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In school choice, children submit a preference ranking over schools to a centralized assignment algorithm, which takes
into account schools’ priorities over children and uses randomization to break ties. One criticism of current school choice
mechanisms is that they tend to disperse communities so children do not go to school with others from their neighborhood.
We suggest to improve community cohesion by implementing a correlated lottery in a given school choice mechanism:
we find a convex combination of deterministic assignments that maintains the original assignment probabilities, thus
maintaining choice, but yields increased cohesion.

To analyze the gain in cohesion for a wide class of mechanisms, we first prove the following characterization which
maybe of independent interest: any mechanism which, in the large market limit, is non-atomic, Bayesian incentive com-
patible, symmetric and efficient within each priority class, is a “lottery-plus-cutoff” mechanism. This means that the
large market limit can be described as follows: given the distribution of preferences, every student receives an identically
distributed lottery number, every school sets a lottery cutoff for each priority class, and a student is assigned her most
preferred school for which she meets the cutoff. This generalizes Liu and Pycia (2012) to allow arbitrary priorities. Using
this, we derive analytic expressions for maximum cohesion under a large market approximation. We show that the benefit
of lottery-correlation is greater when students’ preferences are more correlated.

In practice, although the correlated-lottery implementation problem is NP-hard, we present a heuristic that does well.
We apply this to real data from Boston elementary school choice 2012 and find that we can increase cohesion by 79%
for K1 and 37% for K2 new families. Greater cohesion gain is possible (tripling cohesion for K1 and doubling for K2)
if we apply lottery-correlation on top of reducing the choice menu (to what was eventually adopted by Boston after the

2012-2013 school choice reform). This has minimal impact on racial or socio-economic diversity.

1. Introduction

In typical school choice mechanisms, students submit a ranked list of schools they would like to attend, and
schools have priorities over students; a centralized assignment algorithm, which may randomize to break
ties, determines the assignment. Such mechanisms are used to assign children to public schools in many
metropolitan areas in the US, including Boston, New York, New Orleans, San Francisco, and Chicago.
Recently, complaints have arisen about school choice systems because children from the same commu-
nity end up going to many different schools, thus weakening community ties. Ebbert and Ulmanu (2011)

document 19 children on one street in Boston going to 15 different schools, as an example of the choice
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lottery dispersing communities.! In his January 2012 State of the City address, Boston’s mayor Menino
said,

“Pick any street. A dozen children probably attend a dozen different schools. Parents might not know

each other; children might not play together. They can’t carpool, or study for the same tests. We won’t

have the schools our kids deserve until we build school communities that serve them well.” Menino

(2012)

One important facet of building communities is to have children go to school with others from their com-
munity, so the families get to know one another through common activities. Partly motivated by this, some
have advocated abandoning school choice altogether and switching to a neighborhood-based system, in
which kids predominately go to the closest school. But choice adds value by allowing families to find an
option that fits their individual tastes, and many parents vocally defend their right to choose. Is it possible
to improve community cohesion without sacrificing choice?

The main insight of this paper is that much of the community dispersion is artificial and unnecessary,
caused purely by the allocation algorithm using independently drawn lottery numbers. If we had used a
“correlated-lottery,” then we could implement the same assignment probabilities but improve cohesion.
Consider the following example: There are 2 schools with 2 seats each, and 8 students from 2 communities.
Students A, B, C, D are from community I, and E, F, G, H are from community II. Students A, B, E, F prefer
school 1, and C, D, G, H prefer school 2. Suppose for simplicity that the choice mechanism is Random
Serial Dictatorship— students are ordered uniformly randomly and they pick schools sequentially according

to this order. It is straightforward to work out the assignment probabilities (see Table 1).

Assignment Probability
Community Student Preference Schooll  School 2

A 1>2 61/140 9/140
I B 1>2 61/140 9/140
C 2>-1 9/140 61/140
D 2>1 9/140 61/140
E 1>2 61/140 9/140
I F 1>=2 61/140 9/140
G 2>1 9/140 61/140
H 2>1 9/140 61/140

Table 1 Assignment probabilities from example. For example, student A from community I prefers school 1 over 2, and in the
randomized assignment she is assigned to school 1 with probability 61/140 and school 2 with probability 9/140. With remaining

probability %, she is not assigned (or assigned to an outside option).

Conditional on being assigned, what is a student’s chance of being assigned with someone else from

the same community? Because there are 2 communities and everything is symmetric, we expect this to be

" Boston Public Schools spent $80 million in 2012 on busing students, representing almost 10% of its total budget (Sutherland
(2012)).
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roughly % Working out the details, we get that the answer is in fact % ~ 37%.? In other words, conditional

on being assigned, each student can expect to have 0.37 same-community school peers.
However, the random assignment in Table 2 generates the same assignment probabilities for everyone,

while always keeping communities together.

Assignment

Community Student i ii iii v
A 1 2
I B 1 2

C 1 2

D 1 2

E 2 1

F 2 1
1 G 2 1
H 2 1

Probability 61/140 9/140 6/140 9/140

Table 2 Correlated lottery implementation of the assignment probabilities from Table 1. This randomizes over 4 assignments,
each represented by a column. For example, assignment i is chosen with probability 61/140, and assigns A and B to school 1, E and
F to 2, and leaves the rest unassigned. Note that no matter what the realized assignment is, communities stay together as much as

space allows.

From each individual’s perspective, the second random assignment is “equivalent” to the first, in the sense
that the individual has the same probabilities of being assigned to each school as before. As a result, every
individual’s expected distance to school, expected “academic quality” of assigned school, probabilities of
getting into some set of schools, are the same as before. In some sense, the second lottery implementation
achieves gains in cohesion “for free.”

Formally, we define the community cohesion of a lottery as the expected number of same-community
school peers a student can expect to see. We propose the following approach to increase community cohe-
sion in any randomized allocation mechanism: estimate the assignment probabilities for every student to
every school in the current mechanism, and implement the same assignment probabilities in a “community-
correlated” lottery. In other words, we seek a convex combination of deterministic assignments that matches
the original assignment probabilities but that maximizes cohesion. We term this optimization problem
correlated-lottery implementation.

In this paper, we address the following questions:

1. For the most prevalent mechanisms used in practice, by how much can we hope to improve community

cohesion using a correlated lottery? In what settings can we expect the most improvement?

21t is less than % because conditional on A being assigned, A is most likely assigned to school 1 with someone else who prefers

school 1, and since there is 1 other person from the same community who prefers school 1 (B), and 2 others from the other
community who prefer school 1 (E,F), in this most probable case she is assigned with a neighbor with probably only %
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2. How to solve the correlated-lottery optimization problem in practice?

3. For Boston (where community cohesion in school choice has been the focus of much debate), how
much can correlated lottery improve community cohesion? How would such a method interact with other
reforms, such as changing the priorities or choice menus?

To help us address the first question, we prove a large market characterization of all mechanisms that sat-
isfy the following four properties:(1) non-atomicity (a single individual has negligible effect on assignment
probabilities of others), (2) asymptotic Bayesian incentive compatibility (given distribution of students’
preferences, taking the limit as the market size goes to infinity, students reporting truthfully forms a Bayes-
Nash equilibrium), (3) symmetry within each priority class (students with same priorities to every school
and same submitted preferences receive the same assignment probabilities), and (4) asymptotic efficiency
within each priority class (no trading cycles within each priority class). These properties are generally sat-
isfied by commonly implemented mechanisms that use Deferred Acceptance (DA) or Top Trading Cycles
(TTC) with randomized tie-breakers.> We show that any mechanism that satisfies these properties in the
large market can be interpreted as a “lottery-plus-cutoff” mechanism, which means that students are divided
into priority classes and are each given an identically distributed lottery number; given the distribution of
preferences, schools set a lottery cutoff for each priority class; students are assigned to their most preferred
school for which they meet the lottery cutoff. This generalizes a result by Liu and Pycia (2012) to allow for
priorities.

Using this characterization, we derive clean expressions for cohesion with independent lotteries and opti-
mally correlated lotteries. In a large market framework, we show that baseline cohesion (using independent
lotteries) is equal to the sum of a measure of variation in school size and between-community variation in
assignment probabilities. Maximum cohesion (using optimally correlated lotteries) is the sum of baseline
cohesion and the average variance of some “demand function” of communities for schools. This improve-
ment term can be interpreted as a joint measure of within-community preference correlation and uncertainty
of lottery. The cohesion gain from lottery correlation is greatest when the lottery is uncertain (competition
for the same schools is high) and when within-community preference correlation is high. Under a random
utility model, we show that if there are no priorities or between-community variation, cohesion gain from

lottery correlation increases when preferences are more correlated.

? Consider the large market limit when the number of seats in each school and the number of students of each type are all scaled
up by the same increasing factor. In this limit, non-atomicity is satisfied by Top Trading Cycle (TTC) with single tie-breaker. For
Deferred Acceptance (DA) with single tie-breaker, non-atomicity is satisfied in all but some “knife-edge” cases. To be precise,
Azevedo and Leshno (2012) Theorem 1 and 2 imply that except when relative capacities lie in some measure-zero set, the large
market allocation is unique and any sequence of finite markets that converge to it in type distribution and capacities also converge
to it in allocation. This implies non-atomicity is satisfied “almost surely.” Furthermore, in the above large market limit, Pareto
efficiency within each priority class is also asymptotically achieved, because the large market eliminates any stochasticity in the
distribution of priority classes and preferences among the students with the best lottery numbers. Both mechanisms satisfy incentive
compatibility and symmetry under any market size.
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We address the second question by showing that the problem is NP-hard to solve optimally and introduce
a heuristic that performs reasonably well in practice. The underlying optimization problem is related to the
Quadratic Assignment Problem, which is in general notoriously intractable (see Burkard et al. (1998)), but
there is more structure in our case, which is exploited in our heuristic. We also derive an upper-bound to
test the optimality gap of our heuristic.

We address the third question by applying our heuristic to real data from Boston elementary school
choice, simulating what would have happened if we implemented lottery correlation in 2012 Round 1
assignment. The main entry grades are kindergarten 1 (K1) and kindergarten 2 (K2). Defining a community
to be a .5 mile by .5 mile square, we show that our method improves community cohesion by 79% for grade
K1 and 37% for K2. Conditional on the student traveling outside their walk-zone (1-mile radius), cohesion
improves by 140% for K1 and 64% for K2. We observe that for K2, the benefits from correlated-lottery
are geographically distributed in an uneven way, being concentrated on the periphery of the city and mak-
ing little impact in the middle of the city. Much of this variation can be explained by the lower levels of
within-community preference correlation in the middle of the city.

We also compare our approach to reforms discussed by a mayor-appointed city committee during the
2012-2013 Boston school choice reform. The main reforms discussed were to increase the walk-zone per-
centage and and to reduce the choice menu. As of 2012, school programs were split into two halves, one
half that prioritizes students living within 1 mile (walk-zone), and one half that does not have this prior-
ity. For most programs, the walk-zone half represented 50% of seats. By increasing this percentage, policy
makers can induce a closer-to-home assignments, thus increasing cohesion. However, we showed that even
if we had implemented 100% walk-zones, the gain in community cohesion is not as much as if we had kept
the walk-zone percentage unchanged but used correlated lottery. Furthermore, while increasing the walk-
zone percentage does not increase the number of same-community-peers for students traveling out of their
walk-zone, correlated lottery does.

The other reform discussed by the city committee was to reduce the choice menus of students. During this
process many plans for choice menus were proposed, some involving dividing the city into more assignment
zones, and others involving a customized menu that depends on students’ address. Using simulated choices
from a discrete choice model fitted with real data, we show that the cohesion gain from lottery correlation
is comparable to sizable reductions in choice menus. More interestingly, the two strategies amplify one
another. For example, consider the choice menu called “Home Based A.” (This was the choice menu even-
tually chosen by the city committee.) If we were to apply this choice menu reform alone, we would improve
cohesion by 46% for K1 and 30% for K2. If we were to apply correlated-lottery alone, the cohesion gains
are 88% for K1 and 39% for K2. So correlated-lottery achieves more gain. However, if we were to apply
both reform at the same time, cohesion would more than triple for K1 and more than double for K2. So the

number of neighbors students can expect to see at their assigned school would dramatically increase.
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One practical concern with our approach is that it might harm racial or socio-economic diversity, which
historically is a key reason why many school choice systems were created in the first place. However, in the
data, we find that lottery correlation has minimal impact on diversity. As a measure of diversity, we compute
the probability that two random students assigned to the same school are of the same race or socio-economic
status. When we use correlated-lottery, the same-race probability increases from 36.7% to 36.9% for K1,
and from 42.6% to 42.7% for K2. The impact is similarly small for socio-economic status. One reason why
the impact is so small is that geographic patterns of racial and socio-economic concentration in Boston are
at a larger scale than the neighborhood sizes we define.

This paper is organized as follows: In section 1.1, we document related prior work. In Section 2, we
state the correlated lottery problem formally. However, we show that the optimization problem is NP-hard
even with 2 schools, so it is hard to characterize the properties of the optimal objective. We circumvent this
difficulty by proceeding the theoretical analysis in a large market model with a continuum of communities,
in which the NP-hardness is “smoothed away.” In Section 3, we define a large market model for one-
sided matching with arbitrary priorities, and show that in this setting all “reasonable” mechanisms can be
expressed as a lottery-plus-cutoff mechanism. This result may be of independent interest. In Section 4,
we use this structure and derive intuitive expressions for cohesion with and without lottery-correlation.
In section 5, we discuss solving the correlated-lottery optimization problem in practice. In section 6, we
present empirical results for Boston. We end with broader policy discussions in Section 7. All proofs are

deferred to Appendix A.

1.1. Related Work

While there is much existing literature on school choice (see Abdulkadiroglu and Sénmez (2003b),
Abdulkadiroglu et al. (2009, 2006), Pathak (2011)), most of the literature focuses on individual students’
assignments and ignore the correlations between different students’ assignments. One reason for this is that
complementarities in matching is difficult to analyze theoretically.

The idea that different random assignments can represent the same assignment probabilities has appeared
before in the literature. In Abdulkadiroglu and S6nmez (2003a), the authors note that such random assign-
ments may differ in their ex-post efficiency. However, in their setup there is no guideline to decide between
such random assignments. In our setup, there is the added performance measure of community cohesion.

Our approach of defining a mechanism by implementing some assignment probabilities is similar to Bud-
ish et al. (2012). They study a more general framework and address the issues of group-specific quotas,
ex-ante efficiency, ex-post fairness, and implementability of lotteries under general constraints. However,
their techniques do not handle issues involving complementarities, such as community cohesion, and our
work expands on the applicability of their framework in this domain. Another work that studies the decom-
position of assignment probabilities into deterministic assignments to achieve some property is Pycia and

Unver (2012).
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Randomization has been much studied in school choice mechanisms. The currently most adopted mech-
anism break ties in school’s preferences for students using independently generated lottery numbers, and
apply the deferred acceptance (DA) algorithm or the top trading cycles (TTC) algorithm. (See Abdulka-
diroglu and S6nmez (2003b).) Abdulkadiroglu et al. (2009) study whether to use a single tie-breaker for
all schools or different tie-breakers for different schools, and their simulations using New York City data
shows that single tie-breaking is better. Pathak and Sethuraman (2011) show that in the absence of school
priorities both tie-breaking methods are equivalent. Erdil and Ergin (2008) illustrate the potential ex-ante
inefficiencies from running an ex-post efficient mechanism after random tie-breaking, and propose a method
to deal with such inefficiencies, but the resultant mechanism is no longer incentive compatible. Azevedo
and Leshno (2010) show that this proposed improvement may yield Nash equilibria in which the outcome
is Pareto-dominated by the original mechanism. Che and Kojima (2011) show that in the large market,
without school priorities, the deferred acceptance algorithm with a randomized tie-breaker is equivalent to
the ordinal efficient probabilistic serial mechanism, which Liu and Pycia (2012) show is equivalent in the
large market to any asymptotically efficient, symmetric, and asymptotically strategyproof ordinal allocation
mechanisms. These works suggest that there may be little room for improvement over the status quo in
terms of individual students’ welfare, given requirements of strategyproofness and fairness. Our work is dif-
ferent from these because we focus on community cohesion, which can be seen as “orthogonal” to students’
individual assignment probabilities to schools. We show that there is in fact much room for improvement in
this direction, while also maintaining most of the good properties of the current mechanisms.

In terms of implementing other social objectives in school choice, there has been previous work in “con-
trolled school choice,” most of which focus on achieving diversity (see e.g., Ehlers (2010), Ehlers et al.
(2011), Echenique and Yenmez (2012) and Kominers and S6nmez (2012)).

Outside of school choice, there has been other studies of assignment externalities. On the theoretical side,
general settings of matching with externalities usually yields negative results. One empirical study that has
similar flavor to ours is Baccara et al. (2012), in which they consider the assignment of faculty members to
offices in a US professional school, and study how institutional and social ties between faculty affect their
choices and the final assignment. They quantify the effects of these network externalities and assess the

matching protocol from a welfare perspective.

2. Model

There are n students to be assigned to m schools. The set of individual students is I and the set of schools
is .S. Each school s € S has capacity ¢,. For notational simplicity, we include a dummy school sy which
denotes “unassigned,” with sy = OO

The students are partitioned into k disjoint communities:
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A community-membership function c¢: I — {1, --- k} maps each student to the index of the community she
belongs to. As a slight abuse of notation, we may also index communities using c.

An assignment a is a mapping that takes students to schools, and we require that no school capacity is
violated. Formally, a : I — S, |a™*(s)| < ¢,, where a'(s) = {i : a(i) = s}. A random assignment z is a
random variable whose realizations are assignments. Denote the set of all random assignments X .

Slightly abusing notation, we sometimes represent a as an indicator matrix, in which a;, is 1 if and only
if student ¢ is assigned to school s. In this notation z;, becomes a binary random variable for whether 7 is
assigned to s. And p = E[z] becomes the matrix of assignment probabilities. (p; is probability student ¢ is
assigned to school s.)

For each student ¢ and school s, define the school-specific utility of i for s to be u;;. Abuse notation
slightly and define u;(a) := w;q(;), Which is student ¢’s school-specific utility under assignment a. Define
v;(a) to be i’s number of same-community peers under assignment a. This is the number of other students
assigned to the same school and from the same community, and can be written as v;(a) = [(a™(a(z)) N
L) )\{i} -

Assume that student ¢’s preference over random assignments is induced lexicographically by the ordered
pair

(Elui(x)], Elvi(2)))-

So students in our model care foremost what school they are assigned to, and within a given school
they prefer to be assigned with more peers from their community. We call this preference structure weakly
community-preferring. We assume that for each student 4, u,, is different for different s. Hence, the u;,’s
induces for student ¢ a complete strict ordering >; over schools, in which her more preferred schools are
ranked better. We call >~} the true preference ranking of student ;.

One intuitive measure of community cohesion under assignment a is simply the average number of same-

community peers assigned to the same school.* We define f(a), the cohesion of assignment a, as follows:

f@) =3 ul) =1+ 3" 37 1ali) =a(i)),

i jEl )
where 1{a(i) = a(j)} is the indicator for students 7 and j being assigned together. Note that nf(a)/2 is
simply the total number of pairs of students from the same community who are assigned to the same school.
The cohesion of a random assignment z is simply E[f(z)].

An assignment mechanism M is a function that takes as input a strict ranking of schools >~; from every
student, and outputs a random assignment. Note that the function M may implicitly incorporate various
rules for prioritizing one student over another, but these are given a-priori and are therefore not treated as

inputs.

* Note that we also counted same-community students who are both unassigned, sg.



Ashlagi, Shi: Improving Community Cohesion 9

For any mechanism M, we define its max-cohesion correlated lottery implementation as the mechanism

induced by the following maximization program:

Mmaceohesion (i) = arg max B[ f (z)] (D
s.t. E[z] =E[M(input)] (2)
rzeX.

This optimization maximizes cohesion subject to maintaining the same assignment probabilities as the
original mechanism. This is equivalent to maximizing the second component of expected social welfare in
our utility model, which implies that if the original mechanism is Pareto-efficient with respect to school-
specific utilities, the correlated lottery implementation becomes Pareto-efficient with respect to the full
lexicographic utility. By inheriting the assignment probabilities from the original mechanism, we preserve
any statistic of the original mechanism that can be expressed in assignment probabilities, including expected
distance to assignment, probability of attending a certain set of schools, and expected school-specific utility.
This is attractive because the decisions of what choices students have and who gets what priority is often
the result of an intensely-debated political process, so being able to maintain the exact same assignment

probabilities for everyone, while improving community cohesion, makes this approach less controversial.

2.1. NP-Hardness Even with 2 Schools

Consider the case of 2 schools. Let the schools be labeled 1 and 2, with capacities ¢; and ¢, respectively.
Suppose that both schools are acceptable to every student, and that the total number of seats matches the
number of students, ¢; + g, = n.

Without loss of generality, let school 1 be the over-demanded school. We assume that students are classi-
fied into priority classes to school 1, so that a higher priority student takes precedence over a lower priority
student. For students from the same priority class, we require that if they both prefer school 1, then they get
in with the same probability.

Despite the generality of the priority structure, we can characterize the structure of the assignment proba-
bilities. There is a “cutoff priority level” for school 1 at which any student who prefers school 1 with higher
than cutoff priority will get in school 1; any student with lower than cutoff priority level or prefers school
2 will get into school 2; students who who prefer school 1 with exactly the cutoff priority level will be
allocated based on a fair lottery. Respectively denote these sets of students D (get in school 1 for sure), F
(get in school 2 for sure), and E (allocated based on lottery). Define the number of seats to be assigned by

lottery to be g = g; — | D|. Students in F are assigned to school 1 with probability

*

po L
B[
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Figure 1 Random assignment in the 2-school case: students who prefer school 1 with higher than cutoff priority level (set D)
get in for sure; students who prefer school 1 with exactly the cutoff priority level (set E) get in with probability

p= q]; ; students who prefer school 2 or whose priority level is lower than cutoff (set F') get in school 2 for sure.

and school 2 otherwise. The random assignment is illustrated in figure 1.
An upper-bound on cohesion in this case is if communities in E' are always assigned together. In order to
achieve this, we need to be able to partition £ into subsets of size ¢*, which is a hard “packing” problem.

So it is computationally hard to decide whether this upper-bound can be achieved.

PROPOSITION 1. Unless P=NP, even with 2 schools, there exists no polynomial time algorithm (or FPTAS)

to compute the maximum achievable cohesion by correlated lottery implementation.

However, if there are many communities and no single community dominates in size, one can show that
we can achieve this upper-bound approximately. By analyzing the “large market limit” as the number of
communities go to infinity, one yields various insights. The insights are the same as in our more general
large analysis analysis in Section 4, so we defer the analysis to Appendix C. The fact that even in the 2
school case we gain the most insight from a large market limit motivates using a large market setup for
theoretical analysis to begin with.

The NP-hardness result in discrete setting precludes us from having nice expressions for cohesion from
correlated lottery. To circumvent the difficulty, we “smooth away” the NP-hardness by considering the
“large market” environment, in which there is a continuum of communities. Although in practice the number
of communities is finite, the continuum model allows for simple analytic expressions for maximum cohesion
and improvement by correlated lottery, thus illustrating the underlying insights in a clean way.

In Section 3, we setup a large market model and prove a useful characterization result, which may be
of independent interest. In Section 4, we use this characterization to gain insights about how much we can

gain in cohesion from lottery correlation and in what environments we can expect the most improvement.

3. Large Market Characterization of Reasonable One-Sided Matching
Mechanisms With Priorities

In this section, we define a large market model for one-sided matching markets with priorities. We show that

in this setup, any mechanism that satisfies some regularity conditions (non-atomicity, Bayesian incentive
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compatibility, symmetry and efficiency within each priority class) can be interpreted as “lottery-plus-cutoft,”
in which each student is given an identically distributed lottery number and each school sets a lottery-cutoff
for each priority class (the cutoffs depend on the distribution of preferences for each priority class); a student
is assigned her most-preferred school for which she meets the cutoff. This sets up the basis for our analysis
of cohesion in Section 4. However, this characterization itself does not have to do with communities or

cohesion.

3.1. Large Market Model

Let the set of students, I, be represented by a subset of Euclidean space of Lebesgue measure 1. Let S be a
finite set of schools, with |S| =m. For s € S, let g, be the school’s capacity.

As before, each student ¢ submits preferences ;, which is a ranking of schools. We assume that every
school is acceptable to every student, and that student ranks all schools. There are m! possible rankings,
and we assume that for each possible ranking, the set of students that submit this ranking is measurable.

Our model is one-sided matching with priorities, which means the following: Students are partitioned
into priority classes II.> We assume that for each priority class, the set of students of that priority class is
measurable and of positive measure. Furthermore, the distribution of priority classes and the distribution of
preferences within each priority class is common knowledge. We assume that the assignment mechanism
satisfies the following regularity conditions in the large market setting:

e Non-atomicity: Any single student changing her preferences has no effect on the assignment probabil-
ities of others.

e Bayesian incentive compatibility in school-specific utilities: Given the distribution of students’ prefer-
ences within each priority class, students reporting truthfully is a Bayes-Nash equilibrium. In other words,
given the measure of students of each priority class and of each possible preference ranking, assuming
that everyone else reports truthfully, a student cannot improve her expected school-specific utility E[u;] by
submitting a false preference. Henceforth we denote this simply by “incentive compatibility.”

e Symmetry: Students in the same priority class with the same preferences receive the same assignment
probabilities.

e Efficiency within each priority class: For students in the priority class, there does not exist a Pareto
improvement “trading cycle” where by sg <;; 51, $1 <;; S2-++5; <y, So and iy has positive probability of
being assigned sy, ¢; has positive probability for sq, etc.

Note that since these conditions only need to hold in the large market, one can interpret them as only
needing to be “asymptotically” true. This means that for example, the “incentive compatibility” condi-

tion in the above is actually the less-restrictive incentive compatibility “in the large” condition described

> One can think of a priority class as joint priorities to all the schools: for example, in Boston, a priority class might denote having
walk-zone priority to school 1, sibling priority to school 2, and no priority for all other schools.
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in Azevedo and Budish (2012)°. Taking the suitable limit and ignoring some “knife-edge” cases, two of the
most widely used mechanisms—Deferred Acceptance with Single Tie-breaking (DA-STB) and Top Trading
Cycle with Single Tie-breaking (TTC-STB), assuming that students are allowed to rank as many choices
as they would like-both satisfy the above conditions in the large market, so both fall into our framework.’
DA-STB is used in Boston, New York, Denver and San Francisco. TTC-STB is used in New Orleans. For
descriptions of these mechanisms, see Abdulkadiroglu and S6nmez (2003b).

This model is similar to the continuum two-sided matching model in Azevedo and Leshno (2012). The
main difference is that in our model, schools do not have strict preferences over individual students, must
treat students in the same priority class symmetrically, but may treat different priority classes differently; in
their model, schools assign each student a different score and strictly prefers students with higher score. In
their paper, they show that a continuum two-sided matching model can be interpreted as a limit of discrete

matching models.® This provides a theoretical foundation for such continuum models.

3.2. A Characterization Theorem

We show that in the large market model, any mechanism that satisfies our four regularity conditions can be
described as a “lottery-plus-cutoff” mechanism: each student gets an identically distributed lottery number
and each school sets a lottery-cutoff for every priority class; a student is assigned her most preferred school

for which her lottery meets the cutoff.

DEFINITION 1. A mechanism is lottery-plus-cutoff if it can be described as follows: given preference sub-
missions, each student 7 receives an independently distributed lottery number z; (may be jointly correlated).
WLOG, z; < Uni form|0,1). Given the measure of students in each priority level submitting each ranking,
schools have a priority-dependent lottery cutoff z; .. Student i is assigned her most preferred school for
which she meets the cutoff (z; > z;(i))s).

If in addition the lottery numbers z; are independently generated for different students, then we call the

lottery independently implemented.

6 Azevedo and Budish (2012) describes “strategyproofness in the large,” but one can similarly define “Bayesian incentive compati-
bility in the large.”

7 Following Azevedo and Leshno (2012), a suitable limit would be any sequence of finite economies with market size going to
infinity, but with the proportion of students of each preference and priority, as well as the relative capacities of programs, con-
verging to the large market limit. Both DA-STB and TTC-STB satisfy incentive compatibility and symmetry regardless of market
size. Azevedo and Leshno (2012) Theorem 1 and 2 imply that except when capacities fall into some measure-zero set, DA-STB
satisfies asymptotic non-atomicity. On the other hand, TTC-STB satisfies asymptotic non-atomicity always, because another stu-
dent changing her preferences only affects me if her change is affecting the allocation of the “last seat” at a school, which happens
with negligible probability. Both mechanisms satisfy efficiency within each priority class because in the large market limit, the
distribution of preferences of students of the same priority class is fixed regardless of lottery number, and this precludes trading
cycles within each priority class.

8 Other works that use continuum matching models include Abdulkadiroglu et al. (2008), Miralles (2008), and Budish and Cantillon
(2012).
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THEOREM 1. In the continuum model, an assignment mechanism is non-atomic, Bayesian incentive com-

patible, symmetric and efficient within each priority class if and only if it is a lottery-plus-cutoff mechanism.

The core ideas behind the proof appeared previously in Liu and Pycia (2012), which shows that without
priorities and in the large market, any mechanism that is non-atomic, strategyproof, symmetric and efficient
is equivalent to the probabilistic serial mechanism. The main difference with our result is that while their
setup does not have priorities, we allow arbitrary priorities; in fact, we show that the added flexibility from
arbitrary priorities can be exactly captured by the notion of lottery-plus-cutoff mechanisms. Moreover, while
their analysis studies the limit as a discrete model is scaled up, our analysis is directly in the continuum
setting. Our proof is given in Appendix A.

One way to interpret the above result is that in a large one-sided many-to-one matching market, asymp-
totic incentive compatibility and asymptotic efficiency within each priority class constrain the mechanism
significantly, leaving policy makers with only two control levers: (1) cutoffs for each priority class and (2)
lottery correlation. Assuming in addition that the mechanism does not waste desirable resources, then the
first lever, determining cutoffs, is a purely distributional question: how much claim does each priority class
have on each resource and whether such claims can be traded.’ The second lever, lottery correlation, is what

we study in this paper.

4. Cohesion in the Large Market Model

The characterization in Section 3.2 allows us to study the impact of lottery-correlation in a wide class of
mechanisms. Once we know that a mechanism is “lottery-plus-cutoff,” we can isolate the effects of lottery-
correlation by treating the cutoffs as given. By doing this, we insulate the analysis from the complexities of
how the mechanism treats different priority classes, as all such subtleties are endogenized into the cutoffs.
We first define communities and cohesion in the large market model. Let the unit interval C' = [0, 1]
represent a continuum of communities.'? Let the set of students within each community also be represented
by the unit interval [0, 1], so the set of all students can be represented by the Cartesian product of two unit
intervals, which is the unit box, I = [0, 1]?. Each student i € I can be represented by its coordinates (¢, ), in
which c is the student’s community and y is the student’s index in this community. (This implicitly assumes
that communities have equal size, but this can be relaxed.) The community membership function c(3) is

simply the first coordinate of i. For simplicity, assume that the total supply of seats equals total demand, so

>.qs=1

°In both Deferred Acceptance with Single Tie Breaker (DA-STB) and Top Trading Cycles with Single Tie Breaker (TTC-STB),
claims are defined for student school pairs—whether a student lives close or has a sibling at a school. In DA-STB, claims cannot be
traded; in TTC-STB, claims can. This implies that the cutoffs under the two mechanisms are different.

10 We need infinitely many communities in order to show analytic results, because the hardness result in Section 2.1 still hold even
if we had infinitely many students per community but finite number of communities.
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Our analytical results require an additional assumption: we assume that everyone in the same community
belongs to the same priority class. This would hold, for example, if communities and priorities are purely
geographically based and communities stay together in any geographic division. This assumption implies
that each community sees one cutoff for each school, and it turns out that this implies one can achieve
maximum community cohesion by simply giving everyone in the community the same lottery number.

Given students submitted preferences and the mechanism, define the following quantities:

ps(i) := probability of student ¢ of being assigned to school s. For i =
(c,y), we also write p,(c,y) = ps(i).
1,(z]i) := Indicator for whether student i at lottery z would be assigned to

school s. (It is 1 iff at lottery z, student ¢ finds school s to be her
most desirable option for which she meets the lottery cutoff.) We
call this student 7’s demand function for school s.

ps(c) = fy ps(c,y)dy. The total assignment probabilities to s of students
in community c.
ds(zle) = fy 14(z|(¢,y))dy. The total demand for s from community c at

lottery z. We call this community ¢’s demand function for s.

These quantities, as well as the cutoff structure, are illustrated in Figure 2. This graphs the students in a
community on the horizontal axis and the lotteries on the vertical axis. It is a “slice” of a cube which would
correspond to I = [0, 1] in two dimensions and lottery z € [0, 1] in the third dimension.

Note from Figure 2 that p,(c) = E.[d,(z|c)], because both are equal to the “area” assigned to school s.
The first is integrating horizontally, and the second is integrating vertically.

Define f* as the cohesion for school s: the expected measure of same community pairs assigned to s.
Define f =) _ f* as the total cohesion which is the measure of pairs of students from the same community
assigned to the same school. The following theorem provides a nice analytical formula for cohesion in the
independent and max-cohesion correlated cases. Following it are intuitive interpretations of what the terms

mean.

THEOREM 2. In the continuum model, for any school s, the cohesion from independent lottery implemen-
tation is:
fiftdependent =E. [p_sQ] = qf + Var.(ps).
If everyone in the same community has the same cutoff for this school (i.e. if in the same priority class),
then

s = F, [d%=f: + E.[Var.(d|c)].

max ~ independent

Thus, the total cohesion,

findependent = Z qz + Z Varc (ps)a

fmax = Jindependent + Z Ec[varz (ds |C)] .
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Figure 2 Assignment within community ¢: horizontal dimension is students and vertical dimension is lottery numbers. z7,
25, z3 and zJ are lottery cutoffs for community ¢ of schools 1,2, 3,4 respectively (well-defined because we assume
everyone in the same community are in the same priority class). d3(z’|c) is the demand function for school 3 at lottery
2. p3(c,y’) is the probability student 3’ is assigned to school 3. The area shaded with the same color represents the
1-dimensional measure of assignment probabilities of students from this community to a school (5 (c)). The color of
a certain point corresponds to the indicator 1(z’|(c,y)) of whether student i = (c,y") at lottery 2z would be assigned

to s.

The proof (deferred to Appendix A) follows from the nice cutoff structure, re-arranging orders of inte-
gration, and the law of total variance. We interpret the terms as follows.

e > _¢?: Herfindahl index of school size. This is a measure of variation in school sizes. The more varied
school sizes are, the higher the baseline cohesion.

e ) Var.(p,): Between community variation in assignment probabilities. The more varied assignment
probabilities are between communities, the higher the baseline cohesion.

e > FE.[Var.(d|c)]: Potential gain in cohesion from using correlated lottery. For each school, the sum-
mand is the average across communities of the variation in demand function. In other words, it is how much,
on average, the lottery number affects the demand function. Intuitively, this has to do with how competitive
schools are (high cutoffs), and how correlated preferences within a community are. This intuition is made
more precise in Corollary 2

By manipulating the expressions in Theorem 2, we immediately yield 2 corollaries. The first shows
that the maximum possible improvement ratio is upper-bounded by the number of schools, which can be

achieved if all schools have size % and all students share the same preferences. The second corollary
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interprets the gain in cohesion as a weighted average of an aggregate statistic representing competition and

preference correlation.

COROLLARY 1. (Upper-bound on improvement ratio)

f max S 1 S m.
findependent Zs qs

COROLLARY 2. The proportional improvement in cohesion for lottery correlation can be interpreted as a
weighted measure of the Squared Coefficient of Variation (SCV) of the demand function. Define the Squared
Coefficient of Variation SCV4,(c) = %. Intuitively, the SCV of the demand function is a combination
of competition (high cutoffs) and high within-community preference correlation.

Define weights w. = E_[d,|c]* = p,(c)%. For any school s, the proportional improvement in cohesion is

a weighted average of the SCV:

fr;ax - ﬁ;depetldent _ Ec [wcSCVds (C)]
E.[w,]

S
independent

We now show that maximum cohesion in our large market setup can also be expressed as a constant
minus a measure of within-community heterogeneity. More precisely, define A,(i,7") = |ps(i) — ps(7')].
This is the absolute difference in assignment probabilities to school s for individuals ¢ and ¢’. Define the

mean absolute difference in assignment probability for school s and community c to be

AS(C) = Ei,i’ec[AS (ia Z/)]

This is the expected value of A,(4,7") for two randomly drawn individuals 4,4’ from community c. Aver-

aging across communities, F.[A,(c)] is then an aggregate measure of within-community heterogeneity in
assignment probabilities to school s. The following proposition shows that maximum cohesion to a school

s is equal to the size of the school minus one half of this measure of within-community heterogeneity.

PROPOSITION 2. (Cohesion is limited by within-community heterogeneity)

frftax =d(qs — %E(‘[AS(C)]

So that summing across all schools,
1 _
fmax =1- 5 Z EC[AS(C)]7

where the term being subtracted is an aggregate measure of within-community heterogeneity in assignment

probabilities.
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The expression for gain in cohesion in Corollary 2 is exact but difficult to think about in practice. The SCV
of demand function is hard to estimate. We now relate the gain in cohesion to quantities that are perhaps
easier to estimate: uncertainty of the lottery (as measured by the variances of individual assignments) and
level of competition (as measured by the lottery cutoffs).

The following proposition shows that potential to improve cohesion for a school is greater when assign-
ment is more uncertain (higher competition) and absolute difference in assignment probabilities within a
community tend to be either close to 1 or close to 0 but not in between. In other words, for two students
within the same community, they either get assigned to a school with very similar probabilities, or one gets

assigned with very high probability and the other with very low probability.

PROPOSITION 3. (Decomposition of potential to improve) The gain from cohesion from correlated lottery
is equal to the average individual assignment variance minus a function of within-community differences in
assignment probabilities.

frftax - findependenr = Ei[pS(l _ps)] - §Ec(i):c(i’) [AS(Z7Z )(1 - AS(Z72 ))]

< Eilps(1=ps)].

In the first line, the first term is the average across individuals of assignment variance to school s; this
is a measure of how uncertain the lottery is for school s. The second term is minimized when A,(i, 1)
is either close to 1 or close to 0. Because the second term is always non-negative, gain from cohesion is

upper-bounded by the uncertainty of the lottery.

The following proposition shows that proportional improvement in cohesion is lower-bounded by a mea-
sure of competition. In other words, for schools that generally have very high lottery-cutoff, the proportional

improvement in cohesion must be high.

PROPOSITION 4. (Potential to improve is lower-bounded by competition) For school s, define t*

7(c),s
1 =27 ). (Higher ti* corresponds to tougher competition since cutoff is high.) Define weight w. = p,(c)>.

The improvement ratio from cohesion is lower-bounded by a weighted average of this competition statistics
1

t*"

E %
C[thﬂ'(c),S] < frflax
Ec [wc] o ifzdependent

So for schools with generally high lottery cutoff z*, improvement factor in cohesion must be high.

The following proposition shows exactly when lottery-correlation is useful. It turns out that for every
school, the following three quantities add up to a constant:

1. Between-community heterogeneity in assignment probability.
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2. Within-community heterogeneity in assignment probability.

3. Potential to improve cohesion by lottery-correlation.

So that we are generally in one of the following 3 cases:

1. High between-community heterogeneity: cohesion with independent lottery is already high.

2. High within-community heterogeneity: there is nothing we can do. Maximum cohesion is severely
limited.

3. High potential to improve.

PROPOSITION 5. (Structural identity) For every school s, the following three terms add to a constant:

QS(l - QS) = Varc(p_s) + %EC [AS (C)] + ( nsmx - iidependent)
between-community within-community hetero- potential to improve
heterogeneity geneity

This relationship is illustrated in Figure 3.

Patential to
improve
cohesion

Baseline . "Preference Uncertainty
=2 cohesion”~ correlation =< of individual
& competition"  lotteries

C.
Correlated lottery
improves cohesion
significantly

B Nothing

A :
Between- Baseline -, ~ we can do
community cohesion . because of Within-community
heterogeneity, already high heterogeneity
A ~a

Figure 3  Diagram illustrating structural identity (Proposition 5). The triangle represents 3 quantities that add up to a constant.
There are 3 possible cases: A) high between-community variation in assignment probabilities, so baseline cohesion
is already high. B) high within-community heterogeneity in assignment probability, so there is nothing we can do by
Proposition 2. C) significant potential to improve cohesion by correlated lottery. Corollary 2 shows that potential to
improve can be interpreted as baseline cohesion multiplied by a weighted average of the SCV (squared coefficient
of variation) of the demand function (with respect to the lottery z). The SCV can be interpreted to correspond to a
mixture of preference correlation and competition. Proposition 3 shows that the improvement is upper-bounded by a

measure of total uncertainty of the lottery. This relationship holds not only overall but also school by school.
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4.1. Embedding a Model with Preferences

To more directly illustrate the relationship between preference structure and cohesion, we consider an
explicit model of students’ preferences. Suppose that student ¢’s preferences for schools is driven by random

utility model

Ujs = QlVs — 5("-)6(7;)5 + €is,

where v, corresponds to “quality” of school s, w,, is distance from community ¢ to school s (more generally
can capture any community-specific propensities for specific schools), and ¢;, is an idiosyncratic shock
drawn from a standard Gumbel distribution. This is a realistic structure of preferences that has been used
to fit data in empirical studies. (See Pathak and Shi (2013).) For simplicity, we assume that for different
schools s, ¢/, v, # vy and w., # w.s. We assume that there are no priorities. We study the behavior of
findependent aNd finax as functions of o and 3.

The following proposition shows the limit behavior of fisgependent aNd finax as & (how much quality mat-
ters) or 5 (how much distance matters) goes to infinity. It shows that if there is no between-community
heterogeneity (8 = 0), cohesion with independent lotteries is fixed and is the lowest possible, regardless
of how correlated students preferences are. On the other hand, with correlated lottery, perfect cohesion
can be achieved without between-community heterogeneity, if preferences for quality are very correlated.
With high between-community heterogeneity, perfect cohesion can be approached in both independent and

correlated cases. This corroborates the triangle diagram in Figure 3.

PROPOSITION 6. If capacities are such that when everyone goes to their closest school, the closest school

can accommodate. For any o,

findependent(a07 0) = Z qza (3)

lim ﬁndependent(a07 /B) =1. (4)

B—o0

For the correlated case, regardless of capacities, for any oy and [y,

o}ijgolo fmax(ay/BO) - 17 (5)
BILI{.lofmux(a(]vﬁ) =1 (6)

While the above result is only in the limit, the following proposition shows comparative statics in the
finite region, in the special case that 3 = 0. It shows that if capacities are not too different so that more
desirable schools are also more over-demanded (more applicants per seat), then as preferences become more

correlated, cohesion from independent lottery stays fixed, while cohesion from correlated lottery increases.
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THEOREM 3. (Pure vertical differentiation) Suppose that 8 = 0 (no between-community heterogeneity).

Let 4 = €”s. Suppose that the schools are ordered so that the more desirable schools are first, so r1 >

ro > 73 --. Assume that capacities are not “too different,” so that dividing by capacities do not change this
relative order, so - > 2 > ... Then for every school s, while firdependent (@, 0) = @2 is constant in c,

f2..(a,0) is strictly increasing in .

max

5. Computing the Correlated Lottery Implementation in Practice

Fixing students’ submitted rankings, let p be the assignment probabilities of the original mechanism. (p;, is
the probability student ¢ is assigned to school s under the mechanism.) The max-cohesion correlated-lottery

implementation problem can be written as

Max  E[f(z)] )
st. Elz]=p
reX.

Define the assignment polytope

P = {aeRnxm:Zais—l,Zaisqu,Ogaisgl}.

Represent random assignment z explicitly as {(A',a') : o' € Vertices(P),\' € [0,1],Y", A" = 1}, so that
x = a' with probability \’, and let A be the nm by |Vertices(P)| matrix in which the columns encode the
vertices of assignment polytope P. Define f(A) naturally as the vector in which the [th component is the

cohesion of the /th column of A. We can rewrite the above in the more explicit form

Max f(A)-A (®)
st. Al=p
I-A=1
A>0.

which is a standard form linear program (albeit with exponentially many variables). The theory of LP
implies that there is an optimal solution with only nm positive components of A (because rank 7)= nm).
In other words, for any assignment probabilities {p;;}, there exists a random assignment = with E[x] = p
which randomizes over at most nm deterministic assignments and achieves maximum cohesion.

This suggests the following mechanism.

1. Estimate the individual assignment probabilities p;, of the original mechanism by independently sim-

ulating 7" times. Note that the computed estimates are unbiased and have component wise standard deviation

(1—pis)Ppis 1
T < VT
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2. Use the estimated p as inputs to program (8) and use some algorithm to compute a convex combination
of deterministic assignments {(A',a’) : 3", a’ = 1}. Output assignment a' with probability A'.

For any 7', the resultant randomized mechanism induces the same individual assignment probabilities as
the original mechanism (using crucially the unbiasedness of the simulation in first step).

The only difficulty is what algorithm to use to solve program (8). As shown in Proposition 1, solving
the cohesion optimization is NP-hard even with 2 schools. In Appendix B, we show that the case with
many schools is related to the notoriously hard Quadratic Assignment Problem (QAP), which is NP-hard to
approximate to any constant factor (Burkard et al. (1998), Sahni and Gonzalez (1976)).

We propose a simple heuristic to solve this in practice. This heuristic is related to the Birkhoff-von
Neumann theorem, as it seeks to express the original assignment probabilities as a convex combination
of deterministic assignments by iteratively breaking off one deterministic assignment at a time. To find a
deterministic assignment at each iteration, it solves a max-weighted bipartite perfect matching problem,
with the students on one side of the graph to be matched to the schools on the other side. As input to the
max-weighted matching procedure at each iteration, we define an edge from a student to a school if and
only if the assignment probability of that student to the school is positive, after having subtracted off the
deterministic assignments from previous iterations. The weight of this edge is randomly generated, but we
constrain the weights to be the same for everyone from the same community to the same school. An intuition
of why this might work is that conditional on student ¢ being assigned to school s in the max-weighted
perfect matching, the edge weight of that student to the school is probably high, and so the edge weight of
other students from ¢’s community to s is probably high, so we expect many of them to be co-assigned with
1 to s. Another intuition is that giving the same edge weights to students of the same community reduces
“local minimums in which a trading cycle can increase cohesion. Details of the heuristic and elaborated
intuition is in Appendix B. We implemented our correlated-lottery implementor in Java (code is available

upon request).

5.1. An Upper-bound on Maximum Cohesion

To evaluate the optimality gap of our heuristic, we derive a simple upper-bound to the correlated lottery
implementation mathematical program (7). Consider student 7 and school s, conditional on the student
being assigned to s, the expected number of same community peers that can be co-assigned to school s is
upper-bounded by

min Z min(pimpi’s)?pis (Qa - 1) /p7s
c(i')=c(i),i' #i
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Where the first term follows from E|[x;,zs] < min(p;s, pys), and the second term is the bound from
the capacity constraint of s. The expression is divided by p;, because it is a conditional expectation. This

implies that given assignment probabilities p, cohesion is upper-bounded by

ES min (Zc(i’):C(i),ilséi min(pisapi’s)7pis(qs - 1))
Zspis '

Elf(z)] <> )

(10)

6. Application to Boston Elementary School Choice
6.1. Description of School Choice in Boston

School Choice in Boston Public Schools (BPS) began with the adoption of the Controlled Choice Student
Assignment Plan in 1988. The plan organized public elementary and middle schools into three zones—East,
North, and West—and students were given the option to apply to any set of schools within their zone. To
apply, students submit a ranked list of their preferred schools, and a centralized lottery produces the assign-
ment. Since then, policies regarding the assignment process have been revised numerous times, including
the lottery algorithm itself, but the overall framework of the process remained the same.

Our empirical study focuses on BPS elementary school assignment in 2012, which is when Mayor
Menino made his call to improve community cohesion in school assignment. We focus on elementary
schools because this is arguably the time when going to school with neighbors is most important, and
because this was the focus of the 2012 school choice reform that followed the mayor’s call. The goal of
this study is to analyze what would have happened if we had adopted a correlated lottery procedure to
improve community cohesion in 2012, and compare with alternatives considered by the mayor-appointed
city committee.

The vast majority of students enter BPS elementary schools via entry grades K1 and K2 (K for kinder-
garten). To enroll in September, students participate in one of 4 application rounds by submitting rankings
over specific programs in schools (a school may offer several programs: regular, English Language Learner,
Montessori, etc). They can rank as many schools as they would like. The first round occurs in January. and
this is when the majority of families participate (about 80% of families who eventually apply first apply in
Round 1.) For families that come later, there are 3 smaller subsequent rounds that take place from March
to June. There is also a wait-list process in which families may get a seat at a subsequent round if more
capacity becomes available or if others drop out. The wait-list favors applicants from earlier rounds so it is
always the best to apply in Round 1. For simplicity, since the majority of seats are allocated in Round 1, we
focus on Round 1 choice in this paper.

After families submit choices, the assignment is computed by Deferred Acceptance with Single Tie-

Breaker (DA-STB).!! More precisely, each program is internally divided into 2 halves, a walk-zone half

"' This was adopted in 2005 to eliminate the need for strategic manipulation. See Abdulkadiroglu et al. (2006).
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and an open half. Students’ preferences on programs are augmented into preferences on halves, such that
students living in the walk-zone (within one mile of school) prefers the walk-half and students from out-
side the walk-zone prefer the open half. (Preferences between different programs are maintained in the
augmentation.)

Each of the program halves also rank students in the following way: each student is given an i.i.d. ran-
dom lottery number. The ranking over students is induced by several levels of priorities (1st level is most
important, 2nd is to break 1st level ties, 3rd level to break 2nd level ties, etc). The priorities are given in

Table 3.

Hierarchy ‘ Priority rule

1st level continuing students > others

2nd level have sibling in this school > others
3rd level (only for walk-halves) | lives in walk-zone > others

4th level by lottery number

Table 3 Order of priorities used in Boston elementary school assignment in 2012. The earlier level priorities are more

important, with later levels only used to break ties. The 3rd level is applied only for walk-zone halves.

Given students’ rankings on program halves and program halves’ rankings on students, assignment is by
the student-proposing deferred acceptance algorithm, which is as follows:

1. Find an unassigned student, have her apply to her top remaining choice.

2. If the program half is not full, accept her; otherwise, bump out the least preferred student from that
program half (which may be her), and remove this program half from that student’s ranking.

3. TIterate until all unassigned students have gone through all their choices.
It is well-known that the above algorithm induces a unique assignment regardless of the order of application.
(See Roth and Sotomayor (1990).) This induces an assignment of students to school programs, and this

assignment is mailed to families.

6.2. Data

We use 2012 Round 1 choice data for grades K1-2, which have been anonymity but still contain information
on students’ demographics, geocode (divides Boston into 868 smaller regions), top 10 choices'?, and final
assignment. Although we were not given capacities of programs, we were able to infer them from final
assignments. As a check, we were able to replicate 98.2% of K1 assignment and 99.0% of K2 assignment.'?
Table 4 summarizes the supply and demand data.

In the data it turns out that the lottery mostly matters only for new families (non-continuing, non-siblings).

Table 5 tabulates the fraction of students of each type getting their top choice.

12 Most families select less than 10 choices, so this truncation should not be a big issue.

13 This is running the choice data on our algorithm and comparing with the actual assignment generated by BPS. For actual assign-
ment, we use the assignment before BPS administratively assign students who were unassigned by the main algorithm.
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K1 K2 KIl1-2

Schools 66 75 75
Programs 106 123 229
Seats 1921 3689 5610

167 1904 2071
(6%) (47%)
690 467 1158
(26%) (12%)
1809 1659 3469
(68%) (41%)
Total Students 2666 4030 6696
Table 4 Demand and supply information from choice data. For example, for K1, students could select from 106 programs with

Continuing students
Non-continuing siblings

New families

1921 seats in total. 2666 students applied, 6% of which were continuing (from K-0), 26% were not continuing but had a sibling at

some BPS elementary school, and 62% were “new families” (neither continuing nor have currently attending siblings).

K1 K2
% of students % assigned top | % of students % assigned top
choice choice
Continuing 6% 92% 47% 95%
Non-continuing siblings 26% 80% 12% 79%
New families 68% 24% 41% 29%

Table 5 Percentage of students of each type getting their top choice. For example, for K2, 47% of students are continuing from
K-1, and 95% of them get their top choice (most likely their K-1 school, which they have high priorities at). So there is essentially

no lottery for these students, and no lottery correlation can have much impact on them.

Since continuing students and siblings are very likely to be assigned their first choice (so there is essen-
tially no lottery for most of them), we can only hope to significantly impact via lottery correlated those who
are new families. So in reporting outcomes, we mostly focus on the new families.

Our approach also takes as input delineations of community. The city may want to do this based on
natural dividing lines or other considerations. For the purpose of this study, we simply use a square grid of
.5 miles in length, with each .5 mile x .5 mile square defining a community. Figure 4 plots the geographic

distribution of all 6696 K1-2 students, partitioned into 205 non-empty communities.

6.3. Impact of Correlated Lottery Implementation

We take the actual choices, simulate the current assignment algorithm 1000 times with independently drawn
lottery numbers to estimate assignment probabilities, and run correlated lottery heuristic described in Sec-
tion B.1 to produce another 1000 assignments with the same assignment counts for each student-program
pair, but correlated so within the same assignment students from the same community are more likely to
be co-assigned to the same school. Drawing one of the 1000 correlated assignments is then a correlated
lottery that replicates the estimated assignment probabilities for all, but has improved cohesion. In Table 6,
we tabulate for various groups of students their average baseline cohesion (without correlation), improved
cohesion (with correlated lottery), upper-bound to cohesion (from Section 5.1), amount of improvement

(correlated minus baseline), and upper-bound on improvement (upper-bound minus baseline).
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Figure 4 Partition of Boston into .5 milex.5 mile squares. We treat each square as a community. Each circle corresponds to a
geocode, and the area of the circle is proportional to the number of students residing at the geocode. Defined in this

way, the average number of students per community is 2666 /205 = 13 for K1 and 4030/205 = 19 for K2.

Baseline Correlated Upper-bound Improvement Bound on Improvement

K1

All students 1.35 2.11 2.70 0.75 1.34
Continuing students 1.30 1.32 1.38 0.02 0.08
Non-continuing siblings 1.35 1.43 1.56 0.08 0.21
New families 1.36 2.44 3.26 1.08 1.90
K2

All students 2.48 2.89 3.39 0.42 0.91
Continuing students 2.26 2.27 2.30 0.01 0.04
Non-continuing siblings ~ 2.91 3.01 3.23 0.10 0.32
New families 2.61 3.58 4.69 0.97 2.08

Table 6  Impact of lottery correlation on cohesion for various groups of students. For example, for K1 new families,
conditional on being assigned, students on average can expect to find 1.36 same-community peers. (Same-community peers are
others from the same community, of the same grade, assigned to same school program.) If we used correlated-lottery, the number
of same community peers improves by 79% to 2.44. Based on the given assignment probabilities, no correlation procedure can
produce cohesion greater than 3.26. Using correlated lottery, the average K1 new family gains 1.08 additional same-community

peers. No correlation procedure can produce a gain greater than 1.90.
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As can be seen, while lottery correlation does little for continuing students and siblings (who mostly get
their 1st choice regardless of the lottery), it increases average cohesion for new families by about 1 in both
K1 or K2. This is one additional “neighbor” these students can find at their school assignment, which is a
significant increase since the baselines are 1.36 and 2.61 respectively. Moreover, even if we had solved the
max-cohesion problem to optimality, we cannot expect the improvement in cohesion to be more than 1.9

for K1 and 2.08 for K2, so to achieve greater gains we would need to alter the assignment probabilities.

6.4. Distribution of Impact

An interesting question is how the overall cohesion gains are distributed among various students. Figure 5
shows baseline cohesion and improvement (correlated-baseline) for various geocodes for K1. Figure 6 does
the same for K2. The plots show that the gain from correlated lottery for K1 is reasonably evenly distributed
geographically, with some amounts of “green” throughout the city, the gain for K2 is very uneven, being
concentrated in north east corner, south west corner, and small wedge on the eastern part of the city. This is
reflected also in the box plots, as the median improvement for K1 is about 0.6, while the median improve-
ment for K2 is only 0.25. (The mean improvement is roughly 1 in both cases.) This is a disappointing
finding as K2 is where the majority of students enter BPS.

How do we make sense of the uneven distribution of improvement in cohesion? The theory in Section 3
suggests that cohesion improvement should benefit those whose lottery is most uncertain (high variance)
and whose communities have lowest within-community heterogeneity. Moreover, we expect that within a
community lottery correlation should help the most those whose preferences are most similar to the rest
of the community. For ease of interpretation, we define the following proxy: for student ¢, comparing her
with a randomly drawn peer from her community, what is the expected # of programs they have in common
among their top 3 choices? We label this proxy choiceAgreement (7).

We plot this for K1 and K2 new families in Figure 7. As shown, this measure of within-community
preference correlation is about twice higher for K1 than for K2, and the distribution seems to match the
distribution of cohesion increases in Figures 5 and 6. To illustrate this relationship more precisely, we
regress individual-level improvement in cohesion on individual lottery variance (ZS pis(1 — pis)), scaled
choice agreement (|c(7)|choiceAgreement(i)), and dummies for whether student 7 is continuing student or
non-continuing sibling. The regression results are tabulated in Table 7. As can be seen, much of the variation
in gains from cohesion can be explained by uncertainty of lottery and preference correlation and incoming
status, with highest gains for new families facing uncertain lottery with preferences highly correlated with
their community.

One motivation for increasing cohesion is so that families can car-pool and students can have neigh-

borhood friends, but to some extent this matters only when the student is going to school not in his/her
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Figure 5 Geographic distribution of baseline cohesion and cohesion improvement for K-1 new families. Each circle corresponds
to a geocode. Its color corresponds to the average value of students living at that location, and its size is proportional to
the number of students. The bar on the right of each map shows a box-plot based on the same color scale of the student
level distribution, with the ends of the box showing the 25 and 75 percentiles, while the red line shows the median
(parts of box plot maybe outside of range to have colors show reasonable contrast). From the left plot, we see that
cohesion is highest in East Boston (upper-right island), and variable in different pockets in the city. Improvement in
cohesion from correlated-lottery is unevenly distributed, being highest in north east, south west, and various pockets

of the city.

neighborhood (otherwise he/she would not need to go by car and would have neighborhood friends regard-
less). So it is interesting to examine cohesion conditional on traveling outside of walk-zone (expected # of
same-community peers at school, conditional on being assigned outside of own walk-zone). We calculate
this in our data and tabulate in Table 8 (the upper-bound uses a similar formula as the one in Section 5.1,
except that it conditions differently). As seen, the proportional impact of correlated lottery is more pro-
nounced in this case, more than doubling baseline cohesion for K1 new families and achieving a 64% gain

over baseline cohesion for K2 new families.

6.5. Comparison and Interaction with Other Reforms

During the 2012-2013 school choice reform, two types of reforms proposed to the city committee are
increasing the walk-zone percentage and reducing the choice menu. Both strategies are intended to affect
assignment probabilities to result in closer to home assignment. By theorem 2, this increases cohesion

as it increases between-community heterogeneity. We empirically estimate the increase in cohesion due



28

Ashlagi, Shi

: Improving Community Cohesion

Baseline - K2

3.0

4l
|
I
|
|
I
|
L

Figure 6

0.0

Improvement - K2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Geographic distribution of baseline cohesion and cohesion improvement for K-2 new families. From the left plot,

we see that cohesion is highest in East Boston (upper-right island), and various pockets in the city. Improvement

in cohesion from correlated-lottery is very uneven, concentrated in north east, extreme south west, and eastern part

of the city, with very small gains in the center of the city. The median cohesion gain is only about 0.25 (additional

same-community peers).

Table 7

(1 2
VARIABLES K1 K2
Uncertainty 0.396%**  (.381**
(0.139) (0.158)
Pref. Agreement 0.0386%**  (0.0434%***
(0.00390)  (0.00493)
Non-continuing sibling -0.823%**  -0.726%**
(0.106) (0.188)
Continuing -0.394#%* -0.161
(0.0958) (0.111)
Constant 0.089 -0.153*
(0.0877)  (0.0863)
Observations 2,654 4,020
R-squared 0.434 0.533

Descriptive regression of individual improvement in cohesion from correlated lottery. (Increase in expected # of

same-community peers.) Uncertainty of lottery is measured by variance of individual lottery (3~ _ pis(1 — pis)). Preference

agreement is proxied by product of size of community and average # of top 3 choice agreements with community

(lc(2)|choiceAgreement()). Non-continuing sibling and continuing are dummies. The standard errors are from clustering on the

205 communities. As can be seen, students for whom the lottery is more uncertain, whose preferences are highly correlated with

their communities, and who are not siblings nor continuing students can expect the greatest cohesion gains from correlated lottery.
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Plot of choiceAgreement(7) for K1 and K2 new families. For each student i, this is the average # of programs she has

in common in her top 3 choices with an uniformly random peer i’ from the same community. As seen, the median is

almost twice larger for K1 new families than for K2. Moreover, for K2, this is low in the middle portions of the city,

which matches the pattern of low gain from correlated lottery from Figure 6.

Baseline Correlated Upper-bound Improvement Bound on Improvement

K1

All 0.53
Continuing students 0.55
Non-continuing siblings  0.54
New families 0.53
K2

All 0.98
Continuing students 0.93
Non-continuing siblings 1.01
New families 1.00

1.11
0.58
0.64
1.26

1.34
0.95
1.12
1.64

1.48
0.60
0.73
1.73

1.71
0.99
1.31
2.27

0.58
0.03
0.10
0.74

0.36
0.02
0.12
0.64

0.95
0.04
0.19
1.20

0.73
0.06
0.31
1.27

Table 8  Expected number of same-community peers co-assigned conditional on being assigned outside of walk-zone. This is

the number of same-community neighbors a student who is traveling outside of his/her 1-mile walk-zone can expect to find at

his/her assigned program. So for a K1 new family, conditioning on the student going outside of walk-zone for school, he/she on

average has only 0.53 neighborhood peers in the current lottery. But with correlated lottery this more than doubles to 1.26.

Without changing assignment probabilities, we cannot expect this to be larger than 1.73.

to these reforms and compare to the improvement from using correlated lottery alone (which does not

affect anyone’s assignment probabilities.) We also evaluate the interaction of these reforms with lottery

correlation, to see how much greater gains we can achieve by applying both at the same time.
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Conditional on busing
Walk-zone Percentage Baseline Correlated Improvement Baseline Correlated Improvement

K1

50 1.36 2.44 1.08 0.53 1.26 0.74
60 1.44 2.56 1.12 0.48 1.13 0.65
70 1.56 2.72 1.16 0.46 1.13 0.67
80 1.69 2.86 1.18 0.44 1.07 0.64
90 1.82 3.01 1.19 0.46 0.95 0.50
100 1.91 3.11 1.20 0.54 0.86 0.33
K2

50 2.61 3.58 0.97 1.00 1.64 0.64
60 2.74 3.73 0.99 0.95 1.59 0.65
70 2.90 3.87 0.97 0.91 1.53 0.62
80 3.09 4.05 0.96 1.00 1.62 0.61
90 3.21 4.14 0.93 1.05 1.72 0.66
100 3.32 4.21 0.89 1.08 1.70 0.62

Table 9 Cohesion with differing walk-zone percentage. The first three columns correspond to expected # of same-community
peers co-assigned conditional on my being assigned. The last three columns correspond to the same number conditional on my
being assigned outside of my walk-zone. In each set of three columns, the first is using the current independent lottery

implementation, the second uses our lottery-correlation heuristic, and the third is the difference.

6.5.1. Increasing the Walk-zone Percentage As described in Section 6.1, the BPS assignment algo-
rithm in 2012 had 50% of seats of a program allocated to the walk-half (the side that respects walk-zone
priority) and the rest to the open half. One approach to increase community cohesion is to induce closer-
to-home assignment by increasing the percentage of seats allocated to the walk-half. For K1 and K2 new
families, we show in Table 9 the result of this on their baseline cohesion, on their cohesion after lottery
correlation, as well as on their cohesion conditional on traveling outside of walk-zone (1 mile radius).

As can be seen, while increasing the walk-zone percentage increases cohesion, the maximum magnitude
of increase (to 1.91 for K1 and 3.32 for K2) is less than if we kept the same walk-zone percentage but
switched to correlated lottery (to 2.44 for K1 and 3.58 for K2). For the students who are traveling outside
of their walk-zone, Table 9 shows that altering walk-zone percentage has almost no effect on their expected
# of same-community peers, while lottery correlation significantly increases this. From a perspective of
increasing community cohesion, both in terms of overall magnitude and increasing it for those who need it

the most, lottery correlation is more effective than walk-zone percentage increase.

6.5.2. Reducing the Choice Menu Another approach to increase cohesion is to decrease the choice
menu, so as to focus choices from the same community to similar schools. To evaluate such a reform, we
need a model for how students would choose given a new menu. We use the same demand model as in
the study commissioned by the city committee during the 2012-2013 school choice reform to evaluate a
range of potential outcomes. This is a multinomial logit model fitted using the same data as in this study,
and includes fixed effect for each school, and linear controls for distance to choices, racial/socio-economic
interactions and school-specific affinities (whether a student is continuing student, has sibling at a school,

or lives in the walk-zone of a school). The demand model is documented in detail in Pathak and Shi (2013).



Ashlagi, Shi: Improving Community Cohesion 31

Cohesion conditional on busing
Choice Menu  Baseline Correlated Improvement Baseline Correlated Improvement

K1

3-Zone 1.11 2.09 0.98 0.42 1.16 0.74
6-Zone 1.32 2.64 1.32 0.53 1.81 1.28
9-Zone 1.52 3.16 1.64 0.69 2.42 1.73
Home Based A 1.62 3.34 1.73 0.66 2.48 1.82
11-Zone 1.66 3.37 1.72 0.79 2.74 1.95
23-Zone 1.93 3.85 1.92 0.59 1.76 1.17
K2

3-Zone 2.10 291 0.81 0.74 1.38 0.63
6-Zone 2.62 3.97 1.35 0.92 2.19 1.27
Home Based A 2.84 4.49 1.65 1.10 2.93 1.83
9-Zone 291 4.47 1.56 1.01 2.56 1.55
11-Zone 3.18 4.84 1.66 1.08 2.63 1.55
23-Zone 3.55 5.37 1.82 0.91 2.27 1.36

Table 10  Cohesion with differing choice menus. The first three columns correspond to expected # of same-community peers
co-assigned conditional on my being assigned. The last three columns correspond to the expected # of same-community peers
conditional on my being assigned outside of my walk-zone. In each set of three columns, the first is using the current independent
lottery implementation, the second uses our lottery-correlation heuristic, and the third is the difference. The rows are sorted in

increasing baseline cohesion.

During the 2012 school choice reform, many different plans for choice menus were proposed. Some of
the involved subdividing the city into smaller zones (such as 6-zone, 9-zone, 11-zone, 23-zone) and some
plans involved including closest schools to each family (such as the selected Home-Based A plan). For the
purpose of this study we do not need to go into the details of each plan. The choice menus are documented in
Pathak and Shi (2013), BPS (2013), Shi (2013).!* Table 10 shows the impact of various menus on baseline
and correlated cohesion, as well as the impact on cohesion conditional on traveling outside of walk-zone.
The statistics are averages of 25 draws of simulated choice data."

As can be seen in Table 10, for K1, correlated lottery beats the cohesion improvement of any menu
change. For K2, correlated lottery accomplishes the same effect as tripling the number of zones. For either
K1 or K2, for students who are traveling outside of their walk-zone, correlated lottery alone delivers greater
increase in cohesion than any choice menu change.

What is most interesting is that the impact of menu change and correlated lottery magnify one another. As
can be seen, as the first column (baseline cohesion) increases, the third column (improvement due to corre-
lated lottery) also tends to increase. For example, for K2, while changing to Home Based A (the plan adopted
by the city committee) increases cohesion by 2.84 — 2.10 = 0.74, and correlated lottery alone increases
cohesion by 2.91 —2.10 = 0.81, doing both at the same time essentially doubles cohesion, increasing it by

4.19-2.10=2.09 > 0.74 4 0.81.

4 1n Pathak and Shi (2013) and Shi (2013), Home Based A is called ClosestTypes2463.

15 For each draw, the different plans share the same underlying random utility shocks so as to minimize sampling variance in the
comparison. This is the same as in Pathak and Shi (2013)
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VARIABLES Improvement in cohesion

Grade -0.74 1 %%
(0.144)
Uncertainty 6.183*%%*
(1.609)
Pref. Correlation 2.503%%*
(0.354)
Constant -3.307%**
(1.055)
Observations 18
R-squared 0.931

Table 11 Descriptive regression of improvement in cohesion for new families in various choice menus. This seeks to explain
variation in the 18 rows of data in Table 10 in terms of grade, uncertainty of lottery, and preference correlation. Grade is dummy
for K2. Uncertainty is average individual assignment variance. Preference Correlation is average of choiceAgreement(i). Robust
standard errors are shown in parenthesis. Consistent with Proposition 3, magnitude of improvement is increasing in uncertainty

and preference correlation.

This phenomenon can be understood in terms of proposition 2. In the large market, the gain in cohesion
is the product of the baseline cohesion and a weighted average of SCV (Squared Coefficient of Variation) of
community demand function. The SCV is positively related with within-community preference correlation.
When we reduce the choice menu and focus preferences, both the baseline cohesion and the SCV increase,
thus yielding magnified gains. By Lemma 4, this should be additively decomposable into a term for indi-
vidual lottery variance and a term related to within-community heterogeneity. To check this intuition, we
run a regression of the improvement in cohesion from Table 10 on a dummy for grade, average lottery vari-
ance F;[Y pis(1 — pis)], and average preference agreement in top 3 choices F;[choiceAgreement(i)]. The
results are in Table 11. As seen, all of the terms are individually significant, and the R-squared is very high
(93.1%), supporting the intuition from the theory.

Another finding is that doing both choice menu change and correlated lottery at the same time also
remedies the inequitable geographic distribution of gain in cohesion discussed in Section 6.4. Recall from
Figure 6 that for K2, using correlated lottery alone does little to improve cohesion for the middle of the city.
However, by adopting Home Based A at the same time, we can yield across the city cohesion improvements,
with 75% of students experiencing a cohesion gain of about 1 or more. This is shown in Figure 8, which
plots the geographic distribution of baseline cohesion, improvement from correlation alone, improvement

from menu change alone, and improvement from applying both at the same time.

6.6. Impacts on Racial and Socio-Economic Diversity

One concern of using a correlated lottery is that it may cause racial or socio-economic segregation, because
race and socio-economic status are correlated with geography, so higher chances to go to school with neigh-
bor may entail higher chances to go to school with others of same race or socio-economic status. We check

whether this is a cause for concern in Boston.
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Interaction of menu change and correlated lottery for K2 new families. The menu we change to is Home Based A (the

one adopted by the city). As can be seen, while the median increase from correlated lottery alone is about 0.4, and

the median increase from menu change alone is about 0.6, the median increase from both together is about 1.8. The

red region in the middle of the city in the second and third graph effectively disappears in the last graph, showing that

large cohesion gain is achieved throughout the city when we apply these reforms together.
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To do this, we compute the probability for a random pair of students who are assigned to the same
school to be of the same race or socio-economic status. The races in our data are black (21%), white (16%),
asian (7%), hispanic (43%), other (3%), or missing (10%). The percentages in the parenthesis denote the
percentage of applicants of that race counting both K1 and K2. For socio-economic status, we use eligibility
to receive free or reduced lunch as proxy. The options are free lunch (49%), reduced lunch (4%), non-
free/reduced lunch (12%), and missing (36%). To computing the diversity measure, we go through the 1000
deterministic assignments that form the lottery, cycle through all pairs of distinct students who are assigned
to the same program, and count the percentage of times they are of the same race or lunch status. We call
these the “peer same race %" and “peer same lunch status %.” Table 12 shows the results. This is based on

actual Round 1 choice data.

Baseline Correlated

K1
Peer Same Race % 36.7% 36.9%
Peer Same Lunch Status % 41.6% 41.8%
K2
Peer Same Race % 42.6% 42.7%

Peer Same Lunch Status %  45.2% 45.2%
Table 12 Impact of correlated lottery on racial or socio-economic diversity. For example, when we use independent lottery

implementation for K1, on average 36.7% of pairs of students assigned to the same school are of the same race. This percentage

increases by only 0.2% to 36.9% when we use correlated lottery.

As can be seen, the impact of correlated lottery on racial or socio-economic diversity is minimal. This
makes sense because in Boston, the geographic patterns of racial and socio-economic concentration are at a
larger scale than the neighborhood sizes we define (.5 mile by .5 mile squares). Moreover, because choices
are heterogeneous to begin with, the impact of lottery correlation is on the order of magnitude of about 1

additional neighbor, which does significantly harm diversity because class sizes are usually 22 or more.

7. Discussion

In this paper, we examine the potential of correlating the school choice lottery to increase community cohe-
sion without affecting individual assignment probabilities. This is desirable as altering individual assign-
ment probabilities inevitably raises questions of equity and access, which are hard to settle without a dif-
ficult political process. In contrast, a method that provides cohesion gains without changing assignment
probabilities may face less opposition.

In our analysis, we show that while maximizing cohesion is an NP-hard, messy optimization problem in a
discrete setting, studying the large-market limit “smooths away” the hardness and yields very clean analysis.
Combined with a characterization result of all “reasonable” one-sided many-to-one matching mechanisms

as lottery-plus-cutoff, we can decouple the allocation determination, that is, the cutoffs, with the lottery, and



Ashlagi, Shi: Improving Community Cohesion 35

obtain fairly general results for lottery correlation. We can also embed a random utility model on top, which
would be unthinkably difficult if we had remained in the discrete setting.

An empirical finding is that while lottery correlation and reducing choice menu both improve community
cohesion, they work best together. For Boston, in the main entry grade K2, correlated lottery alone can
do little to improve cohesion for the middle region of the city (which incidentally is where poverty con-
centrates). Moreover, adopting a reduced choice menu, such as “Home Based A” (the one adopted by the
Boston School Committee in March 2013), yields only moderate gains in cohesion. However, adopting both
at the same time almost doubles the baseline cohesion for new families for K2 and triples for K1, which is
a sizable improvement, and the distribution of gain is fairly even across the city.

An interesting question for future work is whether lottery correlation can be used to achieve other desir-
able social outcome. A first attempt might be to increase racial or socio-economic diversity at schools.
Intuitively, one may try to “negatively correlate” race or socio-economic status in the lottery. Unfortunately,
we show in Appendix D that in the large market, using a correlated lottery produces no gain in diversity,
because independent lotteries already achieves the optimum. Significant additional gain in diversity will
require altering assignment probabilities.

From an implementation perspective, a potential criticism of our approach is that the lottery becomes
less intuitive and transparent. Drawing random lottery numbers and using it to determine priorities is very
intuitive, and in the current Boston system, a family may ask the school board for their lottery number.
One may imagine a family disatisfied about their assigned choice may theoretically “audit” the system by
checking everyone’s lottery number. However, in our approach, there is no longer a simple mapping between
lottery numbers and assignment outcomes. Nevertheless, some of the intuitiveness and transparency may be
restored if the school board explains the mechanism as a lottery on joint assignments instead of on individual
priorities: the school board may print out a large table in which each row denotes a student, and each column
denotes a joint assignment. The entry in each cell is the student’s assigned school in an assignment. The row
counts of each student being assigned to each school would be consistent with the simulated assignment
probabilities under the original mechanism. The lottery is then to draw a random column from this table,
and a family disatisfied about the outcome may theoretically “audit” the system by checking this table.

While in this paper we assumed that increasing cohesion is desirable from a policy perspective, this
claim warrants further investigation. While families may in general prefer having more neighboring kids
going to the same school so that the children can travel together, share homework help, car-pool on certain
occasions, or play together after school, how much they value this and how much this contributes to the
students’ development are yet to be determined. Moreover, it may be that not everyone wants to be with
their neighbors, and for families living in high crime, high-poverty neighborhoods, it is conceivable that
some may want the opposite. To accommodate this, one may want to use an opt-in or opt-out system in

practice.
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Another potential criticism of our approach is that it is unclear how one ought to define “community.” It
is clear that the definition used in the empirical study—.5 mile by .5 mile grid—can be improved upon. Even
if a grid is to be used, it is unclear what is the optimal size: too small and the boxes may be too restrictive,
too large and we may no longer be capturing “neighborhoods.” More broadly, it is unclear if any geographic
delineation can adequately capture the notion of community, since this may be more determined by family
background, work proximity, and other factors than home proximity. One potential is to allow families to
define communities for themselves, and elicit this as part of the mechanism. But this makes preferences for
peers private knowledge and raises difficult incentive problems. (There are many impossibility results with

private peer preferences.) We leave these more nuanced questions for future work.
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Appendix A: Omitted Proofs

Proof of Proposition 1 (NP-hardness of 2 school case): Since there are only 2 schools and since only

students in F have non-deterministic assignments, the max-cohesion problem becomes selecting a random

q*-subset of E so that each element of E is selected with probability p = Iq—]; and the E’s stay in their
communities as much as possible. Partition E into communities, defining £, = E' N I.. (And similarly
D.=DnNI,., F,=FnNI.) Let z; be the binary random variable that equals 1 iff 7 is assigned to school 1.
To simplify notation, we restrict to components of z that corresponds to F' (because D is assigned to school
1 with probability 1, and E to school 2 with probability 1). Define A to be all elements of {0, 1}Z! that sum

to ¢*. The max-cohesion problem becomes:

fmax =Max I'+

> (wiftﬁ(lfﬂi)(l%))] (11)

c=11i#jEE.:

st. Elx;]=p VieE
x e A(A),

where the constant D =2 5% [('gd) + (%) + p|D.||E| + (1 —p)]ECHFC\}.

|Ec|

-1), which corresponds to |E|’s always

An upper-bound on the maximum cohesion is I" + 220(
assigned with their community members.

It suffices to prove that it is strongly NP-hard to decide whether this upper-bound is achievable. To do
this, we reduce from the following version of 3-PARTITION: Given a multi-set of & = 3h integers {a. }, for
which 3°*  a,=hB, and 2 < a, < £. Can the a,’s be partitioned so the sum of each partition is B? This
is well-known to be strongly NP-hard. A proof is given in Garey and Johnson (1979).

Reduction: given an instance of 3-PARTITION, construct a case of the 2-school max-cohesion problem
for which |E.| = ay, ¢* = B, then we can achieve perfect cohesion of U iff the | E.|’s can be partitioned so
the sum of each partition is exactly ¢*, which is what we needed. [

Proof of Theorem 1 (Large Market Characterization): We show that a mechanism is non-atomic,
incentive compatible, symmetric and efficient within each priority class, if and only if it is lottery-plus-
cutoff.

If a mechanism is lottery-plus-cutoff, then it is non-atomic because any single agent changing preferences
does not affect the measure of students in each priority class submitting each ranking, which is what cutoffs
depend on. The mechanism is symmetric because within the same priority class, the cutoffs are the same
for everyone, so since the lottery numbers are identically distributed, the assignment probabilities are the
same for those submitting the same preferences. The mechanism is incentive compatible in school-specific
utilities because no individual student can change her cutoff, so for each lottery realization her set of feasible

schools is fixed. Submitting a false preference, if it changes her assignment at some lottery number, can only
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place her in an suboptimal school for those lottery numbers. (This is because with a truthful submission, she
would already be assigned her most preferred schools among the feasible set by definition.) The mechanism
is efficient within each priority class because if student ¢, prefers school s; over sy (s <;, 51) and g is
assigned to the less-preferred school sy with positive probability, then the cutoff for s; must be higher:
21 io)s0 < Zmlin),s, > DECAUSE otherwise there would be no lottery number at which iq would select s, as her

most preferred school. So trading cycles are prohibited by the arithmetic impossibility:

<z <z <<z <z

T™,80 T,81 m,89 8] m,80 "

Conversely, suppose a mechanism is non-atomic, incentive compatible, and symmetric and efficient
within each priority class, we show that it is lottery-plus-cutoff. To do this, we first use non-atomicity to
produce a finite set of “representative” students for each priority class, such that every one of the m/! possible
preference orderings are submitted by someone from the representative set. By symmetry within each prior-
ity class, this pins down the assignment probabilities of everyone in that priority class. We then use incentive
compatibility and efficiency within each priority class to produce a set of cutoffs, and show that the assign-
ment probabilities of everyone in the representative set is consistent with these cutoffs. This implies that the
assignment probabilities from the original mechanism is consistent with a lottery-plus-cutoff description.
To show that the mechanism itself is lottery-cutoff, we use the flexibility of arbitrary correlation of lottery
numbers to define the lottery numbers so that they produce the exact random assignment of the original
mechanism. The fact that the assignment probabilities are consistent with the cutoffs will mean that our
lottery numbers can be corrected distributed as Uniform[0, 1).

As outlined above, the first step is to produce a finite set “representative” students for each priority class
using non-atomicity. For any priority class 7w € II, let the set of students in this class be I. Its measure
is p(I;) > 0. Because there are finitely many rankings, there exists some ranking >, that is picked by
a positive measure of students in I,. We choose m! of these students who submitted >, and have them
alter their preference submission to each of the m/! different possible rankings. By iteratively applying non-
atomicity, this does not alter the assignment probabilities of anyone else. By symmetry, the assignment
probabilities of each of these m! students is representative of the assignment probabilities of anyone with
their preference within the whole priority class. Denote the set of representative students I.,. For any
ranking >, define p(>, s) as the assignment probability to school s of the student in ., corresponding to
ranking >.

The second step is to use incentive compatibility and efficiency within each priority class to produce a set
of valid cutoffs. First, note that incentive compatibility in school-specific utilities implies that if any student
submits preference list 1 > Sy > - -- §; > §;41 > - - -, reshuffling the relative order of the top [ choices among

themselves, or reshuffling the later choices among themselves, cannot affect the total assignment probability
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to {s1,---s;} (any of the top [ choices). To see this, suppose her utilities for top ! schools are all M + ¢,
and for later schools €, with M >> ¢, for all s, then the above condition is necessary for her not to have
incentive to deviate from truthful preferences at some preference ranking (because for sufficiently large M,
the potential to gain a greater probability of getting M trumps any other considerations).

Focusing on the representative students from step one, we use the efficiency condition among them to
define a complete ordering > over schools, such that s > s if there exists a student in I, who prefers
the first (s) but receives a positive probability of being assigned to the second (s’). The lack of trading
cycles among I, makes this a well-defined ordering.'® For simplicity, re-order the schools so that s; >
Sg9 > 83+ > Sy,. Call this the over-demand ordering for this priority class. Intuitively, the earlier schools
in this ordering are more highly demanded relative to the supply allocated to this priority class. For each
j, define “run-out time” t;sj as the assignment probability to s; of students in I, who rank s; first. (The
nomenclature is motivated from the probabilistic serial mechanism.) This is well-defined because of the
previous argument from incentive compatibility.

Having defined the “run-out times,” the key step is to note that if school s is more over-demanded than
school s" according to the cutoff-ordering, then the run-out time of school s must be weakly smaller, that
is t7 <t . This is because ¢ _ is a student’s chances of getting into s if she ranks it first, and other
schools in arbitrary order. Similarly, ¢, , is a student’s chances of getting into s’ if she ranks s’ first and s
second, and other schools in arbitrary order. Now, if this student reorders her top two rankings to rank s first
and s’ second, then her total probability of getting into one of these schools must still be ¢*

7‘—7

compatibility, but her chance of getting into school s is ¢; ., so 7 <’ . This means that the run-out

T,s°

- by incentive

times follow a reverse ordering to that of the over-demand ordering of schools, ¢ . <7  <---t7 .
We now can define valid cutoffs using these run-out times. Define cutoffs 27 . =1—¢; .. We need to show
that everyone’s assignment probabilities are consistent with applying lottery-plus-cutoff on these cutoffs.
For any subset of schools U C S, let min U denote the least over-demanded school in U, which by the above
paragraph is also the school with the largest run-out time. We observe that if a student in priority class 7
ranks schools U first in arbitrary order, followed by other schools in arbitrary order, her total assignment
probability to some school in U must be equal to ¢t} . ;; = max.cy t; . This is because this probability
must not depend on her relative ranking within U by incentive compatibility, and so must equal to the

*
7,min U

probability when she ranks school min U first, which equals to ¢ because she gets into school min U
with this probability and other schools in U with zero probability since those are more over- demanded.

The above observation allows us to pin down everyone’s assignment probabilities to every school, since
if a student ranks schools U first, followed by s, followed by other schools, her assignment probability to s
must be

max t* , —maxt: .
s'evu{s} % ey TF

16 In the case two schools are not comparable directly, we use transitivity to define their relative order. If after taking into account
all ordering relations two schools are still not comparable, we can order them arbitrarily.
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Therefore, if a student in priority class 7 submits ranking >, her assignment probability to school s is

equal to

p(>,s) =max(0,t: , —maxt ).

m,s s'>~s ’
This can be re-written as

p(=,s) =max(0,min z; , — 27 ),

s'>s s
which is exactly the assignment probability induced by cutoffs 27 , and lottery numbers oc Uniform|0, 1).
Having shown that the assignment probabilities are consistent with some set of cutoffs, we now show
that by correlating the lottery numbers suitably, we can recover the original random assignment exactly.
We do this by reverse construction. For student ¢ in priority class 7 who submits ranking >;, suppose an
instantiation of the random assignment x of the original mechanism assigns ¢ to s. Among the schools
which ¢ prefers over s, let s’ be the one with the lowest cutoff. It must be that the cutoff of s’ is higher than

s because otherwise the student would have never been assigned to s. We generate

zilz; = s o« Uniform[z} _, 2% /).

m,89 “m,s’

Since 7 is assigned to s with probability exactly z; , — 27 ., generated in this way, the unconditional z; would
be distributed Uniform[0, 1). The lottery-plus-cutoff mechanism using these lottery numbers z;, along with
the cutoffs 2 , generates the exact same random assignment as the original mechanism, which is what we
needed to show. [

Proof of Theorem 2:  Using the nice cutoff structure, we can express cohesion in both the independent
and max-cohesion cases in terms of simple integrals. The theorem follows from re-arranging orders of

integration and the law of total variance.

fiidependent:///ps(c7y)p3(c7y/)dy/dydc
cJyJy

Z/C(/yps(c,y)dy>2dc

= Ec[ps(c)’]
= Ef [p_S] + Var,(ps)
= q? + Var.(p,).
Where the last equality follows from our assumption that total supply exactly equals demand.

For max-cohesion, we first note that by giving everyone in the same community the same lottery number,

we can achieve cohesion of E.. . [d?(z|c)]. This is because at lottery number z, the measure of students from



Ashlagi, Shi: Improving Community Cohesion 41

community ¢ that would be assigned to school s is d,(z|c), so the measure of pairs of students is d?(z|c).
Because there is a continuum of communities, this lottery-correlation scheme is feasible, since the total
measure of students that would be assigned to school s remains equal to supply. Hence, maximum cohesion

satisfies

s> B [d?.

max

On the other hand, the probability of any two students being co-assigned to school s is upper-bounded by
min(p,(2),ps(¢')). But if 7 and i’ are in the same community, they see the same school cutoffs, because we

assumed that everyone in the same community are in the same priority class, so

min(p. (1), (1) = | L1 (a17)d:

z

max_/// min(p,(c,y), ps(¢,y'))dy'dyde
= [ [ ] [ rele el v zaavae
= [ [ ][] reetemneleyaydyzac
//(/ (c y))dy>2dzdc
/C/de c)dzde

—Eczd2

Therefore,

Combining the two, we get that
fmax = EC z [d2]

Note that the above correlation scheme would not be feasible in a finite market, but our having a contin-
uum of communities allows the variation in demand from this level of extreme correlation to be averaged
away so that we do not violate any capacity constraints. In some sense, the continuum of communities
smooths away the NP-hardness of the max-cohesion problem in the finite case. [

Proof of Lemma 2:

= | / / min(ps(c. ). pa(c,y'))dy/ dyde

/// max(p(c,y), ps(c, y))-;mln(ps(c ,Y):ps (e

_//y/y max ps(c,y),ps(c,y))2 min(ps(¢,9), P+ 8)) 1 g e

y)) dy' dydc
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//ps ¢,y)dydc — // Ips(c,y) — ps(c,y')|dy' dyde
Yy ZJ

=g~ S BIAL ()

which is what we needed to show. [

Proof of Lemma 3:

rflax_ iidependent:// min(ps(c,y),ps(c,y'))—ps(c,y)ps(c,y')dy/dydc
cJyJy

/ 2 2 !
:/// pa(ey) Tpoley)  piey) 1 piey) pg g
cJy sy

2 2
_ /c/y/y/ \ps(c,y) _2]?5(0, y/)| _ (ps(c,y) —2]?5(0, y/>)2dyldydc

= Bulpa ) (1= pali))] = ey |05 (1 = A, (0, 1),

which is what we needed. []

Proof of Lemma 4: 'We need to show:

E.lw.+1
CI: ctﬂ'(c) s] < fns*nax
EC [wc] B fifldependent

This is because by the definition of cutoffs, if 7 and ¢’ are of the same community ¢, their maximum

assignment probability to s is ¢7 SO

c),s?

max ///mm ps(c,y),ps(c,y'))dy' dyde

> [ / / min(p, (c, ), pa(c, ) XLLACILACY)) g1 g

t*

m(c),s)
///pscypscy) dy'dydc
7r(c ,8)
— [0 e
c 7(c),s)

=FE. [U}c] .

Proof of Lemma 5:  The structural identity follows directly from Lemma 3 and Theorem 2.

So our result follows from dividing by f;

ndependent —

ds (1 - qS) =dqs— ifldependent + Varc (ﬁs)
1. - o )
= §EC[AS (C)] + fr(nax ~ Jindependent + Va'rC (ps)
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Proof of Proposition 6:  The first line follows directly from Theorem 2, and observing that there is no
between community variation in assignment probabilities (since communities have identical preferences
and sizes).

The second line follow from when 5 — oo, we get the case in which everyone goes to their closest school.

The third and fourth line follows from almost everyone’s preferences in the same community become the
same as a — oo or 3 — 00, so the demand function d,(z|c) in any community for any school at any lottery
number become close to 1. The result follows from the identity in Theorem 2.

Note that in the above, for independent lottery to achieve perfect community cohesion, we needed school
capacities to be just right. No such assumption is needed in the proof for the correlated lottery case. [J

Proof of Theorem 3: 1f 8 =0, then there cannot be between community variation in assignment proba-
bilities, so by Theorem 2, £ endent = 42-

Label the schools so r; > 75 > ---. (Recall that r, = e”.) Because of the logit utility structure, in any

community, the probability that school s is chosen first is
TS
—m -
> j=1"T3
Because we assumed no priority, the mechanism is equivalent to probabilistic serial. Define run-out time
t: =1 — zZ. The cutoff for the most highly demanded school, school 1, is such that

Z] = 1m74j)'

tr=aq( "

By the independence of irrelevant alternative properties of logit, these students, given a lower lottery num-

ber, would choose school s with probability

EWTL; —. The cutoff for the 2nd most demanded school is such
j=2"j

that

= ¢ T2 E;’LQ Tj
2 U q2 — 1 Z;n T To

Define tail sum R, = Z;”:S rs. Continuing in this way by induction we gets

s—1
* RS
ts - ZQ_] + qu7
j=1

S

* * qS QS71
7537755—1: (7"7" 1>Rs,

which implies the formula for max-cohesion,

ZS ry ~(a @) 1
s, — t* _ t* 2 — 2 ik —
max ( s S_l)(Rk) Ts <Tk > Rk

k=1

and
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Since increasing « increases the ratios :—;, :—i, cee ”T”’l , it suffices to show that if one of these ratios
m

increase, while the others stay the same, maximum cohesion increases. In other words, it suffices to show

that for each [, if we perform the transformation
T1,T2y 5T T4, 3 Tm
VT2, VT T4, 3 Tm

with v > 1, we increase maximum cohesion f?

max*

Now, for s > 1 + 1, we have

S 2 : qk Qkf 1 1
=T E _— e——
max S < rk > Rk

Ti—
o1 k—1
s—1
—q r2 qk
=qs— T, _.
Zk:l Ry R

so f2. increase because the transformation fixes r, and the ¢’s, while only increasing some of the R;’s
in the denominator of the negative term. (Recall that i), = 27: e Ts)

For s <, we write [

max

in a different way

s 2 u qk‘ Qk'—l 1
r g == -
max s <rk, ) Rk,

Tr—
b—1 k—1

S
[ T S
qk— —qk—1 .
1 Tk Te-1] Ry

so f2  alsoincreases by the transformation, since each of :—Z and = stays fixed, while ;—2 increase because

T
max Tk—1
the numerator increase by a factor of v while the denominator Rj, = Z;”: . Tj increase by a factor less than

or equal to v (some of the summands increase by factor v while others stay the same). This completes the

proof. [J

Appendix B: Solving the Correlated-Lottery Implementation Problem

The natural approach to tackling (8) is column generation. Using the language of the simplex algorithm for

LP, suppose we are currently at basis B, let 3= A" f(A;), the column generation sub problem is

Max f(a)—p-a (12)

s.t. aeP.

Note that in the above we’ve relaxed constraint a € Vertices(P) to a € P. We can do this because the

objective is convex. In fact it is quadratic as cohesion can be written as

fla)=1(—nt S0

s,c i€le
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Either the optimum objective of (12) is positive in which case we pivot to the corresponding column
a' representing the optimal solution found, or the optimum is non-positive and we yield a certificate of
optimality for (8).

However, this subproblem (12) seeks to maximize a quadratic over the assignment polytope, which in
its general case is exactly the notoriously difficult quadratic assignment problem (QAP) (see Burkard et al.
(1998)), which is NP-hard to approximate to any constant factor (Sahni and Gonzalez (1976)). One hope is
that since our quadratic is of a simpler form, we may still find a polynomial time algorithm. Unfortunately,
one can show that the decision problem for both the original (8) and subproblem (12) are NP-complete
in the strong sense, even when community sizes are constrained to be 2 or 3. The proof can be done by

reduction from Not-All-Equal-3-SAT.

B.1. A Practical Heuristic
We present an efficient heuristic for correlated-lottery implementation.

The idea of this heuristic is similar to in the Birkhoff-von Neumann theorem. We express the original
assignment probabilities as a convex combination of deterministic assignments, by iteratively breaking
off deterministic assignments with high cohesion. In each iteration, we find a deterministic assignment
with high cohesion that limits to assigning students to schools for which they have positive assignment
probability. This ensures that we can break off a positive multiple of this deterministic assignment. To find
such a deterministic assignment, we solve a max-weight perfect matching problem on a bipartite graph, in
which one side of the graph are students and the other is schools. We define an edge in this bipartite graph
between a student and a school if and only if the student still has positive assignment probability to that
school, after subtracting off deterministic assignments found in earlier iterations. The weight of each edge
is random, but we constrain the weights to be equal for everyone from the same community to the same
school. The intuition of why this may work is that conditional on student ¢ being assigned to school s in the
max-weighted matching, the weight between 7 and s is probably high, so the weight of everyone else from
same community as 7 to s is probably high, so many of them are probably assigned to school s.

To solve the max-weight bipartite perfect matching problem in each iteration, we use a specialized primal-
dual implementation with worst case running time O(n?m), but which is closer to O(nm?) in practice. (This
helps because in our case n >> m.) The total number of iterations is at most min(mn,T), because each
iteration reduces the number of non-zero assignment probabilities by at least 1. The number if iterations
is also upper-bounded by 7' because if all assignment probabilities are multiples of %, then the amount
subtracted each time is at least +. The total running time guarantee is O(n?*mmin(nm,T)).

A precise pseudo-code of the algorithm is given below.
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Algorithm 1 Heuristic for program 8

Require: p e P
z+0
while p # 0 do
U.s < random weight, Ve e C,s € S

Wis < Up(ys, ViE T, 5€ 5
1 ifp;s >0 .

€is = P . .Viel,seS
0 otherwise

a<—argmaxy{w-a’:a’ €P,a’ <e}
A max{\ : 2 € P}
rx—xU(N\a)
pp—Aa

end while

return random assignment z = {(\;,a;)}

B.1.1. Explanation for the Inner Step Another intuition behind our method of finding a deterministic
assignment in each iteration with high cohesion is as follows. Let e;, be the indicator for whether the
assignment probability of ¢ to s is positive. We want to find deterministic assignment a < e each time that
maximizes cohesion f(a), but since this is NP-hard, we settle for “not-too-bad” solutions. It turns out that
our method of generating community-specific random weights and solving max-weight assignment always
avoids a kind of “locally-suboptimal” solutions, in which cohesion can be improved by trading cycles.

To describe our notion of local sub-optimality, we first define trading cycles: Given an assignment a, we
say that there is a trading cycle (between communities and schools) co — sg —c¢1 — §1-+- — 5,1 — ¢ if

for each community c¢; there is some student i; € ¢; such that a;; =lande;;;; =1 (where arithmetic on

sj-1
j is modulo /). In other words, by undoing the assignments ¢; — s;_; and re-assigning ¢; — s, we arrive at
another feasible assignment a’. We say that this trading cycle leads a to a’.

Our notion of local sub-optimality occurs in assignment a when both trading cycles cg — sg — ¢; —
S1+-+— §;_1 — ¢o and the reverse cy <— Sg — €1 < S1- - < S;_1 < Cg exist in a. Suppose the first leads
to @’ and the second to a”, then we have that the demographic counts, encoding for each community ¢ and
school s the number of assignments from c to s, satisfies d* = %(da/ +d*"). However, cohesion f(-) can be
written as a strictly convex function on d*, so by convexity f(a) < 3(f(a’)+ f(a”)) where both o’ and a”
are feasible assignments < e. So a is suboptimal.

However, this situation cannot occur by our method because for any cycle cg — sg —> ¢; — s1+-+ —
S1-1 — ¢o and any {i; € ¢;}, either Zj Wi s — Zj wj;s;_, > 0 for all such {i; € ¢;} or the reverse for all

(since weights from the same community to the same school is defined to be the same, and the difference
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is non-zero with probability 1 as weights are randomly generated); since a max-weight matching pushes as
much as possible along positive weight trading cycles and reverses as much as possible any negative weight

trading cycle, the above kind of local non-optimality can never occur in our inner step.

Appendix C: Detailed Analysis with Two Schools

Continuing from the notation in Section 2.1 and proof of Proposition 1, in the 2 school case a mechanism
using independent lotteries simply chooses a ¢*-subset of E uniformly randomly, and assign them to school
1. We call the cohesion obtained by independent implementation of the lottery fingependent- It 18 straightfor-

ward to work out

_ _2q7(1Bl - |E|
findependem —F+ <]- ‘E|(|E| — 1 ) 22 < ) (13)

We want to bound the ratio ﬁ, which is how much correlated lottery improves cohesion in this
setting. However, f., is computationally hard to solve.

However, we can come up with fairly good bounds on f,,x when the number of communities is large.
Imagine that we arrange students in F in a circle, with members of the same community being adjacent
to one another. We can randomly split this circle into a group of ¢* and a group of |E| — ¢* by uni-
formly randomly selecting a student and counting ¢* students clockwise from her. This keeps communities

together except for at most 2 communities. The expected number of same-community pairs split is at most

25 |Bel (g Shel a(Bel-)) o5, g UEl=D0ED) o3 (5| (15 \Eel
= c < c < c
S, IBd] SN S T E max, 2(').

So this randomization, while not necessarily keeping all communities together, gives up at most the

largest community. Thus,

E, E, E,
I‘+2ZC:<|2|>—2111§1X<|2|)<f(max)<F+22<| ’> (14)
Combining this with previous expression for findependent»

fmax < F_l_QZ (‘EC)

1<
=7 — *(|E|— E
fmdependent T + (1 - |E|(|E\ ql) )(2 Z (‘ l))

(15)

maxXe [Ecl
When the number of communities k is large and |E,|’s are approximately equal, # — 0, so the
upper-bound is asymptotically achievable using the lottery correlation scheme defined above.
2¢"(|E|-q")

The maximum improvement occurs if I' is small, and Bl (ET=D

~ p(1 — p) is large, in which case

the improvement ratio fmdi ';::dem N 2q (}EI q*)) <2+ | EI 5- S0 the maximum possible improvement from
correlated lottery is about a factor of 2 (Thls is achieved if for example there are no priorities and the lottery
is most random, soI' =0, p = 5, in which case an independent lottery splits any given same-community pair
about % the time, and a correlated lottery, using the scheme described above, keeps communities together

almost all the time.)
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C.1. Large Market Approximation with Two Schools
The NP-hardness in the finite case precludes precisely pinning down max-cohesion f,, but as seen in the
above this difficulty disappears when the number of communities is large. We examine this “large-market”
case more closely to yield more intuition on when exactly we can expect correlated lottery to improve
cohesion the most.

We approximate the expressions for fisdependent a0d fmax in Equations 13 and 14 in this large market case.

For each community ¢, define n. = |I.| and define d., e., g. to be the fraction of this community in sets D, E,

|De| |Ec] | Fel
= L= w,. =
Inc| > 7€ Inc|? ¢ [nel’

and we can approximate 2(¢) ~ n2u2, 2(1%) ~ n2v?
and 2 (“;C‘) ~ n?w?. Moreover, we approximate the term in Equation 13, ‘le(Il(‘Eé‘__ql)) ~ 1 (@‘;‘Z*) =p(1 - D).

F respectively. So u,.

To simplify notation, treat ¢ as a random variable that takes a particular value cq with probability Zn,%

C/

Rescale cohesion to be between 0 and 1 by defining f= > fc —. We have

ﬁndependent %E[Ug + U? + 2pucvc + 2(1 - p)vcwc + (1 - 229(1 - p))vf]
=E[(uc+pve)’] + E(we + (1 = p)ve)?]
=E° [ + pve] + E? [we + (1 = p)v.)] + Var(ue +pve) + Var(w. + (1 —p)o.)

=¢> + @+ 2Var(u, + pu.).

Where ¢; = 4, ¢, = 2 are the proportion of seats that are in school 1 and 2 respectively. Moreover, when
the number of communities is large and when the relative size of the largest community is small, we have

that the upper-bound in Equation 14 becomes equality, so
fmax %E{u? + U? + 2pu.v, + 2(1 - p)vcwc + U?]

gﬁndependent + 2E[p(1 - p)Uf]

We can interpret the terms as follows:

e (1> + ¢»*: Herfindahl index of school size. This is a measure of school size concentration. It is higher
when school sizes are more unequal.

e 2Var(u. + pv.): Between community variation in assignment probabilities. u. + pv,. is exactly the
expected proportion of people from community ¢ who go to school 1. This variation is O if assignment
probabilities in communities are identical, and increases if preferences and/or priorities result in more varied
proportion of people assigned to each school in different communities.

e FE[2p(1 — p)v?]: How much independent lottery hurts cohesion. This is the expected number of same
community pairs split up by independent lottery. It is higher when communities have more people affected
by the lottery (|E/| is higher) and when the lottery is more “uncertain” (closer to p = %). For fixed p, it is
higher when the variation across communities of the number of people affected by the lottery (Var(v.)) is

higher (or equivalently when within-community heterogeneity is low).
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An interesting special case is when there are no priorities and school sizes equal, in which the above

expressions immediately yield.

PROPOSITION 7. When there are no priorities (u, = 0) and ¢, = q; =

5, we have that the proportional

improvement from correlated lottery is

~ma)c_~inemen 1-
f fdp,dt: pZQE[UC]_l,

ﬁndependent p

which can be interpreted as a measure of overall preference correlation or competition.

Proof of Proposition 7:  When u, =0 and ¢; = ¢» = %, we have p = SO

_ 1
2E[ve]?
findependent = E[(uc +pvc)2] + E[(wc + (1 - p)UC)Q]
=p B+ E[(1 - pv.)’]
=2p°E[v2] +1—2pE[v.]

= 2p° E[v?].
So
fmax - findependem _ 2]7(1 - P)E[UE]
f independent 2]) 2E [’U? ]
_1-»
p
Ul

Based on this, we gather the following qualitative insights: to have higher cohesion when the lottery is
implemented independently, one needs to have more varied school sizes, more between-community varia-
tions in preferences, or have the over-demanded school give more priority to communities that most demand
it. Furthermore, the potential to improve cohesion via correlated lottery is greater when more people are
affected by the lottery, when within-community preference correlation is high, or when the lottery is more
uncertain. When school sizes are equal, the cohesion improvement is greater when more people desire the

over-demanded school.

Appendix D: Inability of Lottery Correlation to Increase Diversity

Besides community cohesion, another desirable outcome might be racial or socio-economic diversity.
Unfortunately, we show in this section that running an independent lottery already achieves near optimal
diversity, so any significant gain requires changing the assignment probabilities.

To see why this is true, consider the assignment of students of different races to a school of capacity
q. Suppose there are r different races. In the random assignment, let ny,n,,---n, be random variables

denoting the number of students of each race assigned to the school. Suppose that the school is always
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assigned at capacity, so Z;:l n; = q. A metric for diversity is the number of pairs of students of different

races assigned to the same school, so maximizing diversity at this school is to maximize

B Z nj N, ).

1732
This is the same as minimizing

n

q° —2E| Z nj ng,| = E[Z”ﬂ-

J1#72 Jj=1
However, by Jensen’s inequality,
BY )2 > B
j=1 j=1

This lower bound is approximately achieved by running an independent lottery, because in that case n; is
almost always close to E[n;] by Chernoff bound. In fact, in the large market model of Section 3, n; would
be equal to E'[n;] always, and this lowerbound is exactly achieved by independent lottery implementation.

In a finite market, one can achieve small diversity gains by constraining n; to be always between | E[n;] |
and [ E[n,]]|. More precisely, one would express the original assignment probabilities as a convex combina-
tion of such constrained deterministic assignments. This idea has been previously explored in Budish et al.

(2012). However, by the above argument, one would expect gains in diversity to be small.
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