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What are functional equations?

Instead of in a regular equation in which we solve for some value, we
solve for some function.

i.e. Find all continuous functions such that f (x + y) = f (x) + f (y).

General techniques:

Plug in special values (0,1,−1, etc)

Conjecture a solution

Consider fixed points ({x : f (x) = x})
Show properties the function must satisfy: commutivity, additivitiy,
closeness under scalar multiplication, etc.

More advanced theory: recurrences, reduction to Cauchy’s equation,
etc.
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Plug and check

Example
Let f be a real valued function which satisfies

∀x , y ∈ R, f (x + y) + f (x − y) = 2f (x)f (y)

∃x0 ∈ R s.t. f (x0) = −1

Prove that f is periodic.

Solution.
Swap x , y =⇒ f is even. Plug in x = y = 0 =⇒ f (0) ∈ {0, 1} .
If f (0) = 0, plug in y = 0, get f ≡ 0.
If f (0) = 1, plug in x = y = x0

2 , get f ( x0

2 ) = 0. Plug in y = x0

2 , we get
f (x + x0

2 ) = −f (x − x0

2 ). So f reverses sign every x0, and hence is
periodic with period 2x0.
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Using fixed points
Problem
(1983 IMO) Determine all functions f : R+ → R+ such that as x →∞,
f (x)→ 0, and ∀x , y ∈ R+,

f (xf (y)) = yf (x)

Solution.
Plug in x = y = 1, we get f (f (1)) = f (1). Plug in x = 1 and y = f (1),
we get f (1)2 = f (f (f (1))) = f (1), so f (1) = 1 is a fixed point. Take
y = x , get xf (x) is a fixed point ∀x ∈ R+.
Suppose x > 1 is a fixed point, then xf (x) = x2 is also a fixed point. So
x2m

is a fixed point ∀m ∈ N, contradicting limx→∞ f (x) = 0.
If x ∈ (0, 1) is a fixed point, then

1 = f (
1

x
x) = f (

1

x
f (x)) = xf (

1

x
)

So 1
x is also a fixed point, contradicting the above.

Hence 1 is the only fixed point, which implies xf (x) ≡ 1.
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More Advanced Theory: Linear Recurrences

Recurrence relations are special forms of functional equations: i.e. Find
f : Z→ Z s.t. f (n) = f (n − 1) + f (n − 2), f (0) = 0, f (1) = 1.

Q: In general, how would we solve f (n) =
∑d

i=1 ai f (n − i), given d
values of f (n)?

This has close connection with linear algebra. Note that the sequence is
completely determined by f (j), j ∈ {0, 1, · · · , d − 1}. Intuitively it
suffices to find d “basis.”
Consider the characteristic equation p(x) = xd −

∑d
i=1 aix

d−i = 0. If
{r1, · · · , rd} are the roots, then fj(n) = rn

j satisfies the recurrence. If the
rj ’s are distinct, then we are done.
Otherwise, if rj has multiplicity m, then it satisfies
p′(x) = 0, · · · , p(m−1)(x) = 0. Hence, f ′j (n) = nrn−1

j ,

f ′′j (n) = n(n − 1)rn−2
j , etc, also satisfy the recurrence. This provides us

the basis.
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More Advanced Theory: Linear Recurrences

Example
Let f (n) = f (n − 1) + f (n − 2), f (0) = 0, f (1) = 1. Prove that

limn→∞
f (n)

f (n−1) = 1+
√

5
2 .

Solution.
Let φ1 = 1+

√
5

2 , φ2 = 1−
√

5
2 . These are the roots of the characteristic

equation x2 − x − 1 = 0. Hence, f1(n) = φn
1 and f2(n) = φn

2 both satisfy
the recurrence. We seek a solution of the form f (n) = af1(n) + bf2(n).
This reduces the solving

0 = f (0) = a + b
1 = f (1) = aφ1 + bφ2

Which yields a = 1/
√

5, b = −a. So f (n) = 1√
5

(φn
1 − φn

2). As n→∞,

f (n)→ aφn
1, which implies the desired result.
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More Advanced Theory: Cauchy’s Functional Equation
Definition
Cauchy’s Functional Equation is f : R→ R, f (x + y) = f (x) + f (y).

Plugging in x = y = 0, we get f (0) = 0. Let c = f (1), we have
0 = f (1− 1) = f (1) + f (−1), so f (−1) = −c .

An easy induction shows f (nx) = nf (x) ∀n ∈ Z. From this we can show
f (q) = cq ∀q ∈ Q.

However, f (x) = cx is not the only solution. One can construct infinitely
many discontinuous solutions to Cauchy’s Equation using what are called
Hamel’s basis. The graph of any of these discontinuous solutions is
everywhere dense in the plane!

Theorem
If f satisfies Cauchy’s equation and one of the following

is monotone

is continuous

is bounded from above in at least one interval (p, p + s)

Then f (x) ≡ cx for some c ∈ R.
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is bounded from above in at least one interval (p, p + s)

Then f (x) ≡ cx for some c ∈ R.
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Example from the recent practice VTech
Example
Find all C∞ functions f : R→ R s.t. f (1) = 2 and ∀a2 + b2 = 1, ∀x ∈ R

f (ax)f (bx) = f (x)

Proof.
Using simple arguments, one can show f (x) = f (−x), and f (x) > 0
∀x ∈ R. Rewrite the equation as ∀x , y ∈ R+.

f (
√

x)f (
√

y) = f (
√

x + y)

Define g = ln(f (
√

x)). g is continuous, and g(1) = ln 2. The equation
reduces to ∀x , y ∈ R+.

g(x) + g(y) = g(x + y)

So g(x) ≡ ln(2)x . Hence, ∀x ∈ R+, f (x) = 2x2

. By f (x) = f (−x),

f (x) ≡ 2x2

.
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Conclusion

Functional equations are algebraic puzzles.

When you come upon on, you should

1 Guess what the solution is and get intuition.

2 Plug in special values.

3 Consider fixed points and other properties.

4 Check if you can use established machinery.

5 Be creative!

Thanks so much to all the volunteers for your help in Duke Math Meet!
Good job everyone!
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