Math 149s: Analysis Cheat Sheet

Matthew Rognlie

October 7, 2009

1 Definitions

If S is some set of real numbers:

- 1. $\sup S$ is the **least upper bound** of S.
- 2. inf S is the greatest lower bound of S.

S may or may not contain its sup or inf; if it does, we say that the sup is its *maximum* and the inf is its *minimum*.

For a sequence $\{a_n\}_{n=1}^{\infty}$, we also define:

- 1. $\limsup a_n = \inf_k \sup_n \{a_n\}_{n=k}^{\infty}$
- 2. $\liminf a_n = \sup_k \inf_n \{a_n\}_{n=k}^{\infty}$

We can define the **limit** $\lim a_n$ of a sequence in two equivalent ways:

- 1. The limit is defined if the lim inf and lim sup of the sequence exist and have the same value, in which case $\lim a_n = \liminf a_n = \limsup a_n$.
- 2. $\lim a_n = c$ if for any $\epsilon > 0$, we can find some N such that for all $n \ge N$, $|a_n c| < \epsilon$. $\lim a_n = \infty$ if for any $y \in \mathbb{R}$ there is N such that for all $n \ge N$, $a_n > y$.

We say that an **infinite series** $\sum_{n=1}^{\infty} b_n$ **converges** if the limit of its partial sums $\lim_{k\to\infty} \sum_{n=1}^{k} b_n$ converges as a sequence.

There are also two equivalent notions of the **limit of a function** f(x) as $x \to y$:

- 1. $\lim_{x\to y} f(x) = c$ if for all sequences $x_n \to y$, $f(x_n) \to c$.
- 2. $\lim_{x\to y} f(x) = c$ if for every $\epsilon > 0$, we can find some $\delta > 0$ such that for all x such that $|x-y| < \delta$, $|f(x)-c| < \epsilon$.

A function f is **continuous** at point y if $\lim_{x\to y} f(x) = f(y)$. Using our two definitions of limits, we can write this as:

- 1. f is continuous at y if for any sequence $x_n \to y$, $f(x_n) \to f(y)$.
- 2. f is continuous at y if for any $\epsilon > 0$, we can find some $\delta > 0$ such that for all x such that $|x y| < \delta$, $|f(x) f(y)| < \epsilon$.

A function f that is continuous at x is **differentiable** at x if the limit $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ exists and is finite. If so, the limit is labeled f'(x).

A subset $A \subset \mathbb{R}$ is:

- 1. **Open** if for any point $x \in A$, we can find some $\delta > 0$ such that the set $B = \{y : |y x| < \delta\}$ is a subset of A.
- 2. Closed if for any sequence $x_n \to x$, where all $x_n \in A$, $x \in A$ as well.
- 3. Bounded if $\sup_{x,y \in \mathbb{R}} |x y| < \infty$.
- 4. Compact if it is closed and bounded.

The complement of an open set is closed, and vice versa.

2 Facts

Some facts about sequences include:

- 1. Squeeze Theorem:
 - (a) If $a_n \leq c_n \leq b_n$ for all $n, a_n \to L$ and $b_n \to L$, then $c_n \to L$ as well.
 - (b) If $a_n \leq b_n$ for all n and $a_n \to \infty$, then $b_n \to \infty$ as well.
- 2. Cauchy Criterion: $a_n \to a$ if and only if for any $\epsilon > 0$ we can find some N such that for all $m, n \ge N$, $|a_m a_n| < \epsilon$.
- 3. Weierstrass Theorem: A monotonic bounded sequence converges.
- 4. Sequential Compactness: A compact subset of the reals is also sequentially compact, meaning that any sequence in it contains a convergent subsequence.
- 5. Cezaro-Stolz Theorem: Let $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers, where the y_n are positive, strictly increasing, and unbounded. If $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n} = L$ then $\lim \frac{x_n}{y_n}$ exists and is equal to L.
- 6. Cantor's Nested Intervals Theorem: If $I_1 \supset I_2 \supset \ldots$ is a decreasing sequence of closed intervals with lengths converging to zero, then $\bigcap_{n=1}^{\infty} I_n$ consists of one point.

Two types of **series** are especially important:

- 1. The geometric series $\sum_{n=0}^{k} x_n$ has sum $\frac{1-x^k}{1-x}$. Taking $k \to \infty$, the series converges iff |x| < 1, in which case the sum if $\frac{1}{1-x}$.
- 2. The **p-series** $\sum_{n=0}^{\infty} n^p$ converges for p > 1 (assuming p is positive).

You will often apply the **comparison test**, which states that if $a_n, b_n \ge 0$, $a_n \le b_n$ for all n and $\sum_{n=0}^{\infty} b_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges as well. If $\sum_{n=0}^{\infty} a_n$ diverges, then so does $\sum_{n=0}^{\infty} b_n$.

The series $\sum_{n=0}^{\infty} a_n$ converges absolutely if $\sum_{n=0}^{\infty} |a_n| < \infty$; absolute convergence implies normal convergence. Rearranging the terms of a convergent series is only guaranteed to leave the sum the same if the series converges absolutely. Some tests for absolute convergence (and convergence more generally) include:

- 1. Ratio Test. Letting $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$, we can conclude that the series converges if L < 1 and diverges if L > 1; the common case L = 1 is ambiguous.
- 2. Root Test. Letting $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$, we can conclude that the series converges if L < 1 and diverges if L > 1; again, the L = 1 case is ambiguous.
- 3. Integral Test. If $|a_n|$ is monotone decreasing, and $|a_n| = f(n)$, where f is some monotone decreasing continuous function on the interval $[0, \infty)$, then $\sum_{n=0}^{\infty} |a_n|$ converges if and only if the integral $\int_0^{\infty} f(n)$ is finite.

According to the **Alternating Series Test**, a series $\sum_{n=0}^{\infty} (-1)^n a_n$ where the a_n are positive and decreasing will converge.

The Squeeze Theorem for Functions states that if f, g, h are functions defined on some interval I such that $g(x) \leq f(x) \leq h(x)$ for all $x \in I$, then if $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} f(x) = L$.

Useful facts about **continuous functions** include:

- 1. Intermediate Value Theorem. If f is continuous on the interval [a, b], for any γ between f(a) and f(b) there exists $c \in [a, b]$ such that $f(c) = \gamma$.
- 2. Extreme Value Theorem. If f is continuous on the interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum f(d) at some numbers c and d in [a, b].
- 3. If f is continuous and A is open, then the inverse image $f^{-1}(A)$ is also open.

Useful facts about differentiable functions include:

- 1. Mean Value Theorem. If f is continuous on [a, b] and is differentiable on (a, b), then there exists some $c \in (a, b)$ such that $\frac{f(b)-f(a)}{b-a} = f'(c)$.
- 2. L'Hopital's Rule. Let f, g be differentiable functions from \mathbb{R} to \mathbb{R} . If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Similarly, if $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = \infty$, we also have $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

- 3. Increasing and Decreasing Functions. Let f be a function on some interval [a, b]. If f'(x) > 0 for all $x \in (a, b)$, f must be strictly increasing on [a, b]. If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is nondecreasing on [a, b]. The opposite holds for negative first derivatives.
- 4. Convexity If $f''(x) \ge 0$ for all $x \in [a, b]$, then f is convex on that interval and we have for any $\alpha \in [0, 1]$, $a \le c \le d \le b$:

$$f(\alpha c + (1 - \alpha)d) \le \alpha f(c) + (1 - \alpha)f(d)$$

We can then apply Jensen's inequality, which states that for any nonnegative w_1, \ldots, w_n , $\sum_i w_i = 1$, and $x_1, \ldots, x_n \in [a, b]$:

$$f(w_1x_1 + \ldots + w_nx_n) \le w_1f(x_1) + \ldots + w_nf(x_n)$$

The opposite inequalities hold if $f''(x) \leq 0$.

- 5. Extrema If f is differentiable on (a, b), then the maximum and minimum of f on [a, b] either lie at the endpoints a and b or satisfy f'(x) = 0. If f''(x) < 0 as well, then x is a maximum; if f''(x) > 0, then x is a minimum.
- 6. Fundamental Theorem of Calculus. Let f be a continuous real-valued function on some interval $I \subset \mathbb{R}$ and let $a \in I$. If $F(x) = \int_a^x f(t) dt$ for all $x \in I$, then F has a continuous first derivative equal to f.