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This paper explores the implications of filtering and no-arbitrage for the maximum
likelihood estimates of the entire conditional distribution of the risk factors and bond yields in
Gaussian macro-finance term structure model (MTSM) when all yields are priced imperfectly.
For typical yield curves and macro-variables studied in this literature, the estimated joint
distribution within a canonical MTSM is nearly identical to the estimate from an economic-
model-free factor vector-autoregression (factor-VAR), evenwhen measurement errors are large.
It follows that a canonical MTSM offers no new insights into economic questions regarding the
historical distribution of the macro risk factors and yields, over and above what is learned from
a factor-VAR. These results are rotation-invariant and, therefore, apply to many of the
specifications in the literature.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Gaussian macro-dynamic term structure models (MTSMs)
typically feature three key ingredients: (i) a low-dimen-
sional factor-structure in which the risk factors are both
macroeconomic and yield-based variables; (ii) the
assumption of no arbitrage opportunities in bond markets;
and (iii) accommodation of measurement errors in bond
markets owing to the presence of microstructure noise or
errors introduced by the bootstrapping of zero-coupon
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yields. The low-dimensional factor structure is motivated
by the observation that most of the variation in bond
yields is explained by a small number of principal compo-
nents (PCs).1 The overlay of an arbitrage-free MTSM brings
information about the entire yield curve to bear on the
links between macroeconomic shocks and bond yields, in
a consistent structured way. Thirdly, with measurement
errors on bond yields,2 MTSMs are formulated as state-
space models and estimation proceeds using filtering.
1 This has been widely documented for U.S. Treasury yields (e.g.,
Litterman and Scheinkman, 1991). Ang, Piazzesi, and Wei (2006) and
Bikbov and Chernov (2010) are among the many studies of MTSMs that
base their selection of a small number of risk factors (typically three or
four) on similar PC evidence.

2 Virtually the entire literature on MTSMs assumes that the macro
factors are measured without errors. See Duffee (1996) for a discussion of
measurement issues at the short end of the Treasury curve. The use of
splines to extract zero-coupon yields from coupon yield curves and the
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This paper takes the low-dimensional factor structure
of bond yields and macro factors imposed in MTSMs as
given and explores the implications of no-arbitrage and
the presence of measurement errors for the Kalman filter
estimator of the joint distribution of these variables.
Initially, we follow the extant literature and assume that
macro risk factors are measured without errors. We derive
sufficient and easily verified theoretical conditions for
the Kalman filter estimator within a canonical3 MTSM to
be (nearly) identical to the ordinary least-squared (OLS)
estimator of an unconstrained factor-VAR. We show that
these conditions are very nearly satisfied by the canonical
versions of several prominent MTSMs. The practical impli-
cation of our analysis is that canonical MTSMs typically
do not offer any new insights into economic questions
regarding the historical distribution of macro-variables
and yields, over and above what one can learn from an
economics-free factor-VAR.

Our theoretical propositions focus on the entire condi-
tional distribution of the risk factors and bond yields in
models where all bond yields are measured with errors and
so filtering must be used in estimation. Both of these
ingredients are essential for exploring what MTSMs teach
us about the impulse responses (IRs) of bond yields to
macro shocks.4 The theoretical propositions and empirical
illustrations about the role of no-arbitrage restrictions in
Joslin, Singleton, and Zhu (2011, henceforth JSZ) and
Duffee (2011a) are largely silent on this issue, because
they focus on the conditional means (forecasts) of yield-
based risk factors within models which maintain a good
cross-sectional fit to the yield curve. In contrast, we
examine whether the imposition of the structure of a
MTSM affects features of the risk factors that depend on
both the conditional mean and variance parameters (as do
IRs and term premiums). Moreover, we allow all of the
individual yields to be priced imperfectly, possibly with
large errors. Filtering often has little effect on maximum
likelihood (ML) estimators in Gaussian models with latent
or yield-based risk factors (YTSMs), in large part because
the standard deviations of these errors are typically small
(only a few basis points).5 In contrast, pricing errors on
individual bond yields inMTSMs exceed one hundred basis
points in some prominent MTSMs.

A key condition for a MTSM and its factor-VAR counter-
part to produce (nearly) identical conditional distributions
of the risk factors when there are pricing errors of this
magnitude is that the ratio of the average pricing errors to
(footnote continued)
differing degrees of liquidity of individual bonds along the yield curve
introduce errors in yields along the entire maturity spectrum.

3 A canonical model is maximally flexible (in the sense that each
member of the family of MTSMs is represented) and enforces a minimal
set of normalizations to ensure econometric identification.

4 Recent analyses of IRs within MTSMs include Ang and Piazzesi
(2003) who examine the responses of bond yields to their macro risk
factors; Bikbov and Chernov (2010) who quantify the proportion of bond
yield variation attributable to macro risk factors; and Joslin, Priebsch, and
Singleton (forthcoming) who quantify the effects of unspanned macro
risks on forward term premiums.

5 This is documented in JSZ for estimates of the conditional mean
parameters in YTSMs, and in Duffee (2011a) for the loadings that link the
yield-based risk factors to the prices of individual bonds.
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their variances for the yield-based risk factors be approxi-
mately zero. Historical and MTSM-implied low-order PCs
track each other very closely, even though the pricing
errors on individual bonds are at times large, and this
is what drives our empirical findings of irrelevance. Our
propositions also provide a theoretical underpinning for
the findings in JSZ and Duffee (2011b) that higher-order
PCs are not accurately priced in five-factor YTSMs.

To derive our irrelevance results we develop a canoni-
cal form for the family of N�factor MTSMs in which M of
the factors are the macro-variables Mt and the remaining
L¼N−M risk factors are the first L principal components
(PCs) of bond yields, PL

t . This form provides an organizing
framework within which it is easy to determine whether a
MTSM is econometrically identified. It also leads directly to
a formal characterization of the added flexibility of a
MTSM (relative to an N�factor model with no macro risk
factors) in terms of a theoretical spanning condition of Mt

by the first N PCs of yields.
Using this canonical form we show that our irrelevancy

propositions are fully rotation-invariant6 if our sufficient
conditions are satisfied, then all choices of individual
yields or PCs of yields as elements of PL

t necessarily result
in identical (inconsequential) effects of no-arbitrage
restrictions. Moreover, when PL

t is normalized to be L
low-order PCs, then the model-implied joint distribution
of Z′

t≡ðM′t ;PL′
t Þ is virtually identical to the one implied by a

standard unconstrained VAR model of the observed risk
factors Zo

t .
Another important insight that emerges from this

analysis is that, in MTSMs in which certain portfolios of
yields are assumed to be priced perfectly, the choice of
these portfolios is not innocuous. For instance, in other-
wise identicalMTSMs that assume PL

t ¼Po
t , the IRs of bond

yields to macro shocks can vary substantially across alter-
native choices of PL

t (e.g., a PC or an individual bond yield).
Such IRs are fully invariant to the choice of PL when all
bonds are priced with error.

We explore the empirical relevance of our propositions
within a three-factor MTSM—model GM3ðg; πÞ—in which
the risk factors are output growth (g), inflation (π), and the
first PC of bond yields (PC1).7 The no-arbitrage structure of
GM3ðg; πÞ implies over-identifying restrictions on the dis-
tribution of bond yields, and its Kalman filter estimates
imply root mean-squared pricing errors (RMSE) on the
order of 40 basis points (see Section 4.1). Nevertheless, the
IRs of PC1 to a shock to inflation implied by GM3ðg; πÞ and
by its corresponding factor-VAR (FVn) are virtually indis-
tinguishable (Fig. 1).

Up to this point, we follow the literature on macro-
finance term structure models in assuming that the macro
risk factors are measured without error. To break the
asymmetric treatment of yield and macro factors, we next
6 See Dai and Singleton (2000) for the definition of invariant affine
transformations. Such transformations lead to equivalent models in
which the pricing factors ~PN

t are obtained by applying affine transforma-
tions of the form ~PN

t ¼ C þ DPN
t , for nonsingular N �N matrix D.

7 Full details of the data and estimation results are provided in
Section 4.3. Unless otherwise noted, the loadings for PC1 are rescaled so
that they add up to one.
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Fig. 1. Impulse responses in basis points of the first principal component
of yields (PC1) to a shock to inflation in model GM3ðg; πÞ (TSf ) and its
corresponding factor-VAR (FVn). The model GM3ðg; πÞ is a three-factor no-
arbitrage model in which the risk factors are output growth (g), inflation
(π) and PC1. In the no-arbitrage model, all yields are filtered by the
Kalman filter while in the factor model is assumed that PC1 is observed
without error.

8 JSZ and Duffee (2011a) explore empirically whether various con-
straints on the P distribution of the risk factors in YTSMs improve out-of-
sample forecasts of these factors. We look beyond their focus on
conditional means and perfectly priced risk factors to the new issues
that arise in MTSMs.

9 Studies with this formulation include Ang and Piazzesi (2003),
Ang, Dong, and Piazzesi (2007), Bikbov and Chernov (2010), Chernov and
Mueller (2011), and Smith and Taylor (2009).

10 Examples include Ang, Piazzesi, and Wei (2006) and Jardet, Monfort,
and Pegoraro (2010).
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allow for all of the observed variables—yt and Mt alike—to
be measured with errors. For MTSMs with a small number
of macro factors, typical of this literature, we obtain the
striking result that the filtered risk factors closely resemble
the low-dimensional PCs of bond yields. That is, once
measurement errors on Mt are accommodated, the like-
lihood function largely gives up on fitting the observed
macro factors in favor of more accurate pricing of bonds.

These results suggest that caution is in order when
drawing conclusions about the joint distribution of macro
risks and bond yields from MTSMs in which macro-
variables appear as risk factors. If, as is typically the case,
the macro factors are assumed to be measured without
errors, then low-dimensional MTSMs may price individual
bond yields very poorly. In such circumstances, conclu-
sions drawn about the nature of risk premiums in bond
markets, and in particular their relationships with macro
risks, may be unreliable. Allowing for measurement errors
on the macro factors improves the fits for individual bond
yields. However, MTSMs that accommodate filtering on Mt

may attribute implausibly large percentages of variation
in Mt to measurement errors, thereby rendering such
MTSMs largely uninformative about the nature of, say, IRs
of yields on bond portfolios to macro shocks.

Our irrelevance results extend to canonical versions of
MTSMs in which the macro factors Mt are unspanned by
bond yields (Joslin, Priebsch, and Singleton, forthcoming).
However, the implications of accommodating measure-
ment errors on M are very different across MTSMs with
spanned versus unspanned macro risks. Extending model
GM3ðg; πÞ to a MTSM in which M′t ¼ ðgt ; πtÞ is unspanned
by the yield PCs, keeping measurement errors on both
bond yields and M, we obtain the striking result that M
reemerges as a significant predictor of risk premiums in
bond markets, over and above yield curve information. That
is, the model with unspanned macro risks shows that
filtered macro factors embody important information
about risk in bond markets, whereas M is largely “filtered
Please cite this article as: Joslin, S., et al., Why Gaussian macro-
factor-VARs. Journal of Financial Economics (2013), http://dx.d
out” of MTSMs with spanned macro risks in favor of
matching yields with PC-like risk factors.

Finally, throughout this analysis our focus is on cano-
nical models. Certain types of restrictions, when imposed
in combination with the no-arbitrage restrictions of a
MTSM, may overturn our irrelevancy results and increase
the efficiency of ML estimators relative to those of the
unconstrained VAR. Most studies of MTSMs have left open
the question of whether their particular formulations led
to materially different estimates of historical distributions
relative to those from a VAR.8 We show that our irrele-
vancy results are robust to several often-imposed con-
straints on the P distribution of Zt .

To fix notation, suppose that a MTSM is evaluated using a
set of J yields yt ¼ ðym1

t ;…; ymJ
t Þ′ with maturities ðm1;…;mJÞ

with J≥N , where N is the number of pricing factors. We
introduce a fixed, full-rank matrix of portfolio weights
W∈RJ�J and define the “portfolios” of yields Pt ¼Wyt and,
for any j≤J, we let Pj

t and Wj denote the first j portfolios and
their associated weights. The modeler's choice of W will
determine which portfolios of yields enter the MTSM as risk
factors and which additional portfolios are used in estima-
tion. Throughout, we assume a flat prior on the initial
observed data.

2. A canonical MTSM

This section gives a heuristic construction of our
canonical form; formal regularity conditions and a proof
that our form is canonical are presented in Appendix A.
Suppose that M macroeconomic variables Mt enter a
MTSM as risk factors and that the one-period interest rate
rt is an affine function of Mt and an additional L pricing
factors PL

t ,

rt ¼ ρ0 þ ρ1M �Mtþρ1P �PL
t ≡ρ0þρ1�Zt ; Zt ¼ ðM′t ;PL′

t Þ′: ð1Þ
For now, we will suppose that all of the elements in Zt

incrementally affect bond prices; see Section 2.5 for a
relaxation of this assumption. Some treat PL

t in (1) as a set
of L latent risk factors,9 while others include portfolios of
yields as risk factors.10 Fixing Mt and the dimension L of
PL

t , these two theoretical formulations are observationally
equivalent. In fact, as we show, we are free to rotate (see
Appendix C) the entire vector Zt to express bond prices in
terms of PN

t , the first N ¼Mþ L entries of the modeler's
chosen portfolios of yields. This is an implication of affine
pricing of PN

t in terms of Zt . Accordingly, in characterizing
a canonical form for the family of MTSMs with short-rate
processes of the form (1), we are free to start with either
interpretation of PL

t (latent or yield-based) and to use any
of these rotations of the risk factors Zt .
finance term structure models are (nearly) unconstrained
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We select a rotation of Zt and its associated risk-neutral
(Q) distribution so that our maximally flexible canonical
form is particularly revealing about the joint distribution
of Zt and bond yields implied by MTSMs with N pricing
factors that include Mt .

2.1. The canonical form

Consider a MTSM with risk factors Zt and short rate as
in (1), with Zt following a Gaussian process under the risk-
neutral distribution,

ΔZt ¼ KQ
0 þ KQ

1 Zt−1 þ
ffiffiffiffi
Σ

p
ϵQt ; ϵQt ∼Nð0; IÞ: ð2Þ

Absent arbitrage opportunities in this bond market, (1)
and (2) imply affine pricing of bonds of all maturities
(Duffie and Kan, 1996). The yield portfolios Pt can be
expressed as

Pt ¼ ATS þ BTSZt ; ð3Þ
where the loadings (ATS;BTSÞ are known functions of the
parameters ðKQ

0 ;K
Q
1 ; ρ0; ρ1;ΣÞ governing the risk-neutral

distribution of yields; hereafter “TS” denotes features of a
MTSM. A canonical version of this model is obtained by
imposing normalizations that ensure that the only admis-
sible rotation of Zt that leaves the distribution of rt
unaffected is the identity matrix. To arrive at our canonical
form, we observe that from the first N entries of (3), Zt ,
and hence all bond yields yt , can be expressed as affine
functions of PN

t .11 After rotating to a pricing model with
risk factors PN

t , we adopt the canonical form of JSZ. What
is distinctive about their canonical form is that the risk-
neutral distribution of PN

t is fully characterized by the
covariance matrix Σ, the long-run Q�mean rQ∞≡E

Q½rt � of rt ,
and the rotation-invariant (and hence economically inter-
pretable) N -vector λQ of distinct real eigenvalues of the
feedback matrix KQ

1 .
12

A key implication of (3) is that, within any MTSM that
includes Mt as pricing factors in (1), these macro factors
must be spanned by PN

t :

Mt ¼ γ0 þ γ1PN
t ; ð4Þ

for some conformable γ0 and γ1 that implicitly depend on
W. Using (4), we apply the rotation

Zt ¼
Mt

PL
t

 !
¼ γ0

0

� �
þ

γ1
IL 0L�ðN−LÞ

 !
PN

t ð5Þ

to the canonical form in terms to PN
t to obtain an

equivalent model in which the risk factors are Mt and
PL

t , rt satisfies (1), and Zt follows the Gaussian Q process
(2). Our specification is completed by assuming that, under
the historical distribution P, Zt follows the process

ΔZt ¼ KP
0 þ KP

1 Zt−1 þ
ffiffiffiffi
Σ

p
ϵPt ; ϵPt ∼Nð0; IÞ: ð6Þ
11 This inversion presumes that the N�factor MTSM is non-
degenerate in the sense that all M macro factors distinctly contribute
to the pricing of bonds after accounting for the remaining L factors.
Formal regularity conditions are provided in Appendix A.

12 Extensions to the more general case of KQ
1 being in ordered real

Jordan form, or to a zero root in the Q process of Zt , are straightforward
along the lines of Theorem 1 in JSZ.

Please cite this article as: Joslin, S., et al., Why Gaussian macro-
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Summarizing, in our canonical form the first M com-
ponents of the pricing factors Zt are the macro-variables
Mt , and without loss of generality the risk factors are
rotated so that the remaining L components of Zt are the
“state yield portfolios” PL

t (the first L components of PN
t );

rt is given by (1); Mt is related to Pt through (4); and
Zt follows the Gaussian Q and P processes (2) and (6).
Moreover, for given W, the risk-neutral parameters
ðρ0; ρ1;KQ

0 ;K
Q
1 Þ are explicit functions of ΘQ

TS≡ðrQ∞; λQ;
γ0; γ1;ΣÞ.

Our canonical construction reveals the essential differ-
ence between term structure models based entirely on
yield-based pricing factors PN

t and those that include
macro risk factors. A MTSM with pricing factors ðMt ;PL

t Þ
offers more flexibility in fitting the joint distribution of
bond yields than a pure latent factor model (one in which
N ¼L), because the “rotation problem” of the risk factors
is most severe in the latter setting. In the JSZ canonical
formwith pricing factors PN

t , the underlying parameter set
is ðλQ; rQ∞;KP

0 ;K
P
1 ;ΣÞ. A MTSM adds the spanning property

(4) with its MðN þ 1Þ free parameters. Thus, any canonical
N�factor MTSM with macro factors Mt gains MðN þ 1Þ
free parameters relative to pure latent-factor Gaussian
models. Of course, this added flexibility (by parameter
count) of a MTSM is gained at a cost: the realizations of Mt

are linked to the yield-based risk factors by (4).
In taking the model to the data, we accommodate the

fact that the observed data fMo
t ;Po

t g will not be perfectly
matched by a theoretical no-arbitrage model. Accordingly,
we suppose that the observed yield portfolios Po

t are equal
to their theoretical values plus a mean-zero measurement
error. Absent any guidance from economic theory, and
consistent with the literature, we presume that the mea-
surement errors are independent and identically distrib-
uted (i.i.d.) normal random variables, thereby giving rise to
a Kalman filtering problem.13 The observation equation is
then (3) adjusted for these errors:

Po
t ¼ ATSðΘQ

TSÞ þ BTSðΘQ
TSÞZt þ et ; et∼Nð0;ΣeÞ; ð7Þ

the state equation is (6), and ðATS;BTSÞ are functions of
the parameters ΘQ

TS of our normalization. Until Section 5
we follow the literature and assume that the observed
macro factors Mo

t coincide with their theoretical counter-
parts Mt . Together (6) and (7) comprise the state space
representation of the MTSM. The full parameter set is
ΘTS ¼ ðΘQ

TS;K
P
0 ; K

P
1 ;ΣeÞ.
2.2. State-space formulations under alternative hypotheses

Throughout our subsequent analysis we compare the
MTSMs characterized by (6) and (7) to their “unconstrained
alternatives.” Since aMTSM involves multiple over-identifying
restrictions, the relevant alternative model depends on which
of these restrictions one is interested in relaxing.
13 This formulation subsumes the case of cross-sectionally uncorre-
lated pricing errors (Σe is diagonal) adopted by Ang, Dong, and Piazzesi
(2007) and Bikbov and Chernov (2010), as well as the case where Σe is
singular with the first L rows and columns of Σe equal to zero. In the
latter case, PL

t ¼PLo
t .

finance term structure models are (nearly) unconstrained
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Table 1
Model notation.

Summary of the notations for different model specifications. TS refers
to no-arbitrage models while FV refers to economics-free factors-VARs.
Within these two general classes of models, we consider various cases
where different yield factors and macro factors are measured with error.

Model
name

No-arbitrage
imposed

Measurement
errors for

Measurement
errors for

yield factors macro-variables

TSf X X

TSn X

FVf X

FVn

TSfm X X X

FVfm X X

TSnP X X

FVn
P X
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The FV (factor-VAR) alternative follows Duffee (2011a)
and maintains the state equation (6), but generalizes the
observation equation to

Po
t ¼ AFV þ BFVZt þ et ; ð8Þ

for conformable matrices AFV and BFV , with et normally
distributed from the same family as the MTSM. For
identification we normalize the first L entries of AFV to
zero and the first L rows of BFV to the corresponding
standard basis vectors. Except for this, AFV and BFV are free
from any restrictions.14 The full parameter set is ΘFV ¼
ðAFV ;BFV ;K

P
0 ;K

P
1 ;Σ;ΣeÞ. Since all bonds are priced with

errors, the FV model is estimated using the Kalman filter.
A less constrained alternative would have Po

t (or yt)
following a full J-dimensional VAR as, for instance, in Ang
and Piazzesi (2003). However, comparing a MTSM to this
alternative confounds the restrictions that bond yields lie
in a low-dimensional factor space with the no-arbitrage
constraints. Moving from an unconstrained J-dimensional
VAR to the factor-VAR in (8) can improve the precision of
estimates of the historical distribution of bond yields and,
in fact, this is illustrated by the findings in Ang, Piazzesi,
and Wei (2006). Such an improvement may arise even if
no-arbitrage restrictions have no impact on fit. By taking
(8) as our alternative, we home in on the roles of no-
arbitrage and filtering in studies of MTSMs.

2.3. Model specifications

Since we examine a wide variety of measurement ass-
umptions about Zt in both arbitrage-free MTSMs (TS) and
unconstrained factor-VARs (FV), it is instructive to sum-
marize the cases examined into Table 1. The superscript n
indicates no errors in measuring the risk factors (Mo

t ¼Mt

and PLo
t ¼PL

t ). When the yield factors are filtered (PLo
t ≠PL

t
and Mo

t ¼Mt) we use the superscript f; and when both
the yields and macro-variables are filtered we use the
superscript fm. Finally, TSnP and FVn

P refer to MTSMs in
which PN

t ¼PN o
t and the macro-variables are measured

with error ðMo
t≠MtÞ. TS and FV alone refer to the generic

features of ATS þ BTSZt and AFV þ BFVZt , respectively, along
with (6).

Relative to model TSf , model FVf relaxes the over-
identifying restrictions implied by the assumption of no
arbitrage, but maintains the low-dimensional factor struc-
ture of returns and the presumption of measurement
errors on bond yields. Thus, in assessing whether these
two models imply nearly identical joint distributions for
(yt ;Mt), the focus is on whether the no-arbitrage restric-
tions induce a difference. On the other hand, differences
between the TSf and TSn models, which both maintain a
similar no-arbitrage structure, should arise mainly out of
the different treatments of measurement errors of the
pricing factors. Finally, in moving from model TSf to model
FVn, one is relaxing both the no-arbitrage restrictions and
14 A subtle issue is that this is slightly over-identifying since it
implies that a relationship of the form αþ β � PL

t ¼ 0 cannot hold in the
model. Certainly this would be rejected in the data for typical choices
of W. However, the ordinary differential equation theory implies this
normalization is just-identifying in the no-arbitrage model.

Please cite this article as: Joslin, S., et al., Why Gaussian macro-
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adding the presumption that the entire state vector Zt is
measured without errors (PLo

t ¼PL
t and Mo

t ¼Mt in
model FVn), while maintaining the low-dimensional factor
structure.

2.4. Discussion

A key feature of our normalization is that it imposes
“pricing consistency” in the sense that the state yield portfo-
lios recovered from the pricing Eq. (3) always agree with their
theoretical values. Ang, Piazzesi, and Wei (2006) and Jardet,
Monfort, and Pegoraro (2010) enforce pricing consistency by
minimizing sums of squared pricing errors subject to a
consistency constraint. Their approach requires that their state
yield portfolios are priced perfectly by the MTSM, and their
two-step estimation strategy is asymptotically inefficient. In
this section we show that our choice of canonical form
automatically enforces pricing consistency even when all
bonds are priced imperfectly by the MTSM and, accordingly,
Kalman filter estimators are fully efficient.

Equally importantly, our canonical forms for the TSf

and FVf models are invariant with respect to the modeler's
choice of W. That is, all admissible choices of W, e.g.,
choices that set the state yield factors to individual yields
or to low-order PCs of bond yields, lead to exactly the same
Kalman filter estimates of the parameters of the joint
distribution of ðyot ;Mo

t Þ. In fact, so long as one enforces
the model-implied spanning condition (4), representations
of model TSf in which the risk factors are all yield
portfolios (e.g., Zt ¼PN

t ) or the mix ðMt ;PL
t Þ of macro

and yield-based factors lead to identical fitted moments
of ðyot ;Mo

t Þ regardless of the choice of admissible W.
The remainder of this section discusses each of these

points in turn.

2.4.1. Pricing consistency
To illustrate the consistency issue, consider the MTSM

with a single macro-variable (M¼ 1), and two pricing
factors (L¼ 2) with W chosen so that the two state yield
portfolios are the short rate and the two-year (24-month)
finance term structure models are (nearly) unconstrained
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rate: Zt ¼ ðMt ; rt ; y24t Þ. Pricing consistency requires that
when one computes the loadings for the two-year yield
from (3) by solving the recurrence relation given in
Appendix B, it must be that the intercept is zero and the
loadings on Zt are (0,0,1). The two-year rate, up to
convexity, is the average of expected future short rates.
Since our model is Gaussian, the convexity term is con-
stant. Thus, for a monthly sampling frequency, we require

y24t ¼ 1
24

EQt ∑
23

τ ¼ 0
rtþτ

� �
þ constant: ð9Þ

The Q�expectations in (9) can be computed according to
the dynamics in (2) which give

EQt ½rtþτ� ¼ ð0;1;0ÞEQt ½Ztþτ� ¼ ð0;1;0ÞðI þ KQ
1 ÞτZt þ constant:

Thus, pricing consistency—the requirement that the load-
ings on Zt be (0,0,1)—imposes nonlinear restrictions on the
Q�parameters KQ

1 and ρ1.
15 Analysis of the constant term

leads to additional nonlinear restrictions on the para-
meters ðKQ

0 ;Σ; ρ0Þ.
We specify the Q distribution in terms of the primitive

parameters ΘQ
TS. As such, the associated mapping from

ΘQ
TS to the loadings on Zt in the observation equation (7)

automatically embeds these nonlinear constraints, thereby
ensuring that pricing consistency always holds exactly.
2.4.2. Invariance of the theoretical model
Changing from one choice of the weight matrix W to

another Wn has no impact on the distribution of the
theoretical yields or macro-variables in a MTSM when
the parameters are transformed appropriately. That is,
consider the TS model and fix a portfolio matrix W and
parameter vector ΘTSðWÞ ¼ ðrQ∞; λQ; γ0; γ1;Σ;KP

0 ;K
P
1 Þ. (Σe has

no role in this discussion.) For any other admissible
weighting matrix Wn, the TS model with parameter vector
Θn

TSðWnÞ ¼ ðrQ∞; λQ; γn0; γn1;Σn;KPn

0 ;KPn

1 Þ, where, for example,
γn1 ¼ γ1ðWnNW−1BTSÞ−1, implies exactly the same joint dis-
tribution for ðMt ; ytÞ. This analysis holds equally well for the
FV model, provided W maintains non-singularity among
the state yield portfolios.

Our framework and its invariance property extend
immediately to the case where the risk factors are linear
combinations of both the yields and macro-variables. That
is, we can recast our entire analysis in terms of the first N
elements of the vector ~W ðM′t ; y′tÞ′, where ~W is a full-rank
ðMþ JÞ � ðMþ JÞ matrix. Our chosen normalization is the
special case in which ~W is block diagonal with the first
diagonal block being the M�M identity matrix and the
second diagonal block beingW. Exactly as above, any other
canonical form based on a different choice ~W

n

can be re-
expressed in terms of our canonical form. Thus, once again,
the joint distribution of ðMt ; ytÞ is not affected by the
modeler's choice of ~W .
15 Specifically, we need ð0;1;0Þ∑23
τ ¼ 0ðI þ KQ

1 Þτ ¼ ð0;0;1Þ since the
loadings from (9) must recover y24t ¼ ð0;0;1ÞZt .
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2.4.3. Invariance with measurement errors
Importantly, whether or not the invariance of theore-

tical MTSMs and factor-VARs to the choice of W carries
over to their econometric implementations depends on
one's assumptions about measurement errors on the yields
and risk factors. Consider first the case where all J yt are
priced with errors. So long as the measurement error
variance Σe for model TSf based on yield weights W is
transformed to Σn

e ¼ AΣeA′ when this model is reparame-
trized in terms of the weights Wn ¼ AW , Kalman filtering
will produce identical fitted distributions for ðyot ;Mo

t Þ. Thus,
canonical models based on different choices of W give
rise to observationally equivalent representations of bond
yields. The same is true for model FVf . Thus, comparisons
between models TSf and FVf are fully invariant to the
modeler's choice of W.

This invariance is robust to the imposition of restric-
tions provided that the restrictions are properly adjusted
when rotating to risk factors based on a different Wn. For
example, a common assumption in the literature is that
the measurement errors are independent and of equal
variance: Σe ¼ s2e I. This form would be preserved by any
orthogonal reweighting matrix A. If in one model W ¼ IJ ,
so that the portfolios are individual yields, and in the
second model Wn is given by the loadings of the yield PCs
(an orthogonal matrix), then identical Kalman filter esti-
mates will be obtained for the distribution of ðyot ;Mo

t Þ. For a
general reweighting A, identical estimates are obtained so
long as Σe is replaced by s2eAA′.

In contrast, comparisons between model TSf (with full
rank Σe) and the associated model TSn (with PLo

t ¼PL
t )

will depend on the modeler's choice of W. For instance,
assuming that L of the yields yt are measured perfectly, as
for example in Ang, Piazzesi, and Wei (2006), may lead to
very different impulse responses than those obtained
assuming that ðPC1t ;…; PCLtÞ are measured perfectly. This
is simply a consequence of the fact that the distribution of
the error on any mismeasured portfolio yield will no
longer be invariant to the choice of W. We illustrate the
practical implications of this point in Section 4.

The same logic of observational equivalence applies to
the standard assumption that the macro-variables are
observed without errors. The estimates of the joint dis-
tribution of ðMo

t ; y
o
t Þ under this assumption will in general

differ from those obtained when Mt is presumed to be
measured with error. On the other hand, when both
ðMt ; ytÞ are observed with measurement errors, observa-
tionally equivalent models will be obtained for arbitrary
choices of the W used to construct PL

t , so long as the joint
distribution of the measurement errors for the yields
and macro-variables is properly matched to one's choice
of W.

2.4.4. Verifying econometric identification and pricing
consistency in practice

Verification that one has a well-specified MTSM is
greatly facilitated by specifying a canonical form and then,
within this form, imposing sufficient normalizations and
restrictions to ensure econometric identification and inter-
nal (pricing) consistency. Instead, many studies of MTSMs
impose a mix of zero restrictions on the P, Q, and market
finance term structure models are (nearly) unconstrained
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price of risk parameters without explicitly mapping their
models into a canonical form and verifying that it is
identified.16

Our canonical form reveals that a necessary “order”
condition for identification is that the dimension of our ΘTS

(excluding Σe)—1þ 2N þN 2 þMðN þ 1Þ þN ðN þ 1Þ=2—
must be at least as large as the number of free parameters
in any MTSM with N risk factors, M of which are macro-
variables. It also leads to an easily imposed set of normal-
izations that ensure identification and pricing consistency.
To our knowledge, ours is the only formally developed
canonical form for the complete family of MTSMs.17
2.5. Models with unspanned risk factors

The MTSMs considered so far have the macro-variables
entering directly as risk factors determining interest rates,
as is the case with the large majority of the extant literature.
Joslin, Priebsch, and Singleton (forthcoming) propose a
different class of models that allow for unspanned macro
risks—risks that cannot be replicated by linear combinations
of bond yields.18 Their canonical model with unspanned
risks shares two important properties with MTSMs with
spanned risks: (1) except for the volatility parameter (Σ),
the P�parameters are distinct from the Q�parameters;
and (2) Σ only affects yield levels and not the loadings of
yields on the risk factors. It follows that our subsequent
results on the near equivalence of models TSf and FVn with
spanned macro risks apply with equal force to canonical
settings with unspanned macro risks.19 Also, importantly,
within the class of factor-VAR models, our normalization
encompasses the case of unspanned models when the
appropriate entries of BFV in (8) are set to zero. In this
sense, we encompass the entire literature on MTSMs.
3. Conditions for the (near) observational equivalence of
MTSMs and factor-VARs

To derive sufficient conditions for the general agree-
ment of Kalman filter estimators of models TSf and FVf , we
fix a choice of W and derive (stronger) sufficient condi-
tions for the Kalman filter estimators of the distribution of
Zt frommodels TSf and FVf to be (nearly) identical to those
implied by model FVn, the factor-VAR with observed risk
factors (Zo

t ¼ Zt).
16 Recent examples include the MTSMs examined by Bikbov and
Chernov (2010) and the constant parameter case in Ang, Boivin, Dong,
and Loo-Kung (2011). The following necessary condition for identification
suggests that the first of these models is in fact under-identified, while
the second may be over-identified.

17 Pericoli and Taboga (2008) attempt an adaptation of the canonical
form for yield-only models in Dai and Singleton (2000) to MTSMs, but
their forms are not identified models (Hamilton and Wu, forthcoming).

18 For additional applications of their framework, see Wright (2011)
and Barillas (2011). Duffee (2011b) discusses a complementary model of
unspanned risks in yield-only models.

19 In the case that yields or macro-variables are forecastable by
variables not in their joint span, this applies only to the comparison of the
no-arbitrage model and the factor-VAR which are estimated by Kalman
filtering. This is because in this case, the assumption that Pt ¼Po

t cannot
hold by construction.
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Importantly, as long as there exists one Wn such that
the estimated distributions of Zt (nearly) agree in models
TSf and FVn, it must follow that models TSf and FVf imply
(nearly) identical distributions of Zt for all admissible
portfolio matrices W. This is true despite the fact that
bilateral comparisons of the models (TSf , FVn) or the
models (FVf , FVn) are rotation-dependent on W. Equally
importantly, for such a Wn, everything that one can learn
about the P distribution of Zt from a canonical MTSM in
which all bonds are measured with errors can be equally
learned from analysis of the corresponding economics-free
model FVn.

The filtering problem in both models TSf and FVf is one
of estimating the true values of PL

t , the first L PCs of the
bond yields yt . Intuitively, a key condition for the Kalman
filter estimates of models (TSf , FVf ) to match the OLS
estimates of model FVn is that the filtered pricing factors
equal their observed counterparts. However, this observa-
tion begs the more fundamental question of when this
approximation holds. Additionally, this matching is not
sufficient for the Kalman filter estimates of the drift or the
volatility of Zt to match their OLS counterparts from model
FVn. The remainder of this section derives sufficient con-
ditions for the efficient estimates of models TSf and FVn to
(nearly) coincide.

To fix the notation, let Xf
t ¼ E½Xt jF t � and Xs

t ¼ E½Xt jF T �
denote the filtered and smoothed version of any random
variable Xt , where F t is the observable information known
at time t: ðyo1;Mo

1;…; yot ;M
o
t Þ.

3.1. When do the filtered yields differ from the observed
yields?

The filtered yields will agree closely with the observed
yields when the filtered yield factors PLf

t are close to
their observed counterparts PLo

t . Consider the errors eLt ≡
PL

t −PLo
t and let I t denote the information generated by

F t−1 and the current information ðMo
t ;P−Lo

t Þ, where P−Lo
t

denotes the last J−L of the observed yield portfolios Po
t .

Conditional on I t , eLt and PLo
t are jointly normal and,

therefore, the filtering error FELt ¼PLf
t −PLo

t is20

FELt ¼ E½eLt jPLo
t ; I t � ¼ ΣeLS

−1ðPLo
t −E½PLo

t jI t �Þ; ð10Þ
where ΣeL is the covariance matrix of eLt and S¼
VarðPLo

t jI tÞ is the forecast-error variance of PLo
t based on

I t . To assess the magnitude of FELt , we use the filtering
mean-squared errors

RMSFE2≡diag E½FELt FEL′t � ¼ diag½ΣeLS
−1ΣeL �: ð11Þ

By this metric filtering errors will be small, PLo
t ≈PLf

t , when
the magnitudes of the measurement errors on the yields
(measured by ΣeL ) are small relative to the uncertainty
about PLo

t given the information set I t (measured by S).21
20 When random vectors ðX; YÞ follow a multivariate normal distribu-
tion, E½XjY� ¼ μX þ ΣXYΣ

−1
Y ðY−μY Þ, where μX and μY are the mean of X and

Y, ΣY is the variance of Y, and ΣXY is the covariance of X and Y. Here,
X ¼ eLt and Y ¼PLo

t , and ΣXY is simply the variance of the errors by
independence.

21 Note that when the measurement errors are serially uncorrelated,
as has typically been assumed in the literature, S is always at least as large

finance term structure models are (nearly) unconstrained
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ΣeL is determined by the pricing errors on individual
yields, the correlations among these errors, and the choice
of W. Importantly, there is a diversification effect from
constructing Pt ¼Wyt that typically leads to the diagonal
elements of ΣeL being smaller than the corresponding
RMSEs for individual yields. For example, if the individual
yield errors are cross-sectionally independent and if the
first row of W weights yields equally (corresponding to a
level factor), then the RMSE of the yield portfolio will be
reduced by a factor of 1=

ffiffi
J

p
.22 Owing to this diversification

effect, even if individual bonds are priced with sizable
errors, the elements of ΣeL can still be relatively small.

In particular, increasing the number of yields used in
the estimation is likely to reduce the measurement error
for the level portfolio and increase the match between the
observed and filtered level. Furthermore, S will be much
larger than ΣeL when there is substantial uncertainty about
PLo

t based on the information in I t . This uncertainty is
likely to rise as the sampling frequency decreases.

Thus, FELt will tend to decline whenW is chosen so that (i)
there is cancelation of measurement errors across maturities,
(ii) more cross-sectional information is used in estimation (J is
large), and (iii) the variance of the error in forecasting PLo

t
based on I t is large. This dependence of FELt onWmeans that,
for a given model, some choices of W may imply that
PLo

t ≈PLf
t , while for other choices the differences may be

large. Choices of W that select individual yields are inherently
handicapped in this regard, because they forego the diversi-
fication benefits of nontrivial portfolios.

To assign a (rough) magnitude to RMSFE, suppose that
all yields are observed with i.i.d. measurement errors
of equal variance s2y and there is a single yield portfolio
(L¼ 1) which is a level factor with equal weights (1=J).
Then RMSFE¼ ðsy=JÞ � ðsy=

ffiffiffi
S

p
Þ. If, for example, sy ¼ 10

basis points,
ffiffiffi
S

p
¼ 20 basis points, and there are J ¼ 10

yields used in estimation, then RMSFE is about half a basis
point. Quadrupling sy to 40 basis points, and increasing

ffiffiffi
S

p

to 50 basis points, holding J at 10, increases RMSFE to only
about two and one-half basis points.

These results also provide a context for interpreting
previous work with large numbers of latent or yield-based
risk factors. The reported large differences between the
filtered and observed values of the high-order PCs in the
five-factor YTSMs studied by Duffee (2011b) and JSZ may
be attributable to the smaller forecast-error variances
of the higher-order PCs. Under the typical assumption of
i.i.d. measurement errors and normalized loadings, the
measurement error variances are the same for all PCs.
(footnote continued)
as ΣeL (S−ΣeL is positive semi-definite). This follows from the observa-
tions that PLo

t ¼PL
t þ eLt , the pair ðPL

t ; e
L
t Þ are independent, and eLt is

independent of I t . So even if the theoretical PL
t were perfectly fore-

castable based on I t , it would still be the case that we would have a
forecast variance of ΣeL when forecasting PLo

t because eLt is unforeca-
stable based on I t .

22 Typically, PCs are normalized so that the sum of the squares of the
weights is one. This condition also ensures the observational equivalence
of Section 2.4 if one supposes that the individual yield measurement
errors are independent with equal variances. For ease of interpretation,
and without loss of generality, it is convenient to rescale the PCs so that
the sum of the weights is equal to one for the first PC.
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However, the sample standard deviations of the fourth and
fifth PCs, about 19 and 13 basis points, respectively, for our
data, are much smaller than those for the first three PCs.
Since the forecast-error variances of the fourth and fifth
PCs must be smaller than their respective unconditional
variances, it is likely that the elements of ΣeLS

−1 corre-
sponding to these PCs are relatively large. Whence, the
Kalman filter will emphasize measurement error reduction
over fitting the cross-section of yields, resulting in large
differences between the higher-order PCo and PCf .
3.2. ML estimation of the conditional distribution of ðMo
t ; y

o
t Þ

With sufficient conditions for PLo
t ≈PLf

t in hand, we turn
next to establishing sufficient conditions for the Kalman

filter estimators of models TSf and FVf to (nearly) coincide.

For either of the models TSf or FVf , the observed data,
fMo

t ; y
o
t g follow a multivariate normal distribution that can

be computed efficiently by using the Kalman filter. From
a theoretical perspective, we can think of building the
likelihood of the data by integrating the joint density

f Pmð Z
!¼ z; P!

o
;M
!o

;ΘmÞ over the missing data Z
!

:

f PmðP
!o

;M
!o

;ΘmÞ ¼
Z
z
f Pmð Z

!¼ z; P!
o
;M
!o

;ΘmÞ dz; ð12Þ

for m¼ TSf or FVf , with X
!

denoting the full sample: X
!¼

ðX1;X2;…;XT Þ. For ease of notation, we omit the subscript

m from f Pm and Θm in all expressions that apply to both the
MTSMs and the factor-VARs.

The density log f Pð Z!; P!
o
;M
!o

Þ in (12) is equal to

∑
T

t ¼ 1
log f PðPo

t jZt ;Θ
Q;ΣeÞþ ∑

T

t ¼ 1
log f PðZt jZt−1;K

P
1 ;K

P
0 ;ΣÞ:

ð13Þ
This construction reveals that the conditional distribution of
the risk factors Zt depends only on ðKP

1 ;K
P
0 ;ΣÞ, and ðKP

1 ;K
P
0 Þ

enter only f PðZt jZt−1Þ and not f PðPo
t jZtÞ. This shared property

of the null model TSf and the alternative model FVf is
immediately apparent in our canonical form, while being
largely obscured in the standard identification schemes of
MTSMs such as the one based on Dai and Singleton (2000).

A key difference between models TSf and FVf is how Σ
enters (13). The functional dependence of f PðZt jZt−1Þ on Σ
is identical for these two models. However, owing to the
diffusion invariance property of the no-arbitrage model, Σ
only affects f PTSðPo

t jZtÞ and not f PFV ðPo
t jZtÞ. Nevertheless, for

our canonical form, this difference turns out to be largely
inconsequential for Kalman filter estimates of Σ.

The factorization of the conditional likelihood function
(13) implies that for model FVn with Zo

t ¼ Zt , estimation
reduces to two sets of OLS regressions. Estimation of a VAR
for the observed risk factors Zo

t gives the ML estimates of
the parameters ðKP

1 ;K
P
0 ;ΣÞ in (6). A linear projection of Po

t
onto Zo

t recovers the ML estimates of the parameters in (8).
Taking the derivative of (12) with respect to Θ and

setting this equal to zero, and dividing by the marginal

density of ðP!
o
;M
!o

Þ, gives the first-order conditions (e.g.,
finance term structure models are (nearly) unconstrained
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23 To see this, first note that the loadings of yt on Zt are simply the
loadings of Pt on Zt , premultiplied by the inverse of W. Second, note that,
for the FVf model, the loadings of Pt on Zt are given by

ðÂFVf ; B̂FVf Þ ¼ 1
T
∑
t
½Po

t ð ~Z ′t Þs�
� �

1
T
∑
t
½ð ~Z t

~Z ′t Þs�
� �−1

;

which should be close to the loadings from projecting Po
t on Zo

t if PLo
t is

accurately priced. Within the context of YTSMs in which PN
t is priced

perfectly and measurement errors on yields are relatively small, Duffee
(2011a) documents this point using Monte Carlo methods.
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Dempster, Laird, and Rubin, 1977):

0¼ E½∂Θlog f Pð Z!; P!
o
;M
!o

; Θ̂ÞjF T �; ð14Þ

where T is the sample size and, in model FVn with our
choice of W, (14) holds without the conditional expecta-
tion. Using the fact that f ðPo

t jZtÞ does not depend on
ðKP

0 ;K
P
1 Þ, the ML estimators of the conditional mean para-

meters ðKP
0 ;K

P
1 Þ satisfy

½K̂P

0 ; K̂
P

1 �′¼ ðð ~Z ′ ~Z ÞsÞ−1ð ~Z ′ΔZÞs; ð15Þ

where the “hats” indicate ML estimators, the superscript
“s” denotes the smoothed version of the object in par-
entheses, ~Z t ¼ ½1; Z′t �′, and Z and ~Z are matrices with rows
corresponding to Zt and ~Z t , respectively, for t ranging from
1 to T.

From (15) it is seen that a key ingredient for Kalman
filter estimates of ðKP

0 ;K
P
1 Þ from models TSf and FVf to

agree with each other and with those from model FVn is
that ð ~Z t

~Zt ′Þs be close to ~Z
o
t
~Z
o′
t , period-by-period. Eq. (15) is

almost the estimator of ½KP
0 ;K

P
1 � obtained from OLS estima-

tion of a VAR on the smoothed risk factors Zs
t . Underlying

the difference between (15) and the latter estimator is the
fact that

ðZtZ′tÞs ¼ VarðZt jF T Þ þ Zs
t Z

s′
t : ð16Þ

This equation and the analogous extensions to ðZtZ′tþ1Þs
reveal that, provided the smoothed state is close to the
observed state and VarðZt jF T Þ is small, the ML estimates of
ðKP

0 ;K
P
1 Þ from model FVn will be similar to those obtained

by Kalman filtering within a MTSM. In Section 3.1 we
derived conditions under which PLo

t ≈PLf
t . In Appendix D,

we show that these same conditions (with a few mild
additional assumptions) imply that VarðZt jF T Þ is small as
well. As with the approximation PLo

t ≈PLf
t , the near equal-

ity of the ML estimates of ½KP
0 ;K

P
1 � across the three models

TSf , FVf , and FVn may arise even in the presence of large
pricing errors on the individual bond yields.

Turning to estimation of Σ, in model FVf there is no
diffusion invariance and f PFVf ðPo

t jZtÞ does not depend on Σ.
Therefore, the first-order conditions for maximizing the
likelihood function depend only on log f PFVf ðZt jZt−1; Θ̂FV Þ.
This leads to the first-order condition

E½vecððΣ̂ FVf Þ−1−ðΣ̂ FVf Þ−1Σ̂u
FVf ðΣ̂ FVf Þ−1ÞjF T � ¼ 0; ð17Þ

where the sample covariance matrix Σ̂
u
FVf is based on the

residuals î
u
FVf ;t ¼ΔZt−ðK̂

P

0FVf þ K̂
P

1FVf Zt−1Þ that are partially
observed owing to their dependence on Z

!
. From (17), we

obtain Σ̂ FVf ¼ ðΣ̂u
FVf Þs. Using the logic of our discussion of the

conditional mean, as long as the estimated model FVf

accurately prices the risk factors, then ðΣu
FVf Þs will be nearly

identical to the OLS estimator of Σ from the VAR model FVn.
The ML estimator of Σ in model TSf will in general

be more efficient than in model FVn and this is true even
when there is no measurement error in the state yield
portfolios. The first-order conditions for Σ in model TSf

have an additional term since the density f PTSf ðPo
t jZt ;ΘÞ also

depends on Σ. Combining this term, derived in Appendix E
Please cite this article as: Joslin, S., et al., Why Gaussian macro-
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as (E.8), with (17) gives

E vec
1
2

ðΣ̂ TSf Þ−1−ðΣ̂ TSf Þ−1Σ̂
u
TSf ðΣ̂ TSf Þ−1

h i� ��

−β̂′Z ðΣ̂ e;TSf Þ−1
1
T
∑
t
êuTSf ;t jF T

�
¼ 0;

where Σ̂
u
TSf is the sample covariance of the residuals

î
u
TSf ;t ¼ΔZt−ðK̂

P

0TS þ K̂
P

1TSZtÞ, β̂Z is the vector defined in
Appendix E, and the unobserved pricing errors êuTSf ;t from
(7) are evaluated at the ML estimators and depend on the
partially observed Z

!
.

The following two conditions are sufficient for the
Kalman filter estimators of ΣZ in models TSf and FVf to
be approximately equal. First, we require that the risk
factors be priced sufficiently accurately for

Σ̂ FVf ¼ ðΣ̂u
FVf Þs≈Σ̂ FVn : ð18Þ

To guarantee that the right-hand side of (18) is close to the
estimate of ΣZ in the MTSM, our second requirement is
that the average-to-variance ratio ðΣ̂ eÞ−1ðT−1∑êot Þ of pri-
cing errors be close to zero, where êot is computed from (7)

evaluated at the ML estimates and using Z
!o

. When both

conditions are satisfied, ðΣ̂ eÞ−1ðT−1∑êut Þs will be close to

zero as well, ensuring that Σ̂ TSf ≈ðΣ̂
u
FV Þs and, hence, that the

estimators of Σ from all three models TSf , FVf , and FVn

approximately agree with each other.
3.3. Discussion

Summarizing, we have just shown that the same
conditions derived in Section 3.1 for PLo

t ≈PLf
t also ensure

that theML estimators of the conditional mean parameters
of the state process Zt approximately coincide for all three
models TSf , FVf , and FVn. When, in addition, the sample
average of the fitted pricing errors for Po

t , T
−1∑êot , is small

relative to the estimated covariance matrix Σ̂ e of these
errors, the ML estimates of the conditional variance Σ of Zt

will also approximately coincide in these models.
These observations regarding the conditional distribu-

tion of Zt extend to individual bond yields with one
additional requirement. Specifically, the factor loadings
from OLS projections of yot onto Zo

t need to be close
to their model-based counterparts estimated using the
Kalman filter. By the same reasoning as above, if PL

t is
reasonably accurately priced, the OLS loadings are likely to
be close to those implied by model FVf .23 Nevertheless,
large errors in the pricing of individual bonds might lead
to large efficiency gains fromML estimation of the loadings
finance term structure models are (nearly) unconstrained
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26 All of our results are qualitatively the same if we replace these
measures of ðg; πÞ by the help wanted index and CPI inflation used by
Bikbov and Chernov (2010).

27 We use Fama-Bliss data from the Center for Research in Security
Prices, and the data for ten-year yields end in 2003. We have experi-
mented with an extended sample through 2007 (shortly before the
Conference Board discontinued publication of the Help Wanted Index)
and the subsequent results on irrelevance are qualitatively unchanged.
We started our sample in 1972, instead of in 1970 as in Bikbov and
Chernov (2010), because data on yields for the maturities between five
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within a MTSM. This is an empirical question that we take
up subsequently.

Further intuition for our results comes from exploring
two restrictive special cases: the state yield portfolios
are observed without measurement error in the MTSM
(PLo

t ¼PL
t ) and, on top of this, the MTSM is just-identified

in the sense that the restriction of no arbitrage is non-
binding on the factor-VAR model for the risk factors. We
discuss each of these in turn.

A stark version of our results is obtained under the
assumption PLo

t ¼PL
t , in which case the relevant compar-

ison is between models TSn and FVn. With exact pricing of
PLo

t , the ML estimates of ðKP
0 ;K

P
1 Þ from model TSn exactly

coincide with the OLS estimates from model FVn, regard-
less of the magnitude of the mean-to-variance ratios of
pricing errors.24 Therefore, a sufficient condition for the
conditional distribution of the risk factors Zo

t in a MTSM to
be fully invariant to the imposition of the no-arbitrage
restrictions is that the ratio ðΣ̂ eÞ−1ðT−1∑êoTS;tÞ is zero.
Owing to the Gaussian property, these invariance results
extend to the unconditional distributions of fZtg as well.

The first-order conditions with respect to the “constant
terms” ðrQ∞; γ0Þ in model TSf set Mþ 1 linear combinations
of the filtered means ðT−1∑êuTS;tÞs to zero. Therefore, if the
number of yields used in estimation (J) equals N þ 1
within an N�factor MTSM with M macro factors—equiva-
lently, exactly Mþ 1 portfolios of yields are included with
measurement errors—then the mean-to-variance ratios
will be optimized at zero.25

The first-order conditions of the ML estimators in our
general setup (an over-identified MTSM with J4N þ 1
imperfectly priced bond portfolios) do not set the sample
mean of the pricing error êuTSf ;t to zero. Nevertheless, the
likelihood function has Mþ 1 degrees of freedom to use in
making the mean-to-variance ratios close to zero. Our analysis
shows that much of the intuition from just-identified
MTSMs will carry over to over-identified MTSMs whenever
the MTSM accurately prices the yield-based factors PL

t , and
this may be true even when the MTSM-implied errors in
pricing individual bonds are quite large.

4. Empirical comparisons of MTSMs and factor-VARs

We now turn to assess the empirical relevance of the
theory we developed in Section 3. We examine, step-by-
step, to what extent our sufficient conditions for the
observational equivalence of MTSMs and factor-VARs hold
in practice.

We focus on a MTSM—model GM3ðg; πÞ—with N ¼ 3,
M¼ 2, and Mt ¼ ðgt ; πtÞ′, where gt is a measure of real
output growth and πt is a measure of inflation as in, for
example, Ang, Dong, and Piazzesi (2007) and Smith and
Taylor (2009). We follow Ang and Piazzesi (2003) and
use the first PC of the help wanted index, unemployment,
the growth rate of employment, and the growth rate of
industrial production (REALPC) as our measure of g, and
24 JSZ prove an analogous irrelevancy result for conditional means
within YTSMs.

25 This is the counterpart within a MTSM of the observation in Duffee
(2011a) that YTSMs are just-identified when J ¼N þ 1.
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the first PC of measures of inflation based on the consumer
price index (CPI), the producer price index (PPI) of finished
goods, and the spot market commodity prices (INFPC) for
π.26 The monthly zero yields are the unsmoothed Fama-
Bliss series for maturities three- and six-months, and one
through ten years (J ¼ 12) over the sample period 1972
through 2003.27 The weighting matrix W is chosen to be
the PC loadings so that the state yield portfolio is the level
of interest rates (PC1). The measurement errors et in (7)
and (8) arei.i.d. Normal ð0; s2y I12Þ.
4.1. On the need for filtering PCs within canonical MTSMs

A key part of our derivation of conditions under which
the filtered versions of the state yield portfolios agree with
their observed counterparts was the “diversification” effect
of averaging the errors across maturities. Even when
individual yields have large measurement errors, the yield
portfolios can be measured precisely. Panel A of Fig. 2
plots the time series of the differences between observed
(annualized) yields, ymo

t , and their smoothed counterparts
ðymt Þs, for m¼12, 60, and 120 months. These errors are
large, occasionally exceeding one hundred basis points and
ŝy is 43.1 basis points, so variant TSf clearly has difficulty
matching individual yields. The reason for this poor fit
is that the macro-variables ðgt ; πtÞ replicate only a small
portion of the variation in the slope and curvature of the
yield curve.

Although the individual yields are poorly fit by the
model, model TSf provides an excellent fit to PC1. Panel B
of Fig. 2 plots PC1o

t against the smoothed PC1s
t . The sample

standard deviation of the difference fPC1o
t−PC1

s
t g is only

1.7 basis points; the standard deviation of fPC1o
t−PC1

f
t g is

only 4.3 basis points.
These numbers are fully anticipated by our theory

in Section 3.1. Consider again the filtered observation
error (10) and the associated filtering root mean-squared
error RMSFE. For model GM3ðg; πÞ the standard deviationffiffiffi
S

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðPC1o

t jI tÞ
q

is 40.7 basis points.28 The estimated

standard deviation of the measurement error on PC1o is
12.5 basis points, which approximately equals ŝy (43.1
basis points) divided by the square root of the number
of yields used in estimation (J ¼ 12). Using again the

expression RMSFE¼ ðsy=JÞ � ðsy=
ffiffiffi
S

p
Þ, the estimated
and ten years are sparse before 1972.
28 Note that the sample standard deviation of the first difference

ΔPC1o
t is 42.5 basis points. Comparing 40:7 to 42:5, it follows that very

little of ΔPC1o
t is predictable based on the information structure of

GM3ðg; πÞ. This is consistent with the near-random walk behavior of the
level of interest rates.

finance term structure models are (nearly) unconstrained
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Fig. 2. This figure compares observed yields with smoothed yields estimated from model GM3ðg; πÞ. The model GM3ðg; πÞ is a three-factor no-arbitrage
model in which the risk factors are output growth (g), inflation (π) and the first principal component of yields (PC1). The smoothed yields are inferred from
the Kalman filter. Panel A plots the difference between observed yields and the smoothed versions from the model ðymt Þs. Panel B plots the observed PC1o

and its smoothed version PC1s.

Table 2
Ratios of estimated KP

0 , I þ KP
1 , and Σ for model GM3ðg; πÞ.

The first block compares the estimates for models TSf and FVf , the

second block compares models TSf and TSn , and the third compares

models FVf and FVn . The model GM3ðg; πÞ is a three-factor no-arbitrage
model in which the risk factors are output growth (g), inflation (π) and
the first principal component of yields (PC1Þ. The conditional mean for
changes in Zt ¼ ðgt ; πt ; PC1t Þ are given by KP

0 þ KP
1 Zt while the conditional

covariance of innovations is Σ. The TS specification imposes no-arbitrage
opportunities while the FV specification imposes only a factor-VAR
structure. The f specifications filter all yields while the n specifications
do not filter yields.

Models KP
0 I þ KP

1
Σ

TSf

FVf

1 1 1 0.999 1.01 – –

1 1 1 1 0.987 1 –

1 0.999 1 1 0.998 1.01 1

TSf

TSn
1.12 0.998 1.04 1.07 1.07 - -
0.999 0.999 1 1 0.90 1 -
0.988 0.93 1 1 0.885 1.11 1.01

FVf

FVn

1.12 0.998 1.04 1.02 1.07 – –

0.999 0.999 1 1 0.898 1 –

0.989 0.929 1 1 0.885 1.11 1.01
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standard deviation of fPC1o
t−PC1

f
t g is 3.8 basis points, close

to the sample value of 4.3 basis points.

4.2. ML estimation of the conditional distribution

Section 3.2 gives conditions for the Kalman filter estimator
of model TSf and the ML estimator of the factor-VAR FVn to
produce (nearly) identical fitted distributions of ðMo

t ;PLo
t Þ.

They are that (i) PLs
t tracks PLo

t closely; (ii) there is a low
amount of uncertainty about the (unobserved) theoretical PL

t ;
and (iii) the time-series average of the measurement errors,
relative to their variances, should be small for the higher-
order portfolios P−Lo.

We have just seen that the first two of these conditions
are satisfied at the Kalman filter estimates of model
GM3ðg; πÞ. Intuitively, the second condition follows from
the first and, indeed, the estimates indicate that the square
root of VarðP1

t jF tÞ is only 11.4 basis points. The final
condition for equivalence is that the time-series averages
of the measurement errors (relative to their variances) are
small. Although Panel A of Fig. 2 indicates that at times the
errors for individual yields can be very large, visually we
can see that the time-series averages are small. In fact, for
GM3ðg; πÞ they are only 0.6, −1.4, and −4.6 basis points for
the one-, five-, and ten-year yields, respectively!

Given that all three conditions are (approximately)
satisfied, the ML estimates of ðKP

0 ;K
P
1 ;ΣÞ should agree for

all three models TSf , FVf , and FVn. Table 2 displays the
ratios of the estimated parameters from GM3ðg; πÞ and its
associated factor-VAR, with and without filtering. Consis-
tent with our theory, they are all virtually identical.

4.3. Statistics of the distribution of ðMo
t ; y

o
t Þ

It follows that the distributions of the risk factors are
virtually the same across these different factor models. This, in
turn, implies that all statistics of the distribution, such as the
IRs, will be nearly identical as well. These results underlie
Fig. 1, where the IRs of PC1 to a shock to inflation in model
GM3ðg; πÞ and the associated model FVn (nearly) coincide.
Please cite this article as: Joslin, S., et al., Why Gaussian macro-
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Neither the no-arbitrage restrictions nor filtering in the
presence of sizable measurement errors for the individual
bond yields impact estimates of these responses.

4.4. Invariance of the distribution of ðMo
t ; y

o
t Þ

For models TSf and FVf these empirical irrelevancy results
extend to any full-rank portfolio matrix W (Section 2.4). In
particular, had we chosen to normalize the model so that P1

t
was any of the individual 12 yields instead of PC1, all of the
results in Figs. 1 and 2 would be exactly the same. The results
in Table 2 would have been identical after rotation. The
parameters governing the conditional distribution of Zo

t would
change, of course, since any such reweighting leads to
different risk factors. Such renormalizations do not, however,
affect the implied relationships among any given set of yields
and macro-variables.
finance term structure models are (nearly) unconstrained
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Fig. 3. Impulse responses of y3t to its own innovation (Panel A) and an innovation in gt (Panel B) within models TSf and FVn for the family GM3ðg; πÞ. The
model GM3ðg; πÞ is a three-factor no-arbitrage model in which the risk factors are output growth (g), inflation (π) and PC1. In the no-arbitrage model, all
yields are filtered by the Kalman filter while in the factor model is assumed that PC1 is observed without error.

0 20 40 60 80 100 120

0

10

20

30

40

50

Months

B
as

is
 p

oi
nt

s

TS f

FV n

Fig. 4. Impulse responses of the third principal component of yields
(PC3) to its own innovation within models TSf and FVn for the family
GM3ðg; πÞ. The model GM3ðg; πÞ is a three-factor no-arbitrage model in
which the risk factors are output growth (g), inflation (π) and PC1. In the
no-arbitrage model, all yields are filtered by the Kalman filter while in the
factor model is assumed that PC1 is observed without error.
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As was discussed in Section 2.4, this invariance does
not extend to comparisons across models constructed with
different W and in which PL

t is assumed to be measured
without error (models TSn or FVn). To illustrate this
rotation sensitivity, consider first the case where W is
chosen so that y3t , the yield on three-month Treasury bill,
is the state yield factor P1

t . This yield is one of the state
yield factors in the models of Ang, Piazzesi, and Wei
(2006) and Jardet, Monfort, and Pegoraro (2010), and in
both studies, y3t is presumed to be measured without error.
We compare results from GM3ðg; πÞ (i.e., model TSf ) which
has all bonds priced imperfectly and P1

t ¼ y3t , to those from
its factor-VAR counterpart FVn in which y3t is presumed to
be measured without error. Panel A of Fig. 3 displays the
IRs of y3t to its own innovation (in basis points) for these
two models. Because of rotation-invariance, the response
for model TSf is identical to what we would have obtained
from estimation of this MTSM normalized so that P1

t ¼
PC1t . However, the IR frommodel FVn is very different: it is
nearly 50% larger over very short horizons, decays much
faster, and troughs at a lower value than the IR from model
TSf . The reason for these differences is that model FVn

captures the dynamic responses of the observed data,
while model TSf presumes that a portion of these
responses is attributable to measurement error.

The IRs of y3t to a shock in output growth REALPC
implied by models TSf and FVn follow similar patterns
(Panel B of Fig. 3), and the gap in responses is not as large
as with the responses of y3t to its own innovations. Yet the
MTSM implies a more persistent response that peaks later
and dies out more slowly than what emerges from the
factor-VAR.

The differences in attribution of dynamic responses to
economic forces across a MTSM and its factor-VAR coun-
terpart can be extreme. Consider, for example, the version
of GM3ðg; πÞ in which P1

t is normalized to be the third PC of
bond yields (PC3).29 Again, we stress that under the
29 For computing the impulse IRs for PC3 displayed in Fig. 4 we scale
its loadings so that PC3 has the same sample standard deviation as
curvature measured as y120t þ y3t −2y24t .
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assumption that all bonds are measured with error, the
Kalman-filter/ML estimates of the joint distribution of
ðMo

t ; y
o
t Þ under the rotations with P1

t ¼ PC1 or P1
t ¼ PC3

are identical. However, as can be seen from Fig. 4, the
model-implied IRs of PC3 to its own innovation are very
different across models TSf and FVn. The MTSM that
enforces no arbitrage implies that there is essentially no
response at all, whereas the factor-VAR shows a large
(though short-lived) response. This difference arises
because, within GM3ðg; πÞ, the sufficient conditions for
PC3o

t≈PC3
f
t derived in Section 3.1 are not satisfied even

though the differences fPC1o
t−PC1

f
t g are small (Fig. 2).

Essentially, GM3ðg; πÞ does a poor job of replicating the
historical time-series properties of PC3o owing to the
presence of ðgt ; πtÞ as two of the three risk factors.

5. Macro factors with measurement errors

The common presumption that bond yields are mea-
sured less accurately than such macro-variables as output
growth and inflation seems implausible. Indeed, the more
natural presumption is that the reverse is true. By filtering
finance term structure models are (nearly) unconstrained
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Fig. 5. This figure plots the loadings for response of yields to shocks in the macro-variables TSfm , TSn and TSnP for the family GM3ðg; πÞ. Panel A plots the
response for inflation. Panel B plots the response for growth. The model GM3ðg; πÞ is a three-factor no-arbitrage model in which the risk factors are output
growth (g), inflation (π) and the first principal component of yields (PC1). In model TSfm all yields and macro-variables are filtered. In models TSn output
growth, inflation and PC1 are assumed to be measured without error, while in TSnP it is assumed that ðPC1; PC2; PC3Þ are measured without error.
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the macro factors we may extract more pure economic
factors and this in turn may give more reliable inferences
for forecasts, impulse response functions, and other objects
of interest.

Our canonical framework is well suited to relaxation of
the assumption that Mo

t ¼Mt to allow for measurement
errors on all N of the risk factors Zt . To assess the
implications of errors in measuring Mt for term structure
modeling, we replace Mo

t ¼Mt with

Mo
t ¼Mt þ ηt ; ηt∼Nð0;ΣMÞ; ð19Þ

where ΣM is a M�M covariance matrix. For simplicity,
we assume that the errors in measuring yt and Mt are
mutually independent and that ηt is serially uncorrelated.

As an illustration of a MTSM with measurement errors
on the entire vector ðyt ;MtÞ, we examine model GM3ðg; πÞ
from Section 4 under the measurement (7) and (19) for
ðyt ;MtÞ, with Σe ¼ s2yI12 and diagonal ΣM . (Results are
qualitatively similar for an unconstrained ΣM .) For this
MTSM, denoted TSfm, the state equation is (6) and the
observation equations are (7) and (19). The corresponding
macro-filtered FVAR model, denoted FVfm, replaces the
observation equation (7) with (8).

Allowing for Mo
t≠Mt leads to strikingly different rela-

tionships among the macro factors and bond yields. Fig. 5
plots the loadings of the bond yields on g and π for model
TSfm, as functions of maturity. We also plot the loadings for
model TSn in which PC1t ¼ PC1o

t and Mt ¼Mo
t , as well as

those for model TSnP in which the first three PCs are
measured without error.30 Clearly, the yield curve responds
to shocks to the macro factors very differently in models
with and without filtering on Mt .
30 For the TSnP model, the loadings on ðPC1; g; πÞ are computed by
transforming the loadings on ðPC1; PC2; PC3Þ through (5). For each
specification, the matching results for models TS and FV are nearly
identical, so we plot only the TS specification.

Please cite this article as: Joslin, S., et al., Why Gaussian macro-
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One might be tempted to conclude that filtering on the
macro-variables is leading to more informative estimates
of responses of bond yields to macro shocks. However, the
fact that the estimates for the loadings in model TSfm

nearly coincide with those from model TSnP leads us to a
different conclusion. Namely, allowing for filtering on Mt

gives the likelihood function the flexibility to focus on
matching the distribution of yields; that is, to substantially
reduce the pricing errors for individual bonds in model
TSfm relative to those displayed in Panel A of Fig. 2 for
model TSf .

These improved fits are achieved at the “cost” of
substantial deterioration in the fits to the macro factors:
their observed and filtered counterparts in Fig. 6 are very
different, particularly for πt . Moreover, the filtered gft and
πft agree quite closely with their within-model projections
given by γ̂0 þ γ̂1Po

t and denoted by TSfmproj. Thus, model TSfm

is essentially selecting risk factors that mimic the first
three PCs of bond yields and, thereby, leave substantial
components of Mo

t unexplained.
To see this another way, consider Panels C and D of

Fig. 6 which plot the observed and filtered counterparts of
PC2t and PC3t , respectively, for models TSfm and TSf . These
series are virtually indistinguishable within model TSfm.
On the other hand, in model TSf , in which the fit to the
macro factors is exact (Mo

t ¼Mt), the filtered PCs differ
substantially from their observed counterparts.

It is these calculations and comparisons that underlie
the cautionary assessment in our introduction about what
can be learned about the joint distribution of ðyt ;MtÞ from
MTSMs in which Mt is included among the risk factors that
price bonds. Since three-factor versions of model TSfm

essentially use the factors to match the cross-section of
yields, one is naturally led to consider increasing the
number of factors in order to more reliably model the
impact of macro factors on bond-market risk premiums.
Yet the evidence from estimated YTSMs suggests that
models with N 43 are over-parameterized and, at least
finance term structure models are (nearly) unconstrained
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Fig. 6. This figure plots observed and filtered versions of macro and yield variables. Panel A plots the growth variable. Also plotted are the filtered
counterpart from the model with yield and macro-variables filtering, TSfm . Additionally, the figure plots the within-model projection counterpart given by
the linear combination of the filtered yields as given by the model, γ0 þ γ1Po

t , which we denote by TSfmproj . Panel B plots the corresponding quantities for the
inflation variable. Panels C and D plot the observed and filtered versions of the first and second principal components of yields (PC2 and PC3), respectively.
(A) Filtered and observed gt . (B) Filtered and observed ϕt . (C) Filtered and observed PC2t . (D) Filtered and observed PC3t .

31 This is equally true for comparisons of all other IRs for these two
models.
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for some fixed-income portfolios, imply implausibly high
Sharpe ratios (see JSZ or Duffee, 2010). In the light of this
evidence, larger N may not resolve the mispecification
of the joint distribution of ðyt ;MtÞ in MTSMs with Mt

included in the risk factors Zt .
Left open by this analysis is whether an important role

for Mt reemerges once the macro spanning condition (4) is
relaxed—so that unspanned macro risks are allowed—in
the presence of measurement errors on the entire vector
ðyt ;MtÞ. To answer this question, we follow Joslin, Priebsch,
and Singleton (forthcoming) and examine a MTSM in
which the three pricing factors P3

t are normalized to the
first three PCs of bond yields and forecasts of P3

t under the
P distribution are based on a VAR model for ðP3

t ;MtÞ,
where as above, M′t ¼ ðgt ; πtÞ. This formulation ensures
that Mt is not spanned by P3

t , and it allows for Mt to have
incremental forecasting power for P3 after conditioning on
P3

t . Estimation is by the Kalman filter and, for compar-
ability, we preserve the error specification with Σe ¼ s2y I12
and diagonal ΣM .

Fig. 7 displays the IRs of PC1 to a shock to REALPC for
four different models. Considering first the case of
MTSMs with unspanned M, the IRs with (Unspanned
Please cite this article as: Joslin, S., et al., Why Gaussian macro-
factor-VARs. Journal of Financial Economics (2013), http://dx.d
TSfm) and without (Unspanned TSn) filtering on ðyt ;MtÞ
are virtually identical.31 There are two key ingredients to
this rather striking (near) equivalence: (i) for the reasons
given in Section 3, when we rotate to the first three PCs
as risk factors, the filtered and observed P3

t are nearly
identical; and (ii) once we allow for unspanned macro
risks, the filtered and observed macro factors are also very
similar (ðgot ; πot Þ≈ðgft ; πft Þ).

For comparison, we also display the IR from the
MTSM that enforces macro spanning and both yields and
macro factors are measured with errors (Spanned TSfm).
Clearly, enforcing spanning of M in this setting leads to a
substantially distorted picture of the impact of macro risks
on the level of Treasury yields.
6. No-arbitrage and filtering under restrictions

When the no-arbitrage structure of aMTSM is combined
with over-identifying restrictions on the parameters
finance term structure models are (nearly) unconstrained
oi.org/10.1016/j.jfineco.2013.04.004i
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Fig. 7. Impulse response of the first principal component of yields (PC1) to a
one standard deviation shock to the growth variable (gt ). The states are
ordered as ðπt ; gt ; PC1; PC2; PC3Þ (where πt is the inflation variable) for the
MTSM with spanned macro factors and ðπt ; gt ; PC1Þ for the MTSM with
spanning.
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governing the physical distribution of ðyt ;MtÞ, their
dynamic properties within a MTSM and its factor-VAR
counterpart may differ. It then becomes an empirical
question as to whether any such differences are economic-
ally significant. The most commonly imposed restrictions
are zero restrictions on the feedback matrix KP

1 in the
Markov P-representation of Zt . For example, Diebold and
Li (2006) find that constraining KP

1 to be diagonal within
their family of YTSMs improves the out-of-sample forecasts
of bond yields. Within MTSMs, Ang, Piazzesi, and Wei
(2006), among others, imposed weaker sets of restrictions
on KP

1 based on the asymptotic standard errors from less
constrained models.

To explore whether the imposition of constraints on the P

distribution Zt lead to economically significant differences
between models FVn and TSf within the family GM3ðg; πÞ, we
enforce the constraint that KP

1 is diagonal. This constraint is
strongly rejected by a likelihood ratio test and, thus, there is at
least the possibility that the properties of the no-arbitrage
model TSfD that enforces diagonality of KP

1 are different than
those of model FVn

D.
32 Consistent with the test results, the

properties of the P distribution of Zt within the models TSf

and TSfD are very different. Nevertheless, with the diagonality
constraint in place, adding the no-arbitrage constraint (going
from model FVf

D to model TSfD) has a negligible effect on the
conditional distribution of ðyt ;MtÞ. This holds for the para-
meters as well as conditional forecasts, variances, and impulse
response functions.

Consider, for example, the root mean-squared differences
of within-sample forecasts of yields and PCs one- and six-
months ahead displayed in Table 3. The column “FVn vs TSf ”
provides a baseline for the size of the differences in forecasts
when no arbitrage and filtering are used without the diagonal
constraint. These models are canonical so the economically
small differences (ranging from one to seven basis points) are
32 The failure to reject this constraint would suggest (by transitivity)
that these models are (nearly) identical, since we found that models TSf

and FVn imply near-identical P distributions of Zt .
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implications of our irrelevancy propositions. The large differ-
ences for models TSf and TSfD in the next column are a
manifestation of the binding nature of the diagonality con-
straint on KP

1 .
Most important for the theme of this section are the

small root mean-square differences in the forecasts from
models TSfD and FVn

D, at both the one- and six-month
horizons. The magnitudes of these differences are nearly
identical to those from the canonical models (TSf , FVf ). We
conclude that, even in the presence of the constraint that
KP
1 is diagonal, no-arbitrage restrictions shed no incre-

mental light on the P distribution of yields and macro
factors, once the low-dimensional factor structure of
model FVf

D has been imposed.
These findings are complementary to those for YTSMs -

reported by JSZ, who found that the constraints on the
feedback matrix KP

1 imposed by Christensen, Diebold, and
Rudebusch (2009) had small effects on out-of-sample
forecasts. Further, Ang, Dong, and Piazzesi (2007) found
that impulse response functions implied by their three-
factor (M¼ 2;L¼ 1) MTSM that imposed zero restrictions
on lag coefficients and the parameters governing the
market prices of risk were nearly identical to those
computed from their corresponding unrestricted VAR. All
of these results illustrate cases where our propositions on
the near irrelevance of no-arbitrage restrictions in MTSMs
(and YTSMs) carry over to non-canonical models.

Of course, this finding does not imply that YTSMs or
MTSMs are of little value for understanding the risk profiles
of portfolios of bonds. Restrictions on risk premiums in bond
markets typically amount to constraints across the P and Q

distributions of Zt , and such constraints cannot be explored
outside of a term structure model that (implicitly or explicitly)
links these distributions. Moreover, the presence of con-
straints on risk premiums will in general imply that ML
estimates of the P distribution of yields within a MTSM are
more efficient than those from its corresponding factor-VAR.

Illustrative of this point are the findings in Joslin,
Priebsch, and Singleton (forthcoming) and Jardet, Monfort,
and Pegoraro (2010) that, within their versions of models TSn

and FVn, enforcing near cointegration of Zt under P leads to
very different dynamic properties of their risk factors. The
constraint that expected excess returns lie in a lower than
N�dimensional space (see Cochrane and Piazzesi, 2005 and
JSZ) might also have material effects on the efficiency of
ML/Kalman filter estimates. Both of these constraints are
qualitatively different from the zero restrictions on KP

1 and
KQ
1 that are often imposed in the literature on MTSMs.
Summarizing this evidence, our results on the irrelevance

of no-arbitrage restrictions for the analysis of the distribution
of bond yields and macro factors appear robust to a widely
applied set of restrictions on canonical MTSMs. At the same
time, the extant evidence suggests that constraints inducing
greater persistence of the risk factors under P (thereby
mitigating small sample bias in ML estimators) may drive
an economically large wedge between the dynamic proper-
ties of a MTSM and its factor-VAR counterpart. The extent to
which any such wedge impacts impulse response functions
or conditional forecasts is an informative diagnostic about
the economic content of a MTSM relative to its less con-
strained factor-VAR.
finance term structure models are (nearly) unconstrained
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Table 3
Comparison of model forecasts.

The table presents the root mean-square differences between forecasts
across different model specifications for one-month and six-month
horizons for various specifications of the GM3ðg; πÞ model. The model
GM3ðg; πÞ is a three-factor no-arbitrage model in which the risk factors
are output growth (g), inflation (π) and the first principal component of
yields (PC1). The TS specification imposes no-arbitrage opportunities
while the FV specification imposes only a factor-VAR structure. The f
specifications filter all yields while the n specifications do not filter yields.
The D specification further supposes diagonal feedback so that the
conditional mean of each factor depends only on itself and not the other
factors.

FVn vs TSf TSf vs TSfD TSfD vs FVn
D

1-month PC1 4.14 7.92 4.13
PC2 1.33 4.26 1.36
Y12 4.61 8.86 4.67
Y60 4.53 7.60 4.60
Y120 6.75 7.11 6.99

6-month PC1 4.13 42.30 4.54
PC2 1.51 23.81 1.62
Y12 5.04 48.34 5.46
Y60 4.84 40.51 5.16
Y120 7.16 37.25 7.07
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Appendix A. A canonical form for MTSMs

Our objective is to show that each MTSM where

rt ¼ ρL0 þ ρL1 � ZL
t ðA:1Þ

with the risk factors ZL
t ≡ðM′t ; L′tÞ′ following the Gaussian

processes:

ΔZL
t ¼ κQ0 þ κQ1 Z

L
t−1 þ

ffiffiffiffi
Ω

p
ϵQt under Q and ðA:2Þ

ΔZL
t ¼ κP0 þ κP1 Z

L
t−1 þ

ffiffiffiffi
Ω

p
ϵPt under P; ðA:3Þ

is observationally equivalent to a unique member of
MTSM in which Zt ¼ ðM′t ;PL

t ′Þ′ with L yield portfolios PL
t :

rt ¼ ρ0 þ ρ1 � Zt ; ðA:4Þ

ΔZt ¼ KQ
0 þ KQ

1 Zt−1 þ
ffiffiffiffi
Σ

p
ϵQt under Q and ðA:5Þ

ΔZt ¼ KP
0 þ KP

1 Zt−1 þ
ffiffiffiffi
Σ

p
ϵPt under P; ðA:6Þ

where ðρ0; ρ1;KQ
0 ;K

Q
1 Þ are explicit functions of some under-

lying parameter set ΘQ
TS ¼ ðrQ∞; λQ; γ0; γ1;ΣÞ to be described.

We will make precise the sense in which ΘZ ¼ ðΘQ
TS;K

P
0 ;K

P
1 Þ

uniquely characterizes the latter MTSM.

A.1. Observational equivalence

Assuming, for ease of exposition, that κQ1 has nonzero,
real and distinct eigenvalues with the standard eigende-
composition κQ1 ¼ AQ diagðλQÞAQ−1

, we follow Joslin (2011)
and JSZ by adopting the rotation33:

Xt ¼ V−1ðZL
t þðκQ1 Þ−1κQ0 Þ where V ¼ AQ diagððρL1 Þ′AQÞ−1

ðA:7Þ
33 See JSZ, for detailed treatments of cases with complex, repeated, or
zero eigenvalues.
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to arrive at the following Q specification:

rt ¼ rQ∞ þ ι � Xt and ΔXt ¼ diagðλQÞXt−1 þ
ffiffiffiffiffiffi
ΣX

p
ϵQt ; ðA:8Þ

where λQ is ordered, ι denotes a vector of ones, and

rQ∞ ¼ ρL0 þ ðρL1 Þ′ðκQ1 Þ−1κQ0 and Ω¼ VΣXV′:

From (A.8), the J � 1 vector of yields yt is affine in Xt:

yt ¼ AXðrQ∞; λQ;ΣXÞ þ BXðλQÞXt ðA:9Þ
with AX , BX obtained from standard recursions. Following
JSZ, we fix a full-rank loadings matrix W∈RJ�J and let
Pt ¼Wyt . Focusing on the first N portfolios PN

t , we have

PN
t ¼WNAX þWN BXXt : ðA:10Þ

Based on (A.7) and (A.10), there is a linear mapping
between Mt and PN

t :

Mt ¼ γ0 þ γ1PN
t ; ðA:11Þ

where

γ1 ¼ VMðWN BXÞ−1 and γ0 ¼−γ1W
NAX−AQ

MðλQÞ−1AQ−1
κQ0 ;

ðA:12Þ
and VM, AQ

M denote the first M rows of V, AQ, respectively.
This allows us to write

Zt ¼ Γ0þΓ1PN
t ¼ Γ0þΓ1ðWNAX þWN BXXtÞ ¼ U0þU−1

1 Xt ;

ðA:13Þ
where

Γ0 ¼ ðγ′0;0′LÞ′; Γ1 ¼
γ1

IL; 0L�M

 !
;

U0 ¼ Γ0 þ Γ1W
NAX and U1 ¼ ðΓ1W

N BXÞ−1:

Combining (A.8) and (A.13), the Q-specification of Zt is

rt ¼ ρ0 þ ρ1 � Zt and ΔZt ¼ KQ
0 þ KQ

1 Zt−1 þ
ffiffiffiffi
Σ

p
ϵQt ; ðA:14Þ

where

ρ1 ¼ ðU1Þ′ι and ρ0 ¼ rQ∞−ρ1 � U0;

KQ
1 ¼ U−1

1 λQU1; KQ
0 ¼ −KQ

1 U0 ðand ΣX ¼ U1ΣU1′Þ:

Based on (A.7) and (A.13), there must be a linear mapping
between Zt and ZL

t . It follows that the P�dynamics of Zt must
be Gaussian as in (A.6).

To summarize, the MTSM with mixed macro-latent risk
factors ZL

t , described by (A.1)–(A.3), is observationally
equivalent to one with observable mixed macro-yield-
portfolio risk factors Zt , characterized by (A.4)–(A.6). The
primitive parameter set is ΘZ ¼ ðrQ∞; λQ; γ0; γ1;Σ;KP

0 ;K
P
1 Þ. The

mappings between ðρ0; ρ1;KQ
0 ;K

Q
1 Þ and ΘQ

TS ¼ ðrQ∞; λQ; γ0;
γ1;ΣÞ are
ρ1 ¼ ðU1Þ′ι; ρ0 ¼ rQ∞−ρ1Z �U0; KQ

1 ¼ U−1
1 λQU1; KQ

0 ¼−KQ
1 U0;

ðA:15Þ
where

U1 ¼ ðΓ1W
N BXðλQÞÞ−1; U0 ¼ Γ0

þΓ1W
NAXðrQ∞; λQ;U1ΣU′1Þ;
finance term structure models are (nearly) unconstrained
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and

Γ0 ¼ ðγ′0;0′LÞ′; Γ1 ¼
γ1

IL; 0L�M

 !
:

A.2. Uniqueness

Consider two parameter sets, ΘZ and ~ΘZ , that give rise
to two observationally equivalent MTSM's with risk factors
Zt . Since Zt is observable, the parameters, Σ;KP

0 ;K
P
1 ,

describing the P�dynamics of Zt must be identical. Addi-
tionally, based on (A.11), the following identity must hold
state by state:

Mt≡γ0 þ γ1PN
t ≡~γ0 þ ~γ1PN

t : ðA:16Þ
Since W is full rank and the PN

t are linearly independent, it
follows that:

γ0 ¼ ~γ0 and γ1 ¼ ~γ1: ðA:17Þ
Finally, writing the term structure with PN

t as risk factors:

yt ¼ AX þ BXðWN BXÞ−1ðPN
t −WNAXÞ; ðA:18Þ

it follows that

BXðWN BXÞ−1 ¼ ~BXðWN ~BXÞ−1; ðA:19Þ
and

ðIJ−BXðWNBXÞ−1WN ÞAX ¼ ðIJ− ~BXðWN ~BXÞ−1WN Þ ~AX : ðA:20Þ
Now (A.19) is equivalent to

diag
1−λni
1−λi

� �
ðWN BXÞ−1 ¼ diag

1−~λ
n
i

1−~λ i

 !
ðWN ~BXÞ−1 ðA:21Þ

for every horizon n. As long as both WN BX and WN ~BX are
full rank, it must follow that λQi ≡~λ

Q

i for all i's.
Turning to (A.20), we note that

AX ¼ ιrQ∞ þ βX vecðΣXÞ; ðA:22Þ
where βX is a function of λQ, and thus must be the same for
both ΘZ and ~ΘZ . Likewise, ΣX ¼ U1ΣU′1, dependent only on
ðγ1; λQ;ΣÞ, must be the same for both parameter sets. It
follows that rQ∞ ¼ ~rQ∞. Therefore, ΘZ≡ ~ΘZ .

A.3. Regularity conditions

First, we assume that the diagonal elements of λQ are
nonzero, real, and distinct. These assumptions can be
easily relaxed—see JSZ for detailed treatments. Second,
we assume that the MTSMs are non-degenerate in the
sense that there is no transformation such that the
effective number of risk factors is less than N . For this,
the requirement is that all elements of ðρL1 Þ′AQ are nonzero.
In terms of the parameters of our canonical form, we
require that none of the eigenvectors of the risk-neutral
feedback matrix KQ

1 is orthogonal to the loadings vector ρ1
of the short rate. Finally, to maintain valid transformations
between alternative choices of risk factors, we require that
the matrices WN BX and Γ1 be full rank. These are condi-
tions on ðλQ;WÞ and γ1, respectively.
Please cite this article as: Joslin, S., et al., Why Gaussian macro-
factor-VARs. Journal of Financial Economics (2013), http://dx.d
The following theorem summarizes the above
derivations:

Theorem A.1. Fix a full-rank portfolio matrix W∈RJ�J , and let
Pt ¼Wyt . Any canonical form for the family of N�factor
models MTSM is observationally equivalent to a unique
MTSM in which the first M components of the pricing factors
Zt are the macro-variables Mt , and the remaining L compo-
nents of Zt are PL

t ; rt is given by (A.4); Mt is related to Pt

through

Mt ¼ γ0 þ γ1PN
t ; ðA:23Þ

forM� 1 vector γ0 andM�N matrix γ1; and Zt follows the
Gaussian Q and P processes (A.5), and (A.6), where KQ

0 ; K
Q
1 ,

ρ0, and ρ1 are explicit functions of ΘQ
TS ¼ ðrQ∞; λQ; γ0; γ1;ΣÞ,

given by (A.15). For given W, our canonical form is para-
metrized by ΘTS ¼ ðΘQ

TS;K
P
0 ;K

P
1 Þ.

Appendix B. Bond pricing in MTSMs

Under (A.4)–(A.6), the price of an m-year zero-coupon
bond is given by

Dt;m ¼ EQt ½e−∑
m−1
i ¼ 0rtþi � ¼ eAmþBm�Zt ; ðB:1Þ

where ðAm;BmÞ solve the first-order difference equations

Amþ1−Am ¼ KQ′
0 Bm þ 1

2B
′
mH0Bm−ρ0 ðB:2Þ

Bmþ1−Bm ¼ KQ′
1 Bm−ρ1 ðB:3Þ

subject to the initial conditions A0 ¼ 0;B0 ¼ 0. See, for
example, Dai and Singleton (2003). The loadings for the
corresponding bond yield are Am ¼−Am=m and Bm ¼
−Bm=m.

Appendix C. Invariant transformations of MTSMs

As in Dai and Singleton (2000), given a MTSM with
parameters as in (A.4)–(A.6) and state Zt , application of the
invariant transformation Ẑ t ¼ C þ DZt gives an observa-
tionally equivalent term structure model with state Ẑ t and
parameters

KQ

0Ẑ
¼DKQ

0 −DK
Q
1 D

−1C; ðC:1Þ

KQ

1Ẑ
¼DKQ

1 D
−1; ðC:2Þ

ρ0Ẑ ¼ ρ0−ρ
′
1D

−1C ðC:3Þ

ρ1Ẑ ¼ ðD−1Þ′ρ1; ðC:4Þ

KP

0Ẑ ¼DKP
0−DK

P
1D

−1C; ðC:5Þ

KP

1Ẑ ¼DKP
1D

−1; ðC:6Þ

ΣẐ ¼DΣD′: ðC:7Þ
finance term structure models are (nearly) unconstrained
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Appendix D. Filtering invariance of the mean parameters

This appendix shows that when ΣeLS
−1
t is small, the

filtered version of Eq. (15),

½K̂P

0 ; I þ K̂
P

1 �′¼
1
T
∑
t
Zf
tþ1;

1
T
∑
t
ðZtþ1Z′tÞf

� � 1 1
T ∑tZ

f
t ′

1
T ∑tZ

f
t

1
T ∑tðZtZ′tÞf

0
@

1
A

−1

;

ðD:1Þ
gives (under mild assumptions) estimates that are close to
the OLS estimates. Assuming further that ðZtZ′tÞs and
ðZtþ1Z′tÞs are close to their filtered counterparts, it follows
that the smoothed version of (15) will also give approxi-
mately the OLS estimates of KP

0 and KP
1 .

As shown in Appendix D.1, when ΣeLS
−1
t is small,

convergence to the steady-state distribution will be fast.
As such, we can treat Ωt ¼ VarðZo

t jP−Lo
t ;F t−1Þ as a constant

matrix, with P−Lo
t being the J−L higher-order PCs. Post-

multiplying both terms on the right-hand side of (D.1) by
ð10 0

Ω−1
t
Þ leads to

1
T
∑
t
Zf
tþ1;

1
T
∑
t
ðZtþ1Z′tÞfΩ−1

t

� � 1 1
T ∑tZ

f
t ′Ω−1

t

1
T ∑tZ

f
t

1
T ∑tðZtZ′tÞfΩ−1

t

0
@

1
A

−1

:

ðD:2Þ
Now,

ðZtZ′tÞfΩ−1
t ¼ VarðZt jF tÞΩ−1

t þ Zf
t ðZf

t Þ′Ω−1
t

¼ VarðZt jF tÞΩ−1
t þ Zo

t ðZo
t Þ′Ω−1

t ; ðD:3Þ
where the second line follows from results in Section 3.1.
Using block inversion, the nonzero block of the first term is

ΣeLS
−1
t −ΣeLS

−1
t ΣeLS

−1
t ;

which under our assumption must be close to zero.

Therefore, we can replace the term ð1=TÞ∑tðZtZ′tÞfΩ−1
t in

(D.2) by ð1=TÞ∑tZ
o
t Z

o
t ′Ω−1

t . Using a similar argument,

ð1=TÞ∑tðZtþ1Z′tÞfΩ−1
t can also be replaced by ð1=TÞ∑t

Zo
tþ1Z

o
t ′Ω−1

t . Furthermore, results in Section 3.1 allow us

to replace Zf
t in (D.2) by its observed counterpart:

1
T
∑
t
Zo
tþ1;

1
T
∑
t
Zo
tþ1Z

o
t ′Ω

−1
t

� � 1 1
T ∑tZ

o
t ′Ω−1

t
1
T ∑tZ

o
t

1
T ∑tZ

o
t Z

o
t ′Ω−1

t

 !−1

:

ðD:4Þ

Finally, if VarT ðZo
t ÞVarðZo

t jP−Lo
t ;F t−1Þ−1 is non-degenerate

relative to ΣeLS
−1
t , then all Ωt s cancel out and (D.4)

reduces to the familiar OLS estimates.

D.1. Speed of convergence to steady states

Consider the following generic state-space system:

Ztþ1 ¼ K0 þ K1Zt þ
ffiffiffiffi
Σ

p
ϵtþ1; ðD:5Þ

Zo
tþ1 ¼ Ztþ1 þ eZ;tþ1; ðD:6Þ

Yo
tþ1 ¼ Aþ BZtþ1 þ eY ;tþ1; ðD:7Þ

where eZ;t and eY ;t are independent and eZ;t∼Nð0;ΣZeÞ and
eY ;t∼Nð0;ΣYeÞ. Let Σtþ1, Ωtþ1 denote VarðZtþ1jF tÞ and
VarðZo

tþ1jYo
tþ1;F tÞ, respectively. It is standard to show that
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Σtþ1 follows the recursion:

Σtþ1 ¼ Σ þ K1ðΣt−Σt
~B′ð ~BΣt

~B′þ ΣeÞ−1 ~BΣtÞK′1; ðD:8Þ
where Σe is the variance matrix of ðe′Z;t ; e′Y ;tÞ′ and
~B′¼ ðI;B′Þ. We first show that when ΣeΩ

−1
t is small, then

Σt , and therefore the Kalman gain matrix, will approach
their steady-state values rapidly. Then we specialize this
condition to our pricing framework.

Standard linear algebra allows us to express the term
between K1 and K′1 in (D.8) as

ΣZe−ðΣZe;0Þð ~BΣt
~B′þ ΣeÞ−1

ΣZe

0

� �
: ðD:9Þ

Now consider a small variation in Σt of ∂Σt , the corre-
sponding change in Σtþ1 (the Fréchet derivative) will be

∂Σtþ1 ¼Φ∂ΣtΦ′ with Φ¼ K1ðΣZe;0Þð ~BΣt
~B′þ ΣeÞ−1

I

B

� �
:

ðD:10Þ
Replacing ð ~BΣt

~B′þ ΣeÞ by VarðZo
t

Yo
t
F t−1Þ
�� and applying block-

wise inversion to this matrix, gives

Φ¼ K1ΣZeΩ
−1
t ðI−ΣtB′ðBΣtB′þ ΣYeÞ−1BÞ: ðD:11Þ

As a result, as ΣZeΩ
−1
t approaches zero, so do the eigenva-

lues of Φ. Since the recursion (D.8) can be written
approximately as

vecðΣtþ1−Σ Þ≈ðΦ⊗ΦÞvecðΣt−Σ Þ; ðD:12Þ
where Σ denotes the steady-state value of Σt , small
eigenvalues of Φ (and hence Φ⊗Φ) induce fast conver-
gence to the steady state.

For MTSMs we assume that Mt is perfectly observed,
and the M rows and columns of Σe corresponding to Mt

are zeros. Applying block inversion to Ωt and collecting the
L� L block corresponding to the yield portfolios PL

t , it can
be seen that we need ΣeLS

−1
t to be small.

Appendix E. Filtering invariance of the variance
parameters

The term structure corresponding to our canonical
form with the observable risk factors Zt can be obtained
by substituting (A.13) into (A.18):

yt ¼ AX þ BXðWN BXÞ−1ðΓ−1
1 ðZt−Γ0Þ−WNAXÞ: ðE:1Þ

From this we can write Pt ¼ ATS þ BTSZt , where

ATS ¼ Gγr þ βZ vecðΣÞ; ðE:2Þ

BTS ¼WBXU1; ðE:3Þ

G¼WððIJ−BXðWN BXÞ−1WN Þι;BXU1;MÞ; ðE:4Þ

βZ ¼WðIJ−BXðWN BXÞ−1WN ÞβXðU1⊗U1Þ; ðE:5Þ
γ′r ¼ ðrQ∞; γ′0Þ, and U1;M denotes the first M columns of U1.
Importantly, G and T are only dependent on λQ and γ1.
Therefore, from (7), the errors in pricing Pt are given by

et ¼Po
t−Gγr−βZ vecðΣÞ−BTSZt : ðE:6Þ

Since

f ðPo
t jZt ;Θ

Q;ΣeÞ ¼ ð2πÞ−J=2 Σej−1=2expð−1
2e′tΣ

−1
e etÞ;

�� ðE:7Þ
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it follows that

∑
t
∂ log f ðPo

t jZt ;Θ
Q;ΣeÞ=∂vecðΣÞ ¼ β̂′ZðΣ̂ eÞ−1∑

t
êut ; ðE:8Þ

where the unobserved pricing errors êut from (7) are
evaluated at theML estimators and depend on the partially
observed Z

!
.
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