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a b s t r a c t

There is strong empirical evidence that long-term interest rates contain a time-varying risk premium.
Options may contain valuable information about this risk premium because their prices are sensitive to
the underlying interest rates. We use the joint time series of swap rates and interest rate option prices
to estimate dynamic term structure models. The risk premiums that we estimate using option prices are
better able to predict excess returns for long-term swaps over short-term swaps. Moreover, in contrast
to the previous literature, the most successful models for predicting excess returns have risk factors with
stochastic volatility. We also show that the stochastic volatility models we estimate using option prices
match the failure of the expectations hypothesis.
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1. Introduction

A bond or swap that is sold before it matures has an uncertain
return. There is strong empirical evidence that this return is pre-
dictable and time-varying which suggests that long-term interest
rates contain a time-varying risk premium.1 In this paper, we ask
whether interest rate option prices can be used to obtain better es-
timates of this risk premium. Options may contain valuable infor-
mation because their prices are sensitive to the volatility and risk
premiums in the underlying interest rates.

Weuse an arbitrage-free term structuremodel for our empirical
analysis because it describes the joint dynamics of interest rate
option prices and the underlying interest rates. Related papers
that use term structure models to investigate the risk premium
in long-term interest rates use only bonds or swap rates for
estimation.2 Instead,weuse the joint time series of both swap rates
and interest rate cap prices with different maturities. Our main
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finding is that the risk premiums we estimate using option prices
are better able to predict excess returns for long-term swaps. To
measure predictability, we compute an R2-statistic that compares
the squared differences between expected returns and 3-month
realized returns on zero-coupon swaps with different maturities.
However, rather than computing expected returns using linear
projection,we insteaduse ourmodel-implied expected returns as a
more stringent metric. Across different maturities, this measure of
predictability typically doubles when we use options to estimate
a term structure model with one stochastic volatility factor. The
improvement is almost threefold for a term structure model with
two stochastic volatility factors.

Risk premia in term structure models reflect the market prices
of risk for the factors driving interest rates (or equivalently, their
risk-neutral dynamics). To better understand the improvement in
predictability, we examine the estimated risk premia and find that
the risk-neutral dynamics of the factors are quite different when
the models are estimated with and without options. In the models
that are estimated without options, long-run interest rates under
the risk-neutral measure are high (10.4%–13%) and have a very
slow rate of mean reversion with a half-life of 22.4–31.4 years. In
contrast, the models estimated with options have a more modest
risk-neutral long-run mean of 8% with a rate of mean reversion
on the order of business cycle frequency (the half-life is about
8 years). Both of these combinations have similar implications for
swap rates, which makes them difficult to distinguish using only

http://dx.doi.org/10.1016/j.jeconom.2011.02.007
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:calmeida@fgv.br
mailto:jeremy@umn.edu
mailto:sjoslin@mit.edu
http://dx.doi.org/10.1016/j.jeconom.2011.02.007


36 C. Almeida et al. / Journal of Econometrics 164 (2011) 35–44
swaps. However, the twomechanisms are clearly differentiated by
their implications for interest rate option prices. Therefore, option
prices allow for a more precise identification of the market prices
of risk and the models that are estimated with options are better
able to explain variation in excess returns.

Option prices also help to resolve the tension, identified in pre-
vious papers, between matching the first and second moments of
bond returns. Both Duffee (2002) and Cheridito et al. (2007) find
that excess bond returns are best captured by constant volatility
models that cannotmatch the time-series variation in interest rate
volatility.We study the same 3-factor affine term structuremodels
that were developed by Cheridito et al. (2007) (a generalization
of the models developed and studied by Duffee (2002)), but we
use the joint time series of swaps and interest rate cap prices to
estimate the models.3 When we use option prices to estimate the
model parameters, themodelswith one or two stochastic volatility
factors better capture the variation in interest rate volatility and are
also best at predicting excess returns.

The models with stochastic volatility that we estimate with
options also satisfy two additional challenges posed by Dai and
Singleton (2003): they successfully price interest rate caps and
they capture the failure of the expectations hypothesis.4 Dai and
Singleton (2002) find that only models with constant volatility
successfully match the failure of the expectations hypothesis. We
show that term structure models with stochastic volatility also
match the failure of the expectations hypothesis when we include
options in estimation. We further analyze these results and show
that option prices help to identify the portions of the risk premium
that are related to the slope of the yield curve.

Our empirical analysis deviates from recent research that has
focused on unspanned stochastic volatility, or USV, in fixed income
markets.5 In term structure models that exhibit USV, interest rate
options have both an econometric and an economic role because
they cannot be replicated using the underlying bonds or swaps.
We do not consider unspanned stochastic volatility models in
this paper because our objective is to focus exclusively on the
econometric benefits of using options to estimate the risk premium
in long-term interest rates.

Other papers have used options to estimate term structure
models, but do not examine their impact on a model’s ability to
capture the dynamics of interest rates and predict excess returns.
Umantsev (2002) estimates affinemodels jointly using both swaps
and swaptions and analyzes the volatility structure of these mar-
kets. Longstaff et al. (2001) and Han (2007) explore the correlation
structure in yields that is required to simultaneously price both
caps and swaptions. Bikbov and Chernov (2011) use both Eurodol-
lar futures and short-dated option prices to estimate affine term
structuremodels and discriminate between various volatility spec-
ifications.

Our paper is also related to empirical papers that examine the
joint time series of option prices and returns in equity or foreign

3 Swaps are based on the same LIBOR interest rates as caps, which is why we
choose to model swap rates rather than government bond yields. Dai and Singleton
(2000) also note that the institutional features that affect government bond yields
are not accounted for in standard term structure models.
4 The failure of the expectations hypothesis refers to the empirical property that

excess returns to long-term bonds and swaps are negatively related to the slope of
the yield curve (and increasingly so for longer maturity yields). If the expectations
hypothesis holds, whichwould be the case if investors are risk-neutral with respect
to interest rate risk, then forward rates are the best linear predictor of future interest
rates. See Fama (1984a), Fama (1984b), Fama and Bliss (1987) and Campbell and
Shiller (1991).
5 See Collin-Dufresne and Goldstein (2002a), Collin-Dufresne et al. (2009),

Andersen and Benzoni (2008), Li and Zhao (2006), Thompson (2008), Bikbov and
Chernov (2011), Joslin (2007), and Kim (2007).
exchange markets. Chernov and Ghysels (2000), Pan (2002), Jones
(2003), and Eraker (2004) analyze S&P 100 or 500 index returns
jointlywith options on the index. Bakshi et al. (2008) andGraveline
(2008) study foreign exchange options and the underlying curre-
ncy returns. These papers use option prices to help estimate risk
premia in the underlying equity or currency returns and our paper
has a similar objective applied to fixed income markets.6

The remainder of the paper is organized as follows. Section 2
describes the data and estimation procedure we use. Section 3
describes the fit of the models to swap rates, cap prices, and the
conditional volatility of interest rates. Section 4 compares how
well the models we estimate predict excess returns and Section 5
examines the dependence of expected excess returns on the level,
slope, and curvature of the yield curve. Section 6 concludes.

2. Model and estimation

Our objective in this paper is to examine how well different
arbitrage-free affine term structure models predict excess returns
for long-term swaps. We consider dynamic term structure models
in which the short interest rate, r , is driven by a three-dimensional
latent factor Xt that follows an affine7 diffusion process. Following
the notation in Duffie (2001), the models can be expressed as

rt = ρ0 + ρ1 · Xt , (1a)

dXt =

KP

0 + KP
1 Xt


dt + σ(Xt)dW P

t , (1b)

dXt =

KQ

0 + KQ
1 Xt


dt + σ(Xt)dW

Q
t , (1c)

where W P
t (WQ

t ) is a three-dimensional Brownian motion under
the historical (risk-neutral) measure and σ(Xt)σ (Xt)

⊤ is a 3 ×

3 matrix H0 +
∑

Hk
1X

k
t whose (i, j) entry is given by H0ij +∑3

k=1 H
k
1ijX

k
t . The short interest rate and risk-neutral dynamics

allow us to price a variety of fixed income instruments. For
example, a security that pays g(XT ) at time T will have price at time
t given by

Pg
t = EQ

t


e−

 T
t rsdsg(XT )


. (2)

Dai and Singleton (2000) discuss admissibility and identifica-
tion issues for the model specification in Eq. (1). First, admissibil-
ity refers to the fact that, in order to ensure a well-defined process,
parameter constraints must be imposed so that the covariance re-
mains positive semi-definite. Second, due to the latent nature of
the states, the parameters may not be econometrically identified,
as two distinct sets of parameters can give rise to observationally
equivalent models. Dai and Singleton (2000) partition N-factors
models into subsets, denoted AM(N), where M is the number of
factors that drive stochastic volatility. We estimate 3-factor term
structure models with M = 0, 1 or 2 factors driving stochastic
volatility. To ensure admissibility we impose the following con-
straints on the parameters in estimation:

KP
0,i ≥ 0, i ≤ M; (3a)

KQ
0,i ≥ 0, i ≤ M; (3b)

KP
1,ij ≥ 0, i, j ≤ M, i ≠ j; (3c)

6 See also Jackwerth (2000), Aït-Sahalia and Lo (2000), and Aït-Sahalia et al.
(2001) for papers that compare the risk-neutral distribution of returns implied from
option prices to the objective distribution of returns inferred from time-series data.
7 Researchers have also extensively studied quadratic term structuremodels (see

Ahn et al., 2002, and Leippold and Wu, 2002). However, Cheng and Scaillet (2007)
show that affine and quadratic term structure models are equivalent and therefore
our choice to restrict the analysis to affine models is without loss of generality.
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KQ
1,ij ≥ 0, i, j ≤ M, i ≠ j; (3d)

KP
1,ij = 0, i ≤ M < j; (3e)

KQ
1,ij = 0, i ≤ M < j; (3f)

H0 is positive semi-definite; (3g)
H0,ii = 0, i ≤ M; (3h)

Hk
1 is positive semi-definite with Hk

1 = 0 for k > M; (3i)

Hk
1,ii = 0 when i ≤ M and i ≠ k. (3j)

Under these constraints, the first M factors are CIR (Cox
et al., 1985) processes that drive both volatility (through H1)
and interest rates (through ρ1), while the remaining N–M factors
are conditionally Gaussian with the local conditional volatility
determined by the first M factors. Conditions (3a)–(3f) ensure
that the conditional mean of the CIR factors stays positive under
P and Q: positive constant in the drift, positive feedback from
one CIR factor to another, and no feedback from the Gaussian
factors (which can be either positive or negative) to the CIR
factors. Conditions (3g)–(3j) ensure that the conditional covariance
remains positive semi-definite: the matrices that determine
volatility are positive semi-definite, and the volatility of a CIR factor
is zerowhen the level of the factor is zero (which requires both (3i)
and (3j)). Notice that conditions (3g) and (3h) together imply that
H0,ij = 0 for i ≤ M and any j, since if the variance of a random
variable is zero then so is its covariance with any other random
variable.

We also impose the Feller condition so that the factors driving
stochastic volatility remain strictly positive under both P and Q:

KP
0,i ≥

1
2
H i

1ii, i ≤ M; (4a)

KQ
0,i ≥

1
2
H i

1ii, i ≤ M. (4b)

The Feller condition allows the historical and risk-neutral mea-
sures, P and Q, to be equivalent measures even when KQ

1 and KP
1

differ in the upper M × M block. This condition allows for a fully
flexible market price of risk as in Cheridito et al. (2007) (see also
Liptser et al., 2000).8

We impose the following additional constraints (as in Dai and
Singleton, 2000) to obtain econometric identification of the param-
eters:

ρ1,i ≥ 0, i > M; (5a)

H0,ij = 1, i = j > M, 0 otherwise; (5b)

Hk
1,kk = 1, k ≤ M; (5c)

Hk
1,ij = 0, k ≤ M, i ≠ j; (5d)

KP
0,i = 0, i > M; (5e)

KP
1,ij = 0, ifM = 0 and j > i. (5f)

Condition (5a) fixes the sign of the locally Gaussian factors. Con-
ditions (5b)–(5d) scale the latent factors and orthogonalize their
innovations. Condition (5e) removes a level indeterminacy by
translating the Gaussian variables so that their mean under P is
zero. Finally, condition (5f) normalizes the Gaussian variables by
using an orthogonal transformation of the variables (which main-
tains the orthogonal innovations) to generate a lower-triangular

8 For all the specifications that we estimate, these inequality constraints do not
in fact bind.
feedback for the Gaussian variables, as in the Schur decomposition
of a matrix.

Duffie and Kan (1996) show that zero-coupon bond prices are
exponential affine in the factors. Specifically, the price at time t of
a zero-coupon bond that pays $1 at time T is given by

PT
t = EQ

t


e−

 T
t rs ds


= eA(T−t)+B(T−t)·Xt , (6)

where B(·) and A(·) solve the Riccati ODEs

d
dτ

B(τ ) = −ρ1 +

KQ

1

⊤

B(τ ) +
1
2
B(τ )⊤H1B(τ ),

B(0) = 0, (7a)
d
dτ

A(τ ) = −ρ0 +

KQ

0

⊤

B(τ ) +
1
2
B(τ )⊤H0B(τ ),

A(0) = 0, (7b)

and B(τ )⊤H1B(τ ) is a vector whose kth entry is given by B(τ )⊤

Hk
1B(τ ).
Previous papers that investigate the risk premium in long-

term interest rates use only the time series of bonds or swaps
with different maturities for estimation. Instead, we also use the
time series of interest rate cap prices with different maturities. An
interest rate cap is a portfolio of options on the 3-month Libor
rate that effectively caps the interest rate paid on the floating
side of a swap.9 We include cap prices in estimation because they
may contain additional econometric information about the risk
premium in long-term interest rates. Since caps are interest rate
options, their prices are sensitive to the volatility of the risk factors.
Cap prices also depend on interest rate risk premia, which are
embedded in the risk-neutral distribution of the factors.

The price of an N-period cap with strike rate C on 3-month
floating interest payments is

CN
t


C


=

N−
n=2

EQ
t

e−
 t+0.25n
t rsds 0.25


Lt+0.25(n−1) − C

+  
caplet payoff

 , (8)

where Lt+0.25(n−1) is the 3-month Libor interest rate so that

1 + 0.25Lt+0.25(n−1) = 1/P t+0.25n
t+0.25(n−1). (9)

Duffie et al. (2000) show that cap prices in affine term structure
models can be computed as a sum of inverted Fourier transforms.
However, when the solutions A and B to the Riccati ODEs in Eq. (7)
are not known in closed form, direct Fourier inversion can be too
computationally expensive for use in estimation. Instead, we use a
more efficient adaptive quadrature method that is based on Joslin
(2007).

Our data, obtained from Datastream, consists of weekly Libor
rates, swap rates, and at-the-money cap-implied volatilities from
January 1995 to February 2006. We use 3- and 6-month Libor and
the entire term structure of swap rates to bootstrap zero-coupon
swap rates at 1, 2, 3, 4, 5, 7, and 10 years.10 We also use at-the-
money caps with maturities of 1, 2, 3, 4, 5, 7, and 10 years.

We use quasi-maximum-likelihood to estimate model parame-
ters for A0(3), A1(3), and A2(3) models. Following Chen and Scott
(1993), we estimate all of the models under the assumption that
3-month Libor and the 2- and 10-year zero-coupon swap rates are

9 Other papers, such Umantsev (2002), have used swaptions, which are options
on swaps. We choose to use interest rate caps because it is easier to compute their
prices without resorting to approximations.
10 Our bootstrap procedure uses the common assumption that forward swap zero
rates are constant between observations.
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priced exactly, while the remaining rates are priced with error.11
In addition, we estimate another set of parameters for the A1(3)
and A2(3) models under the assumption that at-the-money caps
with maturities of 1, 2, 3, 4, 5, 7, and 10 years are also priced with
error. We refer to these versions of the models that we estimate
with option prices as the A1(3)o and A2(3)o models.

Given the dynamics in Eq. (1b), the conditional mean, X t,1t =

Et [Xt+1t ], satisfies the differential equation,

∂X t,u/∂u = KP
0 + KP

1 X t,u, (10a)

with the initial condition X t,0 = Et [Xt ] = Xt . Similarly, the condi-

tional covariance, Vt,1t = Et


Xt+1t − X t,1t

 
Xt+1t − X t,1t

⊤

,

satisfies the differential equation,

∂Vt,u/∂u = KP
1 Vt,u + Vt,uK

P⊤

1 + H0 + H1 · X t,u, (10b)

with initial condition Vt,0 = 0. This coupled system of linear
constant coefficient ordinary differential equations can be solved
in closed form.

For quasi-maximum-likelihood we assume that, ignoring con-
stants, the log-likelihood of the state vector is

LX = −
1
2

− 
ln

Vt,1t
 +


Xt+1t − X t,1t

⊤
V−1
t,1t

×

Xt+1t − X t,1t


. (11)

Let Yt denote the vector of observed 3-month, 2-year, and 10-year
zero-coupon swap rates that we use to invert for the latent states
Xt .12 From Eq. (6) we can compute A ∈ R3 and B ∈ R3×3 (given
the parameters) and write

Yt = A + BXt ⇒ Xt = B−1 [Yt − A] . (12)

Using our quasi-maximum-likelihood assumption, the log-likeli-
hood of Yt is

LY = LX −

−
ln |B| . (13)

Using Eq. (6) and the states we have recovered from Eq. (12),
we can compute the model-implied zero-coupon yield for any
maturity. Let ε̃k denote the T -dimensional full time series of
the pricing errors (as measured by the difference between the
observed yield and the model-implied yield) for the kth-maturity
interest rate that is priced with error (6-month Libor and 1-, 3-,
4-, 5-, and 7-year zero-coupon swap rates). We assume that these
zero-coupon swap rate pricing errors are independent with mean
zero Gaussian distribution so that the log-likelihood, ignoring
constants, is

LỸ = −
1
2

6−
k=1


T · ln σ̃ 2

k +
ε̃⊤

k ε̃k

σ̃ 2
k


. (14)

Here, we treat the σ̃k as unknown parameters of the model.
Similarly, using Eq. (8), let η̃k denote the T -dimensional full

time series of pricing errors for the kth-maturity interest rate
cap (we price caps with maturities 1, 2, 3, 4, 5, 7, and 10 years).
Again, we assume that these cap pricing errors are independent
with mean zero Gaussian distribution so that the log-likelihood,
ignoring constants, is

11 By assuming that a subset of securities are priced correctly by the model, we
can use these prices to invert for the values of the latent states. Duffee (2002), Dai
and Singleton (2002), and Cheridito et al. (2007) also use this approach to invert
for the latent states. See Chen and Scott (1993) for more details. We choose the 3-
month rate as it is the reference rate for the underlying caps. Moreover, 2-year and
10-year swaps are among themost liquidmaturities and capture both themoderate
and long end of the term structure.
12 Our exposition of the estimation procedure draws fromFisher andGilles (1996).
LC̃ = −
1
2

7−
k=1


T · ln υ̃2

k +
η̃⊤

k η̃k

υ̃2
k


. (15)

We treat the υ̃k as unknown parameters of the model.
Finally, we choose the parameters to maximize the log-like-

lihoodof the yields that are priced exactly, the yields that are priced
with errors, and the caps that are priced with error,

L = LY + LỸ + LC̃ . (16)

Our estimates of the parameters are provided in Tables 1 and
2. Standard errors are computed by the BHHH method using the
outer product of the gradient (seeDavidson andMacKinnon, 1993).
It is difficult to directly assign meaning to many of the parameters
since they govern the dynamics of a latent process. That is to
say, we are more interested in functions of the parameters that
pertain to quantities of economic interest. To this end, we now
proceed in Section 3 to compare and contrast the implications
of the estimated models for the cross-sectional properties of the
yield curve and interest rate option prices. We also examine the
implications for the conditional volatility of yields. In Sections 4
and 5, our main focus turns to the predictability of bond returns
across the estimated models.

3. Fit to prices and conditional volatility

In this section we examine howwell the term structure models
match zero-coupon swap rates, cap prices, and the conditional
volatility of interest rates.

Table 3 provides the root mean squared pricing errors (in basis
points) for zero-coupon swap rates with different maturities. The
root mean squared errors are 0 for the 3-month, 2-, and 10-year
zero-coupon swap rates because the latent state variables are
chosen so that the models correctly price these rates. The root
mean squared pricing errors for other maturities range from about
4 basis points to about 10 basis points, with slightly larger errors
for the short maturities and a better fit for longer maturities.13
There is very little difference in the cross-sectional fit between
the A0(3), A1(3), and A2(3)models that we estimate without using
options. Similarly, there is little difference between the A1(3)o and
A2(3)o models that we estimate with options. The use of options to
estimate the A1(3)o and A2(3)o models has only a small effect on
themodels’ fit to the cross-section of zero-coupon swap rates with
different maturities. Including options improves the fit (relative to
models thatwe estimatewithout using options) by less than a basis
point at the short end of the yield curve (up to 1 year) and worsens
the fit by slightly more than a basis point at the long end of the
yield curve (beyond 1 year).

Table 4 displays the root mean squared pricing errors (as a
percentage of the currentmarket price) for at-the-money capswith
various maturities. For all of the models, the percentage pricing
errors are worst for 1-year caps and decline as the maturity of
the cap increases. The poor fit for short-maturity caps, as well
as the weaker fit for short-maturity yields, may be due to the
findings in Dai and Singleton (2002) and Piazzesi (2005) which
suggest that a fourth factor is required to capture the short end of
the yield curve. Additionally, as Piazzesi (2005) documents, jumps
play an important role for short maturities and therefore adding
jumps may improve the model along this dimension. We choose
to implement more parsimonious 3-factor models because we are
primarily interested in predicting changes in long-term interest
rates. Amongst the models that we estimate without including

13 The cross-sectional pricing errors for all of the models that we estimate are
comparable with the pricing errors reported in recent papers such as Dai and
Singleton (2000), Duffee (2002), and Cheridito et al. (2007).
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Table 1
Parameter estimates: KP

0 , KQ
0 , KP

1 , and KQ
1 .

Parameter Model
A0(3) A1(3)o A1(3) A2(3)o A2(3)

KP
0,1 0 3.61 (1.5) 2.26 (1.7) 0.571 (2.4) 0.799 (3.6)

KP
0,2 0 0 0 1.32 (4.2) 0.944 (2.3)

KP
0,3 0 0 0 0 0

KQ
0,1 1.39 (25) 1.10 (0.14) 1.30 (0.31) 1.92 (1.2) 1.38 (0.15)

KQ
0,2 0.402 (9.4) 0.825 (0.44) 4.26 (1.2) 0.899 (0.86) 0.721 (0.52)

KQ
0,3 −0.227 (2.2) −0.254 (5.8) 2.54 (1.0) −0.300 (0.63) 0.315 (1.2)

KP
1,11 −0.0277 (0.28) −1.53 (0.62) −5.09e−5 (0.49) −0.757 (0.44) −0.991 (1.2)

KP
1,12 0 0 0 1.03 (0.57) 0.495 (2.1)

KP
1,13 0 0 0 0 0

KP
1,21 0.664 (0.41) 0.447 (0.59) −0.682 (0.74) 0.493 (0.85) 0.585 (0.89)

KP
1,22 −0.340 (0.56) −0.592 (0.67) −1.05 (0.37) −1.03 (1.1) −1.45 (1.0)

KP
1,23 0 6.78e−3 (0.53) −1.76 (1.0) 0 0

KP
1,31 −0.947 (0.49) −0.886 (1.1) −0.486 (0.42) −0.245 (0.092) −0.699 (0.9)

KP
1,32 −0.498 (0.46) −0.576 (0.75) −0.625 (0.22) 0.319 (0.086) −1.17 (1.5)

KP
1,33 −1.18 (0.87) −0.556 (0.65) −1.41 (0.51) −0.131 (0.10) −0.0376 (0.066)

KQ
1,11 −1.15 (0.060) −0.538 (0.016) −0.531 (0.013) −1.61 (0.18) −0.573 (0.055)

KQ
1,12 1.78 (0.077) 0 0 1.18 (0.17) 0.000 (0.067)

KQ
1,13 1.60 (0.18) 0 0 0 0

KQ
1,21 0.128 (0.020) −0.569 (0.038) −2.21 (0.46) 1.02 (0.15) 1.43 (0.17)

KQ
1,22 −0.405 (0.010) −0.337 (0.050) −1.00 (0.075) −1.42 (0.092) −2.38 (0.093)

KQ
1,23 −0.414 (0.023) −0.123 (0.022) −1.92 (0.27) 0 0

KQ
1,31 −0.135 (0.020) −0.760 (0.14) −0.926 (0.12) −0.309 (0.035) 0.579 (0.11)

KQ
1,32 −0.136 (0.042) −2.39 (0.14) −0.647 (0.093) 0.571 (0.054) −2.12 (0.28)

KQ
1,33 −0.289 (0.051) −1.49 (0.12) −1.34 (0.10) −0.133 (5.6e−3) −0.0487 (1.7e−3)

This table presents the parameter estimates of KP
0 , K

Q
0 , KP

1 , and KQ
1 from Eq. (1) with standard errors in parentheses. The A0(3), A1(3), and A2(3) models were estimated

by inverting 3-month, 2-year, and 10-year swap zeros andmeasuring 6-month Libor, and 1-, 3-, 4-, 5-, and 7-year swap zeros with error. The A1(3)o and A2(3)o models were
estimated with the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps were priced with error.
Table 2
Parameter estimates: H1, ρ0 , and ρ1 .

Parameter Model
A0(3) A1(3)o A1(3) A2(3)o A2(3)

H1
1,11 0 1 1 1 1

H1
1,22 0 0.385 (0.042) 3.36 (1.7) 0 0

H1
1,33 0 2.58e−8 (0.046) 0.000 (0.049) 1.12e−3 (1.2e−3) 0.511 (0.40)

H2
1,22 0 0 0 1 1

H2
1,33 0 0 0 1.00e−5 (1.6e−3) 0.438 (0.36)

ρ0 −0.193 (2.6) 0.0726 (0.035) 1.04e−3 (0.14) 0.0117 (0.080) 0.289 (0.14)
ρ1,1 × 100 1.28 (0.026) 0.0225 (0.035) 0.0131 (0.039) 0.184 (0.033) 1.01 (0.25)
ρ1,2 × 100 0.845 (0.072) 0.140 (0.037) 0.0772 (0.022) −0.385 (0.043) 1.43 (0.23)
ρ1,3 × 100 0.000 (0.15) 0.865 (0.053) 1.05 (0.10) 2.33 (0.35) 0.596 (0.12)

This table presents the parameter estimates ofH1 ,ρ0 , andρ1 fromEq. (1)with standard errors in parentheses. The A0(3), A1(3), and A2(3)modelswere estimated by inverting
3-month, 2-year, and 10-year swap zeros and pricing 6-month Libor, and 1-, 3-, 4-, 5-, and 7-year swap zeros with error. The A1(3)o and A2(3)o models were estimated with
the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps were priced with error.
options, the A2(3) model provides the best fit to the cross-section
of at-the-money cap prices. The A1(3)o and A2(3)o models have
slightly larger relative pricing errors for 1-year caps than their
A1(3) and A2(3) counterparts that we estimate without options.
However, the relative pricing errors for capswith longermaturities
are considerably lower when we include caps in estimation. For
example, the root mean squared relative pricing error for at-the-
money 5-year caps is 17% in the A1(3)model and 9.2% in the A1(3)o
model. Similarly, the root mean squared relative pricing error for
at-the-money 5-year caps is 13.3% in the A2(3) model and 9.0% in
the A2(3)o model. The relative pricing errors for the A2(3)o model
are slightly better than those for the A1(3)o.
The pricing errors for caps from the A1(3)o and A2(3)o models
that we estimate with options compare favorably with the pricing
errors that have been reported in previous literature.14 Driessen

14 Previous papers have also used interest rate option prices other than caps
to estimate dynamic term structure models. Umantsev (2002) finds that pricing
errors for swaptions are significantly reduced when he uses swaption prices to
estimate affine term structure models. Bikbov and Chernov (2011) use Eurodollar
options to estimate termstructuremodelswith constant, stochastic, andunspanned
stochastic volatility. They find that only stochastic volatility models (such as our
A1(3)o and A2(3)o models) can reconcile both option prices and the term structure
of interest rates.
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Table 3
Pricing errors in BPS for swap-implied zeros.

A0(3) A1(3) A1(3)o A2(3) A2(3)o

6 Month 7.1 7.1 6.8 7.1 6.8
1 Year 9.9 9.9 9.3 10.0 9.3
3 Year 4.1 4.1 4.5 4.1 4.5
4 Year 5.3 5.2 6.3 5.2 6.2
5 Year 5.2 5.2 6.7 5.2 6.6
7 Year 3.8 3.8 5.5 3.8 5.3

This table shows the root mean squared pricing errors in basis points for yields
on swap-implied zeros. The A0(3), A1(3), and A2(3) models were estimated by
inverting 3-month, 2-year, and 10-year swap zeros and pricing 6-month Libor and
1-, 3-, 4-, 5-, and 7-year swap zeros with error. The A1(3)o and A2(3)o models were
estimated with the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-
the-money caps were priced with error.

Table 4
Relative pricing errors in % for at-the-money caps.

A0(3) A1(3) A1(3)o A2(3) A2(3)o

1 Year 33.6 32.4 36.4 33.3 35.5
2 Year 19.9 19.0 14.6 16.9 14.4
3 Year 18.9 18.0 10.9 15.7 10.9
4 Year 17.3 17.3 9.6 14.2 9.6
5 Year 16.3 17.0 9.2 13.3 9.0
7 Year 14.3 16.1 8.6 11.7 8.3
10 Year 13.4 15.8 9.2 11.0 8.9

This table shows the rootmean squared relative pricing errors in % for at-the-money
caps. The A0(3), A1(3), and A2(3) models were estimated by inverting 3-month, 2-
year, and 10-year swap zeros and pricing 1-, 3-, 4-, 5-, and 7-year zeros with error.
The A1(3)o and A2(3)o models were estimated with the additional assumption that
1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps were priced with error.

et al. (2003) estimate a 3-factor Gaussian HJMmodel with cap data
and report absolute pricing errors (averaged across maturities)
of 22.2% of cap market prices. Li and Zhao (2006) estimate a 3-
factor quadratic term structure model and find that the root mean
squared percentage pricing error for 5-year at-the-money caps is
10.4%. Jagannathan et al. (2003) estimate a 3-factor CIR model
and find that the mean absolute pricing errors are 36.62 basis
points for 5-year caps compared to a mean market price of 284.84
basis points (the results are similar for caps with other maturities).
Longstaff et al. (2001) estimate a 4-factor string market model
using swaptions and find that it overprices caps. They report that
the mean percentage valuation error for 5-year caps is 5.665% and
ranges from a minimum of −2.385% to a maximum of 38.071%. All
of these papers report larger pricing errors for shorter-dated caps.
Although not reported here, the A1(3)o and A2(3)o models that we
estimate with caps also provide an excellent fit to the prices of at-
the-money swaptions.

The pricing performance of the models estimated with and
without options provides a key insight for our main objective of
analyzing the predictability of excess returns. All of the models
have very similar pricing errors for the cross-section of yields,
which suggests that the objective function may be very flat along
this dimension. Put another way, a variety of risk-neutral models
can give very similar implications for bond prices and swap rates.
However, when we consider cap prices there is a stark difference
between models that had similar pricing errors for yields. The
use of option prices in estimation provides both lower option
pricing errors and more efficient estimates of the risk-neutral Q
parameters. In Section 4, we show that this increased efficiency is
also beneficial for predicting bond returns.

Unlike prices, conditional volatility is not directly observed
and therefore it must be estimated.15 For estimates of conditional

15 Implied volatilities from cap prices are forward looking and directly observable.
However, in the case of models with stochastic volatility, the market prices of
risk may cause the implied volatilities from cap prices to differ from the actual
conditional volatility.
Fig. 1. Realized volatility of 10-year zero-coupon swap rate.
Note: These figures plot weekly model conditional volatility of the 10-year zero-
coupon swap rate against estimates of conditional volatility based on historical
data: an exponential weighted moving average (EWMA) with a 26-week half-life
and an EGARCH(1,1). The top plot shows the conditional volatility in the A1(3) and
A1(3)o models. The bottom plot shows the conditional volatility in the A0(3), A2(3),
and A2(3)o models. The A0(3), A1(3), and A2(3)models were estimated by inverting
3-month, 2-year, and 10-year swap zeros and pricing 6-month Libor and 1-, 3-, 4-,
5-, and 7-year swap zeros with error. The A1(3)o and A2(3)o models were estimated
with the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money
caps were priced with error.

Table 5
Correlation between model and EGARCH volatility.

A0(3) A1(3) A1(3)o A2(3) A2(3)o

6 Month 0 19.2 28.9 39.1 30.1
1 Year 0 50.8 56.3 58.3 52.9
2 Year 0 75.0 77.0 63.2 66.9
3 Year 0 83.0 81.5 39.0 70.6
4 Year 0 84.4 81.4 15.4 71.9
5 Year 0 84.1 79.3 −2.6 69.3
7 Year 0 84.3 77.4 −21.2 66.4
10 Year 0 82.0 75.0 −26.7 61.6

This table shows the correlation between model-implied one-week volatilities
and EGARCH(1, 1) volatility estimates. The A0(3), A1(3), and A2(3) models were
estimated by inverting 3-month, 2-year, and 10-year swap zeros and pricing 6-
month Libor and 1-, 3-, 4-, 5-, and 7-year swap zeros with error. The A1(3)o and
A2(3)o models were estimated with the additional assumption that 1-, 2-, 3-, 4-, 5-,
7-, and 10-year at-the-money caps were priced with error.

volatility based on historical data we use an exponential weighted
moving average (EWMA) with a 26-week half-life, and also esti-
mate an EGARCH(1,1) for each zero-coupon swap rate maturity.

Fig. 1 plots the conditional volatility of 10-year zero-coupon
swap rate from the term structure models against our estimates of
conditional volatility that use historical data. Table 5 provides the
correlation between the conditional volatility in the pricing model
and the EGARCH(1,1) estimates of conditional volatility.

The conditional volatility of all swap rates is constant in the
A0(3) model and therefore these models cannot capture any time-
series variation. Over our sample period, the average level of con-
ditional volatility in the A0(3) model for zero-coupon swap rates
with different maturities is slightly below our estimates based on
historical data.

In the stochastic volatility models, for maturities beyond 1
year, the conditional volatility of zero-coupon swap rates in the
A1(3), A1(3)o, and A2(3)o models are all highly correlated with
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the EGARCH estimates of conditional volatility. The correlations
are highest in the A1(3) model, followed closely by the A1(3)o
model, and then by the A2(3)o model. The conditional volatility
in the A2(3) model is positively correlated with the estimates of
conditional volatility for maturities up to 4 years, but negatively
correlated formaturities beyond 4 years. This result occurs because
there are two stochastic volatility factors that jointly drive the
level and volatility of yields in the A2(3) model. One factor is
closely correlated with the volatility of short-maturity yields.
However, without the additional discipline in estimation that is
provided by options, the second factor is imprecisely estimated
and is negatively correlated with the volatility of long-maturity
yields. The A1(3) and A2(3) models match the average level of
conditional volatility for the EGARCH and EWMAestimates. For the
6-month zero-coupon rate, the volatility match is worse, though
still positively related. It is very similar between the A1(3) and
A1(3)o models, and between the A2(3) and A2(3)o models.

In summary, none of themodelsmatch the conditional volatility
of short-term interest rates, but the A1(3), A1(3)o, and A2(3)o
models capture the conditional volatility of long-term interest
rates. The failure to match the conditional volatility of short-term
interest rates occurs mainly during periods of high volatility (as
estimated by the EGARCH specification). Again, one could use a
fourth latent factor with jumps to better capture these dynamics.

4. Predictability of excess returns

In this section we examine howwell the risk premiums that we
estimate are able to predict excess returns for long-term swaps.
The excess return on a τ -maturity bond that is purchased at time
t and sold at time t + 1t is defined as

re,τt,1t := ln

P t+τ
t+1t/P

t+τ
t


/1t  

bond return

− ln

1/P t+1t

t


/1t  

risk-free return

. (17)

In an affine term structure model this risk premium, or expected
excess return, is given by

Et

re,τt,1t


=

1
1t


A (τ − 1t) + B (τ − 1t) · Et [Xt+1t ]

− [A(τ ) + B(τ ) · Xt ] + A (1t) + B (1t) · Xt


, (18)

where A and B satisfy the Riccati ODEs in Eq. (7). To measure
how well our estimated risk premiums predict excess returns, we
compute the following modified R2 statistic,

R2
= 1 −

mean


re,τt,1t − Et

re,τt,1t

2
var


re,τt,1t

 . (19)

The mean (sample average) and variance in Eq. (19) are computed
using the returns beginning in each of the 483weeks in our sample
(there is overlap in returns with a horizon longer than a week).
To emphasize, we compute our modified R2 statistic by directly
comparing realized excess returns to the model-implied expected
returns computed from Eq. (18). Our modified statistic differs
from the R2 computed from a standard regression that uses linear
projection and ignores the cross-sectional consistency of the no-
arbitrage model.

Table 6 presents the R2 statistics with bootstrapped t-statistics
for 3-month excess returns for the period from January 1995
to February 2006 that was used to estimate the model.16 We

16 For ease of exposition, we focus on 3-month holding period returns across
maturities. Roughly speaking, for shorter (longer) holding periods the R2s are all
Table 6
Predictability of excess returns (R2s).

A0(3) A1(3) A1(3)o A2(3) A2(3)o CP5 CP10

2 Year 0.7 0.9 3.5 −0.2 3.4 19.8 22.8
(9.4) (9.6) (9.2) (9.4) (9.2)

3 Year 6.5 4.0 8.6 2.7 9.7 20.1 22.2
(9.1) (9.6) (8.8) (9.4) (8.5)

4 Year 10.2 5.9 11.7 4.0 13.0 20.1 21.6
(8.9) (9.6) (8.5) (9.5) (8.3)

5 Year 12.5 7.0 13.5 4.6 14.6 19.7 21.2
(8.7) (9.4) (8.6) (9.6) (8.2)

6 Year 13.8 7.5 14.4 4.9 15.5 19.0 20.3
(8.6) (9.3) (8.4) (9.4) (8.1)

7 Year 14.9 7.9 15.1 5.2 16.0 18.5
(8.6) (9.2) (8.2) (9.5) (8.1)

8 Year 15.4 8.0 15.4 5.2 16.2 17.9
(8.4) (9.2) (8.4) (9.5) (8.1)

9 Year 15.9 8.0 15.6 5.3 16.3 17.5
(8.4) (9.0) (8.4) (9.6) (8.0)

10 Year 16.1 8.0 15.5 5.3 16.2 17.1
(8.3) (9.1) (8.3) (9.3) (8.0)

This table presents R2s obtained from overlapping weekly projections of 3-month
realized zero-coupon swap rate returns, for different maturities, on model-implied
returns. Regressions are based on overlapping data. The A0(3), A1(3), and A2(3)
models were estimated by inverting 3-month, 2-year, and 10-year swap zeros and
pricing 6-month Libor and 1-, 3-, 4-, 5-, and 7-year swap zeroswith error. TheA1(3)o
and A2(3)o models were estimated with the additional assumption that 1-, 2-, 3-,
4-, 5-, 7-, and 10-year at-the-money caps were priced with error.

utilize the following semi-nonparametric procedure to bootstrap
standard errors. For each bootstrap simulation, we choose a
random week in the sample to initialize the state variable. We
then use the estimated model parameters to simulate a 483-week
sample of the state vector. Due to the lack of an economic model
for the measurement errors, we complete the bootstrap procedure
by using the block bootstrap with blocks of length 12 to generate
pricing errors (for an overview, see Chernick, 2001). The reported
bootstrapped t-statistics correspond to the reported R2s divided by
the standard deviation of the bootstrapped R2s.

For comparison, in Table 6 we also provide this R2 statistic for
three versions of the regressions of excess returns on forward rates
as performed in Cochrane and Piazzesi (2005). For each τ -year
zero-coupon swap rate (τ = 2, 3, 4, 5), Cochrane and Piazzesi
(2005) regress

re,nt,1t = βn
0 + βn

1Y
1
t + βn

2F
2
t + βn

3F
3
t + βn

4F
4
t + βn

5F
5
t + εn

t , (20)

where F n
t := nY (n)

t − (n − 1) Y (n−1)
t is the 1-year forward rate

at time t between t + n − 1 and t + n. In Table 6, we denote
the regression results from Eq. (20) by CP5. CP10 denotes the
corresponding regression results using one year forward rates up
to 10 years.

Amongst the three models that we estimate without options,
the A0(3) model is best at predicting 3-month excess returns for
zero-coupon swaps, followed by the A1(3) model and then by the
A2(3) model. When we include options in estimation the results
are reversed. TheA2(3)o model provides the best prediction results,
followed by the A1(3)o model and then the A0(3) model (the A0(3)
model has slightly higher R2s for the 9- and 10-year maturities).
Moreover, when we include options in estimation, the R2s are
much closer in magnitude to those obtained from the regressions
in Cochrane and Piazzesi (2005). The regressions in Cochrane and
Piazzesi (2005) are designed to match only excess returns and so

lower (higher) than for the 3-month holding period, with similar patterns across
maturities. This result is consistent with a higher signal-to-noise ratio for shorter
holding periods and is also consistent with the empirical results in Cochrane and
Piazzesi (2005) and Diebold and Li (2006), among others. See also Boudoukh et al.
(2008).
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Table 7
Difference in R2 ’s.

A1(3)o − A1(3) A2(3)o −

A2(3)

2 Year 2.6 3.6
[−11.9, 7.4] [−1.7, 9.1]

3 Year 4.6 7.0
[0.1, 9.4] [1.6, 12.8]

4 Year 5.8 9.0
[1.4, 10.7] [3.8, 14.8]

5 Year 6.5 10.0
[−0.5, 11.8] [5.0, 15.8]

6 Year 6.9 10.6
[2.5, 11.7] [5.4, 16.4]

7 Year 7.2 10.8
[2.7, 12.3] [5.8, 16.7]

8 Year 7.4 11.0
[3.0, 12.4] [5.9, 16.8]

9 Year 7.6 11.0
[3.2, 12.3] [6.2, 16.6]

10 Year 7.5 10.9
[3.2, 12.2] [6.3, 16.4]

This table presents the difference in R2 ’s for 3-month realized zero-coupon swap
rate returns using the model-implied expected returns. The table presents the
differences between theA1(3)o andA1(3)models, andbetween theA2(3)o andA2(3)
models. Bootstrapped 95% confidence intervals are presented below in parentheses
and are computed using the bootstrap procedure described above. We estimated
the A1(3) and A2(3) models by inverting 3-month, 2-year, and 10-year swap zeros
and pricing 6-month LIBOR and 1-, 3-, 4-, 5-, and 7-year zeros with error. We
estimated the A1(3)o and A2(3)o models with the additional assumption that 1-,
2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps were priced with error.

Fig. 2. Quarterly expected excess return – 5-year zero coupon.
Note: This figure plots the quarterly expected excess return on a 5-year zero-coupon
bond (annualized) for each of the models that we estimate. The top plot shows the
expected excess return for the A1(3) and A2(3) models that we estimated without
using options. The bottom plot shows the expected excess return for the A0(3)
model that we estimated without using options, and the A1(3)o and A2(3)o models
that we estimated using options.

they serve as an upper bound for the level of predictability. Notice
that the worst predictive performance is for short maturities,
which is the same as the pricing results in Tables 3 and 4. In the
A2(3)model, the R2 is even negative for the 3-month excess return
on the 2-year zero-coupon swap, which indicates that the model’s
predictions are worse than the sample average of returns. We
attribute this poorer performance for short-maturity zero-coupon
swaps to the same reasons we discussed in Section 3 on the fit to
prices.
Table 8
Mean reversion and long-run means.

Parameter Estimate
A0(3) A1(3) A1(3)o A2(3) A2(3)o

θ
Q
3m 11.10 10.50 8.02 13.00 8.14

θ
Q
2y 11.10 10.50 8.02 13.00 8.14

θ
Q
10y 11.00 10.40 7.86 12.70 7.98

half-lifeQ
1 0.53 0.49 0.44 0.49 0.48

half-lifeQ
2 1.02 1.12 1.22 1.06 1.16

half-lifeQ
3 23.30 22.40 8.09 31.40 8.46

eigenvector3,3m 0.61 0.61 0.66 0.61 0.65
eigenvector3,2y 0.59 0.59 0.61 0.59 0.61
eigenvector3,10y 0.53 0.53 0.45 0.53 0.45

This table reports the risk-neutral long-run means (θQ
3m, θ

Q
2y , and θ

Q
10y) of the 3-

month, 2-year, and 10-year zero-coupon yields. It also reports the half-life of the
eigenvectors of the mean reversion matrix under Q, as well as the elements of the
third eigenvector. The A0(3), A1(3), and A2(3) models were estimated by inverting
3-month, 2-year, and 10-year swap zeros and pricing 1-, 3-, 4-, 5-, and 7-year
zeros with error. The A1(3)o and A2(3)o models were estimated with the additional
assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps were priced
with error.

Fig. 2 plots the 3-month expected excess return on a 5-year
zero-coupon bond for each of the models that we estimate.
Consistent with the results in Tables 6 and 7, the expected excess
returns for the A1(3)o and A2(3)o models that we estimate using
options are very similar to those for the constant volatility A0(3)
model (which was the preferred model in Duffee, 2002 and
Cheridito et al., 2007). The expected excess returns for the A1(3)
and A2(3) models are very similar to each other, but different from
their counterparts that we estimate using options.

To summarize, the risk premiums that we estimate using in-
terest rate cap prices are better able to predict excess returns for
long-term swaps. The question remains, what elements of the risk
premium do options help to identify? To address this question,
Table 8 highlights the properties of the risk-neutral distribution
which differ when we use options to estimate the models.

The risk-neutral long-run means (θQ
3m, θ

Q
2y, and θ

Q
10y) of the 3-

month, 2-year, and 10-year zero-coupon yields range between
10.4% and 13% for the models that are estimated without options,
but hover around 8% for the A1(3)o and A2(3)o models that are
estimated with options. For comparison, the maximum values of
the 3-month, 2-year, and 10-year zero-coupon swap rates over
our sample period are 6.8%, 8%, and 8.2%, respectively, and the
mean values are 4.2%, 4.8%, and 5.9%. In each model, the third
eigenvector of KQ acts as a level factor that is almost equally
weighted across the three yields. For themodels that are estimated
without options, the half-life of shocks to this level factor ranges
from22.4 years to 31.4 years, while it is just 8.09 years in theA1(3)o
model and 8.46 years in the A2(3)o model. That is, for the models
that are estimated without options, the risk-neutral expectation
of future yields is high, but shocks to the level of yields are very
persistent. By contrast, for the A1(3)o and A2(3)o models, under
the risk-neutral measure the level of yields reverts more quickly
to a lower long-run mean (i.e. shocks are less persistent and die
off more quickly). Both of these combinations produce an upward
sloping yield curve consistent with the data. However, the faster
mean reversion to a lower long-run mean fits the joint swaps and
options data best. Although heuristic, we also feel that the lower
long-run means represent a more economically plausible level of
risk aversion with a rate of mean reversion that is on the order of
business cycle frequency. For example, Gurkaynak et al. (2005) find
difficulty reconciling the business cycle frequency variation (under
P) in macroeconomic variables with the long frequency variation
implicit in long-maturity bond yields (under Q). To some extent,
our findings that the option-based estimates have higher rates of
mean reversion (underQ) suggest that information in option prices
partially attenuates this difference.
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Table 9
Composition of expected excess return.

A0(3) A1(3) A1(3)o A2(3) A2(3)o

CONSTANT −0.224 −0.129 −0.159 0.012 −0.127
LEVEL 3.157 2.920 2.672 0.683 2.455
SLOPE 9.030 3.263 6.631 1.173 6.443
CURVATURE 3.347 0.680 3.524 2.080 6.231

This table provides the values for CONSTANT, LEVEL, SLOPE, and CURVATURE for
each of the models that we estimate, where the annualized 3-month expected
excess return on a 10-year zero-coupon bond is
Et


re,10t,0.25


= CONSTANT + LEVEL × Y (0.25)

t + SLOPE ×


Y (10)
t − Y (0.25)

t


+

CURVATURE ×


2 · Y (2)

t − Y (10)
t − Y (0.25)

t


.

5. Factor analysis

Litterman and Scheinkman (1991) find that most of the
variation in bond returns can be explained by the level, slope, and
curvature of the yield curve. In this section we examine how the
expected excess returns in each model depend on the level, slope,
and curvature of interest rates (which are, in turn, affine functions
of the underlying states in the model). In each model that we
estimate we can write

Et

re,τt,1t


= CONSTANT + LEVEL × Y (0.25)

t

+ SLOPE ×


Y (10)
t − Y (0.25)

t


+ CURVATURE ×


2 · Y (2)

t − Y (10)
t − Y (0.25)

t


, (21)

where Y (0.25)
t , Y (2)

t , and Y (10)
t are the 3-month, 2-, and 10-year zero-

coupon swap rates, respectively. For ease of exposition, we focus
on the 10-year return decomposition for a holding period (1t) of 3
months. Results are similar for othermoderate and longmaturities.
Table 9 provides the values for CONSTANT, LEVEL, SLOPE, and
CURVATURE for each of the models that we estimate. Comparing
the A1(3) and A1(3)o models, we see that in general the options
model gives more weight to SLOPE and CURVATURE (3.26 versus
6.63 and 0.67 vs 3.52, respectively). The weight on level is similar
across these models. Regarding the A2(3) and A2(3)o models, we
see a similar pattern across SLOPE and CURVATURE: including
options results in a larger weight on these two variables (0.68
versus 2.45 and 2.08 versus 6.23, respectively). Note that although
the differences are of similar magnitude, SLOPE has roughly three
times the standard deviation of CURVATURE, therefore we can
conclude that including options in model estimation primarily
helps to identify the risk premium (or expected excess return)
that is associated with the slope of the yield curve and, to a lesser
degree, the curvature of the yield curve.

The A0(3) model shows a roughly similar pattern to the models
that we estimate with options, with comparable values of LEVEL
and higher values of SLOPE and CURVATURE. This result is
consistent with our findings that, as a group, the A0(3), A1(3)o and
A2(3)o outperformed the A1(3) and A2(3) models with respect to
forecasting bond returns.

Dai and Singleton (2002) present two additional challenges for
dynamic term structure models that are related to risk premia in
fixed incomemarkets. The first challenge, which Dai and Singleton
(2002) refer to as the linear projection of yields, or LPY(I), is to
match the pattern of violations of the expectations hypothesis
that is documented in Fama and Bliss (1987) and Campbell and
Shiller (1991). These papers regress excess returns on the slope
of the yield curve and find that the regression coefficient is not
1, but instead is negative (and more so for longer maturities).
Dai and Singleton’s second related challenge, LPY(II), states that
when excess returns are adjusted by model-implied risk premia,
the expectations hypothesis should be restored and the regression
coefficient on the slope of the yield curve should be 1.
Fig. 3. Regression coefficients from linear projection on yields.
Note: This figure shows the regression coefficients of the Campbell–Shiller
regression Y (n−0.25)

t+0.25 − Y n
t on slope, (Y n

t − Y (0.25)
t /(n − 0.25)). The model values are

simulated mean regression coefficients. The A0(3), A1(3), and A2(3) models were
estimated by inverting 3-month, 2-year, and 10-year swap zeros and pricing 6-
month Libor and 1-, 3-, 4-, 5-, and 7-year swap zeros with error. The A1(3)o and
A2(3)o models were estimated with the additional assumption that 1-, 2-, 3-, 4-, 5-,
7-, and 10-year at-the-money cap were priced with error.

Specifically, Fama and Bliss (1987) and Campbell and Shiller
(1991) perform the following regression

Y n−1t
t+1t − Y n

t = Φ0,n + Φ1,n
1t

n − 1t


Y n
t − Y1t

t


+ εn

t , (22)

and find that the regression coefficients, Φ̂1,n, are increasingly neg-
ative for largermaturities n. Fig. 3 provides the LPY(I) regression re-
sults for the models that we estimate.17 Dai and Singleton (2002)
find that only the A0(3) model matches LPY(I). We also find that,
when not using options data, only the A0(3) model with constant
volatility matches LPY(I), while the models with stochastic volatil-
ity fail to replicate this feature of the data. In contrast, we find that
the models with stochastic volatility, when estimated jointly with
options data, are statistically consistent with the empirically ob-
served slope coefficients. For all of the models, the observed slope
coefficients lie within a simulated 95% confidence interval. How-
ever, the point estimates in the A0(3), A1(3)o, and A2(3)o mod-
els are much closer to the observed regression coefficients in the
data. In unreported results, we also found that, when adjusted
for small-sample bias, the A1(3)o and A2(3)o models that we es-
timate with options also satisfy LPY(II). Our results differ from the
findings in both Duffee (2002) and Dai and Singleton (2002) that
dynamic term structure models with constant volatility were su-
perior to those with stochastic volatility, in terms of consistency in
predicting yields. Instead, we find that using options data for es-
timation allows the models with stochastic volatility to maintain
similar or superior performance along this dimension.

6. Conclusion

Interest rate options may contain information about the risk
premium in long-term interest rates because their prices are
sensitive to the volatility and market prices of the underlying
interest rates.We use the time series of interest rate cap prices and
swap rates to estimate 3-factor affine term structure models. The

17 The mean regression coefficients for each model were generated using 1000
simulations of an Euler approximation of the stochastic volatility models. In the
case of the A0(3), the confidence interval can in fact be computed exactly in closed
form. The stochastic volatility models do not yield closed form expressions for the
confidence intervals since closed form transition densities are not known for these
processes.
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risk premiums that we estimate using interest rate option prices
are better able to predict excess returns for long-term swaps over
short-term swaps. We show that including options reduces the
estimate of the risk-neutral long-run mean of yields and increases
the estimated rate of mean reversion to a more economically
plausible level. We also show that including options helps us to
identify the portion of the risk premium that is associated with
the slope and curvature of the yield curve. With a correction for
a small-sample bias, the models with stochastic volatility that we
estimate with options also capture the failure of the expectations
hypothesis and match regressions of returns on the slope of the
yield curve.

Acknowledgements

We thank Chris Armstrong, Snehal Banerjee, David Bolder,
Mikhail Chernov, Anna Cieslak, Darrell Duffie, Peter Feldhütter,
René Garcia, Chris Jones, Yaniv Konchitchki, Peter Reiss, David
Runkle, and seminar participants at the American Finance
Associationmeetings in Chicago, the Northern Finance Association
meetings in Vancouver, the SAFE 2010 Term Structure Conference
in Verona, the University of Waterloo, the Bank of Canada Fixed
Income conference, Barclays Global Investors, and Stanford GSB.
We are very grateful to Ken Singleton for many discussions and
comments. Almeida gratefully acknowledges financial support
from CNPq-Brazil and Graveline acknowledges support from a
Carlson School Dean’s Small Research Grant.

References

Ahn, D.H., Dittmar, R.F., Gallant, A.R., 2002. Quadratic term structuremodels: theory
and evidence. The Review of Financial Studies 15, 243–288.

Aït-Sahalia, Y., Lo, A.W., 2000. Nonparametric risk management and implied risk
aversion. Journal of Econometrics 94, 9–51.

Aït-Sahalia, Y., Wang, Y., Yared, F., 2001. Do option markets correctly price the
probabilities of movement of the underlying asset? Journal of Econometrics
102, 67–110.

Andersen, T.G., Benzoni, L., 2008. Do bonds span volatility risk in the US treasury
market? A specification test for affine term structure models. SSRN eLibrary.

Bakshi, G.S., Carr, P.P., Wu, L., 2008. Stochastic risk premiums, stochastic skewness
in currency options, and stochastic discount factors in international economies.
Journal of Financial Economics 87, 132–156.

Bikbov, R., Chernov, M., 2011. Yield curve and volatility: lessons from eurodollar
futures and options. Journal of Financial Econometrics 9 (1), 66–105.

Boudoukh, J., Richardson, M., Whitelaw, R.F., 2008. The myth of long-horizon
predictability. Review of Financial Studies 21, 1577–1605.

Campbell, J.Y., Shiller, R.J., 1991. Yield spreads and interest ratemovements: a bird’s
eye view. Review of Economic Studies 58, 495–514.

Chen, R.R., Scott, L., 1993. Maximum likelihood estimation for a multifactor
equilibrium model of the term structure of interest rates. Journal of Fixed
Income 3, 14–31.

Cheng, P., Scaillet, O., 2007. Linear-quadratic jump–diffusion modeling. Mathemat-
ical Finance 17, 575–598.

Cheridito, P., Filipovic, D., Kimmel, R.L., 2007. Market price of risk specifications
for affine models: theory and evidence. Journal of Financial Economics 83,
123–170.

Chernick, M., 2001. Bootstrap Methods: A Guide for Practitioners and Researchers,
third ed. Wiley-Interscience.

Chernov, M., Ghysels, E., 2000. A study towards a unified approach to the joint
estimation of objective and risk neutral measures for the purpose of options
valuation. Journal of Financial Economics 56, 407–458.

Cochrane, J.H., Piazzesi, M., 2005. Bond risk premia. American Economic Review 95,
138–160.

Collin-Dufresne, P., Goldstein, R.S., 2002a. Do bonds span the fixed incomemarkets?
Theory and evidence for unspanned stochastic volatility. Journal of Finance 57,
1685–1730.
Collin-Dufresne, P., Goldstein, R.S., Jones, C.S., 2009. Can interest rate volatility be
extracted from the cross section of bond yields? Journal of Financial Economics
94, 47–66.

Cox, J.C., Jonathan, E., Ingersoll, J., Ross, S.A., 1985. A theory of the term structure of
interest rates. Econometrica 53, 385–408.

Dai, Q., Singleton, K.J., 2000. Specification analysis of affine term structure models.
Journal of Finance 55, 1943–1978.

Dai, Q., Singleton, K.J., 2002. Expectation puzzles, time-varying risk premia, and
affinemodels of the term structure. Journal of Financial Economics 63, 415–441.

Dai, Q., Singleton, K.J., 2003. Term structure dynamics in theory and reality. Review
of Financial Studies 16, 631–678.

Davidson, R.,MacKinnon, J., 1993. Estimation and Inference in Econometrics. Oxford
University Press.

Diebold, F., Li, C., 2006. Forecasting the term structure of government bond yields.
Journal of Econometrics 130, 337–364.

Driessen, J., Klaassen, P., Melenberg, B., 2003. The performance of multi-factor
term structure models for pricing and hedging caps and swaptions. Journal of
Financial and Quantitative Analysis 38, 635–672.

Duarte, J., 2004. Evaluating an alternative risk preference in affine term structure
models. Review of Financial Studies 17, 379–404.

Duffee, G.R., 2002. Term premia and interest rate forecasts in affine models. Journal
of Finance 57, 405–443.

Duffie, J.D., 2001. DynamicAsset Pricing Theory, third ed. PrincetonUniversity Press,
Princeton, New Jersey.

Duffie, J.D., Kan, R., 1996. A yield-factor model of interest rates. Mathematical
Finance 6, 379–406.

Duffie, J.D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for affine
jump-diffusions. Econometrica 68, 1343–1376.

Eraker, B., 2004. Do stock prices and volatility jump?Reconciling evidence from spot
and option prices. Journal of Finance 59, 1367–1403.

Fama, E.F., 1984a. The information in the term structure. Journal of Financial
Economics 13, 509–528.

Fama, E.F., 1984b. Term premiums in bond returns. Journal of Financial Economics
13, 529–546.

Fama, E.F., Bliss, R.R., 1987. The information in long-maturity forward rates.
American Economic Review 77, 680–692.

Fisher, M., Gilles, C., 1996. Estimating exponential-affine models of the term
structure. Working Paper.

Graveline, J.J., 2008. Exchange rate volatility and the forward premium anomaly.
Working Paper.

Gurkaynak, R.S., Sack, B., Swanson, E., 2005. Stochastic volatilities and correlations
of bond yields. American Economic Review 95, 425–436.

Han, B., 2007. Stochastic volatilities and correlations of bond yields. Journal of
Finance 62, 1491–1524.

Jackwerth, J.C., 2000. Recovering risk aversion from option prices and realized
returns. Review of Financial Studies 13, 433–451.

Jagannathan, R., Kaplin, A., Sun, S., 2003. An evaluation of multi-factor cir models
using libor, swap rates, and cap and swaption prices. Journal of Econometrics
116, 113–146.

Jones, C.S., 2003. The dynamics of stochastic volatility: evidence from underlying
and options markets. Journal of Econometrics 116, 181–224.

Joslin, S., 2007. Pricing and hedging volatility risk in fixed incomemarkets.Working
Paper.

Kim, D.H., 2007. Spanned stochastic volatility: a reexamination of the relative
pricing between bonds and bond options. BIS Working Papers.

Leippold, M., Wu, L., 2002. Asset pricing under the quadratic class. The Journal of
Financial and Quantitative Analysis 37, 271–295.

Li, H., Zhao, F., 2006. Unspanned stochastic volatility: evidence from hedging
interest rate derivatives. Journal of Finance 61, 341–378.

Liptser, R., Shiryaev, A., Aries, B., 2000. Statistics of Random Processes I. Springer.
Litterman, R., Scheinkman, J., 1991. Common factors affecting bond returns. Journal

of Fixed Income 1, 54–61.
Longstaff, F.A., Santa-Clara, P., Schwartz, E.S., 2001. The relative valuation of

caps and swaptions: theory and empirical evidence. Journal of Finance 56,
2067–2109.

Pan, J., 2002. The jump-risk premia implicit in options: evidence from an integrated
time-series study. Journal of Financial Economics 63, 3–50.

Piazzesi, M., 2005. Bond yields and the federal reserve. Journal of Political Economy
113, 311–344.

Thompson, S.B., 2008. Identifying term structure volatility from the libor-swap
curve. The Review of Financial Studies 21, 819–854.

Umantsev, L., 2002. Econometric analysis of European libor-based options within
affine term-structure models. Ph.D. Thesis. Stanford University.


	Do interest rate options contain information about excess returns?
	Introduction
	Model and estimation
	Fit to prices and conditional volatility
	Predictability of excess returns
	Factor analysis
	Conclusion
	Acknowledgements
	References


