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Inequalities?

Involves proving A ≥ B. Not only in math contests but widely used
in mathematical sciences.

Many tools available (see formula sheet)

Fundamental problem solving ideas:

1 Smoothing

2 Substitution

3 Clever manipulation

4 Bash (not recommended)

Due to the nature of the topic, there will be quite a mess of expressions,
so don’t feel that you have to follow every line.
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Basic tools

Theorem
x2 ≥ 0 with equality iff x = 0.

Example
x2 + y 2 + z2 ≥ xy + yz + xz because (x − y)2 + (y − z)2 + (z − x)2 ≥ 0.

Theorem
AM-GM If x1, · · · , xn are positive real numbers, then

x1 + · · ·+ xn

n
≥ n
√

x1 · · · xn

with equality iff x1 = x2 = · · · = xn.

Example
x3 + y 3 + z3 ≥ 3xyz
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Basic tools

Theorem
(Cauchy-Schwarz) For any real numbers a1, · · · , an, b1, · · · , bn,

(a2
1 + · · ·+ a2

n)(b2
1 + · · ·+ b2

n) ≥ (a1b1 + · · ·+ anbn)2

with equality iff the two sequences are proportional. (‖~a‖‖~b‖ ≥ ~a · ~b.)

Example

1

a
+

1

b
+

4

c
+

16

d
≥ 64

a + b + c + d

because

(a + b + c + d)(
1

a
+

1

b
+

22

c
+

42

d
) ≥ (1 + 1 + 2 + 4)2
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Basic tools

Theorem
(Jensen) Let f be a convex function. Then for any x1, · · · , xn ∈ I and
any non-negative reals w1, · · · ,wn,

∑
i wi = 1

w1f (x1) + · · ·+ wnf (xn) ≥ f (w1x1 + · · ·+ wnxn)

If f is concave, then the inequality is flipped.

Example
One proof of the AM-GM inequality uses the fact that f (x) = log(x) is
concave, so

1

b
(log x1 + · · ·+ log xn) ≤ log

x1 + · · ·+ xn

n

from which AM-GM follows by taking exponents of both sides.

For other tools, see the formula sheet.
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Idea 1: Smoothing

By altering terms and arguing what happens, we can sometimes reduce
proving A ≥ B in general to checking a canonical case.

For example, while fixing B, say that we can decrease A by moving terms
closer, then it suffices to check the case when all terms are equal.

Example
Prove the AM-GM inequality(∑

i xi

n

)n

≥
∏

i

xi

Proof.
Let x̄ =

P
i xi

n . Say that xi < x̄ and xj > x̄ . Consider replacing (xi , xj) by
(x̄ , 2x̄). Note that xixj ≤ x̄(2x̄ − xi ). Hence, this fixes LHS but increases
RHS. So for fixed LHS, the RHS is maximized when xi = x̄ ∀i .
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Connection to convexity

Usually smoothing is equivalent to arguing about a convex function: for
fixed

∑
i xi and f convex,

∑n
i f (xi ) is minimized when all xi ’s are equal.

Sometimes the function is not convex, in which case the argument needs
to be more intricate.
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Another example

Example
If a, b, c, d, e are real numbers such that

a + b + c + d + e = 8 (1)
a2 + b2 + c2 + d2 + e2 = 16 (2)

What is the largest possible value of e?

Solution.
Relax the second constraint to a2 + b2 + c2 + d2 + e2 ≤ 16 (2*). Call a 5-tuple valid if it satisfies
(1) and (2*). We seek the valid 5-tuple with the largest possible e. For any valid (a, b, c, d, e),

setting k = (a+b+c+d)
4 , (k, k, k, k, e) is also valid (smoothing). So we just need to find the largest

e s.t. for some k
4k + e = 8

4k2 + e ≤ 16

=⇒
„

8− e

4

«2

= k2 ≤
16− e2

4

=⇒ (5e − 16)e ≤ 0 ⇒ 0 ≤ e ≤
16

5

Conversely, ( 6
5 ,

6
5 ,

6
5 ,

6
5 ,

16
5 ) satisfies the original equation, so the largest possible value is 16

5 .
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Idea 2: Substitution

Use substitutions to transform the given inequality into a simpler or
“nicer” form.

Commonly used subsitutions

Simple manipluations

Triangle related substitutions

Homogenization
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Triangle related substitutions (cool)
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Triangle related substitutions

If a, b, c are sides of a triangle, then let x = (b + c − a)/2,
y = (a + c − b)/2, z = (a + b− c)/2, so that a = y + z , b = x + z ,
c = x + y , and x , y , z are arbitrary positive real numbers.

If a2 + b2 = 1, let a = cos θ, b = sin θ.

If a + b + c = abc, a, b, c > 0, let a = tan A, b = tan B, c = tan C ,
where A,B,C are angles in a triangle.

If a2 + b2 + c2 + 2abc = 1, let a = cos A, b = cos B, c = cos C ,
where A,B,C are angles in a triangle.
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Slick example

Example
For positive real numbers a, b, c with a + b + c = abc, show that

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3

2

Proof.
WLOG, let a = tan A, b = tan B, c = tan C , where A,B,C are angles in
a triangle. The inequality is equivalent to

cos A + cos B + cos C ≤ 3

2

But cos A + cos B + cos C = 1 + 4 sin A
2 sin B

2 sin C
2 , so inequality follows

from f (x) = log sin x being concave, where 0 ≤ x ≤ π
2 .
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Clever Manipulation

Manipulate the algebra in a possibly strange way and magically yield the
result.

Guidelines:

Be creative; try random things

Use equality case to help you

Envision what kind of expressions you need and try to manipulate
the given into a similar form

Can only learn this through experience.
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How did they come up with that?
Example
(IMO 2005 P3) Let x , y , z be three positive reals such that xyz ≥ 1. Prove that

x5 − x2

x5 + y 2 + z2
+

y 5 − y 2

x2 + y 5 + z2
+

z5 − z2

x2 + y 2 + z5
≥ 0

Solution.
By Cauchy-Schwarz

(x5 + y 2 + z2)(
1

x
+ y 2 + z2) ≥ (x2 + y 2 + z2)2

So
1
x

+ y 2 + z2

x2 + y 2 + z2
≥ x2 + y 2 + z2

x5 + y 2 + z2

=⇒ yz − x2

x2 + y 2 + z2
+ 1 ≥ x2 − x5

x5 + y 2 + z2
+ 1

=⇒ LHS ≥ x2 + y 2 + z2 − xy − yz − xz

x2 + y 2 + z2
≥ 0
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Idea 4: Bash (for symmetric inequalities)

Not really an idea, but what you do when you run out of ideas and feel
like an algebraic workout.

Preliminaries:

Symmetric notation: i.e.

(2, 1, 1) =
∑
sym

x2yz = x2yz + x2zy + y 2xz + y 2zx + z2xy + z2yx

Homogenization: i.e. If xyz = 1, then

x5 − x2

x5 + y 2 + z2
=

x5 − x3yz

x5 + xy 3z + xyz3

Equivalently one can subsitute x = bc
a , y = ac

b , z = ab
c .
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Ultimate Bash Toolbox
Definition
(Majorization) Sequence x1, · · · , xn is said to majorize sequence y1, · · · , yn if

x1 ≥ y1

x1 + x2 ≥ y1 + y2

· · · · · ·Pn−1
i=1 xi ≥

Pn−1
i=1 yiPn

i=1 xi =
Pn

i=1 yi

Theorem
(Muirhead) Suppose the sequence a1, · · · , an majorizes the sequence
b1, · · · , bn. Then for any positive reals x1, · · · , xn,X

sym

xa1
1 xa2

2 · · · x
an
n ≥

X
sym

xb1
1 xb2

2 · · · x
bn
n

where the sums are taken over all permutations of the n variables.

ExampleP
sym x4y ≥

P
sym x3yz (In simplified notation, (4, 1, 0) ≥ (3, 1, 1))
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Ultimate Bash Toolbox

Theorem
(Schur) Let a, b, c be nonnegative reals and r > 0. Then

ar (a− b)(a− c) + br (b − c)(b − a) + c r (c − a)(c − b) ≥ 0

with equality iff a = b = c or some two of a, b, c are equal and the other
is 0. (

∑
sym ar+2 +

∑
sym ar bc ≥ 2

∑
sym ar+1b)

Example ∑
sym

x3 +
∑
sym

xyz ≥ 2
∑
sym

x2y

Equivalently

2(x3 + y 3 + z3 + 3xyz) ≥ 2(x2(y + z) + y 2(x + z) + z2(x + y))
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The Idiot’s Guide to Symmetric Inequalities

1 Homogenize

2 Multiply out all denomiators, expand, and rewrite using symmetric
notation.

3 Apply AM-GM, Muirhead, and Schurs.
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Example of Bash
Example
(IMO 2005 P3) Let x, y , z be three positive reals such that xyz ≥ 1. Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0

Solution.
Homogenizing and rearranging, it suffices to show

3 ≥ (x3yz + xy3z + xyz3)

„
1

x5 + xy3z + xyz3
+

1

x3yz + y5 + xyz3
+

1

x3yz + xy3z + z5

«
Multiply out and using symmetric notation, this is equivalent to

X
sym

x10yz + 4
X
sym

x7y5 +
X
sym

x6y3z3 ≥ 2
X
sym

x6y5z +
X
sym

x8y2z2 +
X
sym

x5y5z2 +
X
sym

x6y4z2

Which follows from
(10, 1, 1) + (6, 3, 3) ≥ 2(8, 2, 2)

(8, 2, 2) ≥ (6, 4, 2)
2(7, 5, 0) ≥ 2(6, 5, 1)

(7, 5, 0) ≥ (5, 5, 2)
(7, 5, 0) ≥ (6, 4, 2)
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