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What we focus on in this talk?

Enumerative combinatorics is a huge branch
of mathematics, involving many theorems
and techniques, which we cannot hope to
cover in one class

Today, we will consider some commonly-used paradigms of counting:

Straightforward, careful counting

Bijection

Counting in multiple ways
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Paradigm 1: Careful Straightforward Counting

Comprehensive enumeration/case work

Make sure to count every case

Don’t double count

Sum Rule:
If A = A1

⋃
A2

⋃
· · ·
⋃

An, Ai

⋂
Aj = ∅, then

|A| = |A1|+ |A2|+ · · ·+ |An|

Product Rule:
If W = W1 ×W2 × · · · ×Wn (Cartesian set product), then

|W | = |W1||W2| · · · |Wn|
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Basic Tool: Binomial Coefficients

How many subsets of {1, 2, · · · , n} are there with exactly m elements?

n ways to choose 1st element, n − 1 ways to choose 2nd, . . . So
n(n − 1) · · · (n −m + 1)? But each subset is counted m! times

(
n
k

)
= n(n−1)···(n−m+1)

m(m−1)···1
= n!

(n−m)!m!
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Basic Tool: Inclusion-Exclusion Principle
If we know A = A1

⋃
· · ·
⋃

An but the Ai ’s are not necessarily disjoint,
how do we count |A|?

Example: suppose |A| = 9, |B| = 6,
|C | = 9, |A

⋂
B| = 3, |A

⋂
C | = 4,

|B
⋂

C | = 2, |A
⋂

B
⋂

C | = 1, what
is |A

⋃
B
⋃

C |?

|A
⋃

B
⋃

C |
= |A|+ |B|+ |C | − |A

⋂
B| − |A

⋂
C | − |B

⋂
C |+ |A

⋂
B
⋂

C |
= 9 + 6 + 9− 3− 4− 2 + 1
= 16

In general,

|A1

⋃
· · ·
⋃

An| =
∑

i

|Ai | −
∑
i<j

|Ai

⋂
Aj |+

∑
i<j<k

|Ai

⋂
Aj

⋂
Ak | · · ·
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Putting the theory into practice
Example 1
[Derangements] Aat a Secret Santa party, there are n guests, who each
brings a present. Once all presents are collected, they are permuted
randomly, and redistributed to the guests. What is the probability no
guest receives his/her own gift? What does this converge to as n→∞?

Solution.
Let the set of all permultations of {1, 2, · · · , n} be U. Let D ⊂ U be the

set of permutations without fixed points. We seek |D||U| . Let

Ai = { permutationπ|π(i) = i}. Then D = U\(A1

⋃
A2

⋃
· · ·
⋃

An).

|A1

⋃
· · ·
⋃

An| =
∑

i |Ai | −
∑

i<j |Ai

⋂
Aj | · · ·

= (n − 1)!−
(
n
2

)
(n − 2)! +

(
n
3

)
(n − 3)!

= n!
∑n

i=1
(−1)i+1

i!

The probability is

|D|
|U|

=
n∑

i=0

(−1)i

i !
→ 1

e
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Paradigm 2: Constructing a Bijection
A bijection is a one-to-one correspondence:

Given sets A,B, a bijection f is f : A→ B that is one-to-one (no two
elements in A are mapped to the same in B) and onto (for every element
in B, some element in A maps to it.)

Equivalently, f is a bijection if there is an inverse map: ∃g : B → A, s.t.
∀a ∈ A, g(f (a)) = a.

We frequently show that two sets are equal in size by constructing a
bijection.
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Simple Bijection
Example 2
(CMO 2005) Consider an equilateral triangle of side length n, which is
divided into unit triangles, as shown. Let f (n) be the number of paths
from the triangle in the top row to the middle triangle in the bottom row,
such that adjacent triangles in our path share a common edge and the
path never travels up (from a lower row to a higher row) or revisits a
triangle. An example of one such path is illustrated below for n = 5.
Determine the value of f (2005).

Solution.
We show that there is a bijective mapping between valid paths and
ordered lists (a1, a2, · · · , an), where 1 ≤ ai ≤ i . Essentially ai indicates
where the path “exit” the ith row and enter the i + 1th row. For any
valid path, this ordered lists exists. For any ordered list, we can
reconstruct the path uniquely. The number of such ordered lists is
exactly n!, hence f (2005) = 2005!.
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More Involved Bijection
Example 3
(Catalan Numbers) In a n × n grid, we draw rectilinear paths from (0, 0)
to (n, n), going only in positive x and y directions. How many such paths
are there that stay below the line y = x?

Answer:
Cn = 1

n+1

(
2n
n

)
=
(
2n
n

)
−
(

2n
n−1

)
Proof.
It suffices to show that the # of paths that cross the line is

(
2n

n−1

)
. But

this is exactly the # of paths from (0, 0) to (n − 1, n + 1). So try to find
bijection.

A path crosses y = x iff it touches
y = x + 1. Map f : take the first time the
path touches y = x + 1 and reflect the
following subpath across y = x + 1. Inverse
map: app paths from (0, 0) to (n− 1, n + 1)
touch y = x + 1. Take the first touch, and
reflect the following subpath across
y = x + 1. The maps are inverses because
the first touch is preserved by both maps.
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Paradigm 3: Counting in Multiple Ways

Sometimes we want to count some set S in multiple ways, and use
the resulting equality for our proof

We may need to creatively define S ourselves (think outside the box)

Counting something in multiple ways may provide powerful insight
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Simple Example

Example 4
15 students join a summer course. Every day, 3 students are on duty
after school to clean the classroom. After the course, it was found that
every pair of students has been on duty together exactly once. How
many days does the course last for?

What can we count in two ways?

Solution.
We count the total number P of pairs of students who work together for
all days. (Pairs are considered different if the same pairing happens on
different days.)
There are n days and each day there are 3 pairs. So P = 3n
On the other hand P =

(
15
2

)
Hence, n = 1

2

(
15
2

)
= 35.
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On the other hand P =
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15
2
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Hence, n = 1
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(
15
2
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= 35.
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Example 5
(CMO 2006) There are 2n + 1 teams in a round-robin tournament, in
which each team plays every other team exactly once, with no ties. We
say that teams X , Y , Z form a cycle triplet if X beats Y , Y beats Z and
Z beats X . Determine the maximum number of cyclic triplets possible.

Proof.
Count the # of the following types of “angles”

Each cyclic triangle has 3 type C angles, while each
non-cyclic triagle has 1 angle of each time.

(# of non-cyclic triangles)
= 1

2 [(# of type A angles) + (# of type B angles)]

= 1
2

∑2n+1
i=1

(
ai

2

)
+
(
2n−ai

2

)
≥ 1

2

∑2n+1
i=1

(
n
2

)
+
(
n
2

)
= n(n−1)(2n+1)

2

Hence, the # of cyclic triangles is at least(
2n+1

3

)
− n(n−1)(2n+1)

2 = n(n+1)(2n+1)
6 .

To show this bound can be attained, label the vertices 1, 2, · · · , 2n + 1
and put directed edge i → j iff j − i( mod 2n + 1) ∈ {1, 2, · · · , n}.
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Conclusion

Count carefully / don’t be sloppy

Be creative (Sometimes constructing the bijection or figuring out
what set to count takes cleverness/randomness/luck)

Don’t give up!

Enjoy problem set 3! All problems have nice solutions, so try not to brute
force.
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