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Fundamentals Other Facts and Techniques

Fundamental Theorem of Algebra

The fundamental theorem of algebra states that any polynomial

P(x) = anxn + an−1xn−1 + . . .+ a0

has at least one complex root. In fact, a polynomial of degree n will have
exactly n roots, counting multiplicities. (A root xi of P(x) has multiplicity
m if m is the highest integer such that (x − xi )

m divides P(x).)

Thus any such P(x) can be factored uniquely as:

P(x) = an(x − x1)(x − x2) · · · (x − xn)

where x1, x2, . . . , xn are its roots, repeated according to multiplicity.
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Vieta Relations

If we multiply out the factorization of P(x) on the previous page and
equate the resulting coefficients with the coefficients of P(x), we get the
following set of relations between symmetric expressions in the roots and
the coefficients of P(x):

x1 + x2 + . . .+ xn = −an−1
an

x1x2 + x1x3 + . . .+ xn−1xn =
an−2

an
· · ·

x1x2 · · · xn = (−1)n
a0
an

Make sure you’re comfortable with them!
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Vieta Relations: Example
Here is an example from the 2009 Duke Math Meet that involves
primarily grunt work using with these relations.

Problem
Let r1, r2, r3 be the three (not necessarily distinct) solutions to the
equation x3 + 4x2 − ax + 1 = 0. If a can be any real number, find the
minimum possible value of(

r1 +
1

r1

)2

+

(
r2 +

1

r2

)2

+

(
r3 +

1

r3

)2

Solution
First, note that (

r1 +
1

r1

)2

+

(
r2 +

1

r2

)2

+

(
r3 +

1

r3

)2

= (r21 + r22 + r23 ) + (1/r21 + 1/r22 + 1/r23 ) + 6
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Solution (Continued)

Solution
We will relate these expressions to the coefficients of the polynomial.
First:

r21 + r22 + r23 = (r1 + r2 + r3)2 − 2(r1r2 + r1r3 + r2r3)

= (−4)2 − 2(−a) = 16 + 2a

The second is a little more challenging:

1/r21 + 1/r22 + 1/r23

= (r21 r22 + r21 r23 + r22 + r23 )/(r21 r22 r23 )

= ((r1r2 + r1r3 + r2r3)2 − 2(r21 r2r3 + r22 r1r3 + r23 r1r2))/(r1r2r3)2

= ((−a)2 − 2(r1r2r3)(r1 + r2 + r3))/12

= a2 − 8
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Solution (Continued)

Solution
Now we conclude:(

r1 +
1

r1

)2

+

(
r2 +

1

r2

)2

+

(
r3 +

1

r3

)2

= (r21 + r22 + r23 ) + (1/r21 + 1/r22 + 1/r23 ) + 6

= (16 + 2a) + (a2 − 8) + 6

= a2 + 2a + 14

= (a + 1)2 + 13

which clearly has minimal value 13 at a = −1.
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Look for Symmetry

If you spend enough work cranking it out, any symmetric polynomial of
r1, . . . , rn can be expressed in terms of the elementary symmetric
polynomials r1 + r2 + . . .+ rn, r1r2 + r1r3 + . . .+ rn−1rn, etc.

In general, looking for symmetry is a very valuable tool when dealing
with polynomials. For instance, a reciprocal polynomial is a polynomial
anxn + an−1xn−1 + . . .+ a0 where ai = an−i for all i = 0, . . . , n. If you
have a reciprocal polynomial f (x) of degree 2n, it is always possible to
substitute z = x + 1

x and write f (x) = xng(z), where g(z) is a
polynomial of degree n:

f (x) = a0x2n + a1x2n−1 + . . .+ a1x + a0

= xn(a0xn + a1xn−1 + . . .+ a1x−(n−1) + a0x−n)

= xn(a0(xn + x−n) + a1(xn−1 + x−(n−1)) + . . .)

and each term (xk + x−k) can be expressed as a function of (x + 1
x )
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Lagrange Interpolation

Say that we have n points (x1, y1), . . . , (xn, yn) in the plane, and we want
to find a polynomial f (x) such that the line y = f (x) passes through all
these points. We will always be able to find such a polynomial of degree
at most n − 1 — if we write it out, determining this polynomial becomes
a simple matter of solving a system of n simultaneous linear equations.

In fact, the polynomial of degree at most n− 1 that passes through these
points is unique. After all, if there were two polynomials P(x) and Q(x)
of degree at most n − 1 passing through these points, then their
difference P(x)− Q(x) would also have degree at most n − 1, but it
would have at least n roots (x1, . . . , xn), which is impossible.
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Lagrange Interpolation (Continued)

Luckily, it turns out that there is an explicit way to write the polynomial
that passes through these points, without doing any work ourselves. This
polynomial is:

L(x) =
n∑

j=1

yj`j(x)

where

`j(x) =
∏

i=1,i 6=j

x − xi
xj − xi

This satisfies L(xj) = yj for j = 1, . . . , n, as desired.
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Roots of Unity

The polynomial xn − 1 has roots 1, ω, ω2, . . . , ωn−1, where the nth root
of unity ω is defined as e2πi/n = cos(2πi/n) + i sin(2πi/n). (These are n
evenly spaced points on the unit circle in the complex plane.)

These are useful in many situations involving polynomials. For instance:

Problem
Let n ≥ 3 be an integer. Let f (x) and g(x) be polynomials with real
coefficients such that the points (f (1), g(1)), (f (2), g(2)), ..., (f (n), g(n))
in R2 are the vertices of a regular n-gon in counterclockwise order. Prove
that at least one of f (x) and g(x) has degree greater than or equal to
n − 1. (2008 Putnam A5)

Any guesses?
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Solution

Here is the first solution given by Kiran Kedlaya and Lenny Ng.

Let’s form the complex polynomial P(z) = f (z) + ig(z). It suffices to
show that P(z) must have degree at least n − 1. By replacing P(z) with
aP(z) + b for some suitable a, b ∈ C, we can force the regular n-gon to
have vertices 1, ω, ω2, . . . , ωn−1 for ω = e2πi/n. It now suffices to show
that there is no P(z) of degree n − 2 or lower such that P(k) = ωk for
k = 0, 1, . . . , n − 1.

Supposed to the contrary that there is such a P(k), of degree d ≤ n − 2.
Let Q(z) = P(z + 1)− ωP(z). Then Q(z) has degree at most
d ≤ n − 2, but Q has roots at 0, 1, . . . , n − 2, which is a contradiction.

Note: This problem can also be solved using Lagrange Interpolation—in
fact, that’s what many people did on the actual contest.
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Fundamentals Other Facts and Techniques

Irreducibility

Often we have a polynomial P(x) with integer coefficients and want to
know whether it can be factored into two or more polynomials with
integer coefficients of lower degree. The Eisenstein Criterion gives us a
way of determining cases where this is hopeless, and the polynomial is
irreducible.

Eisenstein Criterion
Suppose that the polynomial f (x) = anxn + an−1xn−1 + . . .+ a0 has
integer coefficients ai and that there is a prime number p for which:

1. p is not a divisor of the leading coefficient an;

2. p is a divisor of every other coefficient an−1, . . . , a0;

3. p2 does not divide the constant coefficient a0.

Then the polynomial P(x) is irreducible over the integers.

For instance, 2x4 + 21x3 − 6x2 + 9x − 3 is irreducible over Z because 3
divides every coefficient but the leading one, and 9 does not divide the
constant term.
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Irreducibility: Example

From problem 183 in Putnam and Beyond:

Problem
Show that P(x) = 1 + x + x2 + . . .+ xp−1, where p is a prime, is
irreducible.

Solution
Note that P(x) = (xp − 1)/(x − 1). Moreover, if P(x) is reducible, so is
P(x + 1). But

P(x + 1) =
(x + 1)p − 1

x
= xp−1 +

(
p

1

)
xp−1 + · · ·+

(
p

p − 1

)
All coefficients of this polynomial are divisible by p except the first. The
last,

(
p

p−1
)

= p, is not divisible by p2, and Eisenstein’s criterion therefore
implies that the polynomial is irreducible.
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Factorizations of Note

x2 − y2 = (x + y)(x − y)

x3 − y3 = (x − y)(x2 + xy + y2)

xn − yn = (x − y)(xn−1 + xn−2y + xn−3y2 + . . .+ yn−1)

(a− b)|(P(a)− P(b)) (for all polynomials P and integers a, b)

x3 + y3 = (x + y)(x2 − xy + y2)

xn + yn = (x + y)(xn−1 − xn−2y + xn−3y2 − . . .+ yn−1) (for odd n)

x4 + 4y4 = (x2 + 2y2)2 − (2xy)2 = (x2 + 2xy + 2y2)(x2 − 2xy + 2y2)

a2 + b2 + c2 − ab − ac − bc = ((a− b)2 + (a− c)2 + (b − c)2)/2

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − ac − bc)



Fundamentals Other Facts and Techniques

Derivatives and Roots

Say we have
P(z) = an(z − z1)(z − z2) · · · (z − zn)

Then applying the product rule, we find:

P ′(z)

P(z)
=

1

z − z1
+ . . .+

1

z − zn

If a root of P(z) has multiplicity greater than 1, then it must be a root of
P ′(z) as well.

This famous result helps characterize the roots of the derivative of a
polynomial:

Theorem (Lucas)
The roots of P ′(z) lie within the convex hull of the roots of P(z) in the
complex plane. (The convex hull of a set of points z1, . . . , zn is the set of
all points t1z1 + . . .+ tnzn, where t1 + . . .+ tn = 1.)
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