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Introduction

Computation is perhaps annoying, but it is an essential area of
mathematics.

One kind of recurrent computation is integration

(For definition, see Math 139, 203, 241.)

We will review standard techniques and learn to integrate cleverly
through a few examples.
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Basic Integration Techniques

Integration by Parts: ∫ b

a

udv = uv |ba −
∫ b

a

vdu

Ex:
∫

ln xdx = x ln x −
∫

1dx .

Substitution: If y = g(x),∫ g(b)

g(a)

f (y)dy =

∫ b

a

f (g(x))g ′(x)dx

Ex:
∫ 1

0
1

1−x2 dx =
∫ π/2
0

cos θ
cos θdθ = π

2 .

Partial fractions. Ex:∫
1

x2 − 1
dx =

1

2

(∫
1

x − 1
dx −

∫
1

x + 1
dx

)
=

1

2
ln

(
x − 1

x + 1

)

See Math 41.

Peng Shi, Duke University Computing Integrals, 2 + 2 = 4 on crack 3/14



Basic Integration Techniques

Integration by Parts: ∫ b

a

udv = uv |ba −
∫ b

a

vdu

Ex:
∫

ln xdx = x ln x −
∫

1dx .

Substitution: If y = g(x),∫ g(b)

g(a)

f (y)dy =

∫ b

a

f (g(x))g ′(x)dx

Ex:
∫ 1

0
1

1−x2 dx =
∫ π/2
0

cos θ
cos θdθ = π

2 .

Partial fractions. Ex:∫
1

x2 − 1
dx =

1

2

(∫
1

x − 1
dx −

∫
1

x + 1
dx

)
=

1

2
ln

(
x − 1

x + 1

)

See Math 41.

Peng Shi, Duke University Computing Integrals, 2 + 2 = 4 on crack 3/14



Basic Integration Techniques

Integration by Parts: ∫ b

a

udv = uv |ba −
∫ b

a

vdu

Ex:
∫

ln xdx = x ln x −
∫

1dx .

Substitution: If y = g(x),∫ g(b)

g(a)

f (y)dy =

∫ b

a

f (g(x))g ′(x)dx

Ex:
∫ 1

0
1

1−x2 dx =
∫ π/2
0

cos θ
cos θdθ = π

2 .

Partial fractions. Ex:∫
1

x2 − 1
dx =

1

2

(∫
1

x − 1
dx −

∫
1

x + 1
dx

)
=

1

2
ln

(
x − 1

x + 1

)

See Math 41.

Peng Shi, Duke University Computing Integrals, 2 + 2 = 4 on crack 3/14



Basic Integration Techniques

Integration by Parts: ∫ b

a

udv = uv |ba −
∫ b

a

vdu

Ex:
∫

ln xdx = x ln x −
∫

1dx .

Substitution: If y = g(x),∫ g(b)

g(a)

f (y)dy =

∫ b

a

f (g(x))g ′(x)dx

Ex:
∫ 1

0
1

1−x2 dx =
∫ π/2
0

cos θ
cos θdθ = π

2 .

Partial fractions. Ex:∫
1

x2 − 1
dx =

1

2

(∫
1

x − 1
dx −

∫
1

x + 1
dx

)
=

1

2
ln

(
x − 1

x + 1

)

See Math 41.

Peng Shi, Duke University Computing Integrals, 2 + 2 = 4 on crack 3/14



Basic Integration Techniques

Integration by Parts: ∫ b

a

udv = uv |ba −
∫ b

a

vdu

Ex:
∫

ln xdx = x ln x −
∫

1dx .

Substitution: If y = g(x),∫ g(b)

g(a)

f (y)dy =

∫ b

a

f (g(x))g ′(x)dx

Ex:
∫ 1

0
1

1−x2 dx =
∫ π/2
0

cos θ
cos θdθ = π

2 .

Partial fractions. Ex:∫
1

x2 − 1
dx =

1

2

(∫
1

x − 1
dx −

∫
1

x + 1
dx

)
=

1

2
ln

(
x − 1

x + 1

)

See Math 41.
Peng Shi, Duke University Computing Integrals, 2 + 2 = 4 on crack 3/14



Change of Coordinates

Cylindrical coordinates:

x 7→ r cos θ
y 7→ r sin θ
z 7→ z

dxdydz 7→ rdrdθdz

Spherical coordinates:

x 7→ ρ sinφ cos θ
y 7→ ρ sinφ sin θ
z 7→ ρ cos θ

dxdydz 7→ ρ2 sinφdρdθdφ
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Change of Coordinates

In general, define the Jacobian

∂(y1, · · · , yn)

∂(x1, · · · , xn)
=


∂y1

∂x1
· · · ∂y1

∂xn

...
. . .

...
∂yn

∂x1
· · · ∂yn

∂xn



y1 7→ x1

...
yn 7→ xn

dy1 · · · dyn 7→ det(∂(y1,··· ,yn)
∂(x1,··· ,xn)

)dx1 · · · dxn

See Math 105, Math 204.
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Advanced Techniques

Differentiation under the Integral sign: under certain conditions, can
commute integration in one variable with differentiation in another.
(see Math203, Math241, or Wikipedia)

Complex integration: Can use complex analysis to elegantly compute
many integrals (see Math 245 or Wikipedia)

While standard theories are powerful, sometimes we can make our lives a
lot easier by little bit of cleverness. Let us look at some examples!
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Change of coordinates

Example
Evaluate

I =

∫ ∞
−∞

e−x2

dx

Intuition: want to create another x .

Solution.

I 2 =
∫∞
−∞

∫∞
−∞ e−(x2+y2)dxdy

=
∫ 2π

0

∫ r

0
re−r2

drdθ

= (2π)(− 1
2e−r2 |∞0 )

= π

=⇒ I =
√
π
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Exploit Symmetry
Example
(Putnam ’87 B-1) Evaluate

I =

∫ 4

2

√
ln(9− x)√

ln(9− x) +
√

ln(x + 3)
dx

Observation: x ∈ [2, 4] =⇒ 9− x ∈ [5, 7], x + 3 ∈ [5, 7]. Try x = 6− y .

Solution.

I =
∫ 2

4

√
ln(y+3)(−dy)√

ln(y+3)+
√

ln(9−y)

=
∫ 4

2

√
ln(x+3)√

ln(9−x)+
√

ln(x+3)
dx

=⇒ 2I =

∫ 4

2

1dx = 2

=⇒ I = 1
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Know Your Trig Subsitutions
Example
(VTech 2000) Evaluate

I =

∫ π/3

0

dθ

5− 4 cos θ

Half-angle substitution: Let t = tan θ
2 , sin θ = 2t

1+t2 , cos θ = 1−t2

1+t2 .

Solution.

I =

∫ π/3

0

sec2 θ
2

1 + 9 tan2 θ
2

dθ

Let m = 3 tan θ
2 , dm = 3

2 sec2 θ
2 dθ.

I = 2
3

∫√3

0
dm

1+m2

= 2
3 (tan−1 x |

√
3

0 )
= 2π

9
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Understand Underlying Geometry
Example
(Putnam ’06 A1) Find the volume of the region of points (x , y , z) such
that

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2)

Observation: 1. symmetry under rotation along z-axis, so try
r2 = x2 + y2. 2. can factor.

Solution.
The inequality can be factored as

((r − 3)2 + z2 − 1)((r + 3)2 + z2 − 1) ≤ 0
⇔ (r − 3)2 + z2 ≤ 1

By Pappus’ theorem, the volume is

(3 · 2π)(π · 12) = 6π2
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Divide Regions Cleverly

Problem
Three infinitely long circular cylinders each with unit radius have their aes
along the x, y , and z-axes. Determine the volume of the region common
to all three cylinders. (Thus one needs the volume common to
{y2 + z2 ≤ 1}, {z2 + x2 ≤ 1}, {x2 + y2 ≤ 1}.)

Hard to express condition Insight:

compute for |y | ≥ |x | ≥ |z |; final
volume will be 3! times as large.
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Divide Regions Cleverly
Problem
Three infinitely long circular cylinders each with unit radius have their aes
along the x, y , and z-axes. Determine the volume of the region common
to all three cylinders. (Thus one needs the volume common to
{y2 + z2 ≤ 1}, {z2 + x2 ≤ 1}, {x2 + y2 ≤ 1}.)

Solution.

Suffices to compute for |y | ≥ |x | ≥ |z |. Use
cylindrical coordinates, then the conditions become
r2 ≤ 1, and | sin θ| ≥ | cos θ|

I
6 = 2

∫ 3π/4

π/4

∫ 1

0

∫ r | cos θ|
−r | cos θ| rdzdrdθ

= 8
(∫ π/2

π/4
cos θdθ

)(∫ 1

0
r2dr

)
= 8(1−

√
2

2 )( 1
3 )

=⇒ I = 8(2−
√

2)
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Summary

A lot of techniques available

Don’t just brute force: a little bit of cleverness makes life a lot easier.

If possible, draw diagrams and try to visualize what’s going on.
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Creating Problems for Duke Math Meet

The Math meet is Oct. 31. We need ≈ 60 good, original problems!

Creating problems is mandatory; you need to turn in at least 2
problems next week!

A good problem is worth 7 points; you can submit fewer solutions
this week and turn in problems instead.

Topics can be anything that doesn’t require higher math–calculus,
linear algebra, or abstract algebra.

Be as creative as possible! Have fun!
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