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Preliminaries Facts Example

Cautionary Note

I will assume that you all have enough background in linear algebra to
understand the terminology and basic ideas here—rehashing them all
would take far too long, and it is not the purpose of this class. If you’re
having trouble, please:

1. Consult Wikipedia or your friendly linear algebra textbook.

2. Talk to me.

The goal of this (short) lecture will be to discuss a few useful ideas,
facts, and examples that you might not have seen in linear algebra class.
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Determinants
I assume you know how to calculate determinants; if not, look it up.
Some basic, useful facts include:

1. det(AB) = det(A) det(B)

2. The determinant of a matrix equals the product of its eigenvalues.

3. The determinant of an upper or lower triangular matrix is simply the
product of the diagonal elements.

4. The determinant of a matrix is nonzero if and only if the matrix has
full rank (i.e. its image has the same dimension as its domain, or
equivalently it does not take any nonzero vector to zero). Note that
this follows from point 2.

5. Swapping two rows or columns will invert the sign of the
determinant.

6. Adding a multiple of one row/column to another row/column will
not change the determinant.

7. Multiply a single row or column by a scalar c will multiply the
determinant by c . Multiplying the entire matrix by c will multiply
the determinant by cn, where n is the dimension of the matrix.
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Trace and other stuff

The trace is the sum of the diagonal elements of a matrix. We have:

1. Tr(AB) = Tr(BA)

2. Tr(ABC ) = Tr(BCA) = Tr(CAB)

3. Tr(PAP−1) = Tr(A) (Trace is invariant to changes of basis.)

4. The trace is the sum of the eigenvalues of a matrix.

Note that since the trace is the sum of the eigenvalues of a matrix and
the determinant is the product of the eigenvalues, the trace and
determinant give us two coefficients of the characteristic polynomial:

P(λ) = λn − Tr(A)λn−1 + . . .+ (−1)n det(A)
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Some Awesome Theorems

Theorem (Spectral Mapping Theorem)
Let A be an n × n matrix with eigenvalues λ1, . . . , λn (not necessarily
distinct), and let P(x) be a polynomial. Then the eigenvalues of P(A)
are P(λ1, . . . , λn).

Theorem (Cayley-Hamilton Theorem)
Let P(λ) = det(A− λIn) be the characteristic polynomial of an n-by-n
matrix A. Then A is a matrix root of its own characteristic polynomial:
P(A) = 0.

Theorem (Perron-Frobenius Theorem)
Any square matrix with positive entries has a unique eigenvector with
positive entries (up to a multiplication by a positive scalar), and the
corresponding eigenvalue has multiplicity one and is strictly greater than
the absolute value of any other eigenvalue.
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Cayley-Hamilton Example
Problem
Let A and B be 2-by-2 matrices, each with determinant 1. Prove that:

tr(AB)− tr(A)tr(B) + tr(AB−1) = 0

(From Putnam and Beyond)

Proof.
By Cayley-Hamilton, we must have:

B2 − (tr(B))B + det(B) = 0

Multiplying on the left by AB−1, we obtain:

AB − (tr(B))A + AB−1 = 0

and then taking the trace we find

tr(AB)− tr(A)tr(B) + tr(AB−1) = 0
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A Putnam Problem

Problem
Let Z denote the set of points in Rn whose coordinates are 0 or 1. (Thus
Z has 2n elements, which are the vertices of a unit hypercube in Rn.)
Given a vector subspace V of Rn, let Z (V ) denote the number of
members of Z that lie in V . Let k be given, 0 ≤ k ≤ n. Find the
maximum, over all vector subspaces V ⊆ Rn of dimension k, of the
number of points in Z (V ).

Any guesses?

Intuitively, it seems clear that this should be 2k . Certainly in two or three
dimensions, it’s impossible to visualize a k-dimensional subspace that
intersects the unit square or cube in more than 2k places. But how do we
make this rigorous?

Review: the dimension of a vector space equals the size of the largest set
of linearly independent elements you can find in the vector space.
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An awesome solution

Solution
Let V be a k-dimensional subspace. Form the matrix whose rows are the
elements of V ∩ Z. By construction, it has row rank of at most k.
Therefore, it also has column rank of at most k; thus we can choose k
coordinates such that each point of Z ∩ V is determined by k of these
coordinates. Since each coordinate of a point in Z can only take two
values, V ∩ Z can have at most 2k elements. (proof from Catalin Zara)
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