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1. Show that every positive integer may be expressed as the sum of distinct Fibonacci numbers.

2. Prove that
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3. If 0 ≤ x ≤ π, prove for all n ∈ N
| sinnx| ≤ n sinx

4. If a1, . . . , an are nonnegative reals, show that:

(1 + a1)(1 + a2) · · · (1 + an) ≥ (1 + n
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5. Let {un} be a sequence defined by

u1 = 1, u2 = 2, un+2 = 3un+1 − un

Prove that

un+2 + un ≥ 2 +
u2n+1

un

for all n.

6. Given some positive rational u, call u+1 and u
u+1 the children of u. Prove that every positive

rational is the descendant of 1 in a unique way.

7. Evaluate ∫ ∞
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8. Prove that any n ∈ N can be represented as ±12 ± 22 ± . . . ±m2 for some m ∈ N and some
choice of signs.

9. Find a closed formula for the sequence an defined by:
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