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Introduction Definitions Facts

What’s in this talk?

Here we try to give a brief overview of facts in analysis that will be
useful for understanding and solving problems. This is certainly not
comprehensive, and it will make more sense if you take or have taken an
analysis class.

Next week Peng will cover problem-solving techniques in calculus, which
is a branch of analysis; that lecture will focus much more on
computation, while this will focus on theory.
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Introduction Definitions Facts

Least upper bound property

One of the most important properties of the real numbers is the least
upper bound property: any subset S ⊂ R of the reals has a least upper
bound. (The least upper bound of S is the smallest real c such that
x ≤ c for all x ∈ S , or ∞ if there is no such c .) For instance:

1. The least upper bound of {1, 2, 3} is 3.

2. The least upper bound of {x : x < 1} is 1.

3. The least upper bound of {x : x ≤ 1} is 1.

4. The least upper bound of {− 1
n : n ∈ N} is 0.

5. The least upper bound of Z is ∞.

Note that in cases 1 and 3, the set contains its least upper bound, while
in cases 2, 4, and 5 it does not.
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Sup, inf, and all that

The least upper bound of a set S is denoted by sup S . Similarly, there is
also always a greatest lower bound, which we denote by inf S . S
sometimes, but not always, contains supS or inf S , although if S is finite
we can be sure that it contains both.

If S is a sequence {an}∞n=1, then we also define:

lim supS = inf
k

sup
n
{an}∞n=k

lim inf S = sup
k

inf
n
{an}∞n=k

We call this lim supS because it is the limit of the suprema of the partial
sequences {an}∞n=k as k →∞. In other words, we could equivalently say:

lim supS = lim
k→∞

sup
n
{an}∞n=k

lim inf S = lim
k→∞

inf
n
{an}∞n=k

but we haven’t defined limits yet!
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Limits of a sequence

There are two equivalent ways to define limits of a sequence.

1. We can say that the limit lim an of a sequence {an} exists if the lim
inf and lim sup of the sequence have the same value.

2. Alternatively, for c ∈ R we can say that lim an = c if for any ε > 0,
we can find some N such that for all n ≥ N, |an − c | < ε. (In other
words, for arbitrarily small ε, there is some point past which the
sequence is forever within ε of its limit c .)

Infinite limits are a little different: lim an = ∞ if for any y ∈ R there
is some N such that for all n ≥ N, an > y . (In other words, for any
y , there is some point past which the sequence is forever above y .)
lim an = −∞ is defined similarly.



Introduction Definitions Facts

Limits of a sequence

There are two equivalent ways to define limits of a sequence.

1. We can say that the limit lim an of a sequence {an} exists if the lim
inf and lim sup of the sequence have the same value.

2. Alternatively, for c ∈ R we can say that lim an = c if for any ε > 0,
we can find some N such that for all n ≥ N, |an − c | < ε. (In other
words, for arbitrarily small ε, there is some point past which the
sequence is forever within ε of its limit c .)

Infinite limits are a little different: lim an = ∞ if for any y ∈ R there
is some N such that for all n ≥ N, an > y . (In other words, for any
y , there is some point past which the sequence is forever above y .)
lim an = −∞ is defined similarly.



Introduction Definitions Facts

Limits of a sequence

There are two equivalent ways to define limits of a sequence.

1. We can say that the limit lim an of a sequence {an} exists if the lim
inf and lim sup of the sequence have the same value.

2. Alternatively, for c ∈ R we can say that lim an = c if for any ε > 0,
we can find some N such that for all n ≥ N, |an − c | < ε. (In other
words, for arbitrarily small ε, there is some point past which the
sequence is forever within ε of its limit c .)

Infinite limits are a little different: lim an = ∞ if for any y ∈ R there
is some N such that for all n ≥ N, an > y . (In other words, for any
y , there is some point past which the sequence is forever above y .)
lim an = −∞ is defined similarly.



Introduction Definitions Facts

Limits of a sequence

There are two equivalent ways to define limits of a sequence.

1. We can say that the limit lim an of a sequence {an} exists if the lim
inf and lim sup of the sequence have the same value.

2. Alternatively, for c ∈ R we can say that lim an = c if for any ε > 0,
we can find some N such that for all n ≥ N, |an − c | < ε. (In other
words, for arbitrarily small ε, there is some point past which the
sequence is forever within ε of its limit c .)

Infinite limits are a little different: lim an = ∞ if for any y ∈ R there
is some N such that for all n ≥ N, an > y . (In other words, for any
y , there is some point past which the sequence is forever above y .)
lim an = −∞ is defined similarly.



Introduction Definitions Facts

Infinite series

An infinite series
∞∑

n=1

bn

converges if the limit of its partial sums

lim
k→∞

k∑
n=1

bn

converges as a sequence.
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Limits of a function

We are often interested in the limit of some function f (x) as x
approaches y . How should we define this?

1. We could just take some sequence {xn} with limit y and define
limx→y f (x) to be lim f (xn). But how would we decide which
sequence to pick? What if different sequences give different
answers? For the limit to be well defined, we need to get the same
answer no matter what sequence we choose. Thus we say that
limx→y f (x) = c if for all sequences xn → y , f (xn) → c .

2. Here is another formal definition: we say that limx→y f (x) = c if for
every ε > 0, we can find some δ > 0 such that for all x such that
|x − y | < δ, |f (x)− c | < ε. In other words, for any arbitrarily small
ε, we can find some sufficiently small radius around y such that f (x)
is within ε of c for all x in that radius.

If this limit exists, it will be the same as the limit of f (xn) for any
sequence xn with limit y .
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Continuity and Differentiablility

A function f is continuous at point y if limx→y f (x) = f (y).

Using our two definitions of limits in the last slide, there are two
equivalent ways to write this definition.

1. f is continuous at y if for any sequence xn → y , f (xn) → f (y).

2. f is continuous at y if for any ε > 0, we can find some δ > 0 such
that for all x such that |x − y | < δ, |f (x)− f (y)| < ε.

A function f that is continuous at x is differentiable at x if the limit

lim
h→0

f (x + h)− f (x)

h

exists and is finite. If so, the limit is labeled f ′(x).
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Open, Closed, Bounded, and Compact Sets

A subset A ⊂ R of the reals is open if for any point x ∈ A, we can find
some δ > 0 such that the set B = {y : |y − x | < δ} is a subset of A. In
other words, A is open if for any point x ∈ A we can find some “ball”
around x contained within A.

A subset A ⊂ R of the reals is closed if for any sequence xn → x , where
all xn are in A, x must be in A as well. The complement of a closed set is
open, and vice versa.

A subset A ⊂ R of the reals is bounded if supx,y∈R |x − y | < ∞. In
other words, A is bounded if the maximum distance between any two
points in A is bounded.

A subset A ⊂ R of the reals is compact if it is closed and bounded.
Compactness is actually a more general property of topological spaces,
defined in a more general way, but the Heine-Borel Theorem says that
it is equivalent to being closed and bounded in real space.
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Sequences

Squeeze Theorem

• If an ≤ cn ≤ bn for all n, an → L and bn → L, then cn → L as well.

• If an ≤ bn for all n and an →∞, then bn →∞ as well.

Cauchy Criterion
an → a if and only if for any ε > 0 we can find some N such that for all
m, n ≥ N, |am − an| < ε.

Weierstrass’s Theorem
A monotonic (either nondecreasing or nonincreasing) bounded sequence
converges.

Sequential Compactness
Any sequence in a compact subset of the reals contains a convergent
subsequence.
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More on Sequences

Cesaro-Stolz Theorem
Let {xn} and {yn} be two sequences of real numbers, where the yn are
positive, strictly increasing, and unbounded. If

lim
n→∞

xn+1 − xn

yn+1 − yn
= L

then
lim

xn

yn

exists and is equal to L.

Cantor’s Nested Intervals Theorem
If I1 ⊃ I2 ⊃ . . . is a decreasing sequence of closed intervals with lengths
converging to zero, then ∩∞n=1In consists of one point.
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Series

First, note that since series are just sequences of partial sums, our facts
about sequences may also apply to problems with series.

Two types of series are especially important:

• The geometric series
∑k

n=0 xn has sum 1−xk

1−x . Taking k →∞, we
see that this series converges if and only if |x | < 1, in which case the
sum is 1

1−x .

• The p-series
∑∞

n=0 np converges for p > 1 (assuming p is positive).
It notably does not converge when p = 1, where it is 1 + 1

2 + 1
3 + . . ..

One of the best ways to determine whether a series converges is to use
an adaptation of the squeeze theorem for sequences called the
comparison test. If each term of a series with positive terms is less than
the corresponding term of another series that we know to converge, we
can conclude that it converges. Alternatively, if each term of a series
with positive terms is greater than the corresponding term of another
series we know to diverge, we can conclude that it diverges.
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More on Series

Consider some series
∑∞

n=0 an. This series converges absolutely if∑∞
n=0 |an| < ∞; absolute convergence implies normal convergence. Some

tests for absolute convergence include:

• Ratio Test. Letting L = limn→∞

∣∣∣ an+1

an

∣∣∣, we can conclude that the

series converges if L < 1 and diverges if L > 1; the common case
L = 1 is ambiguous.

• Root Test. Letting L = limn→∞
n
√
|an|, we can conclude that the

series converges if L < 1 and diverges if L > 1; again, the L = 1 case
is ambiguous.

• Integral Test. If |an| is monotone decreasing, and |an| = f (n),
where f is some monotone decreasing continuous function on the
interval [0,∞), then

∑∞
n=0 |an| converges if and only if the integral∫∞

0
f (n) is finite.
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Alternating Series

Consider an alternating series
∑∞

n=0(−1)nan. The Alternating Series
Test states that this series converges if (but not only if) the an are
strictly decreasing.

Important fact: rearranging the terms in an alternating series, or indeed
any series, will only keep the sum the same if the series converges
absolutely. Otherwise, rearranging the terms may change the sum, or
even cause a previously convergent series to diverge.
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Functions and Continuity

Squeeze Theorem for Functions
If f , g , h are functions defined on some interval I such that
g(x) ≤ f (x) ≤ h(x) for all x ∈ I , then if limx→a g(x) = limx→a h(x) = L,
then limx→a f (x) = L.

Intermediate Value Theorem
If f is continuous on the interval [a, b], for any γ between f (a) and f (b)
there exists c ∈ [a, b] such that f (c) = γ.

Extreme Value Theorem
If f is continuous on the interval [a, b], then f attains an absolute
maximum value f (c) and an absolute minimum f (d) at some numbers c
and d in [a, b].

Some Basic Topology
If f is continuous and A is open, then the inverse image f −1(A) is also
open.
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Differentiable Functions

Mean Value Theorem
If f is continuous on [a, b] and is differentiable on (a, b), then there exists

some c ∈ (a, b) such that f (b)−f (a)
b−a = f ′(c).

L’Hopital’s Rule
Let f , g be differentiable functions from R to R. If limx→a f (x) = 0 and
limx→a g(x) = 0, then:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

Similarly, if limx→a f (x) = ∞ and limx→a g(x) = ∞, we also have

limx→a
f (x)
g(x) = limx→a

f ′(x)
g ′(x) .
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More on Differentiable Functions

Increasing and decreasing functions
Let f be a function on some interval [a, b]. If f ′(x) > 0 for all x ∈ (a, b),
f must be strictly increasing on [a, b]. If f ′(x) ≥ 0 for all x ∈ (a, b), then
f is nondecreasing on [a, b]. The opposite holds for negative first
derivatives.

Convexity
If f ′′(x) ≥ 0 for all x ∈ [a, b], then f is convex on that interval and we
have for any α ∈ [0, 1], a ≤ c ≤ d ≤ b:

f (αc + (1− α)d) ≤ αf (c) + (1− α)f (d)

We can then apply Jensen’s inequality, which states that for any
nonnegative w1, . . . ,wn,

∑
i wi = 1, and x1, . . . , xn ∈ [a, b]:

w1f (x1) + . . . + wnf (xn) ≥ f (w1x1 + . . . + wnxn)

The opposite inequalities hold if f ′′(x) ≤ 0.
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Even More Differentiable Function Stuff

Extrema
If f is differentiable on (a, b), then the maximum and minimum of f on
[a, b] either lie at the endpoints a and b or satisfy f ′(x) = 0. If f ′′(x) < 0
as well, then x is a maximum; if f ′′(x) > 0, then x is a minimum.

Fundamental Theorem of Calculus
Let f be a continuous real-valued function on some interval I ⊂ R and
let a ∈ I . If F (x) =

∫ x

a
f (t) dt for all x ∈ I , then F has a continuous first

derivative equal to f .
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