# "The queen of mathematics" – Gauss

#### Peng Shi

Department of Mathematics Duke University

November 18, 2009

# Number Theory has a LOT of Theory

When I think of number theory, the following machineries come to mind

# Number Theory has a LOT of Theory

When I think of number theory, the following machineries come to mind

- Congruences and divisibility
- Euler's Theorem
- Chinese remainder
- Order of an element
- Primitive roots
- Quadratic Residues
- Algebraic Field Extensions

- Hensel's Lemma
- Dirichlet Series
- Pell's Equations
- Farey Sequences
- Continued Fractions
- Arithmetic Functions
- Rings and Modules

# Number Theory has a LOT of Theory

When I think of number theory, the following machineries come to mind

- Congruences and divisibility
- Euler's Theorem
- Chinese remainder
- Order of an element
- Primitive roots
- Quadratic Residues
- Algebraic Field Extensions

- Hensel's Lemma
- Dirichlet Series
- Pell's Equations
- Farey Sequences
- Continued Fractions
- Arithmetic Functions
- Rings and Modules

We will only cover some of the basic techniques. For information on some of the other techniques, see Naoki Sato's notes, available at www.artofproblemsolving.com/Resources/Papers/SatoNT.pdf. (Many of the examples are plagiarized from this source.)

We say that  $a \equiv b \pmod{n}$  if n|a - b. Useful properties:

▶ If  $a \equiv b$  and  $c \equiv d \pmod{n}$ , then  $a - c \equiv b - d \pmod{n}$  and  $ac \equiv bd \pmod{n}$ .

We say that  $a \equiv b \pmod{n}$  if n|a - b. Useful properties:

- If  $a \equiv b$  and  $c \equiv d \pmod{n}$ , then  $a c \equiv b d \pmod{n}$  and  $ac \equiv bd \pmod{n}$ .
- If n|a and n|b, then n|ua + vb.

We say that  $a \equiv b \pmod{n}$  if n|a - b. Useful properties:

- If  $a \equiv b$  and  $c \equiv d \pmod{n}$ , then  $a c \equiv b d \pmod{n}$  and  $ac \equiv bd \pmod{n}$ .
- If n|a and n|b, then n|ua + vb.

$$\flat \ \forall n \in \mathbb{Z}, \ n^2 \equiv 0,1 \pmod{4}.$$

We say that  $a \equiv b \pmod{n}$  if n|a - b. Useful properties:

- If  $a \equiv b$  and  $c \equiv d \pmod{n}$ , then  $a c \equiv b d \pmod{n}$  and  $ac \equiv bd \pmod{n}$ .
- If n|a and n|b, then n|ua + vb.

$$\flat \ \forall n \in \mathbb{Z}, \ n^2 \equiv 0, 1 \pmod{4}.$$

▶  $\forall n \in \mathbb{Z}$ ,  $n^2 \equiv 0, 1, 4 \pmod{4}$ . (0, 1, 4 are "quadratic residues" mod 8.)

We say that  $a \equiv b \pmod{n}$  if n|a - b. Useful properties:

• If  $a \equiv b$  and  $c \equiv d \pmod{n}$ , then  $a - c \equiv b - d \pmod{n}$  and  $ac \equiv bd \pmod{n}$ .

• If 
$$n|a$$
 and  $n|b$ , then  $n|ua + vb$ .

$$\forall n \in \mathbb{Z}, n^2 \equiv 0, 1 \pmod{4}.$$

- ▶  $\forall n \in \mathbb{Z}$ ,  $n^2 \equiv 0, 1, 4 \pmod{4}$ . (0, 1, 4 are "quadratic residues" mod 8.)
- If a and b are co-prime, then ∃u such that au ≡ 1 (mod n). The "multiplicative inverse" is unique up to equivalence class. Equivalently, ∃u, v ∈ Z such that, au + bv = 1.



#### Definition

 $\phi(n)$  denotes the number of positive integers less than *n* and relatively prime to *n*. This is the Euler's Totient function.



#### Definition

 $\phi(n)$  denotes the number of positive integers less than *n* and relatively prime to *n*. This is the Euler's Totient function.

#### Theorem

If *n* has prime factors  $p_1, \cdots p_k$ , then

$$\phi(n) = n \prod_{i=1}^{k} (1 - \frac{1}{p_i})$$

Theorem (Euler's Theorem)

If a is relatively prime to n, then  $a^{\phi(n)} \equiv 1 \pmod{m}$ . In particular, if  $p \nmid a$ , then  $a^{p-1} \equiv 1 \pmod{p}$  (Fermat's little theorem).

### Theorem (Euler's Theorem)

If a is relatively prime to n, then  $a^{\phi(n)} \equiv 1 \pmod{m}$ . In particular, if  $p \nmid a$ , then  $a^{p-1} \equiv 1 \pmod{p}$  (Fermat's little theorem).

#### Proof.

Let  $a_1, a_2, \dots, a_{\phi(n)}$  be the positive integers less than *n* and relatively prime to *n*. Note that  $aa_1, aa_2, \dots, aa_{\phi(n)}$  is a permultation of these numbers.

### Theorem (Euler's Theorem)

If a is relatively prime to n, then  $a^{\phi(n)} \equiv 1 \pmod{m}$ . In particular, if  $p \nmid a$ , then  $a^{p-1} \equiv 1 \pmod{p}$  (Fermat's little theorem).

#### Proof.

Let  $a_1, a_2, \dots, a_{\phi(n)}$  be the positive integers less than *n* and relatively prime to *n*. Note that  $aa_1, aa_2, \dots, aa_{\phi(n)}$  is a permultation of these numbers. (This is because  $aa_i \equiv aa_j$  implies  $a_i \equiv a_j$ , so this is an injection of a finite set to itself.)

### Theorem (Euler's Theorem)

If a is relatively prime to n, then  $a^{\phi(n)} \equiv 1 \pmod{m}$ . In particular, if  $p \nmid a$ , then  $a^{p-1} \equiv 1 \pmod{p}$  (Fermat's little theorem).

#### Proof.

Let  $a_1, a_2, \dots, a_{\phi(n)}$  be the positive integers less than *n* and relatively prime to *n*. Note that  $aa_1, aa_2, \dots, aa_{\phi(n)}$  is a permultation of these numbers. (This is because  $aa_i \equiv aa_j$  implies  $a_i \equiv a_j$ , so this is an injection of a finite set to itself.) Thus,

$$egin{array}{rcl} a_1a_2\cdots a_{\phi(n)}&\equiv&(aa_1)(aa_2)\cdots (aa_{\phi(n)})\ &\equiv&a^{\phi(n)}a_1a_2\cdots a_{\phi(n)}\ &\Longrightarrow 1&\equiv&a^{\phi(n)}\ ({
m mod}\ n) \end{array}$$

### Theorem (Chinese Remainder)

If  $a_1, a_2, \dots, a_k$  are integers and  $m_1, m_2, \dots, m_k$  are pairwise relatively prime integers, then the system of congruences

 $x \equiv a_1 \pmod{m_1}$  $\vdots$  $x \equiv a_k \pmod{m_k}$ 

has a unique solution mod  $m = m_1 m_2 \cdots m_k$ .

### Theorem (Chinese Remainder)

If  $a_1, a_2, \dots, a_k$  are integers and  $m_1, m_2, \dots, m_k$  are pairwise relatively prime integers, then the system of congruences

 $x \equiv a_1 \pmod{m_1}$  $\vdots$  $x \equiv a_k \pmod{m_k}$ 

has a unique solution mod  $m = m_1 m_2 \cdots m_k$ .

#### Proof.

Since  $\frac{m}{m_i}$  is relatively prime to  $m_i$ ,  $\exists t_i \text{ s.t. } t_i \cdot \frac{m}{m_i} \equiv 1 \pmod{m_i}$ . Let  $s_i = t_i \cdot \frac{m}{m_i}$ .

### Theorem (Chinese Remainder)

If  $a_1, a_2, \dots, a_k$  are integers and  $m_1, m_2, \dots, m_k$  are pairwise relatively prime integers, then the system of congruences

 $x \equiv a_1 \pmod{m_1}$  $\vdots$  $x \equiv a_k \pmod{m_k}$ 

has a unique solution mod  $m = m_1 m_2 \cdots m_k$ .

#### Proof.

Since  $\frac{m}{m_i}$  is relatively prime to  $m_i$ ,  $\exists t_i \text{ s.t. } t_i \cdot \frac{m}{m_i} \equiv 1 \pmod{m_i}$ . Let  $s_i = t_i \cdot \frac{m}{m_i}$ .  $\forall j \neq i, s_i \equiv 0 \pmod{m_j}$ , and  $s_i \equiv 1 \pmod{m_i}$ . Hence,  $x = a_1 s_1 + \cdots + a_k s_k$  is a solution.

### Theorem (Chinese Remainder)

If  $a_1, a_2, \dots, a_k$  are integers and  $m_1, m_2, \dots, m_k$  are pairwise relatively prime integers, then the system of congruences

 $x \equiv a_1 \pmod{m_1}$  $\vdots$  $x \equiv a_k \pmod{m_k}$ 

has a unique solution mod  $m = m_1 m_2 \cdots m_k$ .

#### Proof.

Since  $\frac{m}{m_i}$  is relatively prime to  $m_i$ ,  $\exists t_i$  s.t.  $t_i \cdot \frac{m}{m_i} \equiv 1 \pmod{m_i}$ . Let  $s_i = t_i \cdot \frac{m}{m_i}$ .  $\forall j \neq i, s_i \equiv 0 \pmod{m_j}$ , and  $s_i \equiv 1 \pmod{m_i}$ . Hence,  $x = a_1 s_1 + \dots + a_k s_k$  is a solution. To see uniqueness, if x' is another solution, then  $x - x' \equiv 0 \pmod{m_i}$  for all i, so  $x - x' \equiv 0 \pmod{m}$ .

### Example (From Sunzi Suanjing)

There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder is 2. What will be the (smallest such) number?

### Example (From Sunzi Suanjing)

There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder is 2. What will be the (smallest such) number?

#### Solution.

 $-35 \times 2 + 21 \times 3 + 15 \times 2 = 21.$ 

### Example (From Sunzi Suanjing)

There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder is 2. What will be the (smallest such) number?

#### Solution.

 $-35 \times 2 + 21 \times 3 + 15 \times 2 = 21.$ 

孫子歌 SunziGe

三人同行七十里 五樹梅花廿一枝 七子團圓正月半 一百零五轉回起

#### Example

Find all positive integers d such that d divides both  $n^2 + 1$  and  $(n+1)^2 + 1$  for some integer n.

#### Example

Find all positive integers d such that d divides both  $n^2 + 1$  and  $(n+1)^2 + 1$  for some integer n.

### *Proof.* Since $(n + 1)^2 + 1 = n^2 + 2n + 2$ , $d|[n^2 + 2n + 2] - [n^2 + 1] = 2n + 1$

#### Example

Find all positive integers d such that d divides both  $n^2 + 1$  and  $(n+1)^2 + 1$  for some integer n.

#### Proof. Since $(n + 1)^2 + 1 = n^2 + 2n + 2$ , $d|[n^2 + 2n + 2] - [n^2 + 1] = 2n + 1$ So $d|4n^2 + 4n + 1$

#### Example

Find all positive integers d such that d divides both  $n^2 + 1$  and  $(n+1)^2 + 1$  for some integer n.

#### Proof. Since $(n + 1)^2 + 1 = n^2 + 2n + 2$ , $d|[n^2 + 2n + 2] - [n^2 + 1] = 2n + 1$ So $d|4n^2 + 4n + 1$ So $d|4(n^2 + 2n + 2) - (4n^2 + 4n + 1) = 4n + 7$

#### Example

Find all positive integers d such that d divides both  $n^2 + 1$  and  $(n+1)^2 + 1$  for some integer n.

#### Proof. Since $(n + 1)^2 + 1 = n^2 + 2n + 2$ , $d|[n^2 + 2n + 2] - [n^2 + 1] = 2n + 1$ So $d|4n^2 + 4n + 1$ So $d|4(n^2 + 2n + 2) - (4n^2 + 4n + 1) = 4n + 7$ So d|(4n + 7) - 2(2n + 1) = 5. So d|5. So $d \in \{1, 5\}$ .

#### Example

Find all positive integers d such that d divides both  $n^2 + 1$  and  $(n+1)^2 + 1$  for some integer n.

#### Proof. Since $(n + 1)^2 + 1 = n^2 + 2n + 2$ , $d|[n^2 + 2n + 2] - [n^2 + 1] = 2n + 1$ So $d|4n^2 + 4n + 1$ So $d|4(n^2 + 2n + 2) - (4n^2 + 4n + 1) = 4n + 7$ So d|(4n + 7) - 2(2n + 1) = 5. So d|5. So $d \in \{1, 5\}$ . Setting n = 2 shows that both values can be achieved.

#### Problem If p is a prime and n is an integer such that $p|(4n^2 + 1)$ then $p \equiv 1 \pmod{4}$ .

#### Problem

If p is a prime and n is an integer such that  $p|(4n^2 + 1)$  then  $p \equiv 1 \pmod{4}$ .

#### Solution.

Clearly, p cannot be 2, so we need to show that  $p \not\equiv 3 \pmod{4}$ . Suppose on the contrary that p = 4k + 3 for some k. Let y = 2n, note that y is relatively prime to p. By Fermat's Little Theorem,

 $y^{p-1} \equiv 1 \pmod{p}$ 

#### Problem

If p is a prime and n is an integer such that  $p|(4n^2 + 1)$  then  $p \equiv 1 \pmod{4}$ .

#### Solution.

Clearly, p cannot be 2, so we need to show that  $p \not\equiv 3 \pmod{4}$ . Suppose on the contrary that p = 4k + 3 for some k. Let y = 2n, note that y is relatively prime to p. By Fermat's Little Theorem,

$$y^{p-1} \equiv 1 \pmod{p}$$

However,  $y^2 \equiv -1 \pmod{p}$ , so

#### Problem

If p is a prime and n is an integer such that  $p|(4n^2 + 1)$  then  $p \equiv 1 \pmod{4}$ .

#### Solution.

Clearly, p cannot be 2, so we need to show that  $p \not\equiv 3 \pmod{4}$ . Suppose on the contrary that p = 4k + 3 for some k. Let y = 2n, note that y is relatively prime to p. By Fermat's Little Theorem,

$$y^{p-1} \equiv 1 \pmod{p}$$

However,  $y^2 \equiv -1 \pmod{p}$ , so

$$y^{p-1} \equiv (y^2)^{2k+1} \equiv -1 \pmod{p}$$

Contradiction.

Peng Shi, Duke University

If a is relatively prime to n, then let d be the smallest positive integer such that  $a^d \equiv 1 \pmod{n}$ . We call d the order of a modulo m, denoted by  $ord_n(a)$ .

If a is relatively prime to n, then let d be the smallest positive integer such that  $a^d \equiv 1 \pmod{n}$ . We call d the order of a modulo m, denoted by  $ord_n(a)$ .

#### Theorem

If a is relatively prime to n and  $a^m \equiv 1 \pmod{n}$ , then ord(a)|m.

If a is relatively prime to n, then let d be the smallest positive integer such that  $a^d \equiv 1 \pmod{n}$ . We call d the order of a modulo m, denoted by  $ord_n(a)$ .

#### Theorem

If a is relatively prime to n and  $a^m \equiv 1 \pmod{n}$ , then ord(a)|m.

### Example

Show that the order of 2 modulo 101 is 100.

If a is relatively prime to n, then let d be the smallest positive integer such that  $a^d \equiv 1 \pmod{n}$ . We call d the order of a modulo m, denoted by  $ord_n(a)$ .

#### Theorem

If a is relatively prime to n and  $a^m \equiv 1 \pmod{n}$ , then ord(a)|m.

#### Example

Show that the order of 2 modulo 101 is 100.

#### Solution. $ord(2)|\phi(101) = 100$ . If ord(2) < 100, then either ord(2)|50 or ord(2)|20.

## Order

If a is relatively prime to n, then let d be the smallest positive integer such that  $a^d \equiv 1 \pmod{n}$ . We call d the order of a modulo m, denoted by  $ord_n(a)$ .

#### Theorem

If a is relatively prime to n and  $a^m \equiv 1 \pmod{n}$ , then ord(a)|m.

#### Example

Show that the order of 2 modulo 101 is 100.

```
Solution.

ord(2)|\phi(101) = 100. If ord(2) < 100, then either ord(2)|50 or ord(2)|20.

But it is straightforward to check that 2^{50} \equiv -1 and 2^{20} \equiv -6 \pmod{101}.
```

We know that modulo *n*,  $ord(g)|\phi(n)$ . We call *g* a *primitive root* if  $ord(g) = \phi(n)$ .

We know that modulo *n*,  $ord(g)|\phi(n)$ . We call *g* a *primitive root* if  $ord(g) = \phi(n)$ .

#### Theorem

Positive integer n has a primitive root iff n is one of  $2, 4, p^k, 2p^k$ , where p is an odd prime.

We know that modulo *n*,  $ord(g)|\phi(n)$ . We call *g* a *primitive root* if  $ord(g) = \phi(n)$ .

#### Theorem

Positive integer n has a primitive root iff n is one of  $2, 4, p^k, 2p^k$ , where p is an odd prime.

#### Problem

Show that if p is an odd prime, then the congruence  $x^4 \equiv -1 \pmod{p}$  has a solution iff  $p \equiv 1 \pmod{8}$ .

#### Solution.

Let  $x = g^d$  where g is a primitive root mod p. Then we have  $4d \not\equiv 0 \pmod{p-1}$  (since  $g^{4d} \not\equiv 1 \pmod{p}$ ).

We know that modulo *n*,  $ord(g)|\phi(n)$ . We call *g* a *primitive root* if  $ord(g) = \phi(n)$ .

#### Theorem

Positive integer n has a primitive root iff n is one of  $2, 4, p^k, 2p^k$ , where p is an odd prime.

#### Problem

Show that if p is an odd prime, then the congruence  $x^4 \equiv -1 \pmod{p}$  has a solution iff  $p \equiv 1 \pmod{8}$ .

#### Solution.

Let  $x = g^d$  where g is a primitive root mod p. Then we have  $4d \not\equiv 0 \pmod{p-1}$  (since  $g^{4d} \not\equiv 1 \pmod{p}$ ). But  $8d \equiv 0 \pmod{p-1}$  (since  $g^{8d} \equiv 1 \pmod{p}$ ).

We know that modulo *n*,  $ord(g)|\phi(n)$ . We call *g* a *primitive root* if  $ord(g) = \phi(n)$ .

#### Theorem

Positive integer n has a primitive root iff n is one of  $2, 4, p^k, 2p^k$ , where p is an odd prime.

#### Problem

Show that if p is an odd prime, then the congruence  $x^4 \equiv -1 \pmod{p}$  has a solution iff  $p \equiv 1 \pmod{8}$ .

#### Solution.

Let  $x = g^d$  where g is a primitive root mod p. Then we have  $4d \not\equiv 0 \pmod{p-1}$  (since  $g^{4d} \not\equiv 1 \pmod{p}$ ). But  $8d \equiv 0 \pmod{p-1}$  (since  $g^{8d} \equiv 1 \pmod{p}$ ). Thus 8|p-1.

Problem

Show that 2 is a primitive root modulo  $3^n$  for all  $n \ge 1$ .

#### Problem

Show that 2 is a primitive root modulo  $3^n$  for all  $n \ge 1$ .

#### Solution.

Note that  $\phi(3^k) = 2 \cdot 3^{k-1}$ . It suffices to prove by induction that  $\forall k \ge 1$ ,

$$2^{2 \cdot 3^{k-1}} \equiv 1 + 3^k \pmod{3^{n+1}}$$

#### Problem

Show that 2 is a primitive root modulo  $3^n$  for all  $n \ge 1$ .

#### Solution.

Note that  $\phi(3^k) = 2 \cdot 3^{k-1}$ . It suffices to prove by induction that  $\forall k \ge 1$ ,

$$2^{2 \cdot 3^{k-1}} \equiv 1 + 3^k \pmod{3^{n+1}}$$

Induction step:

$$\begin{array}{rcl} 2^{2\cdot 3^{k-1}} &=& 1+3^k+3^{k+1}m\\ \Rightarrow & 2^{2\cdot 3^k} &=& (1+3^k+3^{k+1}m)^3\\ &=& 1+3^{k+1}+3^{k+2}M \end{array}$$

The result follows.

#### Problem

Show that 2 is a primitive root modulo  $3^n$  for all  $n \ge 1$ .

#### Solution.

Note that  $\phi(3^k) = 2 \cdot 3^{k-1}$ . It suffices to prove by induction that  $\forall k \ge 1$ ,

$$2^{2 \cdot 3^{k-1}} \equiv 1 + 3^k \pmod{3^{n+1}}$$

Induction step:

$$\begin{array}{rcl} 2^{2 \cdot 3^{k-1}} &=& 1+3^k+3^{k+1}m \\ \Rightarrow & 2^{2 \cdot 3^k} &=& (1+3^k+3^{k+1}m)^3 \\ &=& 1+3^{k+1}+3^{k+2}M \end{array}$$

The result follows.

In particular, this implies that if  $2^n \equiv -1 \pmod{3^k}$ , then  $3^{k-1}|n$ .

Peng Shi, Duke University

Number Theory, "The queen of mathematics" - Gauss

Problem (IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

## Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ .

## Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ .

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ .

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ . Let *d* be the order of 2 modulo *p*. Since  $2^{2n} \equiv 1$ , d|2n.

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ . Let *d* be the order of 2 modulo *p*. Since  $2^{2n} \equiv 1$ , d|2n. If *d* is odd, then d|n, which implies  $2^n \equiv 1$ , contradiction. So  $d = 2d_1$ .

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ . Let *d* be the order of 2 modulo *p*. Since  $2^{2n} \equiv 1$ , d|2n. If *d* is odd, then d|n, which implies  $2^n \equiv 1$ , contradiction. So  $d = 2d_1$ .  $2d_1|2n$ , so  $d_1|n$ .

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ . Let *d* be the order of 2 modulo *p*. Since  $2^{2n} \equiv 1$ , d|2n. If *d* is odd, then d|n, which implies  $2^n \equiv 1$ , contradiction. So  $d = 2d_1$ .  $2d_1|2n$ , so  $d_1|n$ . However,  $2d_1 = d|(p-1)$ , so  $d_1|\frac{p-1}{2}$ . This implies  $d_1 < p$ .

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ . Let *d* be the order of 2 modulo *p*. Since  $2^{2n} \equiv 1$ , d|2n. If *d* is odd, then d|n, which implies  $2^n \equiv 1$ , contradiction. So  $d = 2d_1$ .  $2d_1|2n$ , so  $d_1|n$ . However,  $2d_1 = d|(p-1)$ , so  $d_1|\frac{p-1}{2}$ . This implies  $d_1 < p$ . By minimality  $d_1 \in \{1,3\}$ .

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ . Let *d* be the order of 2 modulo *p*. Since  $2^{2n} \equiv 1$ , d|2n. If *d* is odd, then d|n, which implies  $2^n \equiv 1$ , contradiction. So  $d = 2d_1$ .  $2d_1|2n$ , so  $d_1|n$ . However,  $2d_1 = d|(p-1)$ , so  $d_1|\frac{p-1}{2}$ . This implies  $d_1 < p$ . By minimality

 $d_1 \in \{1,3\}$ . If  $d_1 = 1$ , then d = 2, and  $2^2 \equiv 1 \pmod{p}$ , contradiction.

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ . Let *d* be the order of 2 modulo *p*. Since  $2^{2n} \equiv 1$ , d|2n. If *d* is odd, then d|n, which implies  $2^n \equiv 1$ , contradiction. So  $d = 2d_1$ .  $2d_1|2n$ , so  $d_1|n$ . However,  $2d_1 = d|(p-1)$ , so  $d_1|\frac{p-1}{2}$ . This implies  $d_1 < p$ . By minimality  $d_1 \in \{1, 3\}$ . If  $d_1 = 1$ , then d = 2, and  $2^2 \equiv 1 \pmod{p}$ , contradiction. If  $d_1 = 3$ , then d = 6, and  $2^6 \equiv 1 \pmod{p}$ , so p|63, which implies p = 7.

#### Problem

(IMO 1990) Find all positive integers n > 1 such that  $\frac{2^n+1}{n^2}$  is an integer.

#### Solution.

Clearly, *n* must be odd. Let  $3^k$  be the highest power of 3 deviding *n*. Then  $3^{2k}|n^2|2^n + 1$ ,  $(2^n \equiv -1 \pmod{3^{2k}})$ . By previous slide, this implies  $3^{2k-1}|n$ . So  $2k - 1 \le k$ ,  $k \le 1$ . This shows that *n* has at most one factor of 3. Note that n = 3 is a solution. We show that this is the only solution.

Suppose that *n* has a prime factor greater than 3; let *p* be the least such prime. Then  $2^n \equiv -1 \pmod{p}$ . Let *d* be the order of 2 modulo *p*. Since  $2^{2n} \equiv 1$ , d|2n. If *d* is odd, then d|n, which implies  $2^n \equiv 1$ , contradiction. So  $d = 2d_1$ .  $2d_1|2n$ , so  $d_1|n$ .

However,  $2d_1 = d|(p-1)$ , so  $d_1|\frac{p-1}{2}$ . This implies  $d_1 < p$ . By minimality  $d_1 \in \{1,3\}$ . If  $d_1 = 1$ , then d = 2, and  $2^2 \equiv 1 \pmod{p}$ , contradiction. If  $d_1 = 3$ , then d = 6, and  $2^6 \equiv 1 \pmod{p}$ , so p|63, which implies p = 7. But the order of 2 modulo 7 is 3, which is odd, contradiction.

Often times the solution of a number theory problem does not involve heavy machinery, but use other "ad-hoc" ideas. Here's an example.

Often times the solution of a number theory problem does not involve heavy machinery, but use other "ad-hoc" ideas. Here's an example.

#### Problem

Show that for any positive integer N, there exists a multiple of N that consists only of 1s and 0s. Furthermore, if N is relative prime to 10, show that there exists a multiple that consists only of 1s.

Any ideas?

Often times the solution of a number theory problem does not involve heavy machinery, but use other "ad-hoc" ideas. Here's an example.

#### Problem

Show that for any positive integer N, there exists a multiple of N that consists only of 1s and 0s. Furthermore, if N is relative prime to 10, show that there exists a multiple that consists only of 1s.

Any ideas?

Pigeonhole Principle!

Often times the solution of a number theory problem does not involve heavy machinery, but use other "ad-hoc" ideas. Here's an example.

#### Problem

Show that for any positive integer N, there exists a multiple of N that consists only of 1s and 0s. Furthermore, if N is relative prime to 10, show that there exists a multiple that consists only of 1s.

Any ideas?

Pigeonhole Principle!

#### Solution.

Consider the N + 1 integers 1, 11, 111,  $\cdots$ , 111 $\cdots$ 1 (N + 1 1s). When divided by N they leave N + 1 remainders.

Often times the solution of a number theory problem does not involve heavy machinery, but use other "ad-hoc" ideas. Here's an example.

### Problem

Show that for any positive integer N, there exists a multiple of N that consists only of 1s and 0s. Furthermore, if N is relative prime to 10, show that there exists a multiple that consists only of 1s.

Any ideas?

Pigeonhole Principle!

#### Solution.

Consider the N + 1 integers 1, 11, 111,  $\cdots$ , 111 $\cdots$ 1 (N + 1 1s). When divided by N they leave N + 1 remainders. By the pigeonhold principle, two of these remainders are equal, so the difference in the corresponding integer is divisible by N. But the difference is of the form 111...000. If N is relatively prime to 10, then we can divide out all powers of 10, to obtain an integer of the form 11...1.

The following problem illustrates that cleverness trumps heavy machinery. *Problem* (*IMO 1988*) Let a and b be two positive integers such that  $ab + 1|a^2 + b^2$ . Show that  $\frac{a^2+b^2}{ab+1}$  is a perfect square.

The following problem illustrates that cleverness trumps heavy machinery. *Problem* 

(IMO 1988) Let a and b be two positive integers such that  $ab + 1|a^2 + b^2$ . Show that  $\frac{a^2+b^2}{ab+1}$  is a perfect square.

#### Solution.

Let k be the ratio. If a = b then  $2a = k(a^2 + 1)$ .

The following problem illustrates that cleverness trumps heavy machinery.

**Problem** (IMO 1988) Let a and b be two positive integers such that  $ab + 1|a^2 + b^2$ . Show that  $\frac{a^2+b^2}{ab+1}$  is a perfect square.

#### Solution.

Let k be the ratio. If a = b then  $2a = k(a^2 + 1)$ . This implies a = b = k = 1.

The following problem illustrates that cleverness trumps heavy machinery.

## **Problem** (IMO 1988) Let a and b be two positive integers such that $ab + 1|a^2 + b^2$ . Show that $\frac{a^2+b^2}{ab+1}$ is a perfect square.

#### Solution.

Let k be the ratio. If a = b then  $2a = k(a^2 + 1)$ . This implies a = b = k = 1. If a < b then let (a, b) be a solution of  $k(ab + 1) = a^2 + b^2$  wi

If a < b, then let (a, b) be a solution of  $k(ab + 1) = a^2 + b^2$  with the smallest min $\{a, b\}$ . Note that b satisfies the quadratic

$$b^2 - kab + a^2 - k = 0$$

The following problem illustrates that cleverness trumps heavy machinery.

## **Problem** (IMO 1988) Let a and b be two positive integers such that $ab + 1|a^2 + b^2$ . Show that $\frac{a^2+b^2}{ab+1}$ is a perfect square.

#### Solution.

Let k be the ratio. If a = b then  $2a = k(a^2 + 1)$ . This implies a = b = k = 1.

If a < b, then let (a, b) be a solution of  $k(ab + 1) = a^2 + b^2$  with the smallest min $\{a, b\}$ . Note that b satisfies the quadratic

$$b^2 - kab + a^2 - k = 0$$

Note that ka - b is the other root of this quadratic, and it is also an integer (It is straightforward to show that ka - b > 0.)

The following problem illustrates that cleverness trumps heavy machinery.

#### Problem

(IMO 1988) Let a and b be two positive integers such that  $ab + 1|a^2 + b^2$ . Show that  $\frac{a^2+b^2}{ab+1}$  is a perfect square.

#### Solution.

Let k be the ratio. If a = b then  $2a = k(a^2 + 1)$ . This implies a = b = k = 1.

If a < b, then let (a, b) be a solution of  $k(ab + 1) = a^2 + b^2$  with the smallest min $\{a, b\}$ . Note that b satisfies the quadratic

$$b^2 - kab + a^2 - k = 0$$

Note that ka - b is the other root of this quadratic, and it is also an integer (It is straightforward to show that ka - b > 0.) Hence, (a', b') = (ka - b, a) also satisfies  $k(a'b' + 1) = a'^2 + b'^2$ .

The following problem illustrates that cleverness trumps heavy machinery.

#### Problem

(IMO 1988) Let a and b be two positive integers such that  $ab + 1|a^2 + b^2$ . Show that  $\frac{a^2+b^2}{ab+1}$  is a perfect square.

#### Solution.

Let k be the ratio. If a = b then  $2a = k(a^2 + 1)$ . This implies a = b = k = 1.

If a < b, then let (a, b) be a solution of  $k(ab + 1) = a^2 + b^2$  with the smallest min $\{a, b\}$ . Note that b satisfies the quadratic

$$b^2 - kab + a^2 - k = 0$$

Note that ka - b is the other root of this quadratic, and it is also an integer (It is straightforward to show that ka - b > 0.) Hence, (a', b') = (ka - b, a) also satisfies  $k(a'b' + 1) = a'^2 + b'^2$ . But  $ka - b = \frac{a^2 - k}{b} < a$ . This contradicts the choice (a, b).

Peng Shi, Duke University

When you come upon a number theory problem, do not despair:

> Try small cases to get intuition.

- > Try small cases to get intuition.
- Consider modulo some prime p and try to apply the theory of congruences.

- > Try small cases to get intuition.
- Consider modulo some prime p and try to apply the theory of congruences.
- Consider concepts such as order or primitive root.

- > Try small cases to get intuition.
- Consider modulo some prime p and try to apply the theory of congruences.
- Consider concepts such as order or primitive root.
- Be random and try something creative!

- > Try small cases to get intuition.
- Consider modulo some prime p and try to apply the theory of congruences.
- Consider concepts such as order or primitive root.
- Be random and try something creative!

When you come upon a number theory problem, do not despair:

- > Try small cases to get intuition.
- Consider modulo some prime p and try to apply the theory of congruences.
- Consider concepts such as order or primitive root.
- Be random and try something creative!

**Course Logistics:** This is the last lecture of this course. Next week is thanksgiving, and the week after that (our final class) is a Putnam practice session.

When you come upon a number theory problem, do not despair:

- > Try small cases to get intuition.
- Consider modulo some prime p and try to apply the theory of congruences.
- Consider concepts such as order or primitive root.
- Be random and try something creative!

**Course Logistics:** This is the last lecture of this course. Next week is thanksgiving, and the week after that (our final class) is a Putnam practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec. 5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone enrolled in the class. We need YOU to help keep our pizza fund alive!

When you come upon a number theory problem, do not despair:

- > Try small cases to get intuition.
- Consider modulo some prime p and try to apply the theory of congruences.
- Consider concepts such as order or primitive root.
- Be random and try something creative!

**Course Logistics:** This is the last lecture of this course. Next week is thanksgiving, and the week after that (our final class) is a Putnam practice session.

Mark your calendars: The Putnam contest will take place Saturday Dec. 5 from 10am-1pm, from 3pm-6pm. This is MANDATORY for everyone enrolled in the class. We need YOU to help keep our pizza fund alive!

# Thanks to everyone who attended our talks! We hope that this course was helpful in making you a better problem solver!