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Some terms or concepts here may be unfamiliar to you. We will cover them later, but in the
meantime you are strongly encouraged to google them! If you have any questions about these
solutions or notice any errors, please contact Matthew Rognlie at matthew.rognlie@duke.edu.

Problem 1. Solve the recurrence (give an explicit formula for f(n)):

f(n + 1) = nf(n) + (n− 1)f(n− 1) + . . . + f(1) + 1, f(0) = 1

Solution. We claim that f(n) = n!, which we prove by induction. First note that the problem
provides f(0) = 1 as a base case. For the inductive step, we can rewrite the equation above
as:

f(n + 1) = nf(n) + ((n− 1)f(n− 1) + . . . + f(1) + 1)
= (n + 1)f(n)

If we assume that f(n) = n!, it follows that f(n + 1) = (n + 1)n! = (n + 1)!, completing the
induction.

Problem 2. How many ways can one pick four numbers from the first fifteen positive integers,
such that among the four numbers any two differ by at least 2? (from 102 Combinatorial
Problems, by Andreescu and Feng)

First Solution. Let a1 < a2 < a3 < a4 be our four chosen numbers. Consider the num-
bers (b1, b2, b3, b4) = (a1, a2 − 1, a3 − 2, a4 − 3). Then b1, b2, b3, b4 are four distinct numbers
from the first twelve positive integers. Conversely, from any set b1 < b2 < b3 < b4 of dis-
tinct positive integers no greater than twelve, we can write the inverse map (b1, b2, b3, b4) 7→
(b1, b2 +1, b3 +2, b4 +3) and obtain a set of four numbers no greater than fifteen among which
any two differ by at least two. We have found a bijection between the sets of four numbers
satisfying our conditions and the sets of four distinct numbers from the first twelve integers,
and the answer is therefore

(
12
4

)
= 495.

Second Solution. For m,n ∈ N, let f(m,n) be the number of ways we can pick n non-
consecutive integers from the set {1, 2, . . . ,m}. We claim that in general, f(m,n) =

(
m−n+1

n

)
.

Note that f(1, 1) = 1 and f(1, n) = 0 for any n > 1. These values are consistent with our
claim, and we will use them as base cases for induction on m to prove our claim.

For the induction step, we will prove that f(m,n) = f(m−1, n)+f(m−2, n−1). Given some
choice of n nonconsecutive numbers from the first m integers, either (1) one of the numbers
selected is m, or (2) all the numbers selected lie in 1, 2, . . . ,m − 1. In case 1, the number of
possibilities is equal to the number of ways we can select n− 1 nonconsecutive integers from
the first m− 2 integers, or f(m− 2, n− 1). In case 2, the number of possibilities is equal to
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the number of ways we can select n nonconsecutive integers from the first m− 1 integers, or
f(m− 1, n). This verifies our assertion. Now, assuming that our claim f(m′, n′) =

(
m′−n′+1

n′

)
holds for all values 1, . . . ,m− 1 of m′:

f(m,n) =
(

m− n

n

)
+
(

m− n

n− 1

)
=
(

m− n + 1
n

)
The last equality, which completes the induction, is Pascal’s rule for binomial coefficients.
(Credit to Daniel Vitek and Misha Lavrov)

Problem 3.

Let M be a set endowed with an operation ∗ satisfying the properties:

(a) there exists an element e ∈ M such that x ∗ e = x for all x ∈ M

(b) (x ∗ y) ∗ z = (z ∗ x) ∗ y for all x, y, z ∈ M

Show that the operation ∗ is both commutative and associative. (from Putnam and Beyond,
by Gelca and Andreescu)

Solution. First, substitute y = e into (b) to obtain x ∗ z = z ∗ x for any x, z ∈ M , which
establishes commutativity. Now, we may use commutativity to switch the order of the terms
on the left side of (b), obtaining z ∗ (x∗y) = (z ∗x)∗y for all x, y, z ∈ M . This is associativity.

Problem 4. Prove that there is no triple of positive integers x, y, z satisfying:

x2 + y2 + z2 = 2xyz

Solution. Suppose that such a triple (x, y, z) exists. Then let 2k be the highest power of 2
that divides x, y, and z simultaneously, and write x = 2ka, y = 2kb, z = 2kc. Our equation is
now 22k(a2 + b2 + c2) = 23k+1abc, and dividing out the common factor of 22k we obtain:

a2 + b2 + c2 = 2k+1abc

where at least one of a, b, c is odd. Since the right side of the equation is even, the left side
must be as well, and the only remaining possibility is that exactly two of a, b, c are odd.
Without loss of generality, assume that a and b are odd, and c is even. Then a2 and b2 are
equal to 1 mod 4 while c2 is equal to 0 mod 4, implying that entire expression on the left
equals 2 mod 4. Since c is even, however, the expression on the right must be divisible by 4.
Thus equality cannot hold, and we have reached a contradiction. No such triple x, y, z can
exist.

Problem 5. Let n = 22139511. Find the number of positive integer divisors of n2 that are
less than, but do not divide, n. (from 102 Combinatorial Problems, by Andreescu and Feng)

Solution. More generally, suppose n = psqtru, where p, q, r are distinct primes. Then
n2 = p2sq2tr2u, and it therefore has

(2s + 1)(2t + 1)(2u + 1)
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factors. Moreover, the map a 7→ n2

a provides a bijection between factors of n2 less than n and
factors greater than n. We can use this bijection to pair off all factors of n2 except n, and the
number of factors of n2 less than n is therefore:

(2s + 1)(2t + 1)(2u + 1)− 1
2

Meanwhile, the number of factors of n, excluding n itself, is

(s + 1)(t + 1)(u + 1)− 1

Taking the difference, we find that the number of factors of n2 less than n that are not
themselves factors of n is:

(2s + 1)(2t + 1)(2u + 1)− 1
2

− ((s + 1)(t + 1)(u + 1)− 1)

= 4stu + 2(st + tu + su) + (s + t + u)− stu− (st + tu + su)− (s + t + u)
= 3stu + st + tu + su

Plugging in the values s = 21, t = 9, u = 11, we obtain the answer: 6756.

Problem 6. Prove that every positive integer can be written as the sum of one or more
integers of the form 2s3t, where s and t are nonnegative integers and no term in the sum is
a multiple of another. (For example, 34 = 18 + 16.) (Problem A1, 2005 Putnam contest)

Solution. We use strong induction, with base case 1 = 2030. Say that all positive integers
less than n can be represented in the desired way. If n is even, we can simply multiply the
representation for n/2 by 2 to obtain a satisfactory representation for n. Otherwise, if n is
odd, let 3k be the largest power of 3 that is no greater than n, and find a representation
n−3k

2 = a1 + . . . + am. We propose the following representation for n:

n = 3k + 2a1 + . . . + 2am

Since a1 + . . . + am is already a valid representation, none of the 2ai terms divide each other,
or 3k. Additionally, since 2ai ≤ n− 3k < 3k+1− 3k = 3k · 2 ⇒ ai < 3k, we find that 3k cannot
divide any of the 2ai terms either. Thus we have found a representation for n in all cases,
completing the induction.

Problem 7. Find all polynomials whose coefficients are all equal to 1 or -1, and whose zeros
are all real. (from Putnam and Beyond, by Gelca and Andreescu)

Solution. Let p(x) be such a polynomial. If p(x) does not contain a constant term, its terms
must have a common divisor of the form xk, and we can divide the polynomial by xk to obtain
another polynomial q(x) satisfying our conditions and containing a constant term. From now
on, we will deal only with such polynomials q(x).

Write q(x) as the product
∏n

i=1(x − xi), where x1, . . . , xn are the roots of q(x) (guaranteed
by assumption to be real). Expanding, we obtain:

xn −

 ∑
1≤i≤n

xi

xn−1 +

 ∑
1≤i<j≤n

xixj

xn−2 − . . .±

(
n∏

i=1

xi

)
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Denoting the coefficient on xk by ak:

a2
n−1 = (x1 + . . . + xn)2 =

∑
1≤i≤n

x2
i + 2

∑
1≤i<j≤n

xixj =
∑

1≤i≤n

x2
i + 2an−2

Imposing the assumption that all coefficients are 1, we find:∑
1≤i≤n

x2
i = a2

n−1 − 2an−2

≤ 1 + 2
= 3

Now, applying the AM-GM inequality:

1
n

∑
1≤i≤n

x2
i ≥

n

√
x2

1x
2
2 . . . x2

n

⇐⇒ 1
n

∑
1≤i≤n

x2
i ≥ 1

⇐⇒
∑

1≤i≤n

x2
i ≥ n

where the second line follows from the fact that x2
1x

2
2 . . . x2

n = a2
0 = 1.

Combining results, we find that n ≤
∑

1≤i≤n x2
i ≤ 3, and therefore n ≤ 3. We can now

proceed case-by-case, imposing a positive leading term for simplicity (multiplication by -1
preserves the desired properties and can be used to obtain the other solutions):

Degree 1: The only candidates are x+1 and x−1, both of which have a single real solution.

Degree 2: Candidates include x2 − 1, x2 + 1, x2 + x + 1, x2 + x − 1, x2 − x + 1, and
x2 − x − 1. We must have a2

1 ≥ 4a2a0 for the solutions of a quadratic to be real, and this
leaves us with x2 − 1, x2 + x− 1, and x2 − x− 1.

Degree 3: Here we have equality in the AM-GM inequality we applied earlier, which im-
plies that all roots xi must have the same absolute value. Since the product of these roots
has absolute value 1, they must each have absolute value 1. There are thus 4 possibilities: (1)
all roots are 1, (2) two roots are 1 are one is -1, (3) one root is 1 and two are -1, and (4) all
roots are -1. Multiplying out the product

∏
i xi reveals that only the middle two possibilities

produce a polynomial where all coefficients are 1 or -1, and the resulting polynomials are
x3 + x2 − x− 1 and x3 − x2 − x + 1.

We have classified all polynomials satisfying the conditions of the problem up to a factor
of ±xk.

Problem 8. Is it possible for a countably infinite set to have an uncountable collection of
distinct subsets among which the intersection of any two subsets is finite? If so, provide an
example and prove its validity. If not, prove that it is impossible. (Problem B4, 1989 Putnam)

First Solution. Since the rationals Q are dense in the reals R, for any x ∈ R we can find a
sequence {an} of rationals such that an → x. Let this sequence be the countable set corre-
sponding to each real; over all reals, this produces an uncountable collection of countable sets.
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Furthermore, the sets corresponding to any two reals can only have finite intersection. To
prove this, we consider x, y ∈ R and rational sequences an → x, bn → y. Set ε = x−y

2 . Then
there must be some N1, N2 such that for all n ≥ N1, |x − an| < ε, and for all n ≥ N2,
|y − bn| < ε. Let N3 = max(N1, N2). Then the sets (aN3 , aN3+1, . . .) and (bN3 , bN3+1, . . .) are
disjoint, implying that {an} and {bn} only have finite intersection, as desired.

Second Solution. To each x ∈ R, associate the set of its successive decimal approxi-
mations. (For instance, to 1/3 associate 0, 0.3, 0.33, . . .) Since decimal approximations are
rational, these sets are subsets of Q, which is countable. Moreove, if x and y are different real
numbers, eventually their decimal approximations must diverge: for some N , all approxima-
tions with more than N digits will be different from each other. This implies that each pair
of subsets must have finite intersection, as desired. (Note that this solution is really just a
specific implementation of the first solution. Credit to Misha Lavrov.)

Third Solution. Consider the countably infinite set Z×Z of lattice points on the plane. To
every x ∈ R associate the following subset of Z× Z:

{(n, bxnc) : n ∈ Z}

Now consider the subsets corresponding to any two distinct reals x, y. If some element (n, m)
is in both subsets, we must have bxnc = bync. For all n greater in absolute value than 1

|x−y| ,
however, |(x − y)n| > 1, and bxnc = bync is impossible. Thus these two subsets can only
intersect in finitely many elements. (Credit to Misha Lavrov)
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