Algebraic Puzzles Introduction to Functional Equations

Peng Shi

Department of Mathematics Duke University

November 4, 2009

Instead of in a regular equation in which we solve for some *value*, we solve for some *function*.

Instead of in a regular equation in which we solve for some *value*, we solve for some *function*.

i.e. Find all continuous functions such that f(x + y) = f(x) + f(y).

Instead of in a regular equation in which we solve for some *value*, we solve for some *function*.

i.e. Find all continuous functions such that f(x + y) = f(x) + f(y).

General techniques:

▶ Plug in special values (0,1,-1, etc)

Instead of in a regular equation in which we solve for some *value*, we solve for some *function*.

i.e. Find all continuous functions such that f(x + y) = f(x) + f(y).

- ▶ Plug in special values (0,1,−1, etc)
- Conjecture a solution

Instead of in a regular equation in which we solve for some *value*, we solve for some *function*.

i.e. Find all continuous functions such that f(x + y) = f(x) + f(y).

- ▶ Plug in special values (0,1,−1, etc)
- Conjecture a solution
- ▶ Consider fixed points ({x : f(x) = x})

Instead of in a regular equation in which we solve for some *value*, we solve for some *function*.

i.e. Find all continuous functions such that f(x + y) = f(x) + f(y).

- ▶ Plug in special values (0,1,−1, etc)
- Conjecture a solution
- Consider fixed points $({x : f(x) = x})$
- Show properties the function must satisfy: commutivity, additivitiy, closeness under scalar multiplication, etc.

Instead of in a regular equation in which we solve for some *value*, we solve for some *function*.

i.e. Find all continuous functions such that f(x + y) = f(x) + f(y).

- ▶ Plug in special values (0,1,−1, etc)
- Conjecture a solution
- Consider fixed points $({x : f(x) = x})$
- Show properties the function must satisfy: commutivity, additivitiy, closeness under scalar multiplication, etc.
- More advanced theory: recurrences, reduction to Cauchy's equation, etc.

Example

Let f be a real valued function which satisfies

$$\forall x, y \in \mathbb{R}, f(x+y) + f(x-y) = 2f(x)f(y)$$

▶
$$\exists x_0 \in \mathbb{R} \text{ s.t. } f(x_0) = -1$$

Prove that f is periodic.

Example

Let f be a real valued function which satisfies

►
$$\forall x, y \in \mathbb{R}, f(x+y) + f(x-y) = 2f(x)f(y)$$

▶
$$\exists x_0 \in \mathbb{R} \text{ s.t. } f(x_0) = -1$$

Prove that f is periodic.

Solution.

Swap $x, y \implies f$ is even. Plug in $x = y = 0 \implies f(0) \in \{0, 1\}$.

Example

Let f be a real valued function which satisfies

$$\forall x, y \in \mathbb{R}, f(x+y) + f(x-y) = 2f(x)f(y)$$

▶
$$\exists x_0 \in \mathbb{R} \text{ s.t. } f(x_0) = -1$$

Prove that f is periodic.

Solution.

Swap $x, y \implies f$ is even. Plug in $x = y = 0 \implies f(0) \in \{0, 1\}$. If f(0) = 0, plug in y = 0, get $f \equiv 0$.

Example

Let f be a real valued function which satisfies

$$\forall x, y \in \mathbb{R}, f(x+y) + f(x-y) = 2f(x)f(y)$$

▶
$$\exists x_0 \in \mathbb{R} \text{ s.t. } f(x_0) = -1$$

Prove that f is periodic.

Solution.

Swap $x, y \implies f$ is even. Plug in $x = y = 0 \implies f(0) \in \{0, 1\}$. If f(0) = 0, plug in y = 0, get $f \equiv 0$. If f(0) = 1, plug in $x = y = \frac{x_0}{2}$, get $f(\frac{x_0}{2}) = 0$. Plug in $y = \frac{x_0}{2}$, we get $f(x + \frac{x_0}{2}) = -f(x - \frac{x_0}{2})$. So f reverses sign every x_0 , and hence is periodic with period $2x_0$.

Problem (1983 IMO) Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that as $x \to \infty$, $f(x) \to 0$, and $\forall x, y \in \mathbb{R}^+$,

f(xf(y)) = yf(x)

Problem (1983 IMO) Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that as $x \to \infty$, $f(x) \to 0$, and $\forall x, y \in \mathbb{R}^+$,

f(xf(y)) = yf(x)

Solution.

Plug in x = y = 1, we get f(f(1)) = f(1). Plug in x = 1 and y = f(1), we get $f(1)^2 = f(f(f(1))) = f(1)$, so f(1) = 1 is a fixed point.

Problem (1983 IMO) Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that as $x \to \infty$, $f(x) \to 0$, and $\forall x, y \in \mathbb{R}^+$,

f(xf(y)) = yf(x)

Solution.

Plug in x = y = 1, we get f(f(1)) = f(1). Plug in x = 1 and y = f(1), we get $f(1)^2 = f(f(f(1))) = f(1)$, so f(1) = 1 is a fixed point. Take y = x, get xf(x) is a fixed point $\forall x \in \mathbb{R}^+$.

Problem (1983 IMO) Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that as $x \to \infty$, $f(x) \to 0$, and $\forall x, y \in \mathbb{R}^+$,

f(xf(y)) = yf(x)

Solution.

Plug in x = y = 1, we get f(f(1)) = f(1). Plug in x = 1 and y = f(1), we get $f(1)^2 = f(f(f(1))) = f(1)$, so f(1) = 1 is a fixed point. Take y = x, get xf(x) is a fixed point $\forall x \in \mathbb{R}^+$. Suppose x > 1 is a fixed point, then $xf(x) = x^2$ is also a fixed point. So x^{2^m} is a fixed point $\forall m \in \mathbb{N}$, contradicting $\lim_{x\to\infty} f(x) = 0$.

Problem (1983 IMO) Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that as $x \to \infty$, $f(x) \to 0$, and $\forall x, y \in \mathbb{R}^+$,

f(xf(y)) = yf(x)

Solution.

Plug in x = y = 1, we get f(f(1)) = f(1). Plug in x = 1 and y = f(1), we get $f(1)^2 = f(f(f(1))) = f(1)$, so f(1) = 1 is a fixed point. Take y = x, get xf(x) is a fixed point $\forall x \in \mathbb{R}^+$. Suppose x > 1 is a fixed point, then $xf(x) = x^2$ is also a fixed point. So x^{2^m} is a fixed point $\forall m \in \mathbb{N}$, contradicting $\lim_{x\to\infty} f(x) = 0$. If $x \in (0, 1)$ is a fixed point, then

$$1 = f(\frac{1}{x}x) = f(\frac{1}{x}f(x)) = xf(\frac{1}{x})$$

So $\frac{1}{x}$ is also a fixed point, contradicting the above.

Peng Shi, Duke University

Problem (1983 IMO) Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that as $x \to \infty$, $f(x) \to 0$, and $\forall x, y \in \mathbb{R}^+$,

f(xf(y)) = yf(x)

Solution.

Plug in x = y = 1, we get f(f(1)) = f(1). Plug in x = 1 and y = f(1), we get $f(1)^2 = f(f(f(1))) = f(1)$, so f(1) = 1 is a fixed point. Take y = x, get xf(x) is a fixed point $\forall x \in \mathbb{R}^+$. Suppose x > 1 is a fixed point, then $xf(x) = x^2$ is also a fixed point. So x^{2^m} is a fixed point $\forall m \in \mathbb{N}$, contradicting $\lim_{x\to\infty} f(x) = 0$. If $x \in (0, 1)$ is a fixed point, then

$$1 = f(\frac{1}{x}x) = f(\frac{1}{x}f(x)) = xf(\frac{1}{x})$$

So $\frac{1}{x}$ is also a fixed point, contradicting the above. Hence 1 is the only fixed point, which implies $xf(x) \equiv 1$.

Peng Shi, Duke University

Recurrence relations are special forms of functional equations: *i.e.* Find $f : \mathbb{Z} \to \mathbb{Z}$ s.t. f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1.

Recurrence relations are special forms of functional equations: *i.e.* Find $f : \mathbb{Z} \to \mathbb{Z}$ s.t. f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1.

Q: In general, how would we solve $f(n) = \sum_{i=1}^{d} a_i f(n-i)$, given d values of f(n)?

Recurrence relations are special forms of functional equations: *i.e.* Find $f : \mathbb{Z} \to \mathbb{Z}$ s.t. f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1.

Q: In general, how would we solve $f(n) = \sum_{i=1}^{d} a_i f(n-i)$, given d values of f(n)?

This has close connection with linear algebra. Note that the sequence is completely determined by f(j), $j \in \{0, 1, \dots, d-1\}$. Intuitively it suffices to find d "basis."

Recurrence relations are special forms of functional equations: *i.e.* Find $f : \mathbb{Z} \to \mathbb{Z}$ s.t. f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1.

Q: In general, how would we solve $f(n) = \sum_{i=1}^{d} a_i f(n-i)$, given d values of f(n)?

This has close connection with linear algebra. Note that the sequence is completely determined by f(j), $j \in \{0, 1, \dots, d-1\}$. Intuitively it suffices to find d "basis."

Consider the characteristic equation $p(x) = x^d - \sum_{i=1}^d a_i x^{d-i} = 0$. If $\{r_1, \dots, r_d\}$ are the roots, then $f_j(n) = r_j^n$ satisfies the recurrence. If the r_j 's are distinct, then we are done.

Recurrence relations are special forms of functional equations: *i.e.* Find $f : \mathbb{Z} \to \mathbb{Z}$ s.t. f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1.

Q: In general, how would we solve $f(n) = \sum_{i=1}^{d} a_i f(n-i)$, given d values of f(n)?

This has close connection with linear algebra. Note that the sequence is completely determined by f(j), $j \in \{0, 1, \dots, d-1\}$. Intuitively it suffices to find d "basis."

Consider the *characteristic equation* $p(x) = x^d - \sum_{i=1}^d a_i x^{d-i} = 0$. If $\{r_1, \dots, r_d\}$ are the roots, then $f_j(n) = r_j^n$ satisfies the recurrence. If the r_j 's are distinct, then we are done.

Otherwise, if r_j has multiplicity m, then it satisfies $p'(x) = 0, \dots, p^{(m-1)}(x) = 0$. Hence, $f'_j(n) = nr_j^{n-1}$, $f''_j(n) = n(n-1)r_j^{n-2}$, etc, also satisfy the recurrence. This provides us the basis

Example Let f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1. Prove that $\lim_{n \to \infty} \frac{f(n)}{f(n-1)} = \frac{1+\sqrt{5}}{2}$.

Example Let f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1. Prove that $\lim_{n \to \infty} \frac{f(n)}{f(n-1)} = \frac{1+\sqrt{5}}{2}$.

Solution.

Let $\phi_1 = \frac{1+\sqrt{5}}{2}$, $\phi_2 = \frac{1-\sqrt{5}}{2}$. These are the roots of the characteristic equation $x^2 - x - 1 = 0$. Hence, $f_1(n) = \phi_1^n$ and $f_2(n) = \phi_2^n$ both satisfy the recurrence. We seek a solution of the form $f(n) = af_1(n) + bf_2(n)$.

Example Let f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1. Prove that $\lim_{n \to \infty} \frac{f(n)}{f(n-1)} = \frac{1+\sqrt{5}}{2}$.

Solution.

Let $\phi_1 = \frac{1+\sqrt{5}}{2}$, $\phi_2 = \frac{1-\sqrt{5}}{2}$. These are the roots of the characteristic equation $x^2 - x - 1 = 0$. Hence, $f_1(n) = \phi_1^n$ and $f_2(n) = \phi_2^n$ both satisfy the recurrence. We seek a solution of the form $f(n) = af_1(n) + bf_2(n)$. This reduces the solving

$$\begin{array}{rcl} 0 = f(0) & = & a+b \\ 1 = f(1) & = & a\phi_1 + b\phi_2 \end{array}$$

Example Let f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1. Prove that $\lim_{n \to \infty} \frac{f(n)}{f(n-1)} = \frac{1+\sqrt{5}}{2}$.

Solution.

Let $\phi_1 = \frac{1+\sqrt{5}}{2}$, $\phi_2 = \frac{1-\sqrt{5}}{2}$. These are the roots of the characteristic equation $x^2 - x - 1 = 0$. Hence, $f_1(n) = \phi_1^n$ and $f_2(n) = \phi_2^n$ both satisfy the recurrence. We seek a solution of the form $f(n) = af_1(n) + bf_2(n)$. This reduces the solving

$$\begin{array}{rcl} 0 = f(0) & = & a+b \\ 1 = f(1) & = & a\phi_1 + b\phi_2 \end{array}$$

Which yields $a = 1/\sqrt{5}$, b = -a. So $f(n) = \frac{1}{\sqrt{5}}(\phi_1^n - \phi_2^n)$.

Example Let f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1. Prove that $\lim_{n \to \infty} \frac{f(n)}{f(n-1)} = \frac{1+\sqrt{5}}{2}$.

Solution.

Let $\phi_1 = \frac{1+\sqrt{5}}{2}$, $\phi_2 = \frac{1-\sqrt{5}}{2}$. These are the roots of the characteristic equation $x^2 - x - 1 = 0$. Hence, $f_1(n) = \phi_1^n$ and $f_2(n) = \phi_2^n$ both satisfy the recurrence. We seek a solution of the form $f(n) = af_1(n) + bf_2(n)$. This reduces the solving

$$\begin{array}{rcl} 0 = f(0) & = & a+b \\ 1 = f(1) & = & a\phi_1 + b\phi_2 \end{array}$$

Which yields $a = 1/\sqrt{5}$, b = -a. So $f(n) = \frac{1}{\sqrt{5}}(\phi_1^n - \phi_2^n)$. As $n \to \infty$, $f(n) \to a\phi_1^n$, which implies the desired result.

Definition

Cauchy's Functional Equation is $f : \mathbb{R} \to \mathbb{R}$, f(x + y) = f(x) + f(y).

Definition

Cauchy's Functional Equation is $f : \mathbb{R} \to \mathbb{R}$, f(x + y) = f(x) + f(y).

Plugging in x = y = 0, we get f(0) = 0. Let c = f(1), we have 0 = f(1-1) = f(1) + f(-1), so f(-1) = -c.

Definition

Cauchy's Functional Equation is $f : \mathbb{R} \to \mathbb{R}$, f(x + y) = f(x) + f(y).

Plugging in x = y = 0, we get f(0) = 0. Let c = f(1), we have 0 = f(1-1) = f(1) + f(-1), so f(-1) = -c.

An easy induction shows $f(nx) = nf(x) \ \forall n \in \mathbb{Z}$. From this we can show $f(q) = cq \ \forall q \in \mathbb{Q}$.

Definition

Cauchy's Functional Equation is $f : \mathbb{R} \to \mathbb{R}$, f(x + y) = f(x) + f(y). Plugging in x = y = 0, we get f(0) = 0. Let c = f(1), we have 0 = f(1-1) = f(1) + f(-1), so f(-1) = -c.

An easy induction shows $f(nx) = nf(x) \ \forall n \in \mathbb{Z}$. From this we can show $f(q) = cq \ \forall q \in \mathbb{Q}$.

However, f(x) = cx is not the only solution. One can construct infinitely many discontinuous solutions to Cauchy's Equation using what are called *Hamel's basis*. The graph of any of these discontinuous solutions is **everywhere dense in the plane**!

Definition

Cauchy's Functional Equation is $f : \mathbb{R} \to \mathbb{R}$, f(x + y) = f(x) + f(y). Plugging in x = y = 0, we get f(0) = 0. Let c = f(1), we have 0 = f(1-1) = f(1) + f(-1), so f(-1) = -c.

An easy induction shows $f(nx) = nf(x) \ \forall n \in \mathbb{Z}$. From this we can show $f(q) = cq \ \forall q \in \mathbb{Q}$.

However, f(x) = cx is not the only solution. One can construct infinitely many discontinuous solutions to Cauchy's Equation using what are called *Hamel's basis*. The graph of any of these discontinuous solutions is **everywhere dense in the plane**!

Theorem

If f satisfies Cauchy's equation and one of the following

- is monotone
- is continuous

• is bounded from above in at least one interval (p, p + s)Then $f(x) \equiv cx$ for some $c \in \mathbb{R}$.

Example from the recent practice VTech Example

Find all C^{∞} functions $f: \mathbb{R} \to \mathbb{R}$ s.t. f(1) = 2 and $\forall a^2 + b^2 = 1$, $\forall x \in \mathbb{R}$

f(ax)f(bx) = f(x)

Example from the recent practice VTech Example

Find all C^{∞} functions $f : \mathbb{R} \to \mathbb{R}$ s.t. f(1) = 2 and $\forall a^2 + b^2 = 1$, $\forall x \in \mathbb{R}$

$$f(ax)f(bx) = f(x)$$

Proof.

Using simple arguments, one can show f(x) = f(-x), and f(x) > 0 $\forall x \in \mathbb{R}$. Rewrite the equation as $\forall x, y \in \mathbb{R}^+$.

$$f(\sqrt{x})f(\sqrt{y}) = f(\sqrt{x+y})$$

Example from the recent practice VTech Example

Find all C^{∞} functions $f : \mathbb{R} \to \mathbb{R}$ s.t. f(1) = 2 and $\forall a^2 + b^2 = 1$, $\forall x \in \mathbb{R}$

$$f(ax)f(bx) = f(x)$$

Proof.

Using simple arguments, one can show f(x) = f(-x), and f(x) > 0 $\forall x \in \mathbb{R}$. Rewrite the equation as $\forall x, y \in \mathbb{R}^+$.

$$f(\sqrt{x})f(\sqrt{y}) = f(\sqrt{x+y})$$

Define $g = \ln(f(\sqrt{x}))$. g is continuous, and $g(1) = \ln 2$. The equation reduces to $\forall x, y \in \mathbb{R}^+$.

$$g(x) + g(y) = g(x + y)$$

So $g(x) \equiv \ln(2)x$. Hence, $\forall x \in \mathbb{R}^+$, $f(x) = 2^{x^2}$. By f(x) = f(-x), $f(x) \equiv 2^{x^2}$.

Peng Shi, Duke University

Functional equations are algebraic puzzles.

Conclusion

Functional equations are algebraic puzzles.

When you come upon on, you should

- Q Guess what the solution is and get intuition.
- Plug in special values.
- Onsider fixed points and other properties.
- Check if you can use established machinery.
- Be creative!

Conclusion

Functional equations are algebraic puzzles.

When you come upon on, you should

- Q Guess what the solution is and get intuition.
- Plug in special values.
- Onsider fixed points and other properties.
- Check if you can use established machinery.
- Be creative!

Thanks so much to all the volunteers for your help in Duke Math Meet! Good job everyone!