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Number Theory has a LOT of Theory

When I think of number theory, the following machineries come to mind

Congruences and divisibility

Euler’s Theorem

Chinese remainder

Order of an element

Primitive roots

Quadratic Residues

Algebraic Field Extensions

Hensel’s Lemma

Dirichlet Series

Pell’s Equations

Farey Sequences

Continued Fractions

Arithmetic Functions

Rings and Modules

We will only cover some of the basic techniques. For information on
some of the other techniques, see Naoki Sato’s notes, available at
www.artofproblemsolving.com/Resources/Papers/SatoNT.pdf.
(Many of the examples are plagiarized from this source.)
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Congruences and divisibility

We say that a ≡ b (mod n) if n|a− b.
Useful properties:

If a ≡ b and c ≡ d (mod n), then a− c ≡ b − d (mod n) and
ac ≡ bd (mod n).

If n|a and n|b, then n|ua + vb.

∀n ∈ Z, n2 ≡ 0, 1 (mod 4).

∀n ∈ Z, n2 ≡ 0, 1, 4 (mod 4). (0, 1, 4 are “quadratic residues” mod
8.)

If a and b are co-prime, then ∃u such that au ≡ 1 (mod n). The
“multiplicative inverse” is unique up to equivalence class.
Equivalently, ∃u, v ∈ Z such that, au + bv = 1.
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Euler’s Theorem

Definition
φ(n) denotes the number of positive integers less than n and relatively
prime to n. This is the Euler’s Totient function.

Theorem
If n has prime factors p1, · · · pk , then

φ(n) = n
k∏

i=1

(1− 1

pi
)
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Euler’s Theorem

Theorem (Euler’s Theorem)
If a is relatively prime to n, then aφ(n) ≡ 1 (mod m).
In particular, if p - a, then ap−1 ≡ 1 (mod p) (Fermat’s little theorem).

Proof.
Let a1, a2, · · · , aφ(n) be the positive integers less than n and relatively
prime to n. Note that aa1, aa2, · · · , aaφ(n) is a permultation of these
numbers. (This is because aai ≡ aaj implies ai ≡ aj , so this is an
injection of a finite set to itself.)
Thus,

a1a2 · · · aφ(n) ≡ (aa1)(aa2) · · · (aaφ(n))
≡ aφ(n)a1a2 · · · aφ(n)

=⇒ 1 ≡ aφ(n) (mod n)
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Chinese Remainder Theorem

Theorem (Chinese Remainder)
If a1, a2, · · · , ak are integers and m1,m2, · · · ,mk are pairwise relatively
prime integers, then the system of congruences

x ≡ a1 (mod m1)
...

x ≡ ak (mod mk)

has a unique solution mod m = m1m2 · · ·mk .

Proof.
Since m

mi
is relatively prime to mi , ∃ti s.t. ti · m

mi
≡ 1 (mod mi ). Let

si = ti · m
mi

.
∀j 6= i , si ≡ 0 (mod mj), and si ≡ 1 (mod mi ). Hence,
x = a1s1 + · · ·+ aksk is a solution.
To see uniqueness, if x ′ is another solution, then x − x ′ ≡ 0 (mod mi ) for
all i , so x − x ′ ≡ 0 (mod m).
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Chinese Remainder Theorem

Example (From Sunzi Suanjing)
There are certain things whose number is unknown. Repeatedly divided
by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder
is 2. What will be the (smallest such) number?

Solution.
−35× 2 + 21× 3 + 15× 2 = 21.
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Fun with Divisibility

Example
Find all positive integers d such that d divides both n2 + 1 and
(n + 1)2 + 1 for some integer n.

Proof.
Since (n + 1)2 + 1 = n2 + 2n + 2, d |[n2 + 2n + 2]− [n2 + 1] = 2n + 1
So d |4n2 + 4n + 1
So d |4(n2 + 2n + 2)− (4n2 + 4n + 1) = 4n + 7
So d |(4n + 7)− 2(2n + 1) = 5. So d |5. So d ∈ {1, 5}.
Setting n = 2 shows that both values can be achieved.
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“Big” Results using Little Theorem

Problem
If p is a prime and n is an integer such that p|(4n2 + 1) then
p ≡ 1 (mod 4).

Solution.
Clearly, p cannot be 2, so we need to show that p 6≡ 3 (mod 4). Suppose
on the contrary that p = 4k + 3 for some k. Let y = 2n, note that y is
relatively prime to p.
By Fermat’s Little Theorem,

yp−1 ≡ 1 (mod p)

However, y2 ≡ −1 (mod p), so

yp−1 ≡ (y2)2k+1 ≡ −1 (mod p)

Contradiction.
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Order

If a is relatively prime to n, then let d be the smallest positive integer
such that ad ≡ 1 (mod n). We call d the order of a modulo m, denoted
by ordn(a).

Theorem
If a is relatively prime to n and am ≡ 1 (mod n), then ord(a)|m.

Example
Show that the order of 2 modulo 101 is 100.

Solution.
ord(2)|φ(101) = 100. If ord(2) < 100, then either ord(2)|50 or
ord(2)|20.
But it is straightforward to check that 250 ≡ −1 and
220 ≡ −6 (mod 101).
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Primitive Root

We know that modulo n, ord(g)|φ(n). We call g a primitive root if
ord(g) = φ(n).

Theorem
Positive integer n has a primitive root iff n is one of 2, 4, pk , 2pk , where p
is an odd prime.

Problem
Show that if p is an odd prime, then the congruence x4 ≡ −1 (mod p)
has a solution iff p ≡ 1 (mod 8).

Solution.
Let x = gd where g is a primitive root mod p. Then we have
4d 6≡ 0 (mod p − 1) (since g4d 6≡ 1 (mod p)).
But 8d ≡ 0 (mod p − 1) (since g8d ≡ 1 (mod p)).
Thus 8|p − 1.
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Another Example

Problem
Show that 2 is a primitive root modulo 3n for all n ≥ 1.

Solution.
Note that φ(3k) = 2 · 3k−1. It suffices to prove by induction that ∀k ≥ 1,

22·3k−1

≡ 1 + 3k (mod 3n+1)

Induction step:

22·3k−1

= 1 + 3k + 3k+1m

⇒ 22·3k

= (1 + 3k + 3k+1m)3

= 1 + 3k+1 + 3k+2M

The result follows.

In particular, this implies that if 2n ≡ −1 (mod 3k), then 3k−1|n.
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One of my Favorite Solutions

Problem
(IMO 1990) Find all positive integers n > 1 such that 2n+1

n2 is an integer.

Solution.
Clearly, n must be odd. Let 3k be the highest power of 3 deviding n.
Then 32k |n2|2n + 1, (2n ≡ −1 (mod 32k)). By previous slide, this implies
32k−1|n. So 2k − 1 ≤ k, k ≤ 1. This shows that n has at most one
factor of 3. Note that n = 3 is a solution. We show that this is the only
solution.
Suppose that n has a prime factor greater than 3; let p be the least such
prime. Then 2n ≡ −1 (mod p). Let d be the order of 2 modulo p. Since
22n ≡ 1, d |2n. If d is odd, then d |n, which implies 2n ≡ 1, contradiction.
So d = 2d1. 2d1|2n, so d1|n.
However, 2d1 = d |(p− 1), so d1| p−1

2 . This implies d1 < p. By minimality
d1 ∈ {1, 3}. If d1 = 1, then d = 2, and 22 ≡ 1 (mod p), contradiction. If
d1 = 3, then d = 6, and 26 ≡ 1 (mod p), so p|63, which implies p = 7.
But the order of 2 modulo 7 is 3, which is odd, contradiction.
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Ad hoc techniques

Often times the solution of a number theory problem does not involve
heavy machinery, but use other “ad-hoc” ideas. Here’s an example.

Problem
Show that for any positive integer N, there exists a multiple of N that
consists only of 1s and 0s. Furthermore, if N is relative prime to 10, show
that there exists a multiple that consists only of 1s.

Any ideas?

Pigeonhole Principle!

Solution.
Consider the N + 1 integers 1, 11, 111, · · · , 111 · · · 1 (N + 1 1s). When
divided by N they leave N + 1 remainders. By the pigeonhold principle,
two of these remainders are equal, so the difference in the corresponding
integer is divisible by N. But the difference is of the form 111...000.
If N is relatively prime to 10, then we can divide out all powers of 10, to
obtain an integer of the form 11...1.
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Ad hoc techniques

The following problem illustrates that cleverness trumps heavy machinery.

Problem
(IMO 1988) Let a and b be two positive integers such that

ab + 1|a2 + b2. Show that a2+b2

ab+1 is a perfect square.

Solution.
Let k be the ratio. If a = b then 2a = k(a2 + 1). This implies
a = b = k = 1.
If a < b, then let (a, b) be a solution of k(ab + 1) = a2 + b2 with the
smallest min{a, b}. Note that b satisfies the quadratic

b2 − kab + a2 − k = 0

Note that ka− b is the other root of this quadratic, and it is also an
integer (It is straightforward to show that ka− b > 0.) Hence,
(a′, b′) = (ka− b, a) also satisfies k(a′b′ + 1) = a′2 + b′2.

But ka− b = a2−k
b < a. This contradicts the choice (a, b).
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Conclusion

When you come upon a number theory problem, do not despair:

Try small cases to get intuition.

Consider modulo some prime p and try to apply the theory of
congruences.

Consider concepts such as order or primitive root.

Be random and try something creative!

Course Logistics: This is the last lecture of this course. Next week is
thanksgiving, and the week after that (our final class) is a Putnam
practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec.
5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone
enrolled in the class. We need YOU to help keep our pizza fund alive!

Thanks to everyone who attended our talks! We hope that this
course was helpful in making you a better problem solver!

Peng Shi, Duke University Number Theory, “The queen of mathematics” – Gauss 16/16



Conclusion

When you come upon a number theory problem, do not despair:

Try small cases to get intuition.

Consider modulo some prime p and try to apply the theory of
congruences.

Consider concepts such as order or primitive root.

Be random and try something creative!

Course Logistics: This is the last lecture of this course. Next week is
thanksgiving, and the week after that (our final class) is a Putnam
practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec.
5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone
enrolled in the class. We need YOU to help keep our pizza fund alive!

Thanks to everyone who attended our talks! We hope that this
course was helpful in making you a better problem solver!

Peng Shi, Duke University Number Theory, “The queen of mathematics” – Gauss 16/16



Conclusion

When you come upon a number theory problem, do not despair:

Try small cases to get intuition.

Consider modulo some prime p and try to apply the theory of
congruences.

Consider concepts such as order or primitive root.

Be random and try something creative!

Course Logistics: This is the last lecture of this course. Next week is
thanksgiving, and the week after that (our final class) is a Putnam
practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec.
5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone
enrolled in the class. We need YOU to help keep our pizza fund alive!

Thanks to everyone who attended our talks! We hope that this
course was helpful in making you a better problem solver!

Peng Shi, Duke University Number Theory, “The queen of mathematics” – Gauss 16/16



Conclusion

When you come upon a number theory problem, do not despair:

Try small cases to get intuition.

Consider modulo some prime p and try to apply the theory of
congruences.

Consider concepts such as order or primitive root.

Be random and try something creative!

Course Logistics: This is the last lecture of this course. Next week is
thanksgiving, and the week after that (our final class) is a Putnam
practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec.
5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone
enrolled in the class. We need YOU to help keep our pizza fund alive!

Thanks to everyone who attended our talks! We hope that this
course was helpful in making you a better problem solver!

Peng Shi, Duke University Number Theory, “The queen of mathematics” – Gauss 16/16



Conclusion

When you come upon a number theory problem, do not despair:

Try small cases to get intuition.

Consider modulo some prime p and try to apply the theory of
congruences.

Consider concepts such as order or primitive root.

Be random and try something creative!

Course Logistics: This is the last lecture of this course. Next week is
thanksgiving, and the week after that (our final class) is a Putnam
practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec.
5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone
enrolled in the class. We need YOU to help keep our pizza fund alive!

Thanks to everyone who attended our talks! We hope that this
course was helpful in making you a better problem solver!

Peng Shi, Duke University Number Theory, “The queen of mathematics” – Gauss 16/16



Conclusion

When you come upon a number theory problem, do not despair:

Try small cases to get intuition.

Consider modulo some prime p and try to apply the theory of
congruences.

Consider concepts such as order or primitive root.

Be random and try something creative!

Course Logistics: This is the last lecture of this course. Next week is
thanksgiving, and the week after that (our final class) is a Putnam
practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec.
5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone
enrolled in the class. We need YOU to help keep our pizza fund alive!

Thanks to everyone who attended our talks! We hope that this
course was helpful in making you a better problem solver!

Peng Shi, Duke University Number Theory, “The queen of mathematics” – Gauss 16/16



Conclusion

When you come upon a number theory problem, do not despair:

Try small cases to get intuition.

Consider modulo some prime p and try to apply the theory of
congruences.

Consider concepts such as order or primitive root.

Be random and try something creative!

Course Logistics: This is the last lecture of this course. Next week is
thanksgiving, and the week after that (our final class) is a Putnam
practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec.
5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone
enrolled in the class. We need YOU to help keep our pizza fund alive!

Thanks to everyone who attended our talks! We hope that this
course was helpful in making you a better problem solver!

Peng Shi, Duke University Number Theory, “The queen of mathematics” – Gauss 16/16



Conclusion

When you come upon a number theory problem, do not despair:

Try small cases to get intuition.

Consider modulo some prime p and try to apply the theory of
congruences.

Consider concepts such as order or primitive root.

Be random and try something creative!

Course Logistics: This is the last lecture of this course. Next week is
thanksgiving, and the week after that (our final class) is a Putnam
practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec.
5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone
enrolled in the class. We need YOU to help keep our pizza fund alive!

Thanks to everyone who attended our talks! We hope that this
course was helpful in making you a better problem solver!

Peng Shi, Duke University Number Theory, “The queen of mathematics” – Gauss 16/16


