the
structure of development organizations. The present paper aims to help
fill these gaps through an analysis of four units in a large software
consulting firm that has adopted the CMM. The goal of the paper is
simultaneously to characterize changes in software development organ-
izations and help advance organization theory.

My premise is that, to understand how management approaches such
as the CMM affect organizations, we need to understand these ap-
proaches’ effects on the object of work itself. My theoretical starting point
is the concept of the object as developed by cultural-historical activity
theory (CHAT). (On CHAT and closely related variants of practice theory,
see Engeström, 1987, 1990b; Cole, 1996; Leont’ev, 1978; Engeström et al.,
1999; Chaiklin et al., 1999; Wertsch, 1979; Blackler, 1993; Holt and
Morris, 1993; Nardi, 1996). As the dictionary and CHAT both tell us, an
‘object’ is simultaneously (a) something given to the mind or senses and
(b) a purpose. The object of the blacksmith’s activity is simultaneously a
piece of iron, an inert mass, and the mental image of the shape it should
take, a goal. Indeed, it is the tension between the two that motivates the
blacksmith’s activity and thus serves as a starting point for understanding
the form of organization assumed by that activity (Engeström, 1990a; on
CHAT’s view of the object, also see Foot, 2002).

The Evolving Object of Software Development
Paul S. Adler

403

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

In the sections that follow, I first discuss this CHAT conceptualization
of the object and how it relates to other organization-theoretic approa-
ches. I then characterize in general terms the object of software develop-
ment activity, provide some background on the CMM, and describe my
research methods and context. The body of the paper reports on how the
CMM has changed the object of software development in the sampled
organizations and the corresponding changes in the structure of develop-
ment organizations.

The Concept of the Object
CHAT takes inspiration from Marx in both its epistemology (‘dialectical
materialism’) and ontology (‘historical materialism’). Epistemologically,
CHAT begins with the first of Marx’s Theses on Feuerbach:

The main defect of all hitherto-existing materialism . . . is that the Object
[der Gegenstand], actuality, sensuousness, are conceived only in the form
of the object [Objekt], or of contemplation [Anschauung], but not as human
sensuous activity, practice [Praxis]. (Marx, 1845/2002)

Marx here is criticizing both simplistic materialism—where the object is
merely a given in the external world (German: das Objekt)—and
idealism—where the object is only ever our mental construction of it, the
subjective meaning and purpose we attribute to it (German: die
Anschauung). Arguing a thesis close to that of the American pragmatists,
Marx proposes a dialectical synthesis of these two philosophical tradi-
tions, postulating that the most fruitful starting point for an under-
standing of the world is our practical engagement with it. The object of
our sensuous, practical activity (Praxis) is always simultaneously an
independently existing, recalcitrant, material reality and a goal or pur-
pose or idea that we have in mind. This mix is nicely captured in the
German term der Gegenstand: gegen means against, towards, contrary to,
signaling a reality that offers resistance to our efforts and desires, and der
Stand means category or state of affairs.

The history of organization theory recapitulates a similar dialectic of
epistemologies. In a first phase of organization research, contingency
theory focused on how the effectiveness of given organization forms
depended on the nature of the organization’s ‘task,’ where task was an
exogenous given in the form of the key demand placed on the organiza-
tion by both the material world and higher-level strategic choices. CHAT
takes on board contingency theory’s core intuition that the task/object
plays a key role in determining the effectiveness of different organiza-
tional forms.

However, contingency theory focused on only the technical dimen-
sions of tasks; in effect, it adopted a simplistically materialist view,
focusing on the Objekt as a given material reality. In a second phase, the
field of organization theory was enriched by a range of approaches that
broadened the focus to address the political, cultural, symbolic, and

404

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

socially constructed nature of the task. These perspectives have come
together most recently under the umbrella of institutionalization theory,
which teaches us that the organization’s understanding of its tasks is
often in practice taken for granted, and that, even when this under-
standing is conscious, the task is often guided as much by concern for
symbolic legitimation as by technical efficiency (see surveys by Scott,
2003; Powell and DiMaggio, 1991). CHAT takes on board too this recogni-
tion of the social construction of the task and the problematic of the
object/task’s taken-for-grantedness and contestability.

However, although institutional theory captures well the object as
culturally constructed Anshauung, it loses sight of the recalcitrant
material reality of the Objekt. Moreover, institutional theory has been
largely silent on how legitimacy concerns come to shape action—silent,
that is, on the subject’s practical engagement with these symbolic chal-
lenges (for an exception, see Brunsson et al., 2000). Following Marx,
CHAT’s view of the object preserves both its objective and its subjective
dimensions. Contingency theory’s simplistic materialism and institu-
tional theory’s cultural idealism both capture facets of the object as it
presents itself in practical activity. The activity system is marked by the
tensions between these two facets.

CHAT also takes inspiration from Marx’s ontology, challenging organ-
ization theory to go deeper and to theorize the social-structural constitu-
tion of the object/task. CHAT argues that the ontologies of both
contingency theory and institutional theory are too flat and therefore fail
to grasp the deeper, intrinsically contradictory structuring of the object of
work activity in capitalist firms. Marxist social theory is layered rather
than flat, in the sense articulated by Bhaskar (1993): the empirically
observed world is the result of the overdetermination of multiple layers
of structure. To say, as institutionalization theory does, that organizations
face both technical and symbolic legitimation challenges is to provide a
richer empirical characterization than contingency theory, but does not
provide much more insight into the underlying forces shaping those
challenges.

Here CHAT takes up Marx’s analysis of the capitalist production
process. CHAT reminds us that the object of work in a capitalist firm is a
‘commodity,’1 and as such embodies two, contradictory, goals: the crea-
tion of use value and the creation of exchange value. According to Marx,
the production process within capitalist firms has two aspects (reflecting
the two aspects of the commodity): the labor process, in which use values
in the form of work effort, tools, and materials combine to create new use
values, and the valorization process, in which these use values appear in
the form of exchange values, and in which the operative considerations
are not technical but monetary—wages, capital, and profit (Marx, 1977:
appendix; Thompson, 1989; Bottomore, 1983: 267–70). The objects of
capitalist work are typically therefore deeply contradictory.2 Where insti-
tutionalization theory sees conflicts between the technical and symbolic

The Evolving Object of Software Development
Paul S. Adler

405

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

aspects of the object, CHAT sees use-value/exchange-value contradictions
inherent in both aspects, and it is this underlying contradiction that more
profoundly shapes the direction of, and provides the force for, change in
work and organization.

The Object of Software Development: Generic Features
These three theoretical perspectives on the object each offer useful
vantage points for the study of software development activity. Let us
begin with contingency theory.

In its discussion of task, classic contingency theory bequeaths us a rich
vocabulary for characterizing the object of work activity.3 Starting with
Woodward, Lawrence and Lorsch, Perrow, and the Aston team, and
subsequent work by Van de Ven and numerous others, several dimen-
sions of task have been found to be salient in understanding how the
work tasks of an organization shape its structure. I focus on the three
dimensions that are perhaps the most commonly cited: uncertainty,
complexity, and interdependence (see Scott, 2003: ch. 9; Zigura and
Buckland, 1998). Uncertainty (closely related to novelty, analyzability,
and ambiguity) is the difficulty of solving the problems posed or of
resolving the exceptions encountered in the work. Complexity is the
number of different types of problems posed in the work. Interdepend-
ence is the extent to which the solutions to these problems are inter-
related.4

Software development—in particular the development of large-scale
systems that has proven so chaotic—is notable for simultaneously high
uncertainty, high interdependence, and high complexity. The standard,
contingency-theoretic recommendation for managing such tasks is to
increase the skill (professionalism) of the personnel and to assure these
personnel considerable autonomy in their work through the adoption of
an organic organization design.

The software crisis shows that this recommendation has failed. Soft-
ware already relies on highly trained personnel, and the empirical
studies show that more or less organic forms of organization are the norm
in this industry. The problem is that the organic organization form does
not scale well. As software products and projects have grown in scale,
development organizations have been forced to look for other solutions.
The range of potential solutions can be presented in terms of whether
they address primarily complexity, interdependence, or uncertainty. In
addressing these three dimensions, organizations can seek either to
reduce the challenge and/or to improve their capacity to manage the
challenge. Let us take the three dimensions in turn, and we will see that
beaucratization has become a technical necessity.

Organizations can try to reduce the challenge of complexity through
automation. Higher-level languages, code generators, and sophisticated
programming environments can take over the task of managing much of
the complexity of software development. Bureaucratic rationalization is a

406

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

way to manage complexity once it exceeds the cognitive limits of the
individual expert; automation will reduce the need for this bureaucracy.
However, there are limits to our ability to automate when uncertainty is
high, as is typically the case in software development (Weber, 1997).

A second approach is to reduce the challenge of interdependence
through modularity (e.g. Baldwin and Clark, 2000). The burden of manag-
ing interdependence can be alleviated by careful pre-specification of
interface standards. This enables the overall system to preserve high
levels of complexity and allows individual modules to incorporate high
levels of creativity. This approach is currently attracting considerable
attention as the premise underlying the open source software movement.
Microsoft’s ‘feature-driven design’ approach relies on a similar logic
(Cusumano and Shelby, 1995). However, as J. D. Thompson (1967)
argued, only modest degrees of interdependence can be managed by pre-
specified standards. Moreover, pre-specifying interfaces limits more radi-
cal and architectural innovation. More intensive forms of
interdependence require mutual adjustment and, when combined with
complexity, require detailed planning. Mutual adjustment suffices only
on a small scale with modest levels of complexity—conditions that do
not obtain in large-scale software projects.5 Planning takes us to bureau-
cracy, to which we now turn.

The third approach focuses on reducing uncertainty through bureau-
cratic rationalization. Here the focus is on standardizing and formalizing
not only module interfaces but the entire work process. The goal is to
maintain or to increase the creativity of the output but to reduce the
uncertainty of the tasks leading to that output. Once uncertainty is
reduced, then a combination of automation and bureaucracy can be used
to manage greater levels of complexity and interdependence. Bureau-
cracy is far more popular than modularity in the world of large-scale
custom software systems development, because the individual client is
typically unwilling to pay for an upfront interface standardization effort
whose benefits will flow to many other clients too. In this world, the
largest part of the software industry, developers therefore have no choice
but to manage interdependence and complexity rather than try to reduce
them, and this means in turn that they have no choice but to find ways to
use bureaucracy to reduce uncertainty. These conditions have helped
motivate the growing popularity of the CMM.

It is not only the object of software development that has evolved; our
theory of the object has evolved too. As indicated in the previous section,
recent developments in organization theory suggest two major extensions
to the classic contingency-theoretic analytic apparatus. First, institu-
tional theory has alerted us to the importance of symbolic legitimacy in
shaping organization structure. The task of the organization is not merely
technical—assuring effective transformation of inputs into outputs—but
also symbolic—ensuring its legitimacy as an institution in the eyes of
both external and internal stakeholders. When software development

The Evolving Object of Software Development
Paul S. Adler

407

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

organizations adopt the CMM, the object of work expands to include
ensuring conformance to CMM standards.

There is considerable debate over how technical and symbolic tasks are
related. In a strong version of institutional theory, task and object are
always understood as socially constructed and culturally defined—as
Anschauung. A weaker version sees technical and symbolic tasks as
coexisting facets of reality, even if over time, within a given institutional
field, the symbolic tends to displace the technical as the main driver of
organizational change. As will become clear in the following section
describing the CMM, the pressure for symbolic conformance is of con-
siderably importance in some sectors of the software industry, and my
research therefore sought to understand how the CMM’s symbolic effects
interacted with its technical effects.

CHAT offers a further extension to organization theory’s view of task,
first by integrating the objective and subjective dimensions, and second
by characterizing the specific social form in which the tasks of work
activity present themselves in capitalist firms. The fundamental contra-
diction characteristic of capitalism between use value and exchange
value is expressed in the tensions created by conflicting goals of high-
quality software code and high profits in the exchange of this code for
fees. The ‘substance’ of use value (in this case, code, documents, files,
etc.) serves as the substratum for the ‘social form’ of exchange value
(capital, wages, profit), but the two layers—substance and form, use value
and exchange value—obey heterogeneous, conflicting imperatives.6 My
research therefore also aimed to understand how this contradiction
shaped the adoption, implementation, and effects of the CMM.

To characterize the impact of bureaucratic rationalization on software
development, I shall review changes to the object of development work
from each of these three perspectives in turn—technical, symbolic, and
social-structural—then characterize the resulting form of organization.
First, however, I describe in more detail the CMM and the context of my
research.

Bureaucratizing Software Development: The CMM
In the 1980s, the US Air Force studied 17 major software systems
contracts and found that every one was late (by an average of 75 percent)
and over budget (Humphrey, 2002). In 1984, frustrated with such chaos,
the Department of Defense (DoD) funded the Software Engineering Insti-
tute (SEI), based at Carnegie-Mellon University, to develop a model of a
more reliable software development process. With the assistance of the
MITRE Corporation, SEI developed a ‘capability maturity model’ (CMM),
releasing a preliminary description in 1987 and the first official version
(version 1.1) in 1991 (see Paulk et al., 1993a,b). The software CMM was
subsequently complemented by CMM tools for systems engineering,
people management, and software acquisition. In 2000, several of these
were integrated into a broader tool called CMM-Integration.

408

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

This study focuses on the software CMM. This CMM distinguishes five
successively more ‘mature’ levels of process capability, each charac-
terized by mastery of a number of Key Process Areas (KPAs)—see Table 1.
The CMM belongs to a class of improvement approaches that focus on
‘process’ rather than ‘people.’ It does not recommend any particular
approach to organizational and behavioral issues: it focuses on the
‘whats’ and not the ‘hows,’ leaving CMM users to determine their own
implementation approach. Level 1 represents an ad hoc approach: an
organic organization design would rate as a Level 1. Level 2 represents
the rationalization of the management of individual projects. At Level 3,
standard processes are defined and used for the organization’s entire
portfolio of projects. Level 4 pushes rationalization even further, specify-
ing mechanisms for quantifying the development process. Level 5 speci-
fies systems for assuring the continuous improvement of that process.
The underlying philosophy of this hierarchy was inspired by Crosby’s
(1979) five stages of TQM maturity (see Humphrey, 2002; a bibliography
on the CMM is available at http://www.sei.cmu.edu/docs/biblio.pdf). In
its recommendations for the standardization and formalization of work
and management practices, for the specialization of line and staff roles,
and for hierarchical structuring, the CMM represents a strong program of
bureaucratic rationalization.

Early CMM assessments revealed a startlingly ‘immature’ state of
software process: 80.0 percent of the 132 organizations assessed during
1987–91 were found to be at the ‘ad hoc’ Level 1, 12.3 percent at Level 2,
and only 6.9 percent at Level 3, 0.0 percent at Level 4, and 0.8 percent at
Level 5. Such immaturity, we should note, is entirely consistent with
contingency theory’s recommendation of the organic form. Over sub-
sequent years, however, there appears to have been significant shift
towards higher maturity levels (although it is difficult to tell, given the
changing and unrepresentative nature of the sample, which is composed
of organizations that volunteer for evaluation). Of the 1343 organizations
assessed between 1999 and 2003, 13.3 percent were at Level 1, 43.5
percent at Level 2, 25.6 percent at Level 3, 8.5 percent at Level 4, and 9.2
percent at Level 5 (Software Engineering Institute, 2004). This shift was
assisted by the fact that the DoD and other government and private sector
organizations began using Software Capability Evaluations (SCEs) based
on the CMM as part of their source selection process. The first evalu-
ations pressed suppliers to reach Level 2, but before long the bar was
raised to Level 3. Not surprisingly, the CMM has become the basis for
numerous software service organizations’ improvement efforts in both
the government and commercial sectors. (The CMM is almost unknown
among firms developing prepackaged software products; see Software
Engineering Institute, 2004.)

Evidence is slowly accumulating that moving up the CMM hierarchy
leads to improvements in product cost, quality, and timeliness.7 On the
other hand, and echoing the broader literature, there is considerable

The Evolving Object of Software Development
Paul S. Adler

409

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

concern over its bureaucratic nature. (In this ambiguity, CMM resembles
the broader family of ‘software factory’ concepts of which it is a part; on
the concept of software factory and the associated debates, see
Cusumano, 1991; Swanson et al., 1991; Griss, 1993; Weber, 1997;
Friedman and Cornford, 1989; Greenbaum, 1979; Kraft, 1997.) In partic-

Table 1. The CMM Model

Level Focus and description Key Process Area

1: Initial Competent people and heroics:
The software process is ad hoc,
occasionally even chaotic. Few
processes are defined, and success
depends on individual effort and
heroics.

2: Repeatable Project management processes:
Basic project management
processes are established to track
cost, schedule, and functionality.
The necessary process discipline is
in place to repeat earlier successes
on projects with similar
applications.

• software configuration
management

• software quality assurance
• software subcontract

management
• software project tracking and

oversight
• software project planning
• requirements management

3: Defined Engineering processes and
organizational support:
The software process for both
management and engineering
activities is documented,
standardized, and integrated into a
standard software process for the
organization. All projects use an
approved, tailored version of the
organization’s standard software
process for developing and
maintaining software.

• peer reviews
• intergroup coordination
• software product engineering
• integrated software management
• training program
• organization process definition
• organization process focus

4: Managed Product and process quality:
Detailed measures of the software
process and product quality are
collected. Both the software process
and products are quantitatively
understood and controlled.

• software quality management
• quantitative process management

5: Optimizing Continuous process improvement:
Improvement is enabled by
quantitative feedback from the
process and from piloting
innovative ideas and technologies.

• process change management
• technology change management
• defect prevention

410

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

ular, concerns are often expressed that the discipline recommended by
the CMM will reduce the autonomy of developers and will therefore be
experienced by them as burdensome and coercive constraint. This would
stifle the motivation and creativity that are, over the longer run, required
for high-quality and innovative software development (e.g. Crocca, 1992;
Bach, 1994, 1995; Conradi and Fuggetta, 2002; Lynn, 1991; Ngwenyama
and Nielson, 2003). Numerous commentators have also expressed con-
cern that the symbolic conformance pressure will displace attention to
real technical improvements and that it imposes on firms a single vision
of the improvement process (e.g. Bollinger and McGowan, 1991; Saiedian
and Kozura, 1995). One software development manager interviewed in
the present study expressed these concerns this way:

Programming has always been seen as more of an art form than a factory
process. Programmers are supposed to be creative, free spirits, able to
figure things out themselves. So the software factory idea was very alien to
the culture of programmers. (A: department manager)

Research Context and Methods
To explore CMM-driven bureaucratization of software development, I
studied one of the larger US-based professional service information
technology firms, which I will call GCC. With the support of senior
management, interviews were conducted with staff in four of its Pro-
grams involved in government work. (A ‘Program’ is an organizational
unit devoted to ongoing work with a single client.) Two Programs, A and
C, were at CMM Level 5 and two sister Programs, B and D, were at Level
3. An appendix to this paper provides background on these four Pro-
grams.

Like the bulk of the software industry, these Programs were developing
systems that embodied considerable real innovation but also involved a
considerable mass of rather more routine work. The proportion of routine
activity was driven primarily by the high volume of software main-
tenance activity. The proportion of non-routine activity was driven
primarily by customer demands for ever-higher levels of system perform-
ance and an accelerating flow of new programming languages and tech-
nologies. On balance, developers’ tasks embodied enough uncertainty to
make employee motivation a continuing priority, and this in turn gave
the employees real power in their relations with management:

Buy-in is important in this kind of business. Take an example: program-
ming languages. The DoD was very enthusiastic a few years ago about Ada.
It was a great language from a management point of view, since it specified
things in a way that gave management a lot of control over the process. But
the programmers preferred C because it was less constraining and more
open. They simply refused to get on board with Ada, and management lost
the fight. (A: Program manager)

The Evolving Object of Software Development
Paul S. Adler

411

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Coercion was a costly policy in dealing with highly skilled pro-
fessional staff on whose initiative and goodwill the organization’s success
depends:

In this organization, you have to lead by example. A military command
style just doesn’t work. We’ve had a few managers with that more military
approach, and we’ve had to ease them out of their roles. We’ve reorganized
to give more responsibility to the better managers. The ethos here is that
people do what it takes. So you have to lead, not command. A while back,
we were running late on an important project. The manager tried to impose
a 50 hour week schedule. It really hurt morale—people were already
working 60 hours a week! (D: development manager)

Nevertheless, GCC, like other larger organizations, deployed a whole
hierarchy of increasingly fine-grained standard operating policies to
create process discipline:

1. ‘policies’ defined universal requirements;
2. ‘processes’ defined the methodologies that structured all the projects;
3. ‘procedures’ defined activities within the project; and
4. ‘instructions’ defined requirements at the individual task level.

The ‘granularity’ of process discipline at its finest levels can be gauged by
the instructions at Program C. Separate instructions covered high-level
design, two types of low-level design, two types of code reviews, testing,
change request implementation and resolution, and root cause analysis.
Each instruction was several pages in length. They typically included the
specific forms to be completed as well as flow-charts detailing the
sequence of steps involved. Overall, the written processes summed to
some eight linear-feet of shelf space. In recent years, a growing proportion
of this documentation appeared in the form of on-line databases, and
more of the procedures specifying work-flows were being built into
automated collaboration systems.

Process maturity meant a great volume of documentation not only to
read but also to write, and to write in a highly standardized manner. In
the words of one interviewee, perhaps exaggerating for effect:

I can write the code in two hours, but then I have to spend two days
documenting it. It can be very frustrating. We have to document check-in
and check-out, a detailed design plan, a development plan. We have to
print out all the differences between the old and the new code. There’s
documentation for inspection and certification. There’s an internal soft-
ware delivery form. A test plan. And all these need to be signed . . . I used
to be an independent developer for about three years. I never even created
a flowchart of my work! The only documentation I needed was a ‘to do’
list. So I had to change of lot of habits when I got here. (B: developer)

The CMM encouraged the GCC Programs to refine and extend this
bureaucratic apparatus. Program A illustrates the effectiveness of this
push. Program A had worked with the CMM to improve its software
process since 1991. They had made only modest changes in process

412

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

technology, but had nevertheless cut development costs for comparably
complex projects by 60 percent over 10 years. Over the period 1994–8
alone, the cost of software development for the average project was
reduced by 23 percent, from 255 staff-months to 200, and productivity
increased from 475 lines of code per staff-month to 560. Error rates in the
late 1970s were about 7 errors per 1000 lines of developed code; by the
end of the 1990s the average rate was 0.7. Project cycle times were
reduced by between 5 percent and 20 percent over the most recent five-
year period. And the accuracy of planning was considerably increased:
the average effort variance (= (actual–estimated)/estimated) fell from
40–50 percent in the early 1990s to less than 20 percent in the late
1990s.

Contingency theory (Burns and Stalker, 1961; Lawrence and Lorsch,
1967; Galbraith, 1977) teaches us that the scope for process standardiza-
tion and formalization such as recommended by the CMM is closely
related to the degree of routineness versus the uncertainty of the organi-
zation’s key tasks. In some GCC Programs, the basic tasks were more
routine than in other Programs; indeed, the level of detail in the process
varied across Programs according to the average routineness of their
tasks. In comparison with Program C, for example, its sister Program D
dealt with a broader range of technologies and these technologies evolved
more rapidly. Not surprisingly, Program C was considerably more mature
in its process than Program D, and its process was more controlled at
finer degrees of granularity.

Within Programs too, the tasks of different departments differed in
their degree of uncertainty. For example, at Program D, one department
was responsible for defining site requirements, planning and procuring
hardware, getting it to the site, and installing it, and this department,
unlike the development department, did have detailed, formalized,
standard operating procedures. At the other end of the spectrum, the
engineering and technology (E&T) department at Program A handled
tasks that were relatively much less routine than the Program’s other
departments. The E&T department manager explained:

Because of the nature of our work perhaps, we don’t have anywhere nearly
as much process as Development. We don’t usually have a fixed delivery
date. [. . .] Yes, we have to manage to our budget, but our process is only a
few pages long. (A: project manager)

Notwithstanding these differences, all four Programs had pursued
CMM certification and, as a result, all the departments in all four
Programs had achieved high (Level 3) or very, very high (Level 5) levels
of bureaucratization. Moreover, they had done this while keeping person-
nel turnover below the industry average, filling open positions relatively
quickly, and maintaining relatively modest levels of compensation and
limited financial incentives (as compared with software organizations
that produced software products or provided services to commercial
sector clients).

The Evolving Object of Software Development
Paul S. Adler

413

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

In order to understand how these efforts had transformed the develop-
ment process, I interviewed between 15 and 22 people at all levels in
each of these four Programs. Interviews lasted approximately one hour.
They were tape-recorded and interviewees were assured anonymity. The
recordings were transcribed and edited versions were sent back to
interviewees for review and correction. I also consulted voluminous
internal documentation from each of these Programs, as well as docu-
ments from corporate entities supporting them.

The Influence of the CMM on the Object of Software Development
The Technical Dimension: Reducing Task Uncertainty

If regularities can be found in an innovative task, the same degree of
novelty in the task’s output can be achieved with less uncertainty in the
task process, increasing the latter’s efficiency and stability. Interviewees
argued that it was possible to impose more discipline on the more routine
parts of the work without impairing, and indeed improving, the flex-
ibility needed for the less routine parts:

Even when tasks are more innovative, you can still get a lot of advantage
from process. You need to sit down and list the features you want in the
system, and then work out which are similar and which are different from
your previous work. And you need to make sure the differences are real
ones. You’ll discover that, even in very innovative projects, most of the
tasks are ones you’ve done many times before. Then, for the tasks that are
truly novel, you can still leverage your prior experience by identifying
somewhat related tasks and defining appropriate guidelines based on those
similarities. They won’t be precise instructions of the kind you’ll have for
the truly repetitive work: but these guidelines can be a very useful way to
bring your experience to bear on the creative parts of the work. (B: testing,
formerly with Program A)

The standardized, formalized process fostered by the CMM stabilized
the object of work, which meant less chaos and more intelligibility:

Before I came to GCC, I worked for a very small software firm doing
business software. It was what the SEI folks would call a Level 1
organization—completely ad hoc. No documentation, no design reviews,
no standardized testing. So there was a lot of chaos and rework. . . . In a
place like this, everything is more organized, and you know exactly where
you are in the development process. I like the fact that you know where
you’re up to and how to do your work. It’s more streamlined and there’s
less rework. (C: developer)

One important effect was improvement in the organization’s capacity
for planning, which helped reduce trial and error in resource allocations
and schedules:

Our process is so mature that we have great estimating data. We can
develop a really accurate estimate for a bid on a project in a matter of
hours. (A: developer)

414

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Mastering Complexity and Interdependence
Reducing uncertainty facilitated the management of the interdependence
and complexity that are involved in large-scale systems development.
The CMM also contributed more directly to this mastery by ‘expanding’
the object socially, both in its mental representations and in its objective
reality.8 Instead of each functional department working on its own task in
siloed isolation, the tasks were now part of an integrated whole:

Our policies and procedures mean that I have better information on what
we’re trying to do because we have better requirements documents and
better information on how to do it with Instructions etc. At Level 5 versus
Level 1, I’m more confident we’re all playing to the same sheet of music.
Looking across the organization, process also means that managers under-
stand better the way the whole system works, so they are all playing the
same game. . . . That gives me more confidence that my piece will fit with
the rest of the system. (C: developer)

This social expansion of the object was directly related to the technical
expansion represented by the greater documentation burden in the devel-
opers’ work. Many interviewees saw this documentation as the necessary
support for an imaginary dialogue with previous and future developers
and with other people who are working on the code:

I think that our process—and even the paperwork part of it—is basically a
good thing. My documentation is going to help the next person working on
this code, either for testing or maintenance. And vice versa when I’m on
the receiving end. (C: developer)

Process maturity also expanded the object of work to include dialogue
with customers on requirements and progress monitoring. This facili-
tated coordination between organizations:

One of the main reasons I came back from the client to Program A was
because I like working in a more mature organization. When I worked at
the client, it was a real eye-opener—and very frustrating. We’d been
working for four years, and reached a major milestone, and only then
discovered that the system didn’t work. The contractor [that we were
working with] had managed to hide the problems from the customer [i.e.
us] for four years! Their process was so weak that they couldn’t manage the
project on their end nor provide us with good progress data. The chaos was
terrible, and it showed up in atrocious [personnel] turnover—over 40
percent per year! Once I got back to Program A, the contrast was really
striking. We knew exactly where we were at any given time, what we were
doing, and why. (A: testing)

The Symbolic Dimension: Assuring Legitimacy
The commitment of these GCC Programs to the CMM meant in practice
that the object of work also expanded to include ensuring conformance to
the CMM standards and ensuring successful certification of that conform-
ance. Process conformance therefore competed with technical perform-
ance priorities:

The Evolving Object of Software Development
Paul S. Adler

415

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Lower-level managers juggle the needs of the customer and the pressures
from GCC upper management. And upper management is focused prima-
rily on things that strengthen GCC’s position for obtaining future work
rather than what we need to retain current work. So, even though the
requests for things like CMM ratings may have no value-added for our
immediate assignment, we do them anyway. (A: developer)

These competing priorities reflect the tension between technical and
symbolic demands as described by institutionalization theory. Clearly,
part of the CMM effort was ‘for show,’ at least in its earlier phases and in
the less mature organizations:

The evaluation and CMM SCE forced us to update our documents. We
didn’t really change anything in how we work though. (D: developer)

Before the evaluation in May and the Action Team work got underway, I
was pretty skeptical about our Program management’s commitment to
moving further ahead on process. I just didn’t think management would
take it seriously. I was sure it was a one-time effort to get past the
evaluation and then we’d drop it. That’s happened before: we run around
to document stuff because we have to get past some evaluation, then it’s
dropped. The bottom line here is the product. That’s how we get paid.
Process and support activities are basically just overhead. So I was pleas-
antly surprised to see that senior management really was committing to
this as a new way of doing business. (D: project support staff)

The challenge of CMM certification was to ‘map’ the Program’s existing
practices to the CMM’s Key Process Areas (KPAs, as described in Table 1).
In some cases, this mapping exercise revealed existing practices to be
satisfactory, and the mapping was therefore experienced as a wasteful
burden; in most cases, however, the CMM provided guidance for process
improvement efforts. Program C had long worked under Department of
Defense Military Standards for quality, so the discipline of the CMM was
experienced against that backdrop, but its experience was otherwise
representative:

Most of our CMM work has been focused on translating what we already
do into the CMM KPAs. We were doing virtually all the KPAs anyway, just
because you can’t manage large-scale projects without doing something
like what the SEI is recommending. The first SCE team told us they knew
that we must have good procedures and that everyone followed them
because everyone told us the same thing; but, they said, the process must
have been tattooed on the inside of eyelids because they couldn’t find them
written down anywhere. So we spent the next year putting them down on
paper. For example, we had an informal training and mentoring program
and, when we got serious about the CMM, we wrote it down. Writing the
process down has had some great benefits. It’s made us think about how we
work, and that’s led to improvements. For example, formalizing the train-
ing program has helped bring some outliers into conformance. And we
formalized the SEPG [Software Engineering Process Group] process, and
that has helped stimulate improvement. (C: training staff)

416

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

As predicted by institutionalization theory, organizations under con-
formance pressure sought to buffer their core by creating specialized staff
roles. Program A used process engineering and quality assurance (QA)
staff as ‘shepherds’ to help line groups prepare for external process
audits:

The shepherds were the greatest gift. We could rely on the shepherd to
explain to us the CMM KPAs and work out with us how we could satisfy
them. And we could vent all our frustrations on them too! Each time, the
evaluation was a really irritating interruption. But there was a concerted
effort to keep them out of the way of the technical people. (A: developer)

Symbolic versus Technical Tasks Institutionalization theory often takes a cyn-
ical view of the role of symbolic conformance; among interviewees in
these four organizations, assessments were more nuanced. Many felt that
the CMM offered a compelling model of a better process (what Engeström
calls a ‘more advanced model’ of the activity system):

The CMM is helping us move ahead. Just to take an example, even if the
CMM didn’t exist we would need a technology change management
process [a Level 5 KPA]. Of our 450 people, we have about 50 people in CM
[configuration management], QA, and data management. To move them
from one process to another is sometimes like herding cats! The CMM
helps us in that by providing an industry-validated approach. (C: Program
manager)

In their debates against proponents of alternative organizational devel-
opment scenarios, proponents of the CMM had the advantage of this
cultural-historical validation.9 Other interviewees expressed more neg-
ative views of the conformance task. One concern was that the CMM
prescribed certain features of the development process and, in doing so,
substituted its own ‘wisdom’ for the results that might emerge from a
more self-directed organizational learning process.10 This excerpt illus-
trates:

SEI has encouraged people to think that progress will come from ‘imple-
menting’ the KPAs, when you really need to decide which KPAs matter to
your business and how you should pursue them. Many organizations, even
some people in our Government Systems Group, think they need to
implement all the requirements of every Level. So the CMM ends up being
seen as externally coercive rather than as an internally motivated improve-
ment process. You can get a false sense of security when you force your
way to certification—or a false sense of failure if you try to force your way
and fail. (B: process engineer, formerly with Program A)

A second concern—expressed by some of the interviewees in the two
Level 5 Programs, A and C, albeit only a minority—focused on the value
of some Level 4 and 5 practices:

We struggled to get past Level 3. Level 3 seems to give you most of the
CMM’s benefits. Frankly, Levels 4 and 5 haven’t changed or helped much.
Beyond 3, documenting the technology management process didn’t really

The Evolving Object of Software Development
Paul S. Adler

417

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

do much for us: we manage to change technology pretty effectively without
formalizing that process. But on the other hand, defect prevention has been
very useful. (A: contract officer)

I think Level 3 was worth doing. But most of Levels 4 and 5 just don’t seem
to add much. It isn’t about everyday stuff anymore. We are doing most of
these processes, and documenting them adds a lot of cost but not much
value. (C: quality assurance staff)

Notwithstanding these reservations, the upside of external legitimacy
pressure was that this pressure could facilitate internal change:

I can see that external evaluations are a very important learning tool. It’s
just like in college: 90 percent of what the student learns is in the week
before the test! So we do need the test to create that incentive. But it’s not
an end in itself. The real issue is: Is passing the test just a veneer? That
depends on how the managers treat the test—as an opportunity to put
some banners on the walls, or as an opportunity to focus attention and get
some real learning done. At Program A, we have reached (well, almost
reached) the point where people like the tests as an opportunity to show
off their improvements. (B: process engineer, formerly with Program A)

The Social-Structural Dimension: Software’s Use Value vs. Exchange Value
CHAT reminds us that the object of developers’ activity at GCC was not
only to produce use value—code and CMM certifications—but also, and
more fundamentally, to produce exchange value—to generate fees and
profits. This section reviews in turn how the CMM helped support the
creation of use value and how the use-value/exchange-value contra-
diction shaped the object of work.

Creating Use Value On their first exposure to a high level of maturity,
many software developers felt dismayed that they now had to conform to
alien rules and procedures where they had previously enjoyed great
autonomy and had simply relied on their professional skills to create
high-quality code. But, after gaining experience with the more bureau-
cratic process, many of my interviewees had come around to seeing this
formalized process as a better way to create better code. Interviewees
often expressed themselves in terms such as these:

Where I used to work before I came to GCC, the development process was
entirely up to me and my manager. What I did, when I did it, what it was
going to look like when it was done, and so forth, was all up to me. It was
very informal. Here everything is very different. It’s much more rigid. It’s
much more formal. A lot of people lay out the schedule, the entire
functionality, and what I’m going to be accountable for—before I even get
involved. . . .

When I got here I was kind of shocked. Right off, it was ‘Here are your
Instructions.’ ‘So what does this tell me?’ ‘It tells you how to do your job.’
I thought I was bringing the know-how I’d need to do my job. But sure
enough, you open up the Instructions, and they tell you how to do your
job: how to lay the code out, where on the form to write a change request
number, and so on. I was shocked.

418

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

But I can see the need now. Now I’m just one of 30 or 40 other people
who may need to work on this code, so we need a change request number
that everyone can use to identify it. It certainly feels restrictive at first.
They explained the Instructions and the whole Program C process to us in
our orientation seminar, but it’s hard to see the value of it until you’ve been
around a while. Now I can see that it makes things much easier in the long
run.

I hate to say it. As a developer, I’m pretty allergic to all this paperwork.
It’s so time-consuming. But it does help. You’ve got to keep in mind, too,
that, by the time we see the Instructions, they’ve been through a lot of
revision and refinement. So they’re pretty much on target. (C: developer)

Reactions such as these need to be put in historical perspective. Some
years prior to my research, rationalization had taken a form many
developers experienced as alienating and coercive. Program C was an
early adopter of process discipline in its earlier, pre-CMM incarnations in
the Department of Defense Military Standards, and these standards
afforded little opportunity for developer participation: ‘[Military Stand-
ard] 2167A was supposed to make coding a no-brainer’ (D: development
manager). But by the time of my study a decade or more later, the Level 5
Programs had pushed the rationalization of the process further, and the
process had taken a more participative and enabling form:

The first phase, in the late 1980s, was conformance. We had developed our
standard process—a big fat set of requirements and standards—and most
managers felt that it was just a matter of ensuring that people were
implementing it. The second phase, in the early 1990s, was enlightenment.
This phase coincided with our big TQM push. We started getting working-
level people involved in improving things. The third phase, running
between about 1994 and 1998, was empowerment. The word might sound
trite to some people, but we had the process framework, and we had the
involvement, so we were really ready to delegate more autonomy down to
the projects and the tasks. (A: Program manager)

Participation was a key factor in ensuring that developers saw the
formalized process as supporting rather than merely constraining their
work. Process maturity—as these GCC units had implemented it—had
expanded the object to include not only inter-functional coordination
and documentation but also process development:

As compared to say 20 years ago, I think there’s more involvement by
developers in defining and tailoring project S&Ps [standards and proced-
ures]. Back then, we pretty much accepted them passively, like rules of the
road when you’re driving—even when we had very definite opinions about
them! (A: systems engineering)

The most advanced form of this combination of discipline and participa-
tion was the ‘tailoring’ process, formalized in the Tailoring Cycle. Here,
the project manager was supposed to consult with the project staff on
how the established development standards and procedures might need
to be modified to accommodate the specific requirements of the project:

The Evolving Object of Software Development
Paul S. Adler

419

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

We always say at Program A that ‘People support what they help create.’
That’s why the Tailoring Cycle is so important. As a project manager,
you’re too far away from the technical work to define the S&Ps yourself, so
you have to involve the experts. You don’t need everyone involved, but
you do need your key people. It’s only by involving them that you can be
confident you have good S&Ps that have credibility in the eyes of their
peers. (A: project manager)

The Tailoring Cycle was not the only vehicle for participation in
process definition. In Programs C and D, management encouraged staff to
send suggestions to the Software Engineering Process Group (a standing
committee of senior line and staff managers). Moreover, in all four
Programs, but particularly in the two Level 5 ones, developers were
regularly involved in process improvement projects. In Program C, for
example, a recent survey revealed that 19.5 percent of the personnel had
been involved in at least one such effort in the course of the previous
year. The CMM Level 5 KPAs required a formalized process improvement
process, and GCC implemented this requirement in a highly participative
manner.

Exchange Value versus Use Value
The contradictory nature of the commodity object was visible in several
tensions. First, and most generally, interviewees were often aware that
their process improvement efforts were all at risk of being overridden by
a higher imperative. As the interviewee quoted earlier put it:

The bottom line here is the product. That’s how we get paid. Process and
support activities are basically just overhead. (D: project support)

The object of work was therefore fractured along hierarchical lines:

As I see it, GCC is a corporation, and that means it’s run for the benefit of
the major stockholders. So top management is incentivized to maximize
dollar profits. Quality is only a means to that end and, in practice, quality
sometimes gets compromised. I used to be a technical person, so I know
about quality. But now I’m a manager, and I’m under pressure to get the
product out—come what may. I just don’t have time to worry about the
quality of the product. I have a manager of software development under me
who’s supposed to worry about that. (D: development manager)

These tensions were particularly visible to the interviewees in the form
of missed opportunities for process improvement:

One key challenge is maintaining buy-in [for process improvement work]
at the top. Our top corporate management is under constant pressure from
the stock market. The market is constantly looking at margins, but Govern-
ment business has slim margins. That doesn’t leave much room for
expenditures associated with process improvement—especially when
these take two or three years to show any payoff. (C: process engineering
manager)

We could do better at capturing and using lessons learned. We have all the
vehicles for doing it—presentations, newsletters, databases. But it takes

420

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

time. And there are so many competing priorities. In the end, it’s all about
profit and meeting schedules [laughs]! (A: project manager)

This contradiction was also visible in the gap between the expanded
object of work as an enriched use value and the limited investment in
tools and staff resources as costly expenditures that reduced exchange
value:

There’s no doubt that more process maturity means more paperwork. Some
of it is good, and some of it is an impediment, especially from a productiv-
ity point of view. Unless we have the tools to automate this documentation,
it has to slow us down. We still don’t have the right tools. (C: project
manager)

The key issue moving forward, I think, is that we still don’t have the
resources we need to devote to process. A Program of this size should have
a full-time staff dedicated to our internal process maintenance. (C: quality
assurance staff)

In sum, the CMM deepened rather than resolved the contradiction
between use value and exchange value. The contradiction was certainly
not resolved: the CMM expanded the object, but the constraints of ‘profits
and meeting schedules’ remained in place, constantly engendering new
tensions. Indeed, the contradiction had deepened: the constraints of
profitability were increasingly—and more obviously—harmful to quality
and process improvement efforts.

This latter proposition requires elucidation. In the earlier history of the
software industry, it was the imperatives of ‘profits and meeting sched-
ules’ that drove the managerial innovations needed to master larger, more
complex, software projects. The constraints facing these innovations
were those created by recalcitrant programmers defending their auton-
omy. Greenbaum quotes a programmer in the 1970s:

We never really established this as a policy, but what kind of job security
would we have if we wrote everything down the way they wanted us to?
We didn’t like it when things got too out of control, but on the other hand
would you see to it that your job was so standardized that it could be done
by a monkey? (Greenbaum, 1979: 75)

As we saw, ‘[Military Standard] 2167A was supposed to make coding a
no-brainer.’ Nevertheless, in this early period, the exigencies of exchange
value were progressive forces, breaking down obsolete craft models of
organization that were incapable of mastering the challenges of larger-
scale, more complex systems development. Exchange value and use
value expanded together.

In the later period, by contrast, process discipline was redefined,
refined, and internalized by the ‘collective worker’ as a way to master
their expanded collective task. Limits on organizational learning shifted
from those created by individualistic developers defending their auton-
omy to those created by the fundamental structure of the capitalist
enterprise and its subordination to the profit imperative. Developers had,

The Evolving Object of Software Development
Paul S. Adler

421

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

over this period, become increasingly conscious that the key issue was
not how to preserve their individual autonomy (and how to reconcile this
defense with their frustration when ‘things got too out of control’), but
rather a deeper one— how to abolish the fetters created by the capitalist
form of enterprise.

Bureaucracy: Simultaneously Mock, Enabling, and Coercive
The previous three sections have sketched the mutations of the software
development object under the influence of the CMM; in this section, we
ask: to what form of organization does such an object correspond?

Clearly, these were highly bureaucratized organizations, in the techni-
cal sense of the term. The CMM had led to an increase in standardization,
formalization, specialization, hierarchical differentiation, and the crea-
tion of specialized staffs. But what kind of bureaucracy was this? In his
classic study, Gouldner (1954) identified three forms of bureaucracy. In a
‘mock’ bureaucracy, rules are promulgated for their symbolic value but
ignored in practice (e.g. no-smoking rules). In a ‘representative’ bureau-
cracy, rules serve the interests of both managers and workers and are
typically developed jointly (e.g. safety rules). In a ‘punishment-centered’
bureaucracy, rules serve to legitimate management’s right to sanction
workers in areas of labor–management conflict (e.g. taking company
property for personal use). These distinctions are echoed in more recent
research on the symbolic aspects of bureaucratization highlighted by
institutionalization theory and on the distinction between enabling and
coercive bureaucracy developed in some of my own work. The analysis
presented in the preceding sections suggests that we should not interpret
these three ‘patterns’ as mutually exclusive; rather, they coexist. This
coexistence, however, demands theorization.

Mock and Real
The bureaucracy of these GCC units was simultaneously mock and real.
The units were simultaneously concerned with the symbolic effects and
the technical effects (either punishment or representative) of their for-
malized development process. The possibility that symbolic and techni-
cal pressures can operate simultaneously is acknowledged by Scott
(2003); but in his account, as in many others in the institutionalization
theory perspective, the symbolic aspects tend to displace the technical.
In particular, much work in institutionalization theory has propagated
the idea that late adopters of organizational innovations are motivated
primarily by symbolic conformance benefits and use various buffering
techniques to avoid any change in their technical core. Whereas GCC’s
Program A was a relatively early adopter, its other Programs were not;
nevertheless, in all four cases we saw genuine efforts to improve the
technical core, efforts that were both stimulated and dampened by
institutional conformance pressure. The cynical pathos of much institu-
tionalization theory is belied by the fact that sometimes the technical and

422

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

symbolic functions reinforced each other, as when an upcoming assess-
ment prompted technical improvements.

Coercive and Enabling
The coexistence of a punishment-centered and a representative function
presents a deeper conceptual challenge. This coexistence is rarely expli-
citly acknowledged in prior research. My own earlier work (Adler and
Borys, 1996; Adler, 1999), for example, presented enabling and coercive
forms as alternatives on a continuum. On the evidence of the previous
section, such a representation misses something more fundamental: both
functions of bureaucracy coexist and, moreover, this coexistence is of a
very different nature than the coexistence of mock and real forms of
bureaucracy.

The CHAT perspective invites us to see the representative/enabling and
punishment/coercive functions of bureaucracy not merely as two con-
siderations that are potentially conflicting but potentially reinforcing—as
is the case with technical versus symbolic functions—but rather as two
sides of a real contradiction, reflecting the fundamentally contradictory
character of the object of production as use value and exchange value. On
the one hand, the production process is a collective labor process, and its
organization under the bureaucratic model represents an effort to facili-
tate that collaborative endeavor. On the other hand, the production
process is a valorization process in which capital invested in equipment,
materials, and wages seeks a profit, and its bureaucratic organization
represents a system for coercing surplus labor from recalcitrant workers.
The tensions that derive from this contradiction are not amenable to
quantitative trade-offs: they are fundamentally disruptive since the two
poles are qualitatively incommensurable.

The contradictory coexistence of enabling and coercive aspects of
bureaucracy was visible in several use-value/exchange-value tensions in
the GCC Programs I studied.11

Differentiation vs. Integration On the one hand (the use-value aspect), and
consistent with the social expansion of the object, process maturity
meant closer coordination with others in a broader range of functions.
Although great emphasis was put on standards and plans as ways to
ensure this coordination in a cost-effective manner, mutual adaptation
requiring direct communication had also been strengthened (referring to
Thompson’s, 1967, three generic coordination mechanisms):

Process means that people play more specialized, defined roles, but also
that these specialists get involved earlier and longer as contributors to
other people’s tasks. If we analyzed the way a coder uses their time, and
compared it with comparable data from, say, 15 years ago, we’d find the
coder doing less coding because of more automated tools. They’d be
spending more time documenting their code, both as it was being built and
afterwards in users’ guides. They’d be spending more time in peer reviews.
And they’d be spending more time in design meetings and test plan

The Evolving Object of Software Development
Paul S. Adler

423

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

meetings. As for testers, we’ve consolidated some phases of testing. We
used to do integration test, system test, operations test and acceptance test.
Now we just do integration test and then a final independent test. That has
reduced redundancy and the cost of testing, but now the testers are more
involved in system concept definition and requirement definition activ-
ities. (A: quality assurance staff)

On the other hand (the exchange-value aspect), this more differentiated
and more integrated division of labor was pregnant with contradiction,
because, in a capitalist firm, competitive rivalry between departments
creates enormous centrifugal forces.12 Indeed, cross-department coor-
dination was a common problem for these GCC Programs, as is typically
the case in larger, more complex capitalist firms. This is illustrated by the
problems in the link between systems engineering (which was responsi-
ble for concept identification, system architecture specification, require-
ments specification) and software engineering (software design, code,
unit test and integration). The situation at Program C was typical:

On most of our projects, different people fill the two roles, systems
engineering versus software engineering. (On smaller projects, the same
person may have both roles.) As with any interaction between two groups,
there have been communication gaps between them. There are a variety of
reasons: the systems engineers point to the software engineers and say
‘They didn’t read what I wrote,’ and ‘They don’t understand what I mean,’
and the software engineers point back and say ‘They didn’t specify the
requirements adequately,’ ‘The requirements are inconsistent,’ and ‘That
wasn’t in the requirements.’ It gets even more challenging when the
requirements changes keep coming up to the day before delivery. (D:
process engineer, also works with Program C)

Community vs. Autocracy On the one hand (the use-value aspect), GCC
managers understood that process maturity required a high level of
employee motivation and participation; on the other hand (the exchange-
value aspect), the vertical authority structure characteristic of the capital-
ist firm—reflecting the fact that managers are agents not of employees but
of owners—created a constant risk that managers would veer off from
collaboration into coercion. GCC management was constantly struggling
to avoid this costly eventuality, but it was a struggle they could never
entirely win:

By and large, we haven’t had too much difficulty bringing our managers
around to this more collaborative approach. But we choose our project
managers with an eye to their commitment to collaboration too. We did
have a problem with one staff person. He had a very difficult relationship
with the project people he was supposed to be helping. We got a lot of
complaints that he was trying to force the projects to conform to his idea of
how they should function. We tried to counsel him and get him to work in
a more cooperative way. But he just wouldn’t ease up. Eventually we just
had to let him go. And we had quite a battle with one Program manager
when he wasn’t picked to head a new project: we felt he just wasn’t enough
of a team manager. We didn’t initially have any questions on the employee

424

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

survey about your boss. Frankly, people were worried that managers might
retaliate. But now we do, and we find the data very useful in surfacing
management problems. The earlier rounds of the survey did show some big
communications problems in some groups. Counseling often helped, and
in some cases we moved people out to other positions. (A: Program
manager)

This contradiction was also visible in tensions that disrupted collab-
oration with clients. The CMM encouraged extensive coordination and
collaboration with the client (the use-value aspect), but divergent per-
formance pressures (the exchange-value aspect) could easily pull the
parties apart:

The biggest problem here has been the customer and getting their buy-in.
At Program A, our customer grew towards process maturity with us. Here
[at Program B], we started with a less mature client. Some of the customer
management even told us that they didn’t want to hear about QA or our
quality management system—they saw it as wasteful overhead. When you
bid a project, you specify a budget for QA and so forth, but if they don’t
want to pay, you have a resource problem. And once you get the contract,
then you start dealing with specific project managers within the customer
organization, and these managers don’t necessarily all believe in QA or
simply don’t want to pay for it out of their part of the budget. On the Y2K
project, the customer kept changing standards and deadlines. Basically, we
were dealing with a pretty process-immature customer, and that made it
difficult for us to build our process maturity. Things have improved
considerably since then. (B: process engineer, formerly with Program A)

Enabling vs. Coercive Rules On the one hand (the use-value aspect), the fabric
of rules that coordinated work in these bureaucracies supported an
enabling function; on the other hand (the exchange-value aspect), these
very same rules supported coercion:

I think formalized process and metrics can give autocratic managers a club.
But it also gives subordinates training and understanding, so it makes the
organization less dependent on that manager: he can be replaced more
easily. Before I came to GCC, I worked for one of the most autocratic
managers you can find. It was always, ‘And I want that report on my desk
by 5 p.m. today,’ with no explanation or rationale. Compared to that kind
of situation, an organization with a more mature process leaves a lot less
room for a manager to arbitrarily dictate how you should work and when
work is due. And a more mature process also means that there are more
formal review points, so any arbitrary autocratic behavior by a manager
will become visible pretty quickly. (D: quality assurance staff)

Conclusion
This study of the CMM’s impact on the object of software development
yields a complex image. The technical dimensions of the object were
transformed so as to reduce task uncertainty and to facilitate the mastery
of complexity and interdependence. The symbolic dimensions of the
object acquired greater importance owing to the pressure to achieve

The Evolving Object of Software Development
Paul S. Adler

425

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

formal certification, and this both hindered and helped efforts to improve
on the technical dimensions. The social-structural dimensions of the
object continued to express the fundamental contradictions of commod-
ity production, and the CMM served to deepen rather than resolve those
contradictions.

With organization theory’s progressive eclipse of contingency theory,
we have tended to lose sight of the object of work—particularly its
technical, objective, obdurate objectivity—as a factor in organization
structuring. Cultural-historical activity theory is a way of retrieving the
crucial insight offered by contingency theory, while preserving the
insights of institutional theory, thus both broadening and deepening our
understanding of the nature of the object and its effects on organization.

Appendix: Background on the Four Programs Studied

Program A: CMM Level 5
Program A has had a continuous contractual relationship with its cus-
tomer for 30 years. Many employees have been attracted to Program A
because of the high public profile of the customer. Historically, Program
A has about 20 programs under way at any one time, each building and
maintaining mid-sized (100–400,000 lines of source code) subsystems for
the complex infrastructure required by the customer. Program A has
relied mainly on established technology; however, over recent years, the
Program’s tasks have become more complex as the customer require-
ments and the associated technologies have evolved. The business envi-
ronment has also become more demanding, with considerable pressure
for more code reuse and tighter deadlines.

Unlike the other three Programs, direct customer pressure was not the
proximate cause of Program A’s commitment to the CMM. The Program’s
management saw the adoption of the CMM as an opportunity to improve
their development process and as a way to add credibility for potential
future customers. In 1991, the first formal, external Software Capability
Evaluation (SCE) rated the organization at Level 1. The organization
subsequently undertook several internal self-assessments. In 1996, the
second evaluation rated it close to Level 3. In 1998, it was assessed as a
Level 5 organization.

Over the past decade of process improvement efforts, Program A has
seen its average effort variance reduced by over half. Average error rates
have been reduced by 75 percent (and 50 percent in the past five years).
Productivity has shown a consistent 6 percent annual rate of improve-
ment.

Program B: CMM Level 3
Program B’s mission is to build information resource management tools
for its government client to use in operations around the world: internal
accounting, management information support, and so on. Program B’s

426

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

staff develop new systems, maintain and upgrade old ones, and operate a
Help Desk.

GCC won the contract in 1998 by promising to leverage GCC’s experi-
ence in Program A to help Program B reach CMM Level 3 within 18
months. GCC replaced nearly 30 contractor organizations that worked
largely independently of each other. Program B itself employs directly or
indirectly about 300 people. The largest of its sub-programs employs
about 90 people building and maintaining a system of some 700 files,
comprising about 1 million source lines of code (MSLOC).

To help reach Level 3, several people were transferred from Program A.
The two largest programs were each led by former Program A people, and
Program A veterans staffed several other key management and staff
positions. These people used Program A’s process as a starting point, and
Program B managers were mobilized to tailor this process to their
requirements.

Program B’s process efforts were slowed down by a very difficult Y2K
program, which strained relations with the client. That completed, rela-
tions improved and the Program was officially assessed as Level 3 in
early 2000.

Program C: CMM Level 5
This Program, like Program A, has had a continuous contractual relation-
ship with its DoD end-customer for some 30 years. But the relationship
had always been mediated by other organizations serving as prime
contractors.

Program C employs some 400 technical staff. It undertakes two to five
major programs at time, each representing about 2.5–3.2 MSLOC. These
programs create new versions of the weapons control systems they
provide to the DoD. Internally, Program C is divided into four main units
that develop and maintain the main modules of the system, plus several
support departments.

The key drivers of process maturity at Program C have been the
succession of Military Standards imposed by the end-customer (the
government) in conjunction with the intermittent pressure of their
immediate customer (the prime contractor). By the middle of 1998,
Program C was evaluated at Level 4, with all but some minor elements of
Level 5 in place as well. In 2001, it was evaluated at Level 5, and has
maintained this rating in subsequent evaluations. The quality of its
products was widely recognized: the program customer satisfaction
index consistently averaged over 97 percent.

Program D: CMM Level 3
Program D developed infrastructure systems for the DoD. GCC developed
its proposal in 1987 and the contract opened in 1991. It had developed 2
million lines of operational code over the 1993–9 period. Program D is
unusual within GCC because it covers the whole product lifecycle,

The Evolving Object of Software Development
Paul S. Adler

427

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

offering complete solutions including hardware, the integration of hard-
ware and software, warehousing, installation, and ongoing support. Pro-
gram D is also unusual within GCC for its extensive use of commercial
off-the-shelf hardware and software. Its systems incorporate over 200
commercial products, and are being used in about 100 sites, of which
about 50 are interlinked. In 2001, Program D employed some 350 people
directly, plus a further 120 contractors.

Traditionally, software process has received less attention in this
Program than in the other three we studied. However, as part of a bid for
a very large DoD contract, Program D had to undergo an external process
evaluation. In preparation for that evaluation, it conducted its own
assessment, and discovered that the Program would likely be rated no
higher than Level 1. As a result, the general manager chartered an
Improvement Team and charged it with taking the Program to Level 3.
QA was significantly strengthened—the staff grew from three to eight
people—and a broad effort at process documentation was undertaken
throughout the organization by department-level Action Teams. By the
end of the 1999, the Program was assessed as Level 3.

Notes
1 Following classic political economy, Marx uses the term ‘commodity’ not to

imply standardization as distinct from customization (as suggested by cur-
rent colloquial use) but rather to refer to any object produced for sale rather
than for direct use.

2 CHAT follows Marx, who himself followed Hegel, in taking contradictions to
be a feature of objective reality rather than purely notional in the mind of the
observer. Contradiction here is a relation between two real forces, not merely
a logical relation between two propositions. As such, contradictions are the
source of change (see Redding, 2002; Ilyenkov, 1982).

3 There is considerably terminological confusion surrounding all this in the
literature. First, there is confusion between task and technology. CHAT’s
roots in psychology invite us to differentiate task (object) as the work to be
done from technology (tools) as the means of doing it, and from worker
(subject) as the agent endowed with certain capabilities. Conventional organ-
ization theory is less discriminating in its micro foundations and more
interested in the determinants of organization structure, and thus folds task,
tools, and worker skills together under the broader heading of ‘technology’
(see e.g. Scott, 2003). Adding to the confusion, some authors refer to this
aggregate not as technology but as task. The term ‘environment’ is also often
used to denote something close to task. The logic here is that, in the
structural-functionalism that marks much organization theory, the primary
‘task’ of the organization and of the worker is to adapt to the demands
imposed by the environment.

4 There is some confusion in the literature because uncertainty is often used to
designate the total effect of all three of the task dimensions and sometimes
just the first of these. We should note that the literature on the task
environment highlights three related dimensions: munificence, dynamism,
and complexity (see Harris, 2004). Munificence of the external environment

428

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

corresponds to slack in the organization; as such, it is an important variable
affecting organization structure but one that speaks to the context of work
rather than to the work itself. Dynamism matters because of the problem-
solving difficulty it creates, and thus corresponds to the uncertainty dimen-
sion. We should also note yet another set of dimensions commonly used
where organization theory has been affected by economic agency theory.
Here the focus is on the dimensions of task that are particularly relevant to
the design of control and incentive systems, namely behavior observability
(or meterability) and outcome observability. When combined with variables
such as the controller’s knowledge of the transformation process and out-
come importance, these dimensions can be shown to correlate with organiza-
tion structure (e.g. Kirsch, 1996). However, observability is a rather malleable
factor; so research along these lines typically finds strong correlations but
affords little insight into causality.

5 ‘Agile programming’ approaches such as extreme programming and feature-
driven development seem to offer the promise of process improvement
without the perils of bureaucracy. In an increasingly turbulent competitive
world, these perils weigh heavy on the minds of many software managers.
But, as Boehm and Turner (2003) argue, agile methods have proven appro-
priate only where systems and development teams are small, where the
customers and users are available for frequent consultation, and where
requirements and the environment are particularly volatile.

6 The CHAT view highlights the use-value/exchange-value contradiction
underlying both the technical and symbolic aspects of the object discerned
by institutionalization theory. Institutionalization research often highlights
the tension between technical tasks (which are typically seen only in their
use-value aspect, as if only productive efficiency mattered in this technical
domain) and symbolic tasks (which are typically seen only in their
exchange-value aspect, as if only external control mattered in this symbolic
domain). CHAT brings to the fore the two parts missing from that picture: the
exchange-value aspect of technical tasks, where coercive control is key, and
the use-value aspect of symbolic conformance, where learning for efficiency
is the driving factor.

7 The Software Engineering Institute website lists several case studies of high-
maturity organizations and the benefits they have achieved. (Case studies of
Level 4 and 5 organizations are presented in Crosstalk, 1999; Dutta and Van
Wassenhove, 1998; Humphrey et al., 1991; Diaz and King, 2002; Diaz and
Sligo, 1997; Pitterman, 2000; Keeni, 2000; Wigle and Yamamura, 1999;
McGarry and Decker, 2002; Butler and Lipke, 2000; Willis et al., 1998; see
also the reports on the SEI ‘High-maturity workshops’ conducted in 1999,
2000 and 2001 available at http://www.sei.cmu.edu.) According to one
multi-organization statistical study (Clark, 1999), total development costs
decreased by 5–10 percent for every further level attained. Another study
(Harter et al., 2000) examined 30 software projects in the systems integration
division of a large IT firm over the period 1984–96, and estimated the effects
of moving from Level 1 to Level 3 to be an increase of 578 percent in the lines
of code per error, a reduction of 30 percent in cycle time, and a reduction of
17 percent in person-months of effort. (Other multi-organization studies
include Krishnan et al., 2000; Herbsleb et al., 1997.)

The Evolving Object of Software Development
Paul S. Adler

429

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

8 Engeström (1987) uses the phrase ‘expanding the object’ to convey the idea
of broadening the range of features and goals addressed in the subject’s
practical engagement with the object.

9 In offering software development organizations a prescription for their future
that was based on lessons drawn from the industry’s past, the CMM func-
tioned in the ‘proleptic’ manner described by Cole (1996: 183 ff.). More
metaphorically, the CMM can be said to have offered ‘scaffolding’ for the
software process improvement task. The metaphor of scaffolding, originally
articulated by Wood et al. (1976), refers to the temporary assistance provided
by teachers/adults to students/children as they strive to accomplish a task in
their ‘zone of proximal development’ (Vygotsky, 1962, 1978; Griffin and Cole,
1984).

10 This concern echoed critiques of the ‘top–down’ nature of the scaffolding
metaphor (Stone, 1993; Butler, 1998).

11 I distinguish three aspects of organization—division of labor, community,
and rules—following Engeström’s analysis of activity systems. For a more
detailed analysis of the complete activity system using all the elements of
Engeström’s model, see Adler (2004).

12 Mainstream organization theory interprets such inter-group rivalries as a
natural tendency of large, heterogeneous groups to break into smaller, more
homogeneous ones. It has no explanation for why such centrifugal forces
prevail so commonly over the centripetal forces created by broader social
identities. The answer becomes clearer once we reframe the question in the
context of capitalist firms: here, top managers function as agents of owners
rather than of workers, and this principle of upward accountability pene-
trates down into the management hierarchy, pitting subunits against each
other as their managers compete for private gains.

References
Adler, P. S. (1999) ‘Building Better Bureaucracies’, Academy of Management

Executive 13(4): 36–47.
Adler, P. S. (2004) ‘The Discipline of Process: The Transformation of Software

Development’, unpublished ms.
Adler, P. S. and Borys, B. (1996) ‘Two Types of Bureaucracy: Enabling and

Coercive’, Administrative Science Quarterly 41(1): 61–89.
Alevsson, M. and Kärreman, D. (2004) ‘Interfaces of Control. Technocratic and

Socio-Ideological Control in a Global Management Consultancy Firm’,
Accounting, Organizations and Society 29: 423–444

Bach, J. (1994) ‘The Immaturity of CMM’, American Programmer 7(9), at http://
www.satisfice.com/articles/cmm.htm.

Bach, J. (1995) ‘Enough about Process: What We Need Are Heroes’, IEEE Software
12(2): 96–8.

Baldwin, C. Y. and Clark, K. B. (2000) Design Rules, Vol. 1: The Power of
Modularity. Cambridge, MA: MIT Press.

Barley, S. R. and Orr, J., eds (1997) Between Craft and Science: Technical Work in
the United States. Ithaca, NY: ILR Press.

Bart, C. K. (1999) ‘Controlling New Products: A Contingency Approach’, Inter-
national Journal of Technology Management 18(5–8): 395–413.

Bhaskar, R. (1993) Dialectics: The Pulse of Freedom. London: Verso.

430

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Blackler, F. (1993) ‘Knowledge and the Theory of Organizations: Organizations as
Activity Systems and the Reframing of Management’, Journal of Management
Studies 30(6): 863–84.

Boehm, B. and Turner, R. (2003) Balancing Agility and Discipline. Boston:
Addison-Wesley.

Bollinger, T. and McGowan, C. (1991) ‘A Critical Look at Software Capability
Evaluations’, IEEE Software 8(4): 25–41.

Bottomore, T., ed. (1983) A Dictionary of Marxist Thought. Cambridge, MA:
Harvard University Press.

Brunsson, N., Jacobsson, B. and associates (2000) A World of Standards. Oxford:
Oxford University Press.

Burns, T. and Stalker, G. (1961) The Management of Innovation. London:
Tavistock.

Butler, D. L. (1998) ‘In Search of the Architecture of Learning: A Commentary on
Scaffolding as a Metaphor for Instructional Interactions’, Journal of Learning
Disabilities 31(4): 374–85.

Butler, K. and Lipke, W. (2000) ‘Software Process Achievement at Tinker Air
Force Base, Oklahoma’, CMU/SEI-2000-TR-014.

Cardinal, L. B. (2001) ‘Technological Innovation in the Pharmaceutical Industry:
The Use of Organizational Control in Managing Research and Development’,
Organization Science 12(1): 19–36.

Chaiklin, S., Hedergaard, M. and Jensen, U. J., eds (1999) Activity Theory and
Social Practice. Aarhus: Aarhus University Press.

Clark, B. (1999) ‘Effects of Process Maturity on Development Effort’, unpublished
paper available at http://sunset.usc.edu/ ~ bkclark/Research.

Clarke, K. B. and Fujimoto, T. (1991) Product Development Performance. Boston,
MA: Harvard Business School Press.

Cole, M. (1996) Cultural Psychology: A Once and Future Discipline. Cambridge,
MA: Belknap/Harvard University Press.

Conradi, R. and Fuggetta, A. (2002) ‘Improving Software Process Improvement’,
IEEE Software July/August: 92–9.

Craig, T. (1995) ‘Achieving Innovation through Bureaucracy: Lessons from the
Japanese Brewing Industry’, California Management Review 38(1): 8–36.

Crocca, W. T. (1992) ‘Review of “Japan’s Software Factories: A Challenge to U.S.
Management”’, Administrative Science Quarterly 37(4): 670–4.

Crosby, P. B. (1979) Quality Is Free. New York: McGraw-Hill.
Crosstalk (1999) Special issue on ‘CMM Level 5 at the Ogden Air Logistics

Center’, 12(5).
Cusumano, M. A. (1991) Japan’s Software Factories: A Challenge to U.S. Manage-

ment. New York: Oxford University Press.
Cusumano, M. A. and Shelby, R. W. (1995) Microsoft Secrets. New York: Free

Press.
Davila, T. (2000) ‘An Empirical Study on the Drivers of Management Control

Systems’ Design in New Product Development’, Accounting, Organizations
and Society 25: 383–409.

DeMarco, T. and Lister, T. (1987) Peopleware: Productive Projects and Teams.
New York: Dorset.

Diaz, M. and King, J. (2002) ‘How CMM Impacts Quality, Productivity, Rework,
and the Bottom Line’, Crosstalk, March, at http://www.stsc.hill.af.mil/
crosstalk/2002/03/diaz.html.

The Evolving Object of Software Development
Paul S. Adler

431

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Diaz, M. and Sligo, J. (1997) ‘How Software Process Improvement Helped
Motorola’, IEEE Software 14(5): 75–81.

Dutta, S. and Van Wassenhove, L. (1998) ‘Motorola India and Excellence: Life
beyond CMM Level 5’, INSEAD case study, unpublished.

Engeström, Y. (1987) Learning by Expanding: An Activity-theoretical Approach to
Developmental Research. Helsinki: Orienta-Konsultit.

Engeström, Y. (1990a) ‘Constructing the Object in the Work Activity of Primary
Care Physicians’, in Y. Engeström Learning, Working and Imagining: Twelve
Studies in Activity Theory. Helsinki: Orienta-Konsultit.

Engeström, Y. (1990b) Learning, Working and Imagining: Twelve Studies in
Activity Theory. Helsinki: Orienta-Konsultit.

Engeström, Y., Miettinin, R. and Punamaki, R.-L., eds (1999) Perspectives on
Activity Theory. Cambridge: Cambridge University Press.

Foot, K. A. (2002) ‘Pursuing an Evolving Object: Object Formation and Identifica-
tion in a Conflict Monitoring Network’, Mind, Culture and Activity 9: 132–49.

Friedman, A. L. and Cornford, D. S. (1989) Computer Systems Development:
History, Organization and Implementation. Chichester: John Wiley.

Galbraith, J. R. (1977) Organization Design. Reading, MA: Addison-Wesley.
Gibbs, G. G. (1994) ‘Software’s Chronic Crisis’, Scientific American, September:

86–92.
Gouldner, A. W. (1954) Patterns of Industrial Bureaucracy. New York: Free

Press.
Greenbaum, J. M. (1979) In the Name of Efficiency. Philadelphia, PA: Temple

University Press.
Griffin, A. and Hauser, J. R. (1992) ‘Patterns of Communication among Marketing,

Engineering and Manufacturing: A Comparison between Two New Product
Teams’, Management Science 38(3): 360–73.

Griffin, P. and Cole, M. (1984) ‘Current Activity for the Future: The Zo-Ped’, in B.
Rogoff and J. V. Wertsch (eds) Children’s Learning in the ‘Zone of Proximal
Development’, New Directions for Child Development No. 23, pp. 45–63. San
Francisco: Jossey-Bass.

Griss, M. L. (1993) ‘Software Reuse: From Library to Factory’, IBM Systems
Journal 32(4): 548–66.

Hall, R. H. (2001) Organizations: Structures, Process, and Outcomes, 8th edn.
Upper Saddle River, NJ: Prentice-Hall.

Harris, R. D. (2004) ‘Organizational Task Environments: An Evaluation of Con-
vergent and Discriminant Validity’, Journal of Management Studies 41(5):
857–82.

Harter, D. E., Krishnan, M. S. and Slaughter, S. A. (2000) ‘Effects of Process
Maturity on Quality, Cost and Cycle Time in Software Product Development’,
Management Science 46(4): 451–66.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W. and Paulk, M. (1997) ‘Software
Quality and the Capability Maturity Model’, Communication of the ACM 40(6):
30–40.

Holt, G. R. and Morris, A. W. (1993) ‘Activity Theory and the Analysis of
Organizations’, Human Organization 52(1): 97–109.

Humphrey, W. S. (2002) ‘Three Process Perspectives: Organizations, Teams, and
People’, Annals of Software Engineering 14: 39–72.

Humphrey, W. S., Snyder, T. R. and Willis, R. R. (1991) ‘Software Process
Improvement at Hughes Aircraft’, IEEE Software 8(4): 11–23.

432

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Ilyenkov, E. V. (1982) The Dialectics of the Abstract and Concrete in Marx’s
Capital. Moscow: Progress Publishers.

Jelinek, M. and Schoonhoven, C. B. (1993) The Innovation Marathon. San
Francisco: Jossey-Bass.

Jones, C. (2002) ‘Defense Software Development in Evolution’, Crosstalk, Novem-
ber: 26–9.

Keeni, G. (2000) ‘The Evolution of Quality Processes at Tata Consultancy Ser-
vices’, IEEE Software, July/August: 79–88.

Kirsch, L. J. (1996) ‘The Management of Complex Tasks in Organizations: Control-
ling the Systems Development Process’, Organization Science 7(1): 1–21.

Kraft, P. (1977) Programmers and Managers: The Routinization of Computer
Programming in the United States. New York: Springer Verlag.

Krishnan, M. S., Kriebel, C. H., Kekre, S. and Mukhopadhyay, T. (2000) ‘Pro-
ductivity and Quality in Software Products’, Management Science 46(6):
745–59.

Lawrence, P. R. and Lorsch, J. W. (1967) Organization and Environment: Manag-
ing Differentiation and Integration. Boston, MA: Harvard University Graduate
School of Business Administration.

Leont’ev, A. N. (1978) Activity, Consciousness, and Personality. Englewood Cliffs,
NJ: Prentice-Hall.

Lieberman, H. and Fry, C. (2001) ‘Will Software Ever Work?’ Communications of
the ACM 44(3): 122–4.

Lynn, L. H. (1991) ‘Assembly Line Software Development’, Sloan Management
Review 32(4): 88–91.

McGarry, F. and Decker, W. (2002) ‘Attaining Level 5 in CMM Process Maturity’,
IEEE Software, November/December: 87–96.

Marx, K. (1845/2002) ‘Theses on Feuerbach’, trans. Cyril Smith, at http://
www.marxists.org/archive/marx/works/1845/theses/index.htm, accessed 21
September 2004.

Marx, K. (1977) Capital, vol. 1. New York: Vintage.
Merchant, K. (1998) Modern Management Control Systems. Upper Saddle River,

NJ: Prentice-Hall.
Meyer, J. W. and Rowan, B. (1997) ‘Institutionalized Organizations: Formal

Structure as Myth and Ceremony’, American Journal of Sociology 83: 340–63.
Meyer, J. W. et al. (1983) ‘ Institutional and Technical Sources of Organizational

Structure’, in John W. Meyer and W. Richard Scott (eds) Organizational
Environments, pp. 45–6. Beverly Hills, CA: Sage.

Mintzberg, H. (1979) The Structuring of Organizations: A Synthesis of the
Research. Englewood Cliffs, NJ: Prentice-Hall.

Nardi, B. A. (1996) ‘Studying Context: A Comparison of Activity Theory, Situated
Action Models, and Distributed Cognition’, in B. A. Nardi (ed.) Context and
Consciousness: Activity Theory and Human–Computer Interaction, pp. 69–102.
Cambridge, MA: MIT Press.

Ngwenyama, O. and Nielson, P. A. (2003) ‘Competing Values in Software Process
Improvement: An Assumption Analysis of CMM from an Organizational Cul-
ture Perspective’, IEEE Transactions on Engineering Management 50(1):
100–12.

Nixon, B. (1998) ‘Research and Development Performance Measurement: A Case
Study’, Management Accounting Research 9: 329–55.

The Evolving Object of Software Development
Paul S. Adler

433

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Organ, D. W. and Green, C. N. (1981) ‘The Effects of Formalization on Professional
Involvement: A Compensatory Process Approach’, Administrative Science
Quarterly 26: 237–52.

Ouchi, W. (1979) ‘A Conceptual Framework for the Design of Organizational
Control Mechanisms’, Management Science 25(9): 833–48.

Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C.V. (1993a) ‘Capability
Maturity Model for Software, Version 1.1’, Software Engineering Institute,
CMU/SEI-93-TR-24, DTIC Number ADA263403.

Paulk, M. C., Weber, C. V., Garcia, S. M., Chrissis, M. B. and Bush, M. W. (1993b)
‘Key Practices of the Capability Maturity Model, Version 1.1’, Software Engi-
neering Institute, CMU/SEI-93-TR-25, DTIC Number ADA263432.

Pitterman, B. (2000) ‘Telecordia Technologies: The Journey to High Maturity’,
IEEE Software, July/August: 89–96.

Podsakoff, P. M., Williams, L. J. and Todor, W. T. (1986) ‘Effects of Organizational
Formalization on Alienation of Professionals and Non-professionals’, Academy
of Management Journal 29: 820–31.

Powell, W. and DiMaggio, P., eds (1991) The New Institutionalism in Organiza-
tional Analysis. Chicago: University of Chicago Press.

Raelin, J. A. (1985) ‘The Basis of Professionals’ Resistance to Management
Control’, Human Resource Management 24(2): 147–75.

Redding, P. (2002) ‘Georg Wilhelm Friedrich Hegel’, The Stanford Encyclopedia
of Philosophy (Summer 2002 Edition), ed. Edward N. Zalta, at http://
plato.stanford.edu/archives/sum2002/entries/hegel/.

Saiedian, H. and Kozura, R. (1995) ‘SEI Capability Maturity Model’s Impact on
Contractors’, IEEE Computer 28(1): 16–26.

Schumpeter, J. (1942/1976) Capitalism, Socialism and Democracy. New York:
Harper.

Scott, W. R. (1995) Institutions and Organizations. Thousand Oaks, CA: Sage.
Scott, W. R. (2003) Organizations: Rational, Natural, and Open, 5th edn. Upper

Saddle River, NJ: Prentice-Hall.
Software Engineering Institute (2004) ‘Process Maturity Profile of the Software

Community, 2004 Mid-year Update’, at http://www.sei.cmu.edu.
Standish Group (1994) The Chaos Report, at http://www.standishgroup.com.
Stone, C. A. (1993) ‘What Is Missing in the Metaphor of Scaffolding?’, in E. A.

Forman, N. Minick and C. A. Stone (eds) Contexts for Learning: Sociocultural
Dynamics in Children’s Development, pp. 169–83. New York: Oxford Uni-
versity Press.

Swanson, K., McComb, D., Smith, J. and McCubbrey, D. (1991) ‘The Application
Software Factory: Applying Total Quality Techniques to Systems Develop-
ment’, MIS Quarterly, December: 567–79.

Thompson, J. D. (1967) Organizations in Action. New York: McGraw Hill.
Thompson, P. (1989) The Nature of Work, 2nd edn. London: Macmillan.
Vygostky, L. S. (1962) Thought and Language. Cambridge, MA: MIT Press.
Vygotsky, L. S. (1978) Mind in Society. Cambridge, MA: Harvard University

Press.
Weber, H., ed. (1997) The Software Factory Challenge. Amsterdam: IOS Press.
Wertsch, J. V., ed. (1979) The Concept of Activity in Soviet Psychology. Armonk,

NY: M. E. Sharpe.

434

Organization 12(3)
Articles

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

Westphal, J., Gulati, R. and Shortell, S. M. (1997) ‘Customization or Conformity?
An Institutional and Network Perspective on the Content and Consequences of
TQM Adoption’, Administrative Science Quarterly 42: 366–94.

Wheelwright, S. C. and Clark, K. B. (1992) Revolutionizing Product Development.
New York: Free Press.

Wigle, G. B. and Yamamura, G. (1999) ‘SEI CMM Level 5: Boeing Space Trans-
portation Systems Software’, in G. G. Schulmeyer and J. I. McManus (eds) The
Handbook of Software Quality Assurance, 3rd edn, pp. 351–80. Upper Saddle
River, NJ: Prentice-Hall.

Willis, R. R., Rova, R. M., Scott, M. D., Johnson, M. I., Moon, J. A., Shumate, K. C.
and Winfield, T. O. (1998) ‘Hughes Aircraft’s Widespread Deployment of a
Continuously Improving Software Process’, SEI Technical Report CMU-SEI-
98-TR-006.

Wood, D., Bruner, J. and Ross, G. (1976) ‘The Role of Tutoring in Problem-
Solving’, Journal of Child Psychiatry and Psychology 17: 89–100.

Zigura, I. and Buckland, B. K. (1998) ‘A Theory of Task/Technology Fit and Group
Support System Effectiveness’, MIS Quarterly 22(3): 313–34.

Paul S. Adler is Professor of Management and Organization at the Marshall School of
Business, University of Southern California. His research focuses on organization
theory and design in contexts such as banking, engineering, automobile assembly,
software, and health care. Address: M&O Dept, Marshall School of Business,
University of Southern California, Los Angeles, CA 90089–0808, USA. [email:
padler@usc.edu]

The Evolving Object of Software Development
Paul S. Adler

435

 © 2005 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF SOUTHERN CALIFORNIA on February 27, 2007 http://org.sagepub.comDownloaded from

http://org.sagepub.com

	Untitled
	Software Object-1.pdf

