Basic tools and general techniques

Peng Shi

Department of Mathematics Duke University

September 30, 2009

► Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.

► Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.

- ► Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.
- Many tools available (see formula sheet)

- ► Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.
- Many tools available (see formula sheet)

Fundamental problem solving ideas:

Smoothing

- ► Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.
- Many tools available (see formula sheet)

- Smoothing
- Substitution

- ► Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.
- Many tools available (see formula sheet)

- Smoothing
- Substitution
- Olever manipulation

- ► Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.
- Many tools available (see formula sheet)

- Smoothing
- Substitution
- Olever manipulation
- Bash (not recommended)

- ► Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.
- Many tools available (see formula sheet)

- Smoothing
- Substitution
- Olever manipulation
- Bash (not recommended)

- Involves proving A ≥ B. Not only in math contests but widely used in mathematical sciences.
- Many tools available (see formula sheet)

Fundamental problem solving ideas:

- Smoothing
- Substitution
- Olever manipulation
- Bash (not recommended)

Due to the nature of the topic, there will be quite a mess of expressions, so don't feel that you have to follow every line.

Theorem $x^2 \ge 0$ with equality iff x = 0.

Theorem $x^2 \ge 0$ with equality iff x = 0.

Example

 $x^2 + y^2 + z^2 \ge xy + yz + xz$ because $(x - y)^2 + (y - z)^2 + (z - x)^2 \ge 0$.

Theorem $x^2 \ge 0$ with equality iff x = 0.

Example $x^2 + y^2 + z^2 \ge xy + yz + xz$ because $(x - y)^2 + (y - z)^2 + (z - x)^2 \ge 0$.

Theorem

AM-GM If x_1, \dots, x_n are positive real numbers, then

$$\frac{x_1+\cdots+x_n}{n} \ge \sqrt[n]{x_1\cdots x_n}$$

with equality iff $x_1 = x_2 = \cdots = x_n$.

Theorem $x^2 \ge 0$ with equality iff x = 0.

Example $x^2 + y^2 + z^2 \ge xy + yz + xz$ because $(x - y)^2 + (y - z)^2 + (z - x)^2 \ge 0$.

Theorem

AM-GM If x_1, \dots, x_n are positive real numbers, then

$$\frac{x_1+\cdots+x_n}{n} \ge \sqrt[n]{x_1\cdots x_n}$$

with equality iff $x_1 = x_2 = \cdots = x_n$.

Example

 $x^3 + y^3 + z^3 \ge 3xyz$

Peng Shi, Duke University

Theorem (Cauchy-Schwarz) For any real numbers $a_1, \dots, a_n, b_1, \dots, b_n$,

$$(a_1^2 + \cdots + a_n^2)(b_1^2 + \cdots + b_n^2) \ge (a_1b_1 + \cdots + a_nb_n)^2$$

with equality iff the two sequences are proportional. $(\|\vec{a}\|\|\vec{b}\| \ge \vec{a} \cdot \vec{b}.)$

Theorem (Cauchy-Schwarz) For any real numbers $a_1, \dots, a_n, b_1, \dots, b_n$,

$$(a_1^2 + \cdots + a_n^2)(b_1^2 + \cdots + b_n^2) \ge (a_1b_1 + \cdots + a_nb_n)^2$$

with equality iff the two sequences are proportional. ($\|\vec{a}\| \|\vec{b}\| \ge \vec{a} \cdot \vec{b}$.) Example

$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}$$

because

$$(a+b+c+d)(rac{1}{a}+rac{1}{b}+rac{2^2}{c}+rac{4^2}{d}) \ge (1+1+2+4)^2$$

Theorem

(Jensen) Let f be a convex function. Then for any $x_1, \dots, x_n \in I$ and any non-negative reals w_1, \dots, w_n , $\sum_i w_i = 1$

$$w_1f(x_1) + \cdots + w_nf(x_n) \geq f(w_1x_1 + \cdots + w_nx_n)$$

If f is concave, then the inequality is flipped.

Theorem

(Jensen) Let f be a convex function. Then for any $x_1, \dots, x_n \in I$ and any non-negative reals w_1, \dots, w_n , $\sum_i w_i = 1$

$$w_1f(x_1) + \cdots + w_nf(x_n) \geq f(w_1x_1 + \cdots + w_nx_n)$$

If f is concave, then the inequality is flipped.

Example

One proof of the AM-GM inequality uses the fact that $f(x) = \log(x)$ is concave, so

$$\frac{1}{b} \left(\log x_1 + \dots + \log x_n \right) \le \log \frac{x_1 + \dots + x_n}{n}$$

from which AM-GM follows by taking exponents of both sides.

Theorem

(Jensen) Let f be a convex function. Then for any $x_1, \dots, x_n \in I$ and any non-negative reals w_1, \dots, w_n , $\sum_i w_i = 1$

$$w_1f(x_1) + \cdots + w_nf(x_n) \geq f(w_1x_1 + \cdots + w_nx_n)$$

If f is concave, then the inequality is flipped.

Example

One proof of the AM-GM inequality uses the fact that $f(x) = \log(x)$ is concave, so

$$\frac{1}{b} \left(\log x_1 + \dots + \log x_n \right) \le \log \frac{x_1 + \dots + x_n}{n}$$

from which AM-GM follows by taking exponents of both sides. For other tools, see the formula sheet.

By altering terms and arguing what happens, we can sometimes reduce proving $A \ge B$ in general to checking a canonical case.

By altering terms and arguing what happens, we can sometimes reduce proving $A \ge B$ in general to checking a canonical case.

For example, while fixing B, say that we can decrease A by moving terms closer, then it suffices to check the case when all terms are equal.

By altering terms and arguing what happens, we can sometimes reduce proving $A \ge B$ in general to checking a canonical case.

For example, while fixing B, say that we can decrease A by moving terms closer, then it suffices to check the case when all terms are equal.

Example

Prove the AM-GM inequality

$$\left(\frac{\sum_i x_i}{n}\right)^n \ge \prod_i x_i$$

By altering terms and arguing what happens, we can sometimes reduce proving $A \ge B$ in general to checking a canonical case.

For example, while fixing B, say that we can decrease A by moving terms closer, then it suffices to check the case when all terms are equal.

Example

Prove the AM-GM inequality

$$\left(\frac{\sum_{i} x_{i}}{n}\right)^{n} \geq \prod_{i} x_{i}$$

Proof.

Let $\bar{x} = \frac{\sum_i x_i}{n}$. Say that $x_i < \bar{x}$ and $x_j > \bar{x}$. Consider replacing (x_i, x_j) by $(\bar{x}, 2\bar{x})$. Note that $x_i x_j \le \bar{x} (2\bar{x} - x_i)$. Hence, this fixes LHS but increases RHS. So for fixed LHS, the RHS is maximized when $x_i = \bar{x} \forall i$.

Connection to convexity

Usually smoothing is equivalent to arguing about a convex function: for fixed $\sum_i x_i$ and f convex, $\sum_i^n f(x_i)$ is minimized when all x_i 's are equal.

Connection to convexity

Usually smoothing is equivalent to arguing about a convex function: for fixed $\sum_i x_i$ and f convex, $\sum_i^n f(x_i)$ is minimized when all x_i 's are equal.

Sometimes the function is not convex, in which case the argument needs to be more intricate.

Example

If a, b, c, d, e are real numbers such that

$$a+b+c+d+e = 8$$
 (1)
 $a^2+b^2+c^2+d^2+e^2 = 16$ (2)

What is the largest possible value of e?

Example

If a, b, c, d, e are real numbers such that

$$a+b+c+d+e = 8$$
 (1)
 $a^2+b^2+c^2+d^2+e^2 = 16$ (2)

What is the largest possible value of e?

Solution.

Relax the second constraint to $a^2 + b^2 + c^2 + d^2 + e^2 \le 16$ (2*). Call a 5-tuple valid if it satisfies (1) and (2*). We seek the valid 5-tuple with the largest possible e.

Example

If a, b, c, d, e are real numbers such that

$$a+b+c+d+e = 8$$
 (1)
 $a^2+b^2+c^2+d^2+e^2 = 16$ (2)

What is the largest possible value of e?

Solution.

Relax the second constraint to $a^2 + b^2 + c^2 + d^2 + e^2 \le 16$ (2*). Call a 5-tuple valid if it satisfies (1) and (2*). We seek the valid 5-tuple with the largest possible *e*. For any valid (*a*, *b*, *c*, *d*, *e*), setting $k = \frac{(a+b+c+d)}{4}$, (*k*, *k*, *k*, *k*, *e*) is also valid (smoothing). So we just need to find the largest *e* s.t. for some *k*

$$4k + e = 8$$

$$4k^{2} + e \leq 16$$

$$\implies \left(\frac{8 - e}{4}\right)^{2} = k^{2} \leq \frac{16 - e^{2}}{4}$$

$$\implies (5e - 16)e \leq 0 \qquad \Rightarrow 0 \leq e \leq \frac{16}{5}$$

Example

If a, b, c, d, e are real numbers such that

$$a+b+c+d+e = 8$$
 (1)
 $a^2+b^2+c^2+d^2+e^2 = 16$ (2)

What is the largest possible value of e?

Solution.

Relax the second constraint to $a^2 + b^2 + c^2 + d^2 + e^2 \le 16$ (2*). Call a 5-tuple valid if it satisfies (1) and (2*). We seek the valid 5-tuple with the largest possible *e*. For any valid (*a*, *b*, *c*, *d*, *e*), setting $k = \frac{(a+b+c+d)}{4}$, (*k*, *k*, *k*, *e*) is also valid (smoothing). So we just need to find the largest *e* s.t. for some *k*

$$4k + e = 8$$

$$4k^{2} + e \leq 16$$

$$\implies \left(\frac{8 - e}{4}\right)^{2} = k^{2} \leq \frac{16 - e^{2}}{4}$$

$$\implies (5e - 16)e \leq 0 \qquad \Rightarrow 0 \leq e \leq \frac{16}{5}$$

Conversely, $(\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{16}{5})$ satisfies the original equation, so the largest possible value is $\frac{16}{5}$.

Use substitutions to transform the given inequality into a simpler or "nicer" form.

Use substitutions to transform the given inequality into a simpler or "nicer" form.

Commonly used subsitutions

- Simple manipluations
- Triangle related substitutions
- Homogenization

Use substitutions to transform the given inequality into a simpler or "nicer" form.

Commonly used subsitutions

- Simple manipluations
- Triangle related substitutions (cool)
- Homogenization (will show later)

 If a, b, c are sides of a triangle, then let x = (b + c − a)/2, y = (a + c − b)/2, z = (a + b − c)/2, so that a = y + z, b = x + z, c = x + y, and x, y, z are arbitrary positive real numbers.

- If a, b, c are sides of a triangle, then let x = (b + c − a)/2, y = (a + c − b)/2, z = (a + b − c)/2, so that a = y + z, b = x + z, c = x + y, and x, y, z are arbitrary positive real numbers.
- If $a^2 + b^2 = 1$, let $a = \cos \theta$, $b = \sin \theta$.

 If a, b, c are sides of a triangle, then let x = (b + c − a)/2, y = (a + c − b)/2, z = (a + b − c)/2, so that a = y + z, b = x + z, c = x + y, and x, y, z are arbitrary positive real numbers.

• If
$$a^2 + b^2 = 1$$
, let $a = \cos \theta$, $b = \sin \theta$.

If a + b + c = abc, a, b, c > 0, let a = tan A, b = tan B, c = tan C, where A, B, C are angles in a triangle.

 If a, b, c are sides of a triangle, then let x = (b + c − a)/2, y = (a + c − b)/2, z = (a + b − c)/2, so that a = y + z, b = x + z, c = x + y, and x, y, z are arbitrary positive real numbers.

• If
$$a^2 + b^2 = 1$$
, let $a = \cos \theta$, $b = \sin \theta$.

- If a + b + c = abc, a, b, c > 0, let a = tan A, b = tan B, c = tan C, where A, B, C are angles in a triangle.
- If $a^2 + b^2 + c^2 + 2abc = 1$, let $a = \cos A$, $b = \cos B$, $c = \cos C$, where A, B, C are angles in a triangle.

Slick example

Example

For positive real numbers a, b, c with a + b + c = abc, show that

$$\frac{1}{\sqrt{1+a^2}} + \frac{1}{\sqrt{1+b^2}} + \frac{1}{\sqrt{1+c^2}} \le \frac{3}{2}$$

Proof.

WLOG, let $a = \tan A$, $b = \tan B$, $c = \tan C$, where A, B, C are angles in a triangle. The inequality is equivalent to

$$\cos A + \cos B + \cos C \le \frac{3}{2}$$

But $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$, so inequality follows from $f(x) = \log \sin x$ being concave, where $0 \le x \le \frac{\pi}{2}$.

Be creative; try random things

Guidelines:

- Be creative; try random things
- Use equality case to help you

Guidelines:

- Be creative; try random things
- Use equality case to help you
- Envision what kind of expressions you need and try to manipulate the given into a similar form

Guidelines:

- Be creative; try random things
- Use equality case to help you
- Envision what kind of expressions you need and try to manipulate the given into a similar form

Guidelines:

- Be creative; try random things
- Use equality case to help you
- Envision what kind of expressions you need and try to manipulate the given into a similar form

Can only learn this through experience.

(IMO 2005 P3) Let x, y, z be three positive reals such that $xyz \ge 1$. Prove that

$$\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{x^2+y^5+z^2}+\frac{z^5-z^2}{x^2+y^2+z^5}\geq 0$$

(IMO 2005 P3) Let x, y, z be three positive reals such that $xyz \ge 1$. Prove that

$$\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{x^2+y^5+z^2}+\frac{z^5-z^2}{x^2+y^2+z^5}\geq 0$$

Solution.

By Cauchy-Schwarz

$$(x^{5} + y^{2} + z^{2})(\frac{1}{x} + y^{2} + z^{2}) \ge (x^{2} + y^{2} + z^{2})^{2}$$

So

(IMO 2005 P3) Let x, y, z be three positive reals such that $xyz \ge 1$. Prove that

$$\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{x^2+y^5+z^2}+\frac{z^5-z^2}{x^2+y^2+z^5}\geq 0$$

Solution.

So

By Cauchy-Schwarz

$$(x^5 + y^2 + z^2)(rac{1}{x} + y^2 + z^2) \ge (x^2 + y^2 + z^2)^2$$

 $rac{rac{1}{x} + y^2 + z^2}{x^2 + y^2 + z^2} \ge rac{x^2 + y^2 + z^2}{x^5 + y^2 + z^2}$

(IMO 2005 P3) Let x, y, z be three positive reals such that $xyz \ge 1$. Prove that

$$\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{x^2+y^5+z^2}+\frac{z^5-z^2}{x^2+y^2+z^5}\geq 0$$

Solution.

So

By Cauchy-Schwarz

$$(x^{5} + y^{2} + z^{2})(\frac{1}{x} + y^{2} + z^{2}) \ge (x^{2} + y^{2} + z^{2})^{2}$$
$$\frac{\frac{1}{x} + y^{2} + z^{2}}{x^{2} + y^{2} + z^{2}} \ge \frac{x^{2} + y^{2} + z^{2}}{x^{5} + y^{2} + z^{2}}$$
$$\implies \frac{yz - x^{2}}{x^{2} + y^{2} + z^{2}} + 1 \ge \frac{x^{2} - x^{5}}{x^{5} + y^{2} + z^{2}} + 1$$

(IMO 2005 P3) Let x, y, z be three positive reals such that $xyz \ge 1$. Prove that

$$\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{x^2+y^5+z^2}+\frac{z^5-z^2}{x^2+y^2+z^5}\geq 0$$

Solution.

By Cauchy-Schwarz

$$(x^{5} + y^{2} + z^{2})(\frac{1}{x} + y^{2} + z^{2}) \ge (x^{2} + y^{2} + z^{2})^{2}$$

So

$$\frac{\frac{1}{x} + y^2 + z^2}{x^2 + y^2 + z^2} \ge \frac{x^2 + y^2 + z^2}{x^5 + y^2 + z^2}$$
$$\implies \frac{yz - x^2}{x^2 + y^2 + z^2} + 1 \ge \frac{x^2 - x^5}{x^5 + y^2 + z^2} + 1$$
$$\implies LHS \ge \frac{x^2 + y^2 + z^2 - xy - yz - xz}{x^2 + y^2 + z^2} \ge 0$$

Peng Shi, Duke University

Inequalities, Basic tools and general techniques

Idea 4: Bash (for symmetric inequalities)

Not really an idea, but what you do when you run out of ideas and feel like an algebraic workout.

Idea 4: Bash (for symmetric inequalities)

Not really an idea, but what you do when you run out of ideas and feel like an algebraic workout.

Preliminaries:

Symmetric notation: *i.e.*

$$(2,1,1) = \sum_{sym} x^2 yz = x^2 yz + x^2 zy + y^2 xz + y^2 zx + z^2 xy + z^2 yx$$

Idea 4: Bash (for symmetric inequalities)

Not really an idea, but what you do when you run out of ideas and feel like an algebraic workout.

Preliminaries:

Symmetric notation: *i.e.*

$$(2,1,1) = \sum_{sym} x^2 yz = x^2 yz + x^2 zy + y^2 xz + y^2 zx + z^2 xy + z^2 yx$$

• Homogenization: *i.e.* If xyz = 1, then

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} = \frac{x^5 - x^3 yz}{x^5 + xy^3 z + xyz^3}$$

Equivalently one can subsitute $x = \frac{bc}{a}, y = \frac{ac}{b}, z = \frac{ab}{c}$.

Definition

(Majorization) Sequence x_1, \dots, x_n is said to majorize sequence y_1, \dots, y_n if

Definition

(Majorization) Sequence x_1, \dots, x_n is said to majorize sequence y_1, \dots, y_n if

Theorem

(Muirhead) Suppose the sequence a_1, \dots, a_n majorizes the sequence b_1, \dots, b_n . Then for any positive reals x_1, \dots, x_n ,

$$\sum_{sym} x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \ge \sum_{sym} x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n}$$

where the sums are taken over all permutations of the n variables.

Definition

(Majorization) Sequence x_1, \dots, x_n is said to majorize sequence y_1, \dots, y_n if

Theorem

(Muirhead) Suppose the sequence a_1, \dots, a_n majorizes the sequence b_1, \dots, b_n . Then for any positive reals x_1, \dots, x_n ,

$$\sum_{sym} x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \ge \sum_{sym} x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n}$$

where the sums are taken over all permutations of the n variables.

 $\begin{array}{l} Example \\ \sum_{sym} x^4 y \geq \sum_{sym} x^3 yz \mbox{ (In simplified notation, } (4,1,0) \geq (3,1,1)) \end{array}$

Peng Shi, Duke University

Theorem (Schur) Let a, b, c be nonnegative reals and r > 0. Then

$$a^r(a-b)(a-c)+b^r(b-c)(b-a)+c^r(c-a)(c-b)\geq 0$$

with equality iff a = b = c or some two of a, b, c are equal and the other is 0. $(\sum_{sym} a^{r+2} + \sum_{sym} a^r bc \ge 2 \sum_{sym} a^{r+1}b)$

Theorem (Schur) Let a, b, c be nonnegative reals and r > 0. Then

$$a^r(a-b)(a-c)+b^r(b-c)(b-a)+c^r(c-a)(c-b)\geq 0$$

with equality iff a = b = c or some two of a, b, c are equal and the other is 0. $(\sum_{sym} a^{r+2} + \sum_{sym} a^r bc \ge 2 \sum_{sym} a^{r+1}b)$

Example

Equivalently

$$2(x^{3} + y^{3} + z^{3} + 3xyz) \ge 2(x^{2}(y + z) + y^{2}(x + z) + z^{2}(x + y))$$

The Idiot's Guide to Symmetric Inequalities

- Homogenize
- Multiply out all denomiators, expand, and rewrite using symmetric notation.
- Apply AM-GM, Muirhead, and Schurs.

Example of Bash Example

(IMO 2005 P3) Let x, y, z be three positive reals such that $xyz \ge 1$. Prove that

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{x^2 + y^5 + z^2} + \frac{z^5 - z^2}{x^2 + y^2 + z^5} \ge 0$$

Example of Bash Example

(IMO 2005 P3) Let x, y, z be three positive reals such that $xyz \ge 1$. Prove that

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{x^2 + y^5 + z^2} + \frac{z^5 - z^2}{x^2 + y^2 + z^5} \ge 0$$

Solution.

Homogenizing and rearranging, it suffices to show

$$3 \ge (x^{3}yz + xy^{3}z + xyz^{3}) \left(\frac{1}{x^{5} + xy^{3}z + xyz^{3}} + \frac{1}{x^{3}yz + y^{5} + xyz^{3}} + \frac{1}{x^{3}yz + xy^{3}z + z^{5}}\right)$$

Multiply out and using symmetric notation, this is equivalent to

$$\sum_{sym} x^1 0yz + 4 \sum_{sym} x^7 y^5 + \sum_{sym} x^6 y^3 z^3 \ge 2 \sum_{sym} x^6 y^5 z + \sum_{sym} x^8 y^2 z^2 + \sum_{sym} x^5 y^5 z^2 + \sum_{sym} x^6 y^4 z^2$$

Which follows from

Peng Shi, Duke University

Inequalities, Basic tools and general techniques